

4TH EUROCC VILNIUS HACKATHON & WORKSHOP ON USING HPC

Abstract book

https://doi.org/10.5281/zenodo.15754592 https://www.eurocc-lithuania.lt/events 2025-06-27/

June 27, 2025

Vilnius, Lithuania

Hackathon & Workshop organizers

Local organizing committee

Mindaugas Mačernis Laura Baliulytė

Scientific committee

Mindaugas Mačernis Laura Baliulytė

Funding

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant agreement No 101101903.

Projektas bendrai finansuojamas 2021–2027 metų ES fondų investicijų programos (sutartis Nr. 10-051-P-0001).

EuroCC2-EuroCC4SEE Project Organiser

Project Implementers

QM/MD and NMR study of aqueous mixtures of choline lysinate

<u>Kęstutis Aidas</u>¹, Einaras Sipavičius¹, Lukas Mikalauskas¹, Vytautas Klimavičius¹

¹Institute of Chemical Physics, Faculty of Physics, Vilnius University, Lithuania

E-mail: kestutis.aidas@ff.vu.lt

Molecular dynamics (MD) simulations combined with the quantum mechanics/molecular mechanics (QM/MM) models have proven to be a powerful computational technique for accurate predictions of electronic properties of extensive molecular systems. MD simulations are employed to sample the phase space of molecular system of interest under specific thermodynamic conditions, and then QM/MM calculations of electronic properties are performed where the central part of the molecular system is described by an electronic structure method and the rest of the system is modelled by a classical force field.

Aiming to scrutinize intermolecular organization in aqueous mixtures of choline lysinate, [Cho][Lys], ionic liquid (IL), the dependences of the ¹H NMR chemical shifts and diffusion coefficients on their composition were measured [1]. To rationalize experimental findings, extensive MD simulations and linear-response QM/MM computations of NMR shielding constants were performed. Analysis of MD trajectories reveals that extent of intermolecular contacts between cations and anions intensifies with the increasing content of the IL in the mixture. Moreover, the tendency of choline cations and the side chains of lysinate anions to self-aggregate was observed as well, leading to the formation of a continuous, highly polar domain composed of choline cations and the carboxylate groups of lysinate anions, as well as a less polar domain formed by the side chains of the anions in IL-rich mixtures. Under these circumstances, isolated water pockets are found to be situated at the interface of the polar and nonpolar ionic domains. The dependences of the measured diffusion coefficients on the composition of the mixture reveals the existence of two dynamical regimes – fast and slow regimes below and above molar fraction of the IL of 11%, respectively. Results of MD simulations suggest that – at this specific molar composition of aqueous [Cho][Lys] mixture - continuous water network ceases giving way to the continuous structure of ionic domains being formed. The QM/MM results for the ¹H NMR chemical shifts of aqueous IL mixtures generally agree well with experimental findings and corroborate structural results. The prominent upfield shift of the NMR signal of protons in fast exchange with the rising content of the IL was successfully rationalized [1].

Acknowledgements. Support from the Research Council of Lithuania is acknowledged (grant no. S-MIP-22-74). Computations were performed on the resources provided by the High Performance Computing Center "HPC Saulėtekis" at Vilnius University, Lithuania.

REFERENCES

[1]E. Sipavičius, L. Mikalauskas, V. Klimavičius, K. Aidas, Intermolecular organization in aqueous mixtures of choline lysinate studied by NMR and molecular dynamics/quantum mechanics, *Phys. Chem. Chem. Phys.* (2025), https://doi.org/10.1039/D5CP00861A.