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Abstract

Background Population pharmacokinetic models can potentially provide suggestions for an initial dose and the magnitude
of dose adjustment during therapeutic drug monitoring procedures of imatinib. Several population pharmacokinetic models
for imatinib have been developed over the last two decades. However, their predictive performance is still unknown when
extrapolated to different populations, especially children.

Objective This study aimed to evaluate the predictive performance of these published models on an external real-world
dataset containing data from both adults and children.

Methods A real-world dataset was collected, containing observations from adult and pediatric patients with Philadelphia
chromosome-positive/Philadelphia chromosome-like acute lymphoblastic leukemia and chronic myeloid leukemia (N = 39)
treated with imatinib. A systematic review through PubMed was conducted to identify qualified population-pharmacokinetic
models for external evaluation (i.e., prediction-based, simulation-based, and Bayesian forecasting diagnostics). Standard
allometric scaling was used for models that were developed based on data from adults only.

Results Fifteen published models were found for evaluation, of which only two were based on data from both children and adults.
Prediction-based diagnostics showed that some models had an acceptable level of bias. The model by Shriyan et al. (with allometric
scaling) performed best with a median prediction error of 1.24%. However, no models performed well on precision even when
allometric scaling was used, where the lowest median absolute prediction error was 37.66% using the model by Schmidli et al. The
models by Golabchifar et al. and Schmidli et al. (both with allometric scaling) performed the best of all tested models, with a median
prediction error < 15%, median absolute prediction error < 40%, fraction of prediction error within & 20% (F,,) > 0.3, and within
+ 30% (F’5,) nearly 0.4. Simulation-based diagnostics showed that most of the observations outside the 90% prediction interval were
from children. Bayesian forecasting showed that the model prediction could be improved using one prior sample, particularly in adults.
Conclusions Current models fail to accurately predict imatinib plasma concentrations in our real-world dataset, especially
for children. Future pharmacokinetic studies should focus on developing better models for pediatric populations.

1 Introduction

Imatinib is a highly selective inhibitor of the BCR-ABL1
tyrosine kinase fusion protein generated by the geneti-
cally abnormal Philadelphia chromosome (Ph). As the first
approved tyrosine kinase inhibitor, imatinib has revolution-
ized the survival rates in BCR-ABLI1 leukemia over the last
two decades [1]. Currently, in most cases, it is still used
as the first-line treatment of patients with newly diagnosed
Ph-positive (Ph+) acute lymphoblastic leukemia (ALL) and
chronic myeloid leukemia (CML). For Ph-like (ABL-class)
ALL, imatinib is added to first-line treatment in the prospec-
tive ALLTogether1 trial for patients aged 0—45 years.

The recommended total daily dose of imatinib is 400 mg
orally for adult patients with CML (with a possible esca-
lation to 600-800 mg to avoid the disease progressing to
the accelerated or blast phase), 600 mg for adult patients
with ALL, and a dosage range of 260-340 mg per square
meter of body surface area for pediatric patients [2]. The
pharmacokinetics of imatinib is characterized by high bio-
availability (exceeding 95%) after oral administration [3] but
high inter-individual variability in drug exposure and trough
concentrations [2]. A significant pharmacokinetic (PK) and
pharmacodynamic correlation is observed between imatinib
through concentrations and clinical responses in both
patients with CML [4-7] and patients with gastrointestinal
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Fifteen population pharmacokinetic models of imatinib
were found in a systematic review, whereof only two
included data from children.

In an evaluation of the 15 models using an external dataset
containing both children and adults, it was shown that all
the models had a lower prediction performance in children
compared with adults, despite standard allometric scaling
being used.

Although imatinib is utilized in the treatment of pedi-
atric leukemia, there is a considerable deficiency of
pharmacokinetic studies specifically addressing its use in
children, and moreover, predictions derived from adult-
based models lack precision.

stromal tumors [7-9]. Studies in adult patients with CML
show that a trough concentration above 1000 ng/mL can
give a significantly higher cytogenetic and major molecular
response rate [10—12]. However, a meta-analysis shows that
trough concentrations above 1500 ng/mL do not increase
efficacy [13], whereas concentrations above 3000 ng/mL
might lead to serious adverse events such as neutropenia
[12]. Consequently, it is recommended that the trough
concentration should be kept between 1000 and 3000 ng/
mL [12-14]. Efficacy of the treatment with imatinib can
be followed by measuring the BCR::ABL1 transcript level
by real-time polymerase chain reaction, and therapeutic
drug monitoring (TDM) is increasingly recommended as
an additional method to optimize imatinib treatment within
patients with CML to avoid toxicity and follow compliance
[13, 15]. Pharmacokinetic/pharmacodynamic data regarding
pediatric ALL are currently lacking [2] and thus there is no
recommendation for dosing for pediatric patients with ALL.
For pediatric patients with CML, the US Food and Drug
Administration suggest the same exposure level of imatinib
as in adults [16]. Therefore, this is also applied in ALL in
our clinical practice.

Imatinib is a substrate of influx transporters (e.g., organic
cation transporter 1 and organic anion transporting poly-
peptide 1A2) and efflux transporters (e.g., ATP-binding
cassette transporters ABCB1 and ABCG?2) [17]. The phar-
macogenetic-based variations in activity and expression of
these transporters probably contribute to the variability in
imatinib pharmacokinetics [18]. Additionally, imatinib is
metabolized by the cytochrome P450 (CYP) system (mainly
CYP3A4 and CYP3AS5), which shows high between-subject
variability in hepatic expression and biological activity [19].
The parent imatinib compound is metabolized mostly by
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CYP3A4 to N-desmethyl imatinib, which has similar in vitro
potency to imatinib [3]. Children might show a different PK
profile of imatinib than adults because of their physiological
and anatomical differences [20]. However, data on imatinib
pharmacokinetics in children are still sparse [21].

Population pharmacokinetic (pop-PK) models are poten-
tially useful in TDM for predicting both the initial dose for
newly diagnosed patients and the magnitude of dose adjust-
ments when needed [22, 23], especially combined with a
Bayesian maximum a posteriori method to adjust the indi-
vidual PK parameters [24]. Several pop-PK models for
imatinib have been published. However, these models are
mostly built on an entirely adult population and their predic-
tive performance across different populations, especially in
children, remains unclear. This study aims to evaluate the
predictive performance of the published pop-PK models on
imatinib, using an external real-world dataset from northern
Europe consisting of data from both children and adults. The
goal is to identify a clinically acceptable model for all age
groups that can be used to suggest both the initial dose and
dose adjustments in daily TDM practice.

2 Methods
2.1 Review of Relevant pop-PK Models

A systematic literature review was conducted in PubMed
for pop-PK models published before 24 May, 2024. More-
over, additional publications identified from the reference
list of selected publications were also screened if relevant.
The models were included if they were (1) a pop-PK model
study using a non-linear mixed-effect modeling approach,
(2) based on a human patient population receiving oral
imatinib, and (3) written in English. Papers were excluded
if they were (1) with insufficient parameter information
to reproduce the model fully, (2) models combining both
free and total imatinib concentrations, (3) only modeling
on the first-day pharmacokinetics of imatinib (no data on
the steady state), and (4) not an original research paper of
an imatinib pop-PK model (i.e., review, simulation study).
A single study was reported if data were presented in mul-
tiple publications to avoid duplication. The search terms
used are shown in Table S1.1 of the Electronic Supple-
mentary Material (ESM).

2.2 Patient Data Collection

The data from the current study were collected from the
hematology and pediatric departments of 11 Nordic and
Baltic hospitals (Table S1.2 of the ESM). Patients were
either included in a PK sub-study of the ALLTogetherl
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trial or the Danish ABL-class Inhibitor pharmacokinetics/-
dynamics Monitoring (AIM) study (Fig. S1.1 of the ESM).

After obtaining written informed consent from patients
and/or legal guardians, the study participants were
enrolled in the ALLTogetherl Study Protocol (EudraCT
2018-001795-38), which is an international multicenter
prospective study. The study includes patients with Ph-like
ALL aged 0-45 years and has, on top of chemotherapy,
a non-randomized addition of imatinib to patients carry-
ing an ABL-class fusion gene in the leukemic clone. Oral
imatinib 340 mg/m?*/day was introduced from day 15 of
induction (< 25 years; maximum dose: 800 mg) or day 29
(> 25 years; maximum dose: 600 mg) throughout treat-
ment. Dose adaptation of imatinib was allowed in the case
of toxicity according to protocol guidelines. Patients diag-
nosed with BCR-ABL1-positive (Ph+) ALL are excluded
from the study. However, if the treating physician deemed
the ALLTogetherl protocol to be the best standard of
care, these patients could still be treated according to the
protocol. A full list of ALLTogether! inclusion/exclusion
criteria, details on stratification, antileukemic therapy, and
guidelines of dose adaptation are available at ClinicalTri-
als.gov (NTC04307576). In an observational PK sub-study
of ALLTogetherl, blood samples from study patients were
obtained at already scheduled sampling timepoints accord-
ing to protocol guidelines. A requisition following every
sample included information about the time for the latest
intake of imatinib, sampling time, height, and weight.

Both pediatric and adult patients diagnosed with CML
or Ph+ ALL were included in the Danish ABL-class
Inhibitor pharmacokinetics/-dynamics Monitoring (AIM)
study conducted at Copenhagen University Hospital Rig-
shospitalet. The Danish AIM study was approved by The
Scientific Ethics Committees for the Capital Region, Den-
mark (H-22057870). Patients were eligible if they received
imatinib and gave written informed consent. Blood samples
were taken at already scheduled timepoints for sampling
according to standard of care. Every sample was followed
by a telephone call to the patient to gather information about
the timing of imatinib intake.

Eligible patients for this current study were children or
adults diagnosed with CML or Ph+/Ph-like ALL, included
in the ALLTogetherl PK sub-study or the Danish AIM
study, treated with imatinib, and having at least one meas-
ured imatinib sample. Patients were included between Janu-
ary 2022 and December 2023 with longitudinal sampling
collection until January 2024.

For each valid TDM occasion (or visit) with a clear
dose regimen, a single imatinib (sometimes combined with
metabolite N-desmethyl imatinib) concentration at steady
state was included in the external dataset. Therapeutic drug
monitoring visits were removed if no clear information was
available on imatinib intake and blood sample time or if the

time after the dose was more than 48 hours. In case the total
body weight or height of a patient was not measured at one
TDM visit (missing value in weight or height), the body
weight or height in the most recent TDM visit, no more than
6 months apart, was imputed (only 8 of 122 TDM visits were
imputed by this method). The patient basic demographic
information was collected from a central study registry (for
ALLTogether] patients) or electronic medical records (for
Danish AIM patients), including age, sex, weight, height,
and time after diagnosis. The TDM follow-up was performed
every few months for each patient.

2.3 Bioanalytical Method

Sample preparation: samples of 1-5 mL of whole blood
were collected in EDTA tubes at weekly or monthly inter-
vals and sent with regular mail to the Pediatric Oncology
Research Laboratory, Copenhagen, Denmark. Plasma was
prepared by centrifugation of EDTA blood. The plasma sam-
ple was added to stable isotope-labeled internal standards
and then the analytes are extracted with ethyl acetate. The
organic fraction was transferred to a new vial. After evapora-
tion of the organic fraction, the sample was redissolved and
the concentrations of imatinib and N-desmethyl-imatinib
were determined by reversed-phase liquid chromatography
tandem mass spectrometry.

Liquid chromatography tandem mass spectrometry: the
method used is a slightly modified version of the method
developed by Bouchet et al. [25]. The mass spectrometer
was a Sciex Qtrap 6500%. This was connected to a Sciex
ExionLC UHPLC system (Sciex, Framingham, MA, USA).
The column used was an Acquity UPLC™ HSS T3 column
(2.1x50 mm, 1.8 pm) protected by an Acquity UPLC™ HSS
T3 VanGuard pre-column (2.1X5 mm, 1.8 pm) both obtained
from Waters (Wexford, Ireland).

2.4 External Evaluation

All selected pop-PK models were coded and evaluated in
NONMEM 7.5.0 (ICON Development Solutions, Ellicott
City, MD, USA). Statistical analysis and visualization were
programmed through R software (version 4.3.0) and Python
(version 3.9.19). If covariates were unavailable in the exter-
nal dataset, the typical population value from the originally
developed model was used. The inter-occasion variability
model was removed if contained in the published models.
All parameters (including fixed and random effects) were
set to the published values and steady-state conditions were
used for each model.

Most of the published models were built on data from
an entirely adult population, thus, to evaluate how they pre-
dict in a real-world population like our dataset consisting
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of both children and adults, the standard allometric scaling
on clearance and volume of distribution was used and their
performance was examined. Thus, all models were evaluated
both in their original form as published and with allometric
scaling, if this was not included in the original model.

The equations for scaling clearance and volume were:

TBW 7
CL = CLygu X (=57) M
TBW
V = Vique X <W> 2

where CL, V, CL, 4, and V4 are the clearance and volume
of distribution after and before allometric scaling, respec-
tively, and TBW is the total body weight. The volume of
the peripheral compartment and intercompartmental clear-
ance were also scaled for the two-compartment model. The
allometric scaling procedure would replace the total body
weight covariate when allometric scaling was used on the
published modes. The performance of the allometric scal-
ing model and the original published model was compared.

2.4.1 Prediction-Based Diagnostics

To evaluate the prediction performance of selected mod-
els, the prediction error (PE) and absolute prediction
error (APE) were calculated using population predictions
(Cprep) and corresponding observations (Cpgg) as out-
lined in Egs. 3 and 4, respectively.

C -C
PE(%) = < PRED OBS) % 100 3)

COBS

CPRED B COBS

APE(%) = x 100 4)

COBS

The root mean squared error (RMSE) was calculated
as follows (Eq. 5):

N
1
~ 2 Corep = Cons)™. 5)

i=1

RMSE =

where N is the number of observations considered. The
Cprep and Cpgg were all transferred to mg/L before calcu-
lating RMSE. No variability is included in this evaluation.
The median prediction error (MDPE) represents the
bias, and the median absolute prediction error (MDAPE)
and RMSE represents the precision. Additionally, the
fractions of PE% within + 20% (F,;) and + 30% (F5,) of
observed values were calculated to evaluate the predictive
performance of the selected models. According to previous
reports, a satisfactory model should reach the standard of
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MDPE < + 15%, MDAPE < 30%, F,, > 35%, and F;; >
50%, whereas RMSE should be as close to zero as pos-
sible [26—29].

2.4.2 Simulation-Based Diagnostics

Stochastic simulations were performed in NONMEM
for 1000 subproblems or replicates to evaluate the pre-
dictive performance of candidate pop-PK models with
inter-individual variability and residual unexplained
variability. The simulation dataset used the same external
dataset changing the value in the DV column to NA, which
means that the dataset used for simulation has the same
patient demographic information and corresponding dose
as the external dataset. Additional timepoints (every 0.5
hours) were used to capture the entire concentration—time
profile under steady state. The PK profile for metabolite
N-desmethyl imatinib was also simulated for models with
metabolite N-desmethyl imatinib. The patient population
was stratified by dose for both simulation and observa-
tion data. The 5th, 10th, 25th, 50th, 75th, 90th, and 95th
percentiles of simulated data at each timepoint were calcu-
lated and graphically represented for each selected model
to compare with the observed concentrations at the same
timepoints.

2.4.3 Bayesian Forecasting Diagnostics

A subgroup of patients (25 patients) having more than one
TDM occasion with observed imatinib plasma concentra-
tions was selected (Bayesian dataset) and used to evaluate
the Bayesian forecasting performance of the 15 models when
one prior TDM observation data point was included. If more
than two TDM visits were available for a single patient, the
most recent two occasions were used in this study.

The Bayesian forecasting was carried out sequentially on
two TDM occasions. The a priori scenario (prediction per-
formance with O previous observations) used only typical
PK parameters and all available patient covariates and dose
information to predict the imatinib concentration on the first
TDM occasion and to calculate the prediction error through
the Cprep and Cpgg in Eq. 2, as previously described. The
individual a posteriori scenario (with one previous obser-
vation) predicted the imatinib concentration at the second
TDM occasion by including the first occasion and account-
ing for the inter-individual variability and residual unex-
plained variability of the models. The following equation
calculated the individual prediction error (IPE%):

Ciprep — C
IPE(%) = (M) x 100, ©6)
OBS
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where Ciprgp 18 the individual prediction generated by
NONMEM.

3 Results
3.1 Review of Relevant pop-PK Models

An overview of the selection strategy for including the pub-
lished pop-PK models on imatinib is shown in Fig. S1.2 of
the ESM. Several pop-PK models were excluded because
the models were not built on steady-state plasma concentra-
tion data [30-32], contained subgroup patient populations
[33] from another included model [34], were joint models
on free and total imatinib concentrations [35], or there were
missing stochastic parameters [36, 37]. The literature search
identified 15 imatinib pop-PK models for further external
evaluation, for which detailed information is summarized in
Table 1. Among them, one was an international multicenter
study [38], others were conducted in the USA and Europe (N
= 8) [9, 34, 39-44], East Asia (N = 4) [45-48], South Asia
(N =1) [49], and West Asia (N = 1) [50]. Most patient popu-
lations for the selected models were either CML or GIST.
Furthermore, ten models were developed based on a small
population of fewer than 100 patients [9, 34, 39-42, 44, 46,
49, 50]. Three Chinese population models were based on
populations with a size of 110-230 patients [45, 47, 48].
One model from the international phase III trial on imatinib
was derived from a larger population (371 patients) [38],
and one model founded on observation data collected from
2006 to 2010 contained the largest population in selected
models with 2478 adult European patients [43]. Only two
models included children. One model by Menon-Andersen
et al. [40] was developed for children and young adults with
Ph+ leukemia, the age group being 624 years, and another
model by Petain et al. [34] included 33 patients with solid
malignancies aged 2—22 years in a phase II study.

A one-compartment model was used in almost all the
included models (N = 14), except one that used a two-
compartment model [41]. The absorption phase was
characterized by first-order (N = 7) [34, 39, 42, 45-48],
zero-order (N = 7) [9, 38, 40, 43, 44, 49, 50], and a tran-
sit model (N = 1) [41]. One study found a lag time in
imatinib absorption [50]. Two studies also included the
PK profile of the main metabolite N-desmethyl imatinib in
their model [34, 40]. The typical apparent clearance was
estimated to be 7.29-17.3 L/h.

Total body weight was the most frequently identified
covariate (N = 5). Hemoglobin (N = 2), white blood cell
count (N = 2), plasma AGP (N = 2), and albumin (N =
2) were other covariates found more than once. Pharma-
cogenomic variances in the ABCG2 and SLC22A1 were

identified as covariates influencing imatinib clearance in
one model each (Table 1). More clinical information about
the selected models is provided in Table S1.3 of the ESM.

3.2 Patient Demographic Information

The external dataset included 39 patients with 122 imatinib
plasma concentration samples and 100 samples of N-desme-
thyl imatinib. There were 25 (64% of the total) patients who
provided more than one sample for imatinib, which could be
used for Bayesian forecasting evaluation. Children (patients
aged <18 years) accounted for around 40% of the total pop-
ulation, and for 60% of imatinib or N-desmethyl imatinib
observations, which led to high variability in age, weight,
and height of this dataset. The age distribution of the exter-
nal dataset is shown in Fig. S2.1 of the ESM. Additionally,
14 of 16 children were diagnosed with ALL, while 19 of 23
adults had CML in this dataset. The demographic informa-
tion is summarized in Table 2. All patients received imatinib
once daily, with doses of 100 mg, 150 mg, 200 mg, 250 mg,
270 mg, 300 mg, 350 mg, 400 mg, 450 mg, 550 mg, or 600
mg.

3.3 Prediction-Based Evaluation

The performance of the selected models based on predic-
tion-based diagnostics is shown in Table 3. This aims to
examine the model’s performance at the population level and
its ability to predict the initial dose for different subpopula-
tions with given covariates. Because there are children in the
external dataset, the standard allometric scaling was used for
selected models building on adult data only. Allometric scal-
ing was not used in the models by Menon-Andersen et al.
and Petain et al. [34, 40], as their models were based on a
population of both adults and children, and they used body
weight scaling in their original models.

Only the original model of Demetri et al., He et al., Wang
et al., and Yamakawa et al. fulfill the criteria of MDPE <
+ 15%. None of the original models met any of the crite-
ria from MDAPE < 30%, F,, > 35%, and F, > 50%. The
models by Menon-Andersen et al. and Petain et al. did not
show superior performance compared to the other models,
even though they included children and body weight scaling
in their original models. After allometric scaling, Eechoute
et al., Gdabchifar et al., Jiang et al., Judson et al., Schmidli
et al., Shriyan et al., Wang et al., and Yamakawa et al. met
the criteria of MDPE < + 15% (Table 3). However, none
of the models met the MDAPE, F),, and Fj criteria even
after standard allometric scaling. The models by Golabchi-
far et al. and Schmidli et al., when using allometric scaling,
showed better predictive performance compared with other
models, as they achieved the MDPE < + 15% criteria, and
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Table 2 Summary of patients’ demographic information of the external dataset

Characteristics

Number or mean + SD Range or percentage

Number of patients

By (male/female)

By (children/adults)?

By (ALL/CML)

Number of patients provided imatinib samples
Have 1 sample

Have 2 samples

Have >2 samples

Number of patients provided N-desmethyl imatinib samples
Have 1 sample

Have 2 samples

Have > 2 samples

Number of imatinib observations

By (male/female)

By (children/adults)

By (ALL/CML)

Number of N-desmethyl imatinib observations
by (male/female)

by (children/adults)

by (ALL/CML)

Weight (kg)

Children

Adults

Height (cm)

Children

Adults

Age (years)

Children

Adults

Time after diagnosed (years)

Dose (mg/day)

39 -

26/13 66.7%/33.3%
16/23 41%/59%
18/21 46.2%/53.8%
39 -

14 35.9%

10 25.6%

15 38.5%

38 -

15 39.5%

9 23.7%

14 36.8%

122 -

97/25 79.5%120.5%
71/51 58.2%/41.8%
88/34 72.1%127.9%
100 -

77/23 77%123%
63/37 63%/37%
66/34 66%/34%
59.8 +23.7 9.3-103
359+ 147 9.3-62

76.5 +10.8 55-103
161.3 +24.5 73-190

142 +26.4 73-182
1753 £ 8.7 155-190
37.6 +26.3 1-75

102 +4.2 1-17

56.6 + 16.1 19-75
233+4.17 0.05-20.95
+118.9 100-600

ALL acute lymphoblastic leukemia, CML chronic myeloid leukemia, SD standard deviation

aChildren are patients aged < 18 years, and adults are patients aged older than 18 years

had MDAPE < 40%, F,, > 30%, and F5;, almost at 40%. In
general, the allometric scaling slightly improved the mean
statistical error metrics of models (mean MDPE% — 1.43%
for allometric scaling models vs — 24.53% for models with-
out; mean MDAPE% 44.71% for allometric scaling models
vs 47.03% for models without; mean F,, 25% for allometric
scaling models vs 21% for models without; mean F, 36%
for allometric scaling models vs 32% for models without;
the mean of statistical error metrics were calculated for the
13 models, where allometric scaling was performed, i.e.,
excluding Menon-Andersen et al. and Petain et al. models).

The predictive performance of the metabolite N-desme-
thyl imatinib model by Menon-Andersen et al. was supe-
rior to Petain et al., considering MDPE, MDAPE, F, F5,
and RMSE. However, neither model attained the previously
stated requirements.

A\ Adis

To evaluate which subgroup of patients influenced the
precision of model prediction, the RMSE (Fig. 1) was cal-
culated for different subgroups of patients, i.e., adult ver-
sus children and patients with CML versus ALL. Figure 1
shows that the RMSE of the subgroup of children was higher
(lower precision performance) than the adult subgroup in
all selected models. Based on RMSE, standard allometric
scaling improved model prediction for selected models on
children but was still not as good as predictions in adults.
However, when calculating the relative RMSE, allometric
scaling on children’s data improved predictions to a level
that corresponded to what was seen in the adult population
(Fig. S2.2 of the ESM). When dividing patients based on
their diagnosis, all models predicted patients with CML
with a lower RMSE than patients with ALL (Fig. 1). The
metabolite prediction showed a similar trend as imatinib,
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Table 3 Summary of prediction-based metrics of selected models

Models Original model Allometric scaled model

MDPE% MDAPE% F20 F30 RMSE MDPE% MDAPE% F20 F30 RMSE

Imatinib
Demetri et al. (2009) - 13.71*  47.36 0.2 027 2.63 16.31 50.46 0.16 034 226
Di Paolo et al. (2014) —42.14  48.82 024 032 29 —22.67 40.62 032 041 2.61
Eechoute et al. (2012) -19.15 45.52 0.2 034  2.67 10.9% 44.34 0.2 034 23
Golabchifar et al. (2014) -31.6 449 022 034 278 —7.68% 39.58 032 039 244
Gotta et al. (2014) —46.99 51.14 0.16 031 2.98 —28.37 40.8 025 039 2.68
He et al. (2023) 6.42* 584 0.2 028 254 35 58.61 0.15 023 217
Jiang et al. (2023) —-22.29 42.24 022 031 2.71 1.85% 41.95 027 037 236
Judson et al. (2005) —-343 47.51 025 032 279 - 12.65*  41.02 027 039 249
Menon-Andersen et al. (2009) —28.75 41.06 0.26 0.4 2.66 - - - - -
Petain et al. (2008) 15.03 53.83 0.21 032 233 - - - - -
Schmidli et al. (2005) —-2291 37.66 022 037 264 —8.82% 39.7 0.3 039 246
Shriyan et al. (2022) —23.67 44.31 0.2 037 273 1.24% 42.71 026 039 236
Wang et al. (2019) —12.65* 45.66 0.2 035 255 10.29* 46.88 023 034 228
Widmer et al. (2006) —47.32 51.35 0.2 031 296 —28.57 38.52 025 043  2.68
Yamakawa et al. (2011) — 859" 46.55 0.21 028  2.62 14.58* 56.02 024 03 2.25

Metabolite
Menon-Andersen et al. (2009) —332 39.54 0.31 0.42 0.73 - - - - -
Petain et al. (2008) -36.79 59.81 0.17 023 0.83 - - - - -

MDAPE median absolute prediction error, MDPE median prediction error, RMSE root mean squared error (mg/L), F,, and F;, percentage of

prediction error within 20% and 30%, respectively

ndicates the fulfillment of the predefined criterion (MDPE < + 15%, MDAPE < 30%, F,, > 35%, and F3, > 50%)

where adult and CML populations had a better prediction
than children and patients with ALL (Fig. S2.3 of the ESM).

3.4 Simulation-Based Evaluation

The virtual patients in the simulation dataset had the same
demographic properties as the external dataset. Except for
Menon-Andersen et al. and Petain et al., the other original
models were developed mainly on adult data. Figure S2.4 of
the ESM shows the simulation performance of all selected
models on imatinib. The simulation-based evaluation aims to
examine whether the published models could capture the true
PK variability of our real patients. This relates to the perfor-
mance of using these models for model-informed precision
dosing. The model by Eechoute et al. with allometric scal-
ing (Fig. 2) captured most of the observations and performed
better than the other models. The 90% prediction interval (PI,
range between the S5th and 95th percentiles) of this model
captured around 85% of the entire observations and around
90% of adult observations (Fig. S2.5 of the ESM). For most
of the models, the standard allometric scaling provided more
variability and made their 90% PI capture more observations
than the original models. This improvement is more signifi-
cant in the children (Fig. S2.5 of the ESM). Regardless of
allometric scaling, most of the observation points outside

the 5th—95th percentile range for all selected models were
from children, especially in the lower dose group where most
patients were children. This is also the case for the model by
Menon-Andersen et al. and Petain et al., although children
and weight scaling were included in their original models. A
similar trend was also observed in the two metabolite (N-des-
methyl imatinib) models (Figs. S2.6 and S2.7 of the ESM),
i.e., that they did not capture 90% of the observations in their
90% PI and most of the observations of metabolite outside the
PI were from children.

3.5 Bayesian Forecasting Evaluation

The Bayesian forecasting performance was evaluated on a
subset of the dataset with 25 patients (12 children and 13
adults) with at least two TDM occasions. Bayesian fore-
casting is the key procedure when using pop-PK models
for model-informed precision dosing, and this evaluation
aims to examine the performance of these models when
individualizing the dose in the clinic. The box plots of
IPE distribution are shown in Fig. 3. For adults, with one
more prior imatinib information, the individual predic-
tion was improved (median of IPE closer to zero), and the
variability of IPE was decreased in most of the selected
models, especially in the models by Golabchifar et al.,
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Yamakawa 2011 A

Widmer 2006 4

Wang 2019 A

Shriyan 2022 4

Schmidli 2005 -

Petain 2008* A
Menon Andersen 2009* A

Judson 2005 1

aby

Jiang 2023 4

He 2023 4

Gotta 2014

Golabchifar 2014 4

Eechoute 20121

Di Paolo 2014 4

Demetri 2009 A

model

Yamakawa 2011 A

Widmer 2006 4

Wang 20194

Shriyan 2022 4

Schmidli 2005 -
Petain 2008* A
Menon Andersen 2009* A

Judson 2005 4

Jiang 2023 1

sisoubeiq

He 2023 4

Gotta 2014 A

Golabchifar 2014 4

Eechoute 20124

Di Paolo 2014 4

Demetri 2009 4

- Allometric model on adult data . Allometric model on children data

Group
Original model on adult data

Fig. 1 Root mean squared error (RMSE) of selected models with dif-
ferent subgroups of patients. The upper subplot divided subgroups of
patients based on children (< 18 years of age) or adults (> 18 years
of age). The lower subplot divided patients into subgroups based on
their chronic myeloid leukemia (CML) or acute lymphocytic leuke-

Gotta et al., and Widmer et al. For children, when no
prior imatinib information was available, the model with
allometric scaling showed better prediction than the orig-
inal model for all the models except He et al. However,
the median of IPE for the original model on children
was closer to zero when one prior imatinib sample was
available, especially in the models by Golabchifar et al.,
Schmidli et al., and Yamakawa et al. All selected models
showed a larger variability of IPE in children after one
occasion was included.
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Original model on children data

RMSE (mgL)

Allometric model on CML data . Allometric model on ALL data

Original model on CML data Original model on ALL data

mia (ALL) diagnosis. Standard allometric scaling was not tried on the
models with a star (*) as they were developed on a population also
containing children and used scaling in the original model. The unit
of RMSE is mg/L and lower RMSE means better prediction

4 Discussion

Recent studies have increasingly focused on using pop-PK
models to optimize dose selection in TDM. These models
are employed in TDM to optimize drug therapy, ensuring
that patients receive the appropriate dose to achieve thera-
peutic efficacy while minimizing adverse effects, which is
particularly important for drugs with narrow therapeutic
windows (e.g., tacrolimus [51], vancomycin [52]) and sig-
nificant PK variability (e.g., imatinib, methotrexate [53]).
However, most of these pop-PK studies are single center
based or conducted in a small group of patients with spe-
cific population demographics. Thus, external validation of
these models is essential to ensure their predictive accuracy
and precision in another population before implementing
them in a daily clinical setting. This is to our knowledge the
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Daily dose 100 and 150 mg Daily dose 200, 250 and 270 mg Daily dose 300 and 350 mg Daily dose 400 and 450 mg Daily dose 550 and 600 mg
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Time after dose (h)

Diagnosis class

Fig.2 Simulation-based visual predictive check plots of an exter-
nal evaluation dataset for imatinib prediction through models by
Eechoute et al. Patients were stratified on their daily imatinib dose.
For simplicity doses within intervals of 50-70 mg were combined, for
example, 100 mg and 150 mg were one group. The dotted lines are

first systematic study to evaluate published imatinib pop-
PK models in an external dataset containing children’s data.

In the last 20 years, more than 15 pop-PK studies of
imatinib have been conducted. These studies were mostly
based on data from adult patients with CML or GIST and
very few included data from children. This highlights the
limited PK research conducted on the pediatric population in
treatment with imatinib; however, the lack of pediatric data
is also an issue for many other drugs. The limited number
of pediatric patients with Ph+ leukemia receiving imatinib
makes it difficult to accumulate data for a pop-PK study in
this population. Moreover, blood sampling in children, espe-
cially younger (toddlers and preschool) children, is another
challenge for performing a PK study. Therefore, collabora-
tions between multiple hospitals and countries may be neces-
sary to gather PK sample data in this special population [21].
Our review found that no model focused on investigating
the PK profile of imatinib in patients with ALL. Although
there is no physiological reason for ALL to have a different
PK profile from patients with CML, patients with ALL usu-
ally receive multiple anti-cancer agents and supportive care
drugs that may affect the PK profile of imatinib [2]. Of the
investigated models in our study, only the model by Menon-
Andersen et al. [40] and Widmer et al. [39] included patients
with ALL in their modeling population, the former only a

ALL + CML

Ageclass + >18 + 1t018

the Sth, 10th, 25th, 75th, 90th, and 95th percentile at each timepoint
of the simulated data and the solid lines are the median. Blue marks
are children (< 18 years of age), red marks are adults (> 18 years of
age), circles are patients with acute lymphocytic leukemia (ALL), and
triangles are patients with chronic myeloid leukemia (CML). & hours

few children with ALL and the latter only one adult with
ALL. The data in the Menon-Andersen study were based on
a clinical trial, and drugs that may affect imatinib pharma-
cokinetics were avoided [40]. Future studies are needed to
focus more on the imatinib PK profile in patients with ALL
and investigate whether there are potential drug interactions
in this specific population. Moreover, unlike adult patients
with CML, the relationship between imatinib plasma con-
centration and response for pediatric patients and patients
with ALL of any age is still unclear [2].

The level of al-acid glycoprotein (AGP) is frequently
identified as a covariate in published imatinib models.
Imatinib shows a high protein binding to AGP, and the
impact of AGP in imatinib pharmacokinetics has been
reported [39]. An increased level of AGP may reduce the
unbound fraction of imatinib leading to a decrease in total
clearance [35]. A previous study [54] showed a better pre-
diction performance in pop-PK models with the AGP covari-
ate model than without. Other covariates such as albumin,
white blood cell count, and hemoglobin are included in
some selected models. The relationship between them and
imatinib pharmacokinetics is unclear but may be related
to their correlation with patient health status and disease
progression [9, 39]. The polymorphisms in SLC22A1 and
ABCG?2 are pharmacogenetic covariates found in some
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Groups B Allometric model on adult data E3 Original model on adult data B Allometric model on children data E3 Original model on children data

Demetri 2009 Di Paolo 2014

Eechoute 2012

Golabchifar 2014 Gotta 2014

1 0 1 0 1

He 2023

Judson 2005

Petain 2008

IPE%

Schmidli 2005

Wang 2019

Widmer 2006

Fig.3 Box plots of individual prediction error (IPE) for selected
models in different scenarios (0 represents predictions without prior
imatinib samples, and 1 represents with one prior imatinib sample

models [42, 48]. The study by Yamakawa et al. found that
individual estimated clearance was significantly affected by
the polymorphism in the genes SLCOIB3 and ABCB] [46].
However, they did not test them as covariates in their pop-
PK model. The polymorphism of these transporters and CYP
system enzymes for which imatinib is a substrate might in
principle contribute to the PK variability of imatinib. How-
ever, several studies, for example [45, 49] tested a group
of pharmacogenetic covariates, but found no significant
covariates. Thus, further studies investigating the relation-
ship between pharmacogenetics and the pharmacokinetics
and pharmacodynamics of imatinib are needed.

Our results showed that none of the original pop-PK
models fully met the predefined criteria for satisfactory
predictive performance (MDPE < + 15%, MDAPE <
30%, F,y, > 35%, and F5; > 50%) across the entire exter-
nal dataset, which included both adults and children.
After applying standard allometric scaling to adjust for
body size differences between adults and children, some
models demonstrated improved predictive performance in
both prediction- and simulation-based diagnostics. Some
models showed an acceptable bias (indicated by MDPE),
where the best-performing models with allometric scal-
ing could achieve an MDPE of < 2% [48, 49]. However,
none of these models showed an acceptable MDAPE%
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1 0 1 0 1

0
Number of prior imatinib samples

concentration, respectively). Solid black horizontal lines, unbiased
perfect prediction (IPE% = 0); dashed horizontal lines, IPE equal to
+ 30% (acceptable bias)

and RMSE, which means these predictions may not be
precise enough, and the prediction performance may be
highly varied in real clinical settings. Additionally, none
of the models achieved the critical F30 value of 50%. The
best-performed models could achieve an F30 of around
40%, which means around 60% of predicted concentrations
are over + 30% biased from the true value, and there-
fore would lead to a high possibility of dosing outside
the therapeutic range. Models developed in populations
similar to the evaluation dataset are expected to have bet-
ter predictive performance because of comparable racial
backgrounds. However, in our study, no model (including
both models developed based on European or Asian popu-
lations) showed satisfactory predictive performance on our
data even with allometric scaling. This finding underscores
the complexity of accurately predicting imatinib pharma-
cokinetics across different patient demographics.

The Bayesian analysis with one prior sample could
improve model prediction, especially in adults. Although
no models showed satisfactory results in prediction- and
simulation-based diagnostics, the model by Gotta et al. [43]
and Widmer et al. [39] showed an acceptable IPE when com-
bined with one TDM sample and used in the adult popula-
tion. This indicates that these two models might have the
potential to predict individual imatinib concentrations for
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adults when one TDM sample is available in clinical set-
tings. In contrast, the improvement by one prior sample was
minor in children. All diagnostics indicated that the models
predicted worse in children and patients with ALL than in
adults and patients with CML, respectively. However, the
lower predictive performance in pediatric patients might be
due to the inherent bias in our dataset, as most of the chil-
dren were diagnosed with ALL and only two with CML
while adults were primarily diagnosed with CML. This is
consistent with the fact that pediatric CML constitutes only
3% of all pediatric leukemia while ALL is the most common
childhood cancer [2]. With the general lack of clinical stud-
ies performed in pediatric patients, it is not surprising that
most studies on imatinib are conducted in adult patients with
CML. As aforementioned, the comedication usually used in
patients with ALL may affect imatinib pharmacokinetics.
The patients with ALL in our data also received chemo-
therapy and supportive drugs according to the clinical pro-
tocol, which is a limitation of this study. We presume that
the low prediction performance may be attributable to pedi-
atric patients as allometric scaling improved the prediction
of ALL populations in our dataset (Fig. 1) and it is unlikely
that allometric scaling will improve the low prediction preci-
sion because of comedication. Additionally, several selected
models test comedications (including CYP3A4 inducers and
inhibitors) as covariates when modeling, but no clinically
significant covariates were found (Table S1.3 of the ESM).
However, further study needs to be done.

Previous studies [54, 55] found acceptable models for
their external population. This might be because their exter-
nal populations were all adults with CML. Furthermore,
all patients in the study by Corral Alaejos et al. received
the standard dose of 400 mg. In contrast, the patients in
our external data set received multiple different doses (see
Sect. 3.1). The more similarity between the populations used
for model development and external evaluation, the more
robustness will be found for model predictions. The models
by Menon-Andersen et al. [40] and Petain et al. [34] showed
the highest similarity with the population in our dataset as
they also included pediatric data. However, the 33 children
included in the study by Petain et al. had solid malignan-
cies and in the study by Menon-Andersen et al. only seven
children below the age of 12 years but above 6 years had
Ph+ leukemia [34, 40]. Thus, there are very limited data on
imatinib in the pediatric population with Ph+ leukemia and
no data on children under 6 years of age. Furthermore, the
models from the two studies did not perform well in predict-
ing either imatinib or the metabolite plasma concentrations
using our external data set. This may be because of the high
variability and complexity of pharmacokinetics in pediatrics,
resulting from the physiological and anatomical changes
that occur during childhood [20]. Age-related changes in
the gastrointestinal environment, body composition (such

as body water and fat), plasma protein levels, the expression
of enzymes and transporters, and maturation of the liver and
kidney may all contribute to PK variability in children [20,
56]. This highlights the need for more PK studies of imatinib
in pediatric populations and preferably with separate models
for different pediatric age groups. There is a special need for
studies in the younger age groups, where we currently have
no data and where it is known that maturation of metabolic
pathways and kidney function affects the pharmacokinetics.

One limitation of this study is that it relied on retrospec-
tively collected, routine imatinib TDM data and missed
information on some covariates (e.g., AGP, hemoglobin,
genetic information) included in seven published pop-PK
models [9, 34, 38, 41, 42, 47, 48]. Their poor prediction per-
formance may be due to the bias when inputting key covari-
ates using typical values. For example, missing AGP infor-
mation in the external dataset may affect the performance of
the model by Petain et al. and Di Paolo et al., as a previous
study suggested AGP might improve the model prediction
when reusing imatinib models in an external dataset [54].
Ignoring inter-occasion variability may lead to overestimat-
ing shrinkage and compromising the accuracy of empirical
Bayes estimates [57]. However, like this study, it remains
a challenge to incorporate inter-occasion variability when
using a previously published model, as the defined occasions
in these models do not apply to the new dataset. Moreover,
patient compliance in this study could not be ascertained.
Studies showed that less adherence to routine medication is
a clinical challenge to imatinib treatment, especially in ado-
lescents and young adults [2]. A small number of patients
(N = 39) and observations for imatinib (N = 122) and its
metabolite (N = 100) might also limit the robustness of the
current results. Finally, all subjects were from Nordic and
Baltic countries, and the impact of population, region, or
race could not be determined.

5 Conclusions

Previously published pop-PK models for imatinib were sys-
tematically reviewed and only two models were found that
included children. Their external predictive performance
was evaluated using a dataset containing both children and
adults from Nordic and Baltic centers. The standard allo-
metric scaling was used and evaluated for models developed
on data from only an adult population. Although allometric
scaling improved the model prediction in children, none of
the 15 models fulfilled all predefined criteria satisfactorily.
However, the maximum a posteriori method improved the
model prediction in adults. All selected models showed
a lower prediction performance in children than in adults
based on all diagnostics. These results indicate that further
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PK research still needs to be done, especially in the pediatric
population.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11523-025-01172-2.
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