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Abstract
Background  Population pharmacokinetic models can potentially provide suggestions for an initial dose and the magnitude 
of dose adjustment during therapeutic drug monitoring procedures of imatinib. Several population pharmacokinetic models 
for imatinib have been developed over the last two decades. However, their predictive performance is still unknown when 
extrapolated to different populations, especially children.
Objective  This study aimed to evaluate the predictive performance of these published models on an external real-world 
dataset containing data from both adults and children.
Methods  A real-world dataset was collected, containing observations from adult and pediatric patients with Philadelphia 
chromosome-positive/Philadelphia chromosome-like acute lymphoblastic leukemia and chronic myeloid leukemia (N = 39) 
treated with imatinib. A systematic review through PubMed was conducted to identify qualified population-pharmacokinetic 
models for external evaluation (i.e., prediction-based, simulation-based, and Bayesian forecasting diagnostics). Standard 
allometric scaling was used for models that were developed based on data from adults only.
Results  Fifteen published models were found for evaluation, of which only two were based on data from both children and adults. 
Prediction-based diagnostics showed that some models had an acceptable level of bias. The model by Shriyan et al. (with allometric 
scaling) performed best with a median prediction error of 1.24%. However, no models performed well on precision even when 
allometric scaling was used, where the lowest median absolute prediction error was 37.66% using the model by Schmidli et al. The 
models by Golabchifar et al. and Schmidli et al. (both with allometric scaling) performed the best of all tested models, with a median 
prediction error ≤ 15%, median absolute prediction error ≤ 40%, fraction of prediction error within ± 20% (F20) ≥ 0.3, and within 
± 30% (F30) nearly 0.4. Simulation-based diagnostics showed that most of the observations outside the 90% prediction interval were 
from children. Bayesian forecasting showed that the model prediction could be improved using one prior sample, particularly in adults.
Conclusions  Current models fail to accurately predict imatinib plasma concentrations in our real-world dataset, especially 
for children. Future pharmacokinetic studies should focus on developing better models for pediatric populations.

1  Introduction

Imatinib is a highly selective inhibitor of the BCR-ABL1 
tyrosine kinase fusion protein generated by the geneti-
cally abnormal Philadelphia chromosome (Ph). As the first 
approved tyrosine kinase inhibitor, imatinib has revolution-
ized the survival rates in BCR-ABL1 leukemia over the last 
two decades [1]. Currently, in most cases, it is still used 
as the first-line treatment of patients with newly diagnosed 
Ph-positive (Ph+) acute lymphoblastic leukemia (ALL) and 
chronic myeloid leukemia (CML). For Ph-like (ABL-class) 
ALL, imatinib is added to first-line treatment in the prospec-
tive ALLTogether1 trial for patients aged 0–45 years.

The recommended total daily dose of imatinib is 400 mg 
orally for adult patients with CML (with a possible esca-
lation to 600–800 mg to avoid the disease progressing to 
the accelerated or blast phase), 600 mg for adult patients 
with ALL, and a dosage range of 260–340 mg per square 
meter of body surface area for pediatric patients [2]. The 
pharmacokinetics of imatinib is characterized by high bio-
availability (exceeding 95%) after oral administration [3] but 
high inter-individual variability in drug exposure and trough 
concentrations [2]. A significant pharmacokinetic (PK) and 
pharmacodynamic correlation is observed between imatinib 
through concentrations and clinical responses in both 
patients with CML [4–7] and patients with gastrointestinal 
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Key Points 

Fifteen population pharmacokinetic models of imatinib 
were found in a systematic review, whereof only two 
included data from children.

In an evaluation of the 15 models using an external dataset 
containing both children and adults, it was shown that all 
the models had a lower prediction performance in children 
compared with adults, despite standard allometric scaling 
being used.

Although imatinib is utilized in the treatment of pedi-
atric leukemia, there is a considerable deficiency of 
pharmacokinetic studies specifically addressing its use in 
children, and moreover, predictions derived from adult-
based models lack precision.

stromal tumors [7–9]. Studies in adult patients with CML 
show that a trough concentration above 1000 ng/mL can 
give a significantly higher cytogenetic and major molecular 
response rate [10–12]. However, a meta-analysis shows that 
trough concentrations above 1500 ng/mL do not increase 
efficacy [13], whereas concentrations above 3000 ng/mL 
might lead to serious adverse events such as neutropenia 
[12]. Consequently, it is recommended that the trough 
concentration should be kept between 1000 and 3000 ng/
mL [12–14]. Efficacy of the treatment with imatinib can 
be followed by measuring the BCR::ABL1 transcript level 
by real-time polymerase chain reaction, and therapeutic 
drug monitoring (TDM) is increasingly recommended as 
an additional method to optimize imatinib treatment within 
patients with CML to avoid toxicity and follow compliance 
[13, 15]. Pharmacokinetic/pharmacodynamic data regarding 
pediatric ALL are currently lacking [2] and thus there is no 
recommendation for dosing for pediatric patients with ALL. 
For pediatric patients with CML, the US Food and Drug 
Administration suggest the same exposure level of imatinib 
as in adults [16]. Therefore, this is also applied in ALL in 
our clinical practice.

Imatinib is a substrate of influx transporters (e.g., organic 
cation transporter 1 and organic anion transporting poly-
peptide 1A2) and efflux transporters (e.g., ATP-binding 
cassette transporters ABCB1 and ABCG2) [17]. The phar-
macogenetic-based variations in activity and expression of 
these transporters probably contribute to the variability in 
imatinib pharmacokinetics [18]. Additionally, imatinib is 
metabolized by the cytochrome P450 (CYP) system (mainly 
CYP3A4 and CYP3A5), which shows high between-subject 
variability in hepatic expression and biological activity [19]. 
The parent imatinib compound is metabolized mostly by 

CYP3A4 to N-desmethyl imatinib, which has similar in vitro 
potency to imatinib [3]. Children might show a different PK 
profile of imatinib than adults because of their physiological 
and anatomical differences [20]. However, data on imatinib 
pharmacokinetics in children are still sparse [21].

Population pharmacokinetic (pop-PK) models are poten-
tially useful in TDM for predicting both the initial dose for 
newly diagnosed patients and the magnitude of dose adjust-
ments when needed [22, 23], especially combined with a 
Bayesian maximum a posteriori method to adjust the indi-
vidual PK parameters [24]. Several pop-PK models for 
imatinib have been published. However, these models are 
mostly built on an entirely adult population and their predic-
tive performance across different populations, especially in 
children, remains unclear. This study aims to evaluate the 
predictive performance of the published pop-PK models on 
imatinib, using an external real-world dataset from northern 
Europe consisting of data from both children and adults. The 
goal is to identify a clinically acceptable model for all age 
groups that can be used to suggest both the initial dose and 
dose adjustments in daily TDM practice.

2 � Methods

2.1 � Review of Relevant pop‑PK Models

A systematic literature review was conducted in PubMed 
for pop-PK models published before 24 May, 2024. More-
over, additional publications identified from the reference 
list of selected publications were also screened if relevant. 
The models were included if they were (1) a pop-PK model 
study using a non-linear mixed-effect modeling approach, 
(2) based on a human patient population receiving oral 
imatinib, and (3) written in English. Papers were excluded 
if they were (1) with insufficient parameter information 
to reproduce the model fully, (2) models combining both 
free and total imatinib concentrations, (3) only modeling 
on the first-day pharmacokinetics of imatinib (no data on 
the steady state), and (4) not an original research paper of 
an imatinib pop-PK model (i.e., review, simulation study). 
A single study was reported if data were presented in mul-
tiple publications to avoid duplication. The search terms 
used are shown in Table S1.1 of the Electronic Supple-
mentary Material (ESM).

2.2 � Patient Data Collection

The data from the current study were collected from the 
hematology and pediatric departments of 11 Nordic and 
Baltic hospitals (Table S1.2 of the ESM). Patients were 
either included in a PK sub-study of the ALLTogether1 
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trial or the Danish ABL-class Inhibitor pharmacokinetics/-
dynamics Monitoring (AIM) study (Fig. S1.1 of the ESM).

After obtaining written informed consent from patients 
and/or legal guardians, the study participants were 
enrolled in the ALLTogether1 Study Protocol (EudraCT 
2018-001795‑38), which is an international multicenter 
prospective study. The study includes patients with Ph-like 
ALL aged 0–45 years and has, on top of chemotherapy, 
a non-randomized addition of imatinib to patients carry-
ing an ABL-class fusion gene in the leukemic clone. Oral 
imatinib 340 mg/m2/day was introduced from day 15 of 
induction (< 25 years; maximum dose: 800 mg) or day 29 
(≥ 25 years; maximum dose: 600 mg) throughout treat-
ment. Dose adaptation of imatinib was allowed in the case 
of toxicity according to protocol guidelines. Patients diag-
nosed with BCR-ABL1-positive (Ph+) ALL are excluded 
from the study. However, if the treating physician deemed 
the ALLTogether1 protocol to be the best standard of 
care, these patients could still be treated according to the 
protocol. A full list of ALLTogether1 inclusion/exclusion 
criteria, details on stratification, antileukemic therapy, and 
guidelines of dose adaptation are available at ClinicalTri-
als.gov (NTC04307576). In an observational PK sub-study 
of ALLTogether1, blood samples from study patients were 
obtained at already scheduled sampling timepoints accord-
ing to protocol guidelines. A requisition following every 
sample included information about the time for the latest 
intake of imatinib, sampling time, height, and weight.

Both pediatric and adult patients diagnosed with CML 
or Ph+ ALL were included in the Danish ABL-class 
Inhibitor pharmacokinetics/-dynamics Monitoring (AIM) 
study conducted at Copenhagen University Hospital Rig-
shospitalet. The Danish AIM study was approved by The 
Scientific Ethics Committees for the Capital Region, Den-
mark (H-22057870). Patients were eligible if they received 
imatinib and gave written informed consent. Blood samples 
were taken at already scheduled timepoints for sampling 
according to standard of care. Every sample was followed 
by a telephone call to the patient to gather information about 
the timing of imatinib intake.

Eligible patients for this current study were children or 
adults diagnosed with CML or Ph+/Ph-like ALL, included 
in the ALLTogether1 PK sub-study or the Danish AIM 
study, treated with imatinib, and having at least one meas-
ured imatinib sample. Patients were included between Janu-
ary 2022 and December 2023 with longitudinal sampling 
collection until January 2024.

For each valid TDM occasion (or visit) with a clear 
dose regimen, a single imatinib (sometimes combined with 
metabolite N-desmethyl imatinib) concentration at steady 
state was included in the external dataset. Therapeutic drug 
monitoring visits were removed if no clear information was 
available on imatinib intake and blood sample time or if the 

time after the dose was more than 48 hours. In case the total 
body weight or height of a patient was not measured at one 
TDM visit (missing value in weight or height), the body 
weight or height in the most recent TDM visit, no more than 
6 months apart, was imputed (only 8 of 122 TDM visits were 
imputed by this method). The patient basic demographic 
information was collected from a central study registry (for 
ALLTogether1 patients) or electronic medical records (for 
Danish AIM patients), including age, sex, weight, height, 
and time after diagnosis. The TDM follow-up was performed 
every few months for each patient.

2.3 � Bioanalytical Method

Sample preparation: samples of 1–5 mL of whole blood 
were collected in EDTA tubes at weekly or monthly inter-
vals and sent with regular mail to the Pediatric Oncology 
Research Laboratory, Copenhagen, Denmark. Plasma was 
prepared by centrifugation of EDTA blood. The plasma sam-
ple was added to stable isotope-labeled internal standards 
and then the analytes are extracted with ethyl acetate. The 
organic fraction was transferred to a new vial. After evapora-
tion of the organic fraction, the sample was redissolved and 
the concentrations of imatinib and N-desmethyl-imatinib 
were determined by reversed-phase liquid chromatography 
tandem mass spectrometry.

Liquid chromatography tandem mass spectrometry: the 
method used is a slightly modified version of the method 
developed by Bouchet et al. [25]. The mass spectrometer 
was a Sciex Qtrap 6500+. This was connected to a Sciex 
ExionLC UHPLC system (Sciex, Framingham, MA, USA). 
The column used was an Acquity UPLC™ HSS T3 column 
(2.1×50 mm, 1.8 μm) protected by an Acquity UPLC™ HSS 
T3 VanGuard pre-column (2.1×5 mm, 1.8 μm) both obtained 
from Waters (Wexford, Ireland).

2.4 � External Evaluation

All selected pop-PK models were coded and evaluated in 
NONMEM 7.5.0 (ICON Development Solutions, Ellicott 
City, MD, USA). Statistical analysis and visualization were 
programmed through R software (version 4.3.0) and Python 
(version 3.9.19). If covariates were unavailable in the exter-
nal dataset, the typical population value from the originally 
developed model was used. The inter-occasion variability 
model was removed if contained in the published models. 
All parameters (including fixed and random effects) were 
set to the published values and steady-state conditions were 
used for each model.

Most of the published models were built on data from 
an entirely adult population, thus, to evaluate how they pre-
dict in a real-world population like our dataset consisting 
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of both children and adults, the standard allometric scaling 
on clearance and volume of distribution was used and their 
performance was examined. Thus, all models were evaluated 
both in their original form as published and with allometric 
scaling, if this was not included in the original model.

The equations for scaling clearance and volume were:

where CL, V, CLadult, and Vadult are the clearance and volume 
of distribution after and before allometric scaling, respec-
tively, and TBW is the total body weight. The volume of 
the peripheral compartment and intercompartmental clear-
ance were also scaled for the two-compartment model. The 
allometric scaling procedure would replace the total body 
weight covariate when allometric scaling was used on the 
published modes. The performance of the allometric scal-
ing model and the original published model was compared.

2.4.1 � Prediction‑Based Diagnostics

To evaluate the prediction performance of selected mod-
els, the prediction error (PE) and absolute prediction 
error (APE) were calculated using population predictions 
(CPRED) and corresponding observations (COBS) as out-
lined in Eqs. 3 and 4, respectively.

The root mean squared error (RMSE) was calculated 
as follows (Eq. 5):

where N is the number of observations considered. The 
CPRED and COBS were all transferred to mg/L before calcu-
lating RMSE. No variability is included in this evaluation.

The median prediction error (MDPE) represents the 
bias, and the median absolute prediction error (MDAPE) 
and RMSE represents the precision. Additionally, the 
fractions of PE% within ± 20% (F20) and ± 30% (F30) of 
observed values were calculated to evaluate the predictive 
performance of the selected models. According to previous 
reports, a satisfactory model should reach the standard of 

(1)CL = CLadult × (
TBW

70
)
0.75

,

(2)V = Vadult ×

(
TBW

70

)
,

(3)PE(%) =

(
CPRED − COBS

COBS

)

× 100

(4)APE(%) =
||
||

CPRED − COBS

COBS

||
||
× 100

(5)RMSE =

√√√
√ 1

N

N∑

i=1

(CPRED − COBS)
2
,

MDPE ≤ ± 15%, MDAPE ≤ 30%, F20 ≥ 35%, and F30 ≥ 
50%, whereas RMSE should be as close to zero as pos-
sible [26–29].

2.4.2 � Simulation‑Based Diagnostics

Stochastic simulations were performed in NONMEM 
for 1000 subproblems or replicates to evaluate the pre-
dictive performance of candidate pop-PK models with 
inter-individual variability and residual unexplained 
variability. The simulation dataset used the same external 
dataset changing the value in the DV column to NA, which 
means that the dataset used for simulation has the same 
patient demographic information and corresponding dose 
as the external dataset. Additional timepoints (every 0.5 
hours) were used to capture the entire concentration–time 
profile under steady state. The PK profile for metabolite 
N-desmethyl imatinib was also simulated for models with 
metabolite N-desmethyl imatinib. The patient population 
was stratified by dose for both simulation and observa-
tion data. The 5th, 10th, 25th, 50th, 75th, 90th, and 95th 
percentiles of simulated data at each timepoint were calcu-
lated and graphically represented for each selected model 
to compare with the observed concentrations at the same 
timepoints.

2.4.3 � Bayesian Forecasting Diagnostics

A subgroup of patients (25 patients) having more than one 
TDM occasion with observed imatinib plasma concentra-
tions was selected (Bayesian dataset) and used to evaluate 
the Bayesian forecasting performance of the 15 models when 
one prior TDM observation data point was included. If more 
than two TDM visits were available for a single patient, the 
most recent two occasions were used in this study.

The Bayesian forecasting was carried out sequentially on 
two TDM occasions. The a priori scenario (prediction per-
formance with 0 previous observations) used only typical 
PK parameters and all available patient covariates and dose 
information to predict the imatinib concentration on the first 
TDM occasion and to calculate the prediction error through 
the CPRED and COBS in Eq. 2, as previously described. The 
individual a posteriori scenario (with one previous obser-
vation) predicted the imatinib concentration at the second 
TDM occasion by including the first occasion and account-
ing for the inter-individual variability and residual unex-
plained variability of the models. The following equation 
calculated the individual prediction error (IPE%):

(6)IPE(%) =

(
CIPRED − COBS

COBS

)

× 100,
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where CIPRED is the individual prediction generated by 
NONMEM.

3 � Results

3.1 � Review of Relevant pop‑PK Models

An overview of the selection strategy for including the pub-
lished pop-PK models on imatinib is shown in Fig. S1.2 of 
the ESM. Several pop-PK models were excluded because 
the models were not built on steady-state plasma concentra-
tion data [30–32], contained subgroup patient populations 
[33] from another included model [34], were joint models 
on free and total imatinib concentrations [35], or there were 
missing stochastic parameters [36, 37]. The literature search 
identified 15 imatinib pop-PK models for further external 
evaluation, for which detailed information is summarized in 
Table 1. Among them, one was an international multicenter 
study [38], others were conducted in the USA and Europe (N 
= 8) [9, 34, 39–44], East Asia (N = 4) [45–48], South Asia 
(N = 1) [49], and West Asia (N = 1) [50]. Most patient popu-
lations for the selected models were either CML or GIST. 
Furthermore, ten models were developed based on a small 
population of fewer than 100 patients [9, 34, 39–42, 44, 46, 
49, 50]. Three Chinese population models were based on 
populations with a size of 110–230 patients [45, 47, 48]. 
One model from the international phase III trial on imatinib 
was derived from a larger population (371 patients) [38], 
and one model founded on observation data collected from 
2006 to 2010 contained the largest population in selected 
models with 2478 adult European patients [43]. Only two 
models included children. One model by Menon-Andersen 
et al. [40] was developed for children and young adults with 
Ph+ leukemia, the age group being 6–24 years, and another 
model by Petain et al. [34] included 33 patients with solid 
malignancies aged 2–22 years in a phase II study.

A one-compartment model was used in almost all the 
included models (N = 14), except one that used a two-
compartment model [41]. The absorption phase was 
characterized by first-order (N = 7) [34, 39, 42, 45–48], 
zero-order (N = 7) [9, 38, 40, 43, 44, 49, 50], and a tran-
sit model (N = 1) [41]. One study found a lag time in 
imatinib absorption [50]. Two studies also included the 
PK profile of the main metabolite N-desmethyl imatinib in 
their model [34, 40]. The typical apparent clearance was 
estimated to be 7.29–17.3 L/h.

Total body weight was the most frequently identified 
covariate (N = 5). Hemoglobin (N = 2), white blood cell 
count (N = 2), plasma AGP (N = 2), and albumin (N = 
2) were other covariates found more than once. Pharma-
cogenomic variances in the ABCG2 and SLC22A1 were 

identified as covariates influencing imatinib clearance in 
one model each (Table 1). More clinical information about 
the selected models is provided in Table S1.3 of the ESM.

3.2 � Patient Demographic Information

The external dataset included 39 patients with 122 imatinib 
plasma concentration samples and 100 samples of N-desme-
thyl imatinib. There were 25 (64% of the total) patients who 
provided more than one sample for imatinib, which could be 
used for Bayesian forecasting evaluation. Children (patients 
aged ≤18 years) accounted for around 40% of the total pop-
ulation, and for 60% of imatinib or N-desmethyl imatinib 
observations, which led to high variability in age, weight, 
and height of this dataset. The age distribution of the exter-
nal dataset is shown in Fig. S2.1 of the ESM. Additionally, 
14 of 16 children were diagnosed with ALL, while 19 of 23 
adults had CML in this dataset. The demographic informa-
tion is summarized in Table 2. All patients received imatinib 
once daily, with doses of 100 mg, 150 mg, 200 mg, 250 mg, 
270 mg, 300 mg, 350 mg, 400 mg, 450 mg, 550 mg, or 600 
mg.

3.3 � Prediction‑Based Evaluation

The performance of the selected models based on predic-
tion-based diagnostics is shown in Table 3. This aims to 
examine the model’s performance at the population level and 
its ability to predict the initial dose for different subpopula-
tions with given covariates. Because there are children in the 
external dataset, the standard allometric scaling was used for 
selected models building on adult data only. Allometric scal-
ing was not used in the models by Menon-Andersen et al. 
and Petain et al. [34, 40], as their models were based on a 
population of both adults and children, and they used body 
weight scaling in their original models.

Only the original model of Demetri et al., He et al., Wang 
et al., and Yamakawa et al. fulfill the criteria of MDPE ≤ 
± 15%. None of the original models met any of the crite-
ria from MDAPE ≤ 30%, F20 ≥ 35%, and F30 ≥ 50%. The 
models by Menon-Andersen et al. and Petain et al. did not 
show superior performance compared to the other models, 
even though they included children and body weight scaling 
in their original models. After allometric scaling, Eechoute 
et al., Gdabchifar et al., Jiang et al., Judson et al., Schmidli 
et al., Shriyan et al., Wang et al., and Yamakawa et al. met 
the criteria of MDPE ≤ ± 15% (Table 3). However, none 
of the models met the MDAPE, F20, and F30 criteria even 
after standard allometric scaling. The models by Golabchi-
far et al. and Schmidli et al., when using allometric scaling, 
showed better predictive performance compared with other 
models, as they achieved the MDPE ≤ ± 15% criteria, and 
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To evaluate which subgroup of patients influenced the 
precision of model prediction, the RMSE (Fig. 1) was cal-
culated for different subgroups of patients, i.e., adult ver-
sus children and patients with CML versus ALL. Figure 1 
shows that the RMSE of the subgroup of children was higher 
(lower precision performance) than the adult subgroup in 
all selected models. Based on RMSE, standard allometric 
scaling improved model prediction for selected models on 
children but was still not as good as predictions in adults. 
However, when calculating the relative RMSE, allometric 
scaling on children’s data improved predictions to a level 
that corresponded to what was seen in the adult population 
(Fig. S2.2 of the ESM). When dividing patients based on 
their diagnosis, all models predicted patients with CML 
with a lower RMSE than patients with ALL (Fig. 1). The 
metabolite prediction showed a similar trend as imatinib, 

Table 2   Summary of patients’ demographic information of the external dataset

ALL acute lymphoblastic leukemia, CML chronic myeloid leukemia, SD standard deviation
a Children are patients aged ≤ 18 years, and adults are patients aged older than 18 years

Characteristics Number or mean ± SD Range or percentage

Number of patients 39 -
By (male/female) 26/13 66.7%/33.3%
By (children/adults)a 16/23 41%/59%
By (ALL/CML) 18/21 46.2%/53.8%
Number of patients provided imatinib samples 39 -
Have 1 sample 14 35.9%
Have 2 samples 10 25.6%
Have >2 samples 15 38.5%
Number of patients provided N-desmethyl imatinib samples 38 -
Have 1 sample 15 39.5%
Have 2 samples 9 23.7%
Have > 2 samples 14 36.8%
Number of imatinib observations 122 -
By (male/female) 97/25 79.5%/20.5%
By (children/adults) 71/51 58.2%/41.8%
By (ALL/CML) 88/34 72.1%/27.9%
Number of N-desmethyl imatinib observations 100 -
by (male/female) 77/23 77%/23%
by (children/adults) 63/37 63%/37%
by (ALL/CML) 66/34 66%/34%
Weight (kg)
Children
Adults

59.8 ± 23.7
35.9 ± 14.7
76.5 ± 10.8

9.3–103
9.3–62
55–103

Height (cm)
Children
Adults

161.3 ± 24.5
142 ± 26.4
175.3 ± 8.7

73–190
73–182
155–190

Age (years)
Children
Adults

37.6 ± 26.3
10.2 ± 4.2
56.6 ± 16.1

1–75
1–17
19–75

Time after diagnosed (years) 2.33 ± 4.17 0.05–20.95
Dose (mg/day) ± 118.9 100–600

had MDAPE ≤ 40%, F20 ≥ 30%, and F30 almost at 40%. In 
general, the allometric scaling slightly improved the mean 
statistical error metrics of models (mean MDPE% − 1.43% 
for allometric scaling models vs − 24.53% for models with-
out; mean MDAPE% 44.71% for allometric scaling models 
vs 47.03% for models without; mean F20 25% for allometric 
scaling models vs 21% for models without; mean F30 36% 
for allometric scaling models vs 32% for models without; 
the mean of statistical error metrics were calculated for the 
13 models, where allometric scaling was performed, i.e., 
excluding Menon-Andersen et al. and Petain et al. models).

The predictive performance of the metabolite N-desme-
thyl imatinib model by Menon-Andersen et al. was supe-
rior to Petain et al., considering MDPE, MDAPE, F20, F30, 
and RMSE. However, neither model attained the previously 
stated requirements.
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where adult and CML populations had a better prediction 
than children and patients with ALL (Fig. S2.3 of the ESM).

3.4 � Simulation‑Based Evaluation

The virtual patients in the simulation dataset had the same 
demographic properties as the external dataset. Except for 
Menon-Andersen et al. and Petain et al., the other original 
models were developed mainly on adult data. Figure S2.4 of 
the ESM shows the simulation performance of all selected 
models on imatinib. The simulation-based evaluation aims to 
examine whether the published models could capture the true 
PK variability of our real patients. This relates to the perfor-
mance of using these models for model-informed precision 
dosing. The model by Eechoute et al. with allometric scal-
ing (Fig. 2) captured most of the observations and performed 
better than the other models. The 90% prediction interval (PI, 
range between the 5th and 95th percentiles) of this model 
captured around 85% of the entire observations and around 
90% of adult observations (Fig. S2.5 of the ESM). For most 
of the models, the standard allometric scaling provided more 
variability and made their 90% PI capture more observations 
than the original models. This improvement is more signifi-
cant in the children (Fig. S2.5 of the ESM). Regardless of 
allometric scaling, most of the observation points outside 

the 5th–95th percentile range for all selected models were 
from children, especially in the lower dose group where most 
patients were children. This is also the case for the model by 
Menon-Andersen et al. and Petain et al., although children 
and weight scaling were included in their original models. A 
similar trend was also observed in the two metabolite (N-des-
methyl imatinib) models (Figs. S2.6 and S2.7 of the ESM), 
i.e., that they did not capture 90% of the observations in their 
90% PI and most of the observations of metabolite outside the 
PI were from children.

3.5 � Bayesian Forecasting Evaluation

The Bayesian forecasting performance was evaluated on a 
subset of the dataset with 25 patients (12 children and 13 
adults) with at least two TDM occasions. Bayesian fore-
casting is the key procedure when using pop-PK models 
for model-informed precision dosing, and this evaluation 
aims to examine the performance of these models when 
individualizing the dose in the clinic. The box plots of 
IPE distribution are shown in Fig. 3. For adults, with one 
more prior imatinib information, the individual predic-
tion was improved (median of IPE closer to zero), and the 
variability of IPE was decreased in most of the selected 
models, especially in the models by Golabchifar et al., 

Table 3   Summary of prediction-based metrics of selected models

MDAPE median absolute prediction error, MDPE median prediction error, RMSE root mean squared error (mg/L), F20 and F30 percentage of 
prediction error within 20% and 30%, respectively
a Indicates the fulfillment of the predefined criterion (MDPE ≤ ± 15%, MDAPE ≤ 30%, F20 ≥ 35%, and F30 ≥ 50%)

Models Original model Allometric scaled model

MDPE% MDAPE% F20 F30 RMSE MDPE% MDAPE% F20 F30 RMSE

Imatinib
 Demetri et al. (2009) − 13.71a 47.36 0.2 0.27 2.63 16.31 50.46 0.16 0.34 2.26
 Di Paolo et al. (2014) − 42.14 48.82 0.24 0.32 2.9 − 22.67 40.62 0.32 0.41 2.61
 Eechoute et al. (2012) − 19.15 45.52 0.2 0.34 2.67 10.9a 44.34 0.2 0.34 2.3
 Golabchifar et al. (2014) − 31.6 44.9 0.22 0.34 2.78 − 7.68a 39.58 0.32 0.39 2.44
 Gotta et al. (2014) − 46.99 51.14 0.16 0.31 2.98 − 28.37 40.8 0.25 0.39 2.68
 He et al. (2023) 6.42a 58.4 0.2 0.28 2.54 35 58.61 0.15 0.23 2.17
 Jiang et al. (2023) − 22.29 42.24 0.22 0.31 2.71 1.85a 41.95 0.27 0.37 2.36
 Judson et al. (2005) − 34.3 47.51 0.25 0.32 2.79 − 12.65a 41.02 0.27 0.39 2.49
 Menon-Andersen et al. (2009) − 28.75 41.06 0.26 0.4 2.66 – – – – –
 Petain et al. (2008) 15.03 53.83 0.21 0.32 2.33 – – – – –
 Schmidli et al. (2005) − 22.91 37.66 0.22 0.37 2.64 − 8.82a 39.7 0.3 0.39 2.46
 Shriyan et al. (2022) − 23.67 44.31 0.2 0.37 2.73 1.24a 42.71 0.26 0.39 2.36
 Wang et al. (2019) − 12.65a 45.66 0.2 0.35 2.55 10.29a 46.88 0.23 0.34 2.28
 Widmer et al. (2006) − 47.32 51.35 0.2 0.31 2.96 − 28.57 38.52 0.25 0.43 2.68
 Yamakawa et al. (2011) − 8.59a 46.55 0.21 0.28 2.62 14.58a 56.02 0.24 0.3 2.25

Metabolite
 Menon-Andersen et al. (2009) − 33.2 39.54 0.31 0.42 0.73 – – – – –
 Petain et al. (2008) − 36.79 59.81 0.17 0.23 0.83 – – – – –



880	 T. Yang et al.

Gotta et al., and Widmer et al. For children, when no 
prior imatinib information was available, the model with 
allometric scaling showed better prediction than the orig-
inal model for all the models except He et al. However, 
the median of IPE for the original model on children 
was closer to zero when one prior imatinib sample was 
available, especially in the models by Golabchifar et al., 
Schmidli et al., and Yamakawa et al. All selected models 
showed a larger variability of IPE in children after one 
occasion was included.

4 � Discussion

Recent studies have increasingly focused on using pop-PK 
models to optimize dose selection in TDM. These models 
are employed in TDM to optimize drug therapy, ensuring 
that patients receive the appropriate dose to achieve thera-
peutic efficacy while minimizing adverse effects, which is 
particularly important for drugs with narrow therapeutic 
windows (e.g., tacrolimus [51], vancomycin [52]) and sig-
nificant PK variability (e.g., imatinib, methotrexate [53]). 
However, most of these pop-PK studies are single center 
based or conducted in a small group of patients with spe-
cific population demographics. Thus, external validation of 
these models is essential to ensure their predictive accuracy 
and precision in another population before implementing 
them in a daily clinical setting. This is to our knowledge the 

Fig. 1   Root mean squared error (RMSE) of selected models with dif-
ferent subgroups of patients. The upper subplot divided subgroups of 
patients based on children (≤ 18 years of age) or adults (> 18 years 
of age). The lower subplot divided patients into subgroups based on 
their chronic myeloid leukemia (CML) or acute lymphocytic leuke-

mia (ALL) diagnosis. Standard allometric scaling was not tried on the 
models with a star (*) as they were developed on a population also 
containing children and used scaling in the original model. The unit 
of RMSE is mg/L and lower RMSE means better prediction
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first systematic study to evaluate published imatinib pop-
PK models in an external dataset containing children’s data.

In the last 20 years, more than 15 pop-PK studies of 
imatinib have been conducted. These studies were mostly 
based on data from adult patients with CML or GIST and 
very few included data from children. This highlights the 
limited PK research conducted on the pediatric population in 
treatment with imatinib; however, the lack of pediatric data 
is also an issue for many other drugs. The limited number 
of pediatric patients with Ph+ leukemia receiving imatinib 
makes it difficult to accumulate data for a pop-PK study in 
this population. Moreover, blood sampling in children, espe-
cially younger (toddlers and preschool) children, is another 
challenge for performing a PK study. Therefore, collabora-
tions between multiple hospitals and countries may be neces-
sary to gather PK sample data in this special population [21]. 
Our review found that no model focused on investigating 
the PK profile of imatinib in patients with ALL. Although 
there is no physiological reason for ALL to have a different 
PK profile from patients with CML, patients with ALL usu-
ally receive multiple anti-cancer agents and supportive care 
drugs that may affect the PK profile of imatinib [2]. Of the 
investigated models in our study, only the model by Menon-
Andersen et al. [40] and Widmer et al. [39] included patients 
with ALL in their modeling population, the former only a 

few children with ALL and the latter only one adult with 
ALL. The data in the Menon-Andersen study were based on 
a clinical trial, and drugs that may affect imatinib pharma-
cokinetics were avoided [40]. Future studies are needed to 
focus more on the imatinib PK profile in patients with ALL 
and investigate whether there are potential drug interactions 
in this specific population. Moreover, unlike adult patients 
with CML, the relationship between imatinib plasma con-
centration and response for pediatric patients and patients 
with ALL of any age is still unclear [2].

The level of α1-acid glycoprotein (AGP) is frequently 
identified as a covariate in published imatinib models. 
Imatinib shows a high protein binding to AGP, and the 
impact of AGP in imatinib pharmacokinetics has been 
reported [39]. An increased level of AGP may reduce the 
unbound fraction of imatinib leading to a decrease in total 
clearance [35]. A previous study [54] showed a better pre-
diction performance in pop-PK models with the AGP covari-
ate model than without. Other covariates such as albumin, 
white blood cell count, and hemoglobin are included in 
some selected models. The relationship between them and 
imatinib pharmacokinetics is unclear but may be related 
to their correlation with patient health status and disease 
progression [9, 39]. The polymorphisms in SLC22A1 and 
ABCG2 are pharmacogenetic covariates found in some 

Fig. 2   Simulation-based visual predictive check plots of an exter-
nal evaluation dataset for imatinib prediction through models by 
Eechoute et  al. Patients were stratified on their daily imatinib dose. 
For simplicity doses within intervals of 50–70 mg were combined, for 
example, 100 mg and 150 mg were one group. The dotted lines are 

the 5th, 10th, 25th, 75th, 90th, and 95th percentile at each timepoint 
of the simulated data and the solid lines are the median. Blue marks 
are children (≤ 18 years of age), red marks are adults (> 18 years of 
age), circles are patients with acute lymphocytic leukemia (ALL), and 
triangles are patients with chronic myeloid leukemia (CML). h hours



882	 T. Yang et al.

models [42, 48]. The study by Yamakawa et al. found that 
individual estimated clearance was significantly affected by 
the polymorphism in the genes SLCO1B3 and ABCB1 [46]. 
However, they did not test them as covariates in their pop-
PK model. The polymorphism of these transporters and CYP 
system enzymes for which imatinib is a substrate might in 
principle contribute to the PK variability of imatinib. How-
ever, several studies, for example [45, 49] tested a group 
of pharmacogenetic covariates, but found no significant 
covariates. Thus, further studies investigating the relation-
ship between pharmacogenetics and the pharmacokinetics 
and pharmacodynamics of imatinib are needed.

Our results showed that none of the original pop-PK 
models fully met the predefined criteria for satisfactory 
predictive performance (MDPE ≤ ±  15%, MDAPE ≤ 
30%, F20 ≥ 35%, and F30 ≥ 50%) across the entire exter-
nal dataset, which included both adults and children. 
After applying standard allometric scaling to adjust for 
body size differences between adults and children, some 
models demonstrated improved predictive performance in 
both prediction- and simulation-based diagnostics. Some 
models showed an acceptable bias (indicated by MDPE), 
where the best-performing models with allometric scal-
ing could achieve an MDPE of < 2% [48, 49]. However, 
none of these models showed an acceptable MDAPE% 

and RMSE, which means these predictions may not be 
precise enough, and the prediction performance may be 
highly varied in real clinical settings. Additionally, none 
of the models achieved the critical F30 value of 50%. The 
best-performed models could achieve an F30 of around 
40%, which means around 60% of predicted concentrations 
are over ± 30% biased from the true value, and there-
fore would lead to a high possibility of dosing outside 
the therapeutic range. Models developed in populations 
similar to the evaluation dataset are expected to have bet-
ter predictive performance because of comparable racial 
backgrounds. However, in our study, no model (including 
both models developed based on European or Asian popu-
lations) showed satisfactory predictive performance on our 
data even with allometric scaling. This finding underscores 
the complexity of accurately predicting imatinib pharma-
cokinetics across different patient demographics.

The Bayesian analysis with one prior sample could 
improve model prediction, especially in adults. Although 
no models showed satisfactory results in prediction- and 
simulation-based diagnostics, the model by Gotta et al. [43] 
and Widmer et al. [39] showed an acceptable IPE when com-
bined with one TDM sample and used in the adult popula-
tion. This indicates that these two models might have the 
potential to predict individual imatinib concentrations for 

Fig. 3   Box plots of individual prediction error (IPE) for selected 
models in different scenarios (0 represents predictions without prior 
imatinib samples, and 1 represents with one prior imatinib sample 

concentration, respectively). Solid black horizontal lines, unbiased 
perfect prediction (IPE% = 0); dashed horizontal lines, IPE equal to 
± 30% (acceptable bias)
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adults when one TDM sample is available in clinical set-
tings. In contrast, the improvement by one prior sample was 
minor in children. All diagnostics indicated that the models 
predicted worse in children and patients with ALL than in 
adults and patients with CML, respectively. However, the 
lower predictive performance in pediatric patients might be 
due to the inherent bias in our dataset, as most of the chil-
dren were diagnosed with ALL and only two with CML 
while adults were primarily diagnosed with CML. This is 
consistent with the fact that pediatric CML constitutes only 
3% of all pediatric leukemia while ALL is the most common 
childhood cancer [2]. With the general lack of clinical stud-
ies performed in pediatric patients, it is not surprising that 
most studies on imatinib are conducted in adult patients with 
CML. As aforementioned, the comedication usually used in 
patients with ALL may affect imatinib pharmacokinetics. 
The patients with ALL in our data also received chemo-
therapy and supportive drugs according to the clinical pro-
tocol, which is a limitation of this study. We presume that 
the low prediction performance may be attributable to pedi-
atric patients as allometric scaling improved the prediction 
of ALL populations in our dataset (Fig. 1) and it is unlikely 
that allometric scaling will improve the low prediction preci-
sion because of comedication. Additionally, several selected 
models test comedications (including CYP3A4 inducers and 
inhibitors) as covariates when modeling, but no clinically 
significant covariates were found (Table S1.3 of the ESM). 
However, further study needs to be done.

Previous studies [54, 55] found acceptable models for 
their external population. This might be because their exter-
nal populations were all adults with CML. Furthermore, 
all patients in the study by Corral Alaejos et al. received 
the standard dose of 400 mg. In contrast, the patients in 
our external data set received multiple different doses (see 
Sect. 3.1). The more similarity between the populations used 
for model development and external evaluation, the more 
robustness will be found for model predictions. The models 
by Menon-Andersen et al. [40] and Petain et al. [34] showed 
the highest similarity with the population in our dataset as 
they also included pediatric data. However, the 33 children 
included in the study by Petain et al. had solid malignan-
cies and in the study by Menon-Andersen et al. only seven 
children below the age of 12 years but above 6 years had 
Ph+ leukemia [34, 40]. Thus, there are very limited data on 
imatinib in the pediatric population with Ph+ leukemia and 
no data on children under 6 years of age. Furthermore, the 
models from the two studies did not perform well in predict-
ing either imatinib or the metabolite plasma concentrations 
using our external data set. This may be because of the high 
variability and complexity of pharmacokinetics in pediatrics, 
resulting from the physiological and anatomical changes 
that occur during childhood [20]. Age-related changes in 
the gastrointestinal environment, body composition (such 

as body water and fat), plasma protein levels, the expression 
of enzymes and transporters, and maturation of the liver and 
kidney may all contribute to PK variability in children [20, 
56]. This highlights the need for more PK studies of imatinib 
in pediatric populations and preferably with separate models 
for different pediatric age groups. There is a special need for 
studies in the younger age groups, where we currently have 
no data and where it is known that maturation of metabolic 
pathways and kidney function affects the pharmacokinetics.

One limitation of this study is that it relied on retrospec-
tively collected, routine imatinib TDM data and missed 
information on some covariates (e.g., AGP, hemoglobin, 
genetic information) included in seven published pop-PK 
models [9, 34, 38, 41, 42, 47, 48]. Their poor prediction per-
formance may be due to the bias when inputting key covari-
ates using typical values. For example, missing AGP infor-
mation in the external dataset may affect the performance of 
the model by Petain et al. and Di Paolo et al., as a previous 
study suggested AGP might improve the model prediction 
when reusing imatinib models in an external dataset [54]. 
Ignoring inter-occasion variability may lead to overestimat-
ing shrinkage and compromising the accuracy of empirical 
Bayes estimates [57]. However, like this study, it remains 
a challenge to incorporate inter-occasion variability when 
using a previously published model, as the defined occasions 
in these models do not apply to the new dataset. Moreover, 
patient compliance in this study could not be ascertained. 
Studies showed that less adherence to routine medication is 
a clinical challenge to imatinib treatment, especially in ado-
lescents and young adults [2]. A small number of patients 
(N = 39) and observations for imatinib (N = 122) and its 
metabolite (N = 100) might also limit the robustness of the 
current results. Finally, all subjects were from Nordic and 
Baltic countries, and the impact of population, region, or 
race could not be determined.

5 � Conclusions

Previously published pop-PK models for imatinib were sys-
tematically reviewed and only two models were found that 
included children. Their external predictive performance 
was evaluated using a dataset containing both children and 
adults from Nordic and Baltic centers. The standard allo-
metric scaling was used and evaluated for models developed 
on data from only an adult population. Although allometric 
scaling improved the model prediction in children, none of 
the 15 models fulfilled all predefined criteria satisfactorily. 
However, the maximum a posteriori method improved the 
model prediction in adults. All selected models showed 
a lower prediction performance in children than in adults 
based on all diagnostics. These results indicate that further 
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PK research still needs to be done, especially in the pediatric 
population.
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