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Abstract

The steady state Stokes-Brinkman equations coupled with a system of diffusion-convection equations 
in a thin tube structure is considered. The Brinkman term differs from zero only in small balls near the 
ends of the tubes. The boundary conditions are: given pressure and concentrations at the inflow and outflow 
of the tube structure, the no slip boundary condition on the lateral boundary for the fluid, and Neumann 
type condition on the lateral boundary for the diffusion-convection equations. In this paper, the existence, 
uniqueness, and stability of the solution to such a problem are proved. Moreover, some a priori norm
estimates depending on the small thickness of the tubes are also provided. This model is well suited to 
describing thrombosis in blood vessels.
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1. Introduction

In this paper, we consider a tube structure made of a finite union of thin cylinders that can 
simulate a network of blood vessels (see subsection 1.1 for the definition of such a structure and 
Fig. 2).

In such a structure, we consider the steady state Stokes-Brinkman equations coupled with a 
system of diffusion-convection equations, where the following boundary conditions are assumed: 
given pressure and concentrations at the inflow and outflow of the tube structure, the no slip 
boundary condition on the lateral boundary for the fluid, and the homogeneous Neumann bound
ary condition on the lateral boundary for the diffusion-convection equations (see subsection 1.2
for the formulation of the problem).

The purpose of this work is to study the existence, uniqueness, and stability of the solution 
to such a problem. Moreover, some a priori norm-estimates depending on the small thickness of 
the tubes are provided (for a related problem in an infinite domain which does not depend on ε
see [6]).

The Newtonian rheology for the fluid motion in thin structures corresponding to the station
ary and nonstationary Navier-Stokes or Stokes equations was considered by many authors (for 
instance, see [19] and references therein for an exhaustive view on the argument), while few pa
pers studied non-Newtonian models (for instance, see [7], [8], [9], [13], and [17]). On the other 
hand, purely Newtonian rheology is not perfectly adequate for the description of the blood flow 
with clot formation zones (see [10] and [21] for the most important models for the blood). This 
prompted us to study Stokes-Brinkman equations coupled with a system of diffusion-convection 
equations. Really, the modeling of zones of thrombus formation could be better described by 
the Brinkman equations combining the Stokes description of the fluid motion with the Darcy 
filtration law. Indeed, the external part of the thrombus behaves as a porous medium, but ap
proaching the surface of the thrombus it corresponds better to a Newtonian fluid. Moreover, the 
permeability of the clot tissue depends on the concentrations of the cells and substances, that is 
why the viscous flow is governed by nonlinear equations, when the Brinkman term depends on 
the concentrations [22]. Also the problem is non-linear because the velocity of the fluid motion 
equations appears as a coefficient in the convective terms of the diffusion-convection equations.

The paper is planned as follows. Subsection 1.1 is devoted to describe the thin tube struc
ture, subsection 1.2 to introduce the problem, subsection 1.3 to state the main result (existence, 
uniqueness, and a priori norm-estimates of the solution to the problem) which will be proved in 
section 2, where also stability results are proved.

Full dimension numerical computations of flows in networks of thin tubes require huge com
puter resources. To reduce these resources and accelerate computations one uses asymptotic 
analysis where the small parameter is the ratio of thickness of thin tubes to their length (for 
instance, see [3], [11], [12], [15], [16], [19], and [20]). Using a priori norm-estimates obtained 
in the present paper, a forthcoming paper will be devoted to the construction of the asymptotic ex
pansion justified by error estimate for Stokes-Brinkman equations with diffusion and convection 
in a thin tube structure.

1.1. Definition of a thin tube structure

Let us recall the definitions of the tube structure and its graph given in [14] and [16] (for 
structures made of elastic rods or plates, see [2], [4], and [16]).
2 
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Fig. 1. Graphs of tube structures. 

Definition 1.1. Let O1,O2, ...,ON be N different points in Rn, n = 2,3, and e1, e2, ..., eM be 
M closed segments each connecting two of these points (i.e. each ej = Oij Okj

, where ij , kj ∈
{1, ...,N}, ij ≠ kj ). All points Oi are supposed to be the ends of some segments ej . The segments 
ej are called edges of the graph. A point Oi is called a node, if it is the common end of at least 
two edges and Oi is called a vertex, if it is the end of the only one edge. Any two edges can 
intersect only at the common node. The set of vertices is supposed to be non-empty.

Denote

ℬ =
M⋃︂

j=1

ej

the union of edges and assume that ℬ is a connected set (see Fig. 1). Each point Oi , a node 
or a vertex, with all edges containing Oi as an end point, is called the bundle ℬi . For instance, 
Fig. 1 a) presents the graph as a union of edges e1, ..., e5, points O1,O2,O3 are the nodes, points 
O4,O5,O6 are the vertices, O1 with edges e1 and e3 form bundle ℬ1. Fig. 1 b) presents the 
graph as a union of edges e1, ..., e9, points O1,O2,O3,O4 are the nodes, points O5,O6,O7 are 
the vertices.

Let e be some edge, e = OiOj . Consider two Cartesian coordinate systems in Rn. The first 
one has the origin in Oi and the axis Oix

(e)
n has the direction of the ray [OiOj ); the second one 

has the origin in Oj and the opposite direction, i.e. Ojx̃
(e)
n is directed over the ray [OjOi).

Below in various situations, we choose one or another coordinates system denoting the local 
variable in both cases by x(e) and pointing out which end is taken as the origin of the coordinate 
system.

With every edge ej we associate a bounded domain σ j ⊂ Rn−1 containing the origin and 
having C2- smooth boundary ∂σ j , j = 1, ...,M . For every edge ej = e and associated σ j = σ (e)

we denote by Π(e)
ε the cylinder

Π(e)
ε =

{︂
x(e) ∈Rn : x(e)

n ∈ (0, |e|), x(e)′

ε
∈ σ (e)

}︂
,

where x(e)′ = (x
(e)
1 , ..., x

(e)
n−1), |e| is the length of the edge e and ε > 0 is a small parameter. 

Notice that the edges ej and Cartesian coordinates of nodes and vertices Oi , as well as the 
domains σ j , do not depend on ε.
3 
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Fig. 2. Tube structures. 

Let O1, ...,ON1 be nodes and ON1+1, ...,ON be vertices. Let ω1, ...,ωN1 be bounded inde
pendent of ε domains in Rn containing the origin of Rn; introduce the nodal domains

ωi
ε =

{︃
x ∈Rn : x − Oi

ε
∈ ωi

}︃
.

Every vertex Oj is the end of one and only one edge ek which will also be denoted as eOj
; 

we will re-denote as well the domain σk associated to this edge as σOj . Notice that the subscript 
k may be different from j . 

Definition 1.2. By a tube structure, we call the following domain

Bε =
(︂ M⋃︂

j=1

Π
(ej )
ε

)︂⋃︂(︂ N1⋃︂
i=1

ωi
ε

)︂
.

Suppose that it is a connected set and that the boundary ∂Bε of Bε is C2-smooth except for the 
parts of the boundary which are the boundary of the bases

γ i
ε = {ε−1x(e)′ ∈ σOi , x(e)

n = 0}

of cylinders Π(e)
ε , i = N1 + 1, ...,N (see Fig. 2).

Let r1 be the maximal diameter of domains ωi , i = 1, ...,N1, denote r = r1 + 1.

1.2. Formulation of the problem

For any vectorfield u defined on some surface with normal vector n denote

u𝝉 = u − (u · n)n,

the tangential component of the vector u. Here and below we use the bold script for the vectors.
4 
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Let

Γε = ∂Bε\
N⋃︂

j=N1+1

γ j
ε

be the lateral surface of the domain Bε. In the tube structure Bε we define the spaces

ˆ︁W 1,2(Bε) =
{︂
𝜼 ∈ W 1,2(Bε) : 𝜼|Γε = 0, 𝜼𝝉 |

γ
j
ε

= 0, j = N1 + 1, . . . ,N
}︂
,

ˆ︁K1,2(Bε) =
{︂
𝜼 ∈ ˆ︁W 1,2(Bε) : div𝜼 = 0

}︂
.

We denote B(O,R) the open ball in Rn with center O and radius R.
Let us introduce a vector-valued function f in L2(Bε) and L scalar functions in L2(Bε),

gk = gk,0 −
n ∑︂

q=1 

∂

∂xq

gk,q ,

with gk,0 ∈ L2(Bε), and gk,q ∈ W 1,2(Bε), vanishing on the part of the boundary Γε, k = 1, ...,L, 
q = 1, ..., n. Denote D = ∇ + ∇T .

Let us consider the following boundary value problem for the steady-state Stokes equations 
in a tube structure Bε⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
(︂
νε(x)Duε

)︂
+ Rε(x, cε)uε + ∇pε = f(x) in Bε,

divuε = 0 in Bε,

−div
(︂
Mk∇ck,ε − ck,εuε

)︂
= gk(x) in Bε, k = 1, ...,L,

uε = 0 on ∂Bε\
N⋃︂

j=N1+1

γ j
ε ,

uε𝝉 = 0 on γ j
ε , j = N1 + 1, ...,N,

pε = pj on γ j
ε , j = N1 + 1, ...,N,

∂cε

∂n 
= 0 on ∂Bε\

N⋃︂
j=N1+1

γ j
ε ,

cε = c0,j on γ j
ε , j = N1 + 1, ...,N.

(1.1)

In problem (1.1), νε ∈ C(Bε) is a function (effective dynamical viscosity related to the poros
ity) greater than some positive constant independent of ε, νε is equal to a positive constant 

ν(0) everywhere except for the balls B(Ol, rε) where is equal to given functions ν(l)
(︂x − Ol

ε

)︂
, 

l = 1, ...,N1, with ν(l) ∈ C1(B(0, r)); Rε ∈ C1(Bε × RL) is a n × n matrix-valued function 
(resistance, inverse to effective permeability of porous medium) equal to zero everywhere ex

cept for the balls B(Ol, rε) where Rε(x, ·) is equal to given functions R(l)
(︂x − Ol

ε
, ·

)︂
, with 

R(l) ∈ C1(B(0, r) ×RL) n × n non-negative symmetric matrix-valued bounded functions, Lip
schitz with respect to the second variable; cε = (c1,ε , ..., cL,ε ); n is the unit (external to Bε) 
5 
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Fig. 3. A thrombus can be considered as a zone of connection of two co-linear cylinders. 

Fig. 4. Approximation of curved cylinders by a chain of straight ones. 

normal vector to ∂Bε, ∂ng = ∇g · n is the normal derivative of g; Mk , k = 1, ...,L, are some 
given positive constants independent of ε, pj ∈ R and c0,j ∈ RL, j = N1 + 1, ...,N , are some 
given constants independent of ε. In what follows, we assume that c0,N = 0 and it is not restric
tive.

The Brinkman equation was rigorously derived from the Navier-Stokes equation in a porous 
medium in [1] and was extensively studied in fluid mechanics [5]. This model describes the New
tonian flow in the tubes combined with the fluid filtration process through the zones B(Ol, rε), 
simulating the eventual clots or thrombi [22]. In these zones νε stands for the effective dynam
ical velocity taking into account the porosity of the clot, while Rε stands for the inverse to the 
effective permeability of the clot. From physical sense c0,j

q , q = 1, · · · ,L, belongs to the interval 
[0,1]. Usually in applications, f = 0, gk,q = 0.

Note that in applications the thrombus formation may occur in the middle of a vessel. This 
situation is taken into consideration by our model: the center of the thrombus is considered as a 
node which is an end point of two co-linear edges (see Fig. 3). 

Also in applications some slightly curved vessels can be replaced in the idealized geometry 
Bε by a chain of thin straight cylinders connected by smooth junction domains (see Fig. 4). 

Alternatively, we need to introduce curved vessels instead of the straight ones. Such general
ization hasn’t important influence for the proof of the existence, uniqueness, and estimates results 
but makes much more technical construction of the asymptotic expansion of the solution.

Note that from the boundary condition u𝝉 |
γ

j
ε

= 0 and the divergence equation divu = 0, 

it follows that −νε(x)∂nu · n|
γ

j
ε

= 0. Thus the boundary condition pε = pj is equivalent to 

−νε(x)∂nuε · n + pε = pj .
Let us define a weak solution to problem (1.1) as a couple (uε, cε), uε ∈ ˆ︁K1,2(Bε), cε ∈

W 1,2(Bε), such that cε = c0,j on γ j
ε , j = N1 + 1, ...,N , satisfying the integral identity
6 
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∫︂
Bε

(︂1

2
νε(x)Duε · D𝜼 + Rε(x, cε)uε · 𝜼

)︂
dx

+
N∑︂

j=N1+1

pj

∫︂
γ

j
ε

𝜼 · n dσ −
∫︂
Bε

f · 𝜼 dx

+
∫︂
Bε

L ∑︂
k=1 

(Mk∇ck,ε − ck,εuε) · ∇ζk − gk,0ζk dx

−
L ∑︂

k=1 

n ∑︂
q=1 

∫︂
Bε

gk,q

∂

∂xq

ζk dx = 0,

(1.2)

for every 𝜼 ∈ ˆ︁K1,2(Bε), and for every ζk ∈ W 1,2(Bε), k = 1, ...,L, vanishing on γ j
ε , j = N1 +

1, ...,N . Here and below for any two n × n matrices A and B having entries aij and bij denote 

A · B the sum 
n ∑︂

i,j=1

aij bij .

Introduce pj∗ = pj −pN, j = N1 +1, ...,N . Consider an equivalent weak formulation: find 
a couple (uε, cε), uε ∈ ˆ︁K1,2(Bε), cε ∈ W 1,2(Bε), such that cε = c0,j on γ j

ε , j = N1 + 1, ...,N , 
satisfying the integral identity

∫︂
Bε

(︂1

2
νε(x)Duε · D𝜼 + Rε(x, cε)uε · 𝜼

)︂
dx

+
N−1 ∑︂

j=N1+1

p∗
j

∫︂
γ

j
ε

𝜼 · n dσ −
∫︂
Bε

f · 𝜼 dx

+
∫︂
Bε

L ∑︂
k=1 

(Mk∇ck,ε − ck,εuε) · ∇ζk − gk,0ζk dx

−
L ∑︂

k=1 

n ∑︂
q=1 

∫︂
Bε

gk,q

∂

∂xq

ζk dx = 0,

(1.3)

for every 𝜼 ∈ ˆ︁K1,2(Bε), and for every ζk ∈ W 1,2(Bε), k = 1, ...,L, vanishing on γ j
ε , j = N1 +

1, ...,N .
The equivalence of these formulations follows from the identity

N−1 ∑︂
j=N1+1

pj∗
∫︂
γ

j
ε

𝜼 · n dσ =
N∑︂

j=N1+1

pj

∫︂
γ

j
ε

𝜼 · n dσ,

which is a corollary of the relation
7 
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N∑︂
j=N1+1

∫︂
γ

j
ε

𝜼 · n dσ = 0,

for the solenoidal vector-valued function 𝜼.

1.3. Main result: existence and uniqueness of the solution

Let us introduce several constants independent of ε.
1. There exists a constant C∗

0 > 0, independent of ε, such that for any function v ∈ W 1,2(Bε)

vanishing on γ N
ε and for any function w ∈ W 1,2(Bε) vanishing on Γε , the lateral part of the 

boundary of the thin tube structure, the following inequalities hold:{︃ ∥v∥L2(Bε)
≤ C∗

0∥∇v∥L2(Bε)∥w∥L2(Bε)
≤ εC∗

0∥∇w∥L2(Bε)
,

(1.4)

where C∗
0 > 0 is the first introduced constant independent of ε (called Poincaré-Friendrichs con

stant, see [16]).
Also, we will use the constants of the embedding theorems. There exists a constant C∗

1 > 0, 
independent of ε, such that for any function v ∈ W 1,2(Bε) vanishing on γ N

ε and for any function 
w ∈ W 1,2(Bε) vanishing on Γε the following inequalities hold:

{︃ ∥v∥L4(Bε)
≤ ε−n/4C∗

1∥∇v∥L2(Bε)∥w∥L4(Bε)
≤ ε1−n/4C∗

1∥∇w∥L2(Bε)
,

(1.5)

where C∗
1 > 0 is the second introduced constant independent of ε (called embedding constant, 

see [17], Lemma 3.2).
2. Considering an a priori estimate for a solution to the linear problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
(︂
νε(x)Duε

)︂
+ ∇pε = f(x) in Bε,

divuε = 0 in Bε,

uε = 0 on ∂Bε\
N⋃︂

j=N1+1

γ j
ε ,

uε𝝉 = 0 on γ j
ε , j = N1 + 1, ...,N,

pε = pj on γ j
ε , j = N1 + 1, ...,N,

(1.6)

we get

∥∇uε∥L2(Bε)
≤ C∗

2

(︂
εn/2

N−1 ∑︂
j=N1+1

|p∗
j | + ε∥f∥L2(Bε)

)︂
, (1.7)

where C∗
2 > 0 is the third introduced constant independent of ε. Here f ∈ L2(Bε), pj ∈ R, j =

N1 + 1, ...,N . The proof is similar to the proof of Theorem 2.1 in [18].
8 
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3. Considering an a priori estimate for a solution to the linear problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−div
(︂
Mk∇ck,ε

)︂
= gk0 −

n ∑︂
i=1 

∂

∂xi

gki in Bε, k = 1, ...,L,

∂cε

∂n 
= 0 on ∂Bε\

N⋃︂
j=N1+1

γ j
ε ,

cε = c0,j on γ j
ε , j = N1 + 1, ...,N,

(1.8)

we get ([16])

∥∇cε∥L2(Bε)
≤ C∗

3

(︂
ε(n−1)/2

N−1 ∑︂
j=N1+1

|c0,j | +
L ∑︂

k=1 

n ∑︂
q=0 

∥gk,q∥L2(Bε)

)︂
, (1.9)

where C∗
3 > 0 is the fourth introduced constant independent of ε. Here, gk,0 ∈ L2(Bε), gk,q ∈

W 1,2(Bε), vanishes on the part of the boundary Γε, k = 1, ...,L, q = 1, ..., n, c0,j ∈ RL, j =
N1 + 1, ...,N .

4. The definition of Rε ensures the existence of a constant C∗
4 , independent of ε, such that

max 
x∈Bε,c∈RL

|Rε(x, c)|2 ≤ C∗
4 , (1.10)

where | · |2 is the Euclidean norm of a matrix. Also we assume that λ is a uniform bound of the 
Lipschitz constant of the function Rε with respect to the second argument.

5. Denote

rε = max

{︄
2C∗

2

(︂
εn/2

N−1 ∑︂
j=N1+1

|p∗
j | + ε∥f∥L2(Bε)

)︂
,

2C∗
3

(︂
ε(n−1)/2

N∑︂
j=N1+1

|c0,j | +
L ∑︂

k=1 

n ∑︂
q=0 

∥gk,q∥L2(Bε)

)︂}︄
,

(1.11)

and assume that

rε < min
{︂
(2C∗

3nL(C∗
1 )2)−1, (C∗

2 (C∗
1 )2λ)−1

}︂
ε−1+n/2, (1.12)

and that

ε ≤ min
{︂
(2C∗

2C∗
4C∗

0 )−1,1
}︂

. (1.13)

The following theorem states the main result of this paper.

Theorem 1.1. Let ε be a positive parameter satisfying (1.13). Let f ∈ L2(Bε), gk,0 ∈ L2(Bε), 
k = 1, ...,L, gk,q ∈ W 1,2(Bε), with gk,q |Γε = 0, k = 1, ...,L, q = 1, ..., n, p∗

j ∈ R, j = N1 +
1, ...,N − 1, c0,j ∈ RL, j = N1 + 1, ...,N , c0,N = 0, be satisfying (1.12) with rε defined by 
9 
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(1.11). Then, problem (1.1) admits a unique weak solution (uε, cε) ∈ ˆ︁K1,2(Bε) × W 1,2(Bε) sat
isfying

∥∇uε∥L2(Bε)
≤ rε, ∥∇cε∥L2(Bε)

≤ rε. (1.14)

Remark 1.1. In applications normally the right-hand sides vanish: f = 0, gk,q = 0, k = 1, ...,L, 
q = 0, ..., n, while the scaling of the unknown functions uε and cε is governed by the order of 
the boundary value functions p∗

j ∈R, j = N1 + 1, ...,N − 1, and c0,j ∈RL, j = N1 + 1, ...,N . 
In this case the assumptions of Theorem 1.1 (1.12) and (1.13) are satisfied, for example, when 
constants p∗

j satisfy the following condition

p∗
j = O(ε−1+β), β > 0,

while the concentrations c0,j are of order of one. These assumptions correspond to the velocity 
tending to zero as ε tends to zero, so that in the diffusion-convection equation the diffusion term 
dominates. However, the magnitude of the pressure is not small, it is of order O(ε−1+β), β > 0, 
and limit junctions conditions of Kirchhoff type appear for pressures (see [19]), so that they are 
very important for the correct flow computations. In the forthcoming paper we construct and 
justify the complete asymptotic expansion of the solution, evaluate the error of the asymptotic 
approximations and evaluate the influence of the Brinkman term on the diffusion-convection 
equation.

Note that if functions f, gk,q , k = 1, ...,L, q = 0, ..., n, have norms of order of one in L∞
instead of being equal to zero, the assumption (1.12) still holds true.

We will also prove the existence and uniqueness of the pressure function pε ∈ L2(Bε) for 
(1.1) such that

∫︂
Bε

(︂1

2
νε(x)Duε · D𝜼 + Rε(x, cε)uε · 𝜼

)︂
dx +

N∑︂
j=N1+1

pj

∫︂
γ

j
ε

𝜼 · n dσ

−
∫︂
Bε

f · 𝜼 dx =
∫︂
Bε

pεdiv𝜼dx,

(1.15)

for every 𝜼 ∈ ˆ︁W 1,2(Bε). We prove an a priori estimate for the pressure. We also prove the conti
nuity of the solution with respect to data.

2. Proof of the main results

2.1. Proof of Theorem 1.1

Proof. The proof follows the fixed point theorem argument. Consider the closed balls Bw = {v ∈ˆ︁K1,2(Bε) : ∥∇v∥L2(Bε)
≤ rε} and Bb = {d ∈ (W 1,2(Bε))

L : d = 0 on γ N
ε , ∥∇d∥L2(Bε)

≤ rε}.
Consider the fixed point operator T : Bw ×Bb → Bw ×Bb such that T (v,d) is a couple (w,b)

solution to the following problem
10 
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∫︂
Bε

(︂1

2
νε(x)Dw · D𝜼 +

L ∑︂
k=1 

Mk∇bk · ∇ζk + Rε(x,d)v · 𝜼
)︂

dx

= −
N−1 ∑︂

j=N1+1

p∗
j

∫︂
γ

j
ε

𝜼 · n dσ +
∫︂
Bε

f · 𝜼 dx

+
∫︂
Bε

L ∑︂
k=1 

(︁
dkv · ∇ζk + gk,0ζk

)︁
dx +

L ∑︂
k=1 

n ∑︂
q=1 

∫︂
Bε

gk,q

∂

∂xq

ζk dx,

(2.1)

for every 𝜼 ∈ ˆ︁K1,2(Bε), and for every ζk ∈ W 1,2(Bε), k = 1, ...,L, vanishing on γ j
ε , j = N1 +

1, ...,N ; b = c0,j on γ j
ε , j = N1 + 1, ...,N , c0,N = 0.

1. Let us prove that if (v,d) ∈ Bw × Bb then T (v,d) ∈ Bw × Bb . Indeed, taking ζk = 0 in 
(2.1) we get the weak formulation for the problem of the type (1.6) and applying the estimate 
(1.7), we get

∥∇w∥L2(Bε)
≤ C∗

2

(︂
εn/2

N−1 ∑︂
j=N1+1

|p∗
j | + ε∥f̃∥L2(Bε)

)︂
,

where f̃ = f − Rε(x,d)v. So, thanks to (1.10) and (1.4), one has

∥f̃∥L2(Bε)
≤ ∥f∥L2(Bε)

+ C∗
4∥v∥L2(Bε)

≤ ∥f∥L2(Bε)
+ C∗

4C∗
0εrε.

Consequently,

∥∇w∥L2(Bε)
≤ rε,

thanks to definition (1.11) and assumption (1.13).
Then, taking 𝜼 = 0 in (2.1) and applying (1.9), we get

∥∇b∥L2(Bε)
≤ C∗

3

(︄
ε(n−1)/2

N−1 ∑︁
j=N1+1

|c0,j |+
L ∑︂

k=1 

n ∑︂
q=0 

∥gk,q∥L2(Bε)
+

L ∑︂
k=1 

n ∑︂
i=1 

∥dkvi∥L2(Bε)

)︄
.

(2.2)

Using the Hölder inequality and (1.5) we get

∥dkvj∥L2(Bε)
≤ ∥dk∥L4(Bε)

∥vj∥L4(Bε)≤ (C∗)2ε1−n/2∥∇d ∥ 2 ∥∇v ∥ 2 ≤ (C∗)2ε1−n/2r2.
(2.3)
1 k L (Bε) j L (Bε) 1 ε

11 
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Eventually, combining (2.2) and (2.3), and using (1.11) and (1.12), we obtain

∥∇b∥L2(Bε)

≤ C∗
3

(︂
ε(n−1)/2

N−1 ∑︂
j=N1+1

|c0,j | +
L ∑︂

k=1 

n ∑︂
q=0 

∥gk,q∥L2(Bε)
+ nL(C∗

1 )2ε1−n/2r2
ε

)︂
≤ rε.

2. Let us prove that T is a contraction.
Introduce

αε = max
{︂
C∗

2 (C∗
1 )2ε1−n/2rελ, εC∗

2C∗
4C∗

0 , C∗
3nL(C∗

1 )2ε1−n/2rε

}︂
. (2.4)

Due to (1.12) and (1.13), αε < 1.
Let (v1,d1) and (v2,d2) be two couples from Bw × Bb and let (wi ,bi ) be T (vi ,di ), i = 1,2. 

Subtracting the integral identities (2.1) with ζk = 0 and using (1.7), the Hölder inequality, the 
definition of λ, (1.10), (1.5), (1.4), and (2.4), we get the estimate

∥∇(w1 − w2)∥L2(Bε)
≤ C∗

2

(︂
∥Rε(x,d1)v1 − Rε(x,d2)v2∥L2(Bε)

)︂
≤ C∗

2

(︂
λ∥d1 − d2∥L4(Bε)

∥v2∥L4(Bε)
+ C∗

4∥v1 − v2∥L2(Bε)

)︂
≤ C∗

2

(︂
(C∗

1 )2ε1−n/2rελ∥∇(d1 − d2)∥L2(Bε)
+ εC∗

4C∗
0∥∇(v1 − v2)∥L2(Bε)

)︂
≤ αε

(︂
∥∇(d1 − d2)∥L2(Bε)

+ ∥∇(v1 − v2)∥L2(Bε)

)︂
.

Subtracting the integral identities (2.1) with 𝜼 = 0 and using (1.9), the Hölder inequality, (1.5), 
and (2.4), we get the estimate

∥∇(b1 − b2)∥L2(Bε)

≤ C∗
3nL

(︂
∥d1 − d2∥L4(Bε)

∥v1∥L4(Bε)
+ ∥d2∥L4(Bε)

∥v1 − v2∥L4(Bε)

)︂
≤ C∗

3nL(C∗
1 )2ε1−n/2rε

(︂
∥∇(d1 − d2)∥L2(Bε)

+ ∥∇(v1 − v2)∥L2(Bε)

)︂
≤ αε

(︂
∥∇(d1 − d2)∥L2(Bε)

+ ∥∇(v1 − v2)∥L2(Bε)

)︂
.

So, T is a contraction and applying the fixed point theorem we get the assertion of Theo
rem 1.1. □
2.2. Continuous dependence of the velocity and concentration on the data

Theorem 2.1. Let f(1), f(2) ∈ L2(Bε), g
(1)
k,0, g(2)

k,0 ∈ L2(Bε), k = 1, ...,L, g(1)
k,q , g(2)

k,q ∈ W 1,2(Bε), 

g
(1)
k,q |Γε = 0, g(2)

k,q |Γε = 0, k = 1, ...,L, q = 1, ..., n, p∗(1)
j , p∗(2)

j ∈ R, j = N1 + 1, ...,N − 1, 

c0,j,(1), c0,j,(2) ∈ RL, j = N1 + 1, ...,N , c0,N,(1) = c0,N,(2) = 0, be data of two problems of 
the form (1.1), where f, gk , p∗

j , c0,j are replaced by f(1), g(1)
k , p∗(1)

j , c0,j,(1) and f(2), g(2)
k , 

p
∗(2), c0,j,(2), respectively. Assume that conditions (1.12), (1.13), are satisfied for both sets of 
j

12 
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data. Let (u(1)
ε , c(1)

ε ) and (u(2)
ε , c(2)

ε ) be solutions (from Theorem 1.1) to these problems corre
sponding to the data marked (1) and (2) respectively, satisfying inequalities ∥∇u(i)

ε ∥L2(Bε)
≤ rε , 

∥∇c(i)
ε ∥L2(Bε)

≤ rε , i = 1,2. Then, the following estimate holds true.

∥∇u(1)
ε − ∇u(2)

ε ∥L2(Bε)
+ ∥∇c(1)

ε − ∇c(2)
ε ∥L2(Bε)

≤ 1 
1 − αε

(︄
εn/2

N−1 ∑︁
j=N1+1

|p∗(1)
j − p

∗(2)
j | + ε∥f(1) − f(2)∥L2(Bε)

+ε(n−1)/2
N∑︁

j=N1+1
|c0,j,(1) − c0,j,(2)| +

L ∑︁
k=1

n ∑︁
q=0

∥g(1)
k,q − g

(2)
k,q∥L2(Bε)

)︄
.

(2.5)

Proof. Subtracting the integral identity (2.1) for w = v = u(1)
ε from the same identity for w =

v = u(2)
ε with test function ζk = 0, and then subtracting (2.1) for b = d = c(1)

ε from the same 
identity with b = d = c(2)

ε taking η = 0, and applying the same arguments as in the second part 
of the proof of Theorem 1.1, we get estimate (2.5). □
2.3. Reconstruction of the pressure

Let us reconstruct the pressure pε . We will use the following theorem proved in [18], see also 
[19].

Theorem 2.2. Let Φ be a linear bounded functional defined on the space ˆ︁W 1,2(Bε), 𝜼 ↦→ Φ(𝜼)

vanishing on the subspace ˆ︁K1,2(Bε). Then there exists a unique function p ∈ L2(Bε) such that 

Φ(𝜼) can be presented in a form 
∫︂
Bε

p(x)div𝜼(x)dx.

Taking ζk = 0 in (1.2) we get the weak formulation of the form Φ(𝜼) = 0 for every 𝜼 ∈ˆ︁K1,2(Bε), where

Φ(𝜼) =
∫︂
Bε

(︂1

2
νε(x)Duε · D𝜼 + Rε(x, cε)uε · 𝜼

)︂
dx

+
N∑︂

j=N1+1

pj

∫︂
γ

j
ε

𝜼 · n dσ −
∫︂
Bε

f · 𝜼 dx.

(2.6)

Applying Theorem 2.2, we get the existence of a function pε ∈ L2(Bε) such that

Φ(𝜼) =
∫︂
Bε

pεdiv𝜼dx, ∀𝜼 ∈ ˆ︁W 1,2(Bε). (2.7)

To evaluate the pressure we will use the following result proved in Lemma 2.8 in [18] (see 
also [19]).
13 
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Lemma 2.1. Let h be a function in L2(Bε). Then the divergence equation

divw(x) = h(x), x ∈ Bε, (2.8)

admits at least one solution w ∈ ˆ︁W 1,2(Bε), satisfying the estimate

∥∇w∥L2(Bε)
≤ cε−3/2∥h∥L2(Bε)

. (2.9)

Here constant c is independent of ε.

Taking in (2.7) 𝜼 solution to equation (2.8) with h = pε , we get

Φ(𝜼) =
∫︂
Bε

pε(x)div𝜼(x)dx =
∫︂
Bε

p2
ε (x)dx.

On the other hand see Lemma 2.3.16 in [19],

Φ(𝜼) ≤ C∗
5∥∇uε∥L2(Bε)

∥∇𝜼∥L2(Bε)

+C∗
6

(︂
εn/2

N∑︁
j=N1+1

|pj | + ε∥f∥L2(Bε)

)︂
∥∇𝜼∥L2(Bε)

,

with the constants C∗
5 and C∗

6 independent of ε. Applying now estimate (2.9) for ∥∇𝜼∥L2(Bε)
and 

(1.14) for ∥∇uε∥L2(Bε)
, we get the following assertion.

Theorem 2.3. The following estimate holds

∥pε∥L2(Bε)
≤ C∗

7ε−3/2

(︄
εn/2

N∑︁
j=N1+1

|pj | + ε∥f∥L2(Bε)

+ε(n−1)/2
N∑︁

j=N1+1
|c0,j | +

L ∑︁
k=1

n ∑︁
q=0

∥gk,q∥L2(Bε)

)︄
.

3. Conclusion

In this paper, we introduce a thin tube structure Bε , where ε is a small positive parameter de
scribing the thickness of the tubes. A boundary value problem for the Stokes-Brinkman equation 
coupled with the diffusion-convection equation is considered in Bε. The boundary conditions 
are: given pressure and concentrations at the inflow and outflow of Bε, the no slip boundary 
condition on the lateral boundary of Bε for the fluid, and Neumann type condition on the lateral 
boundary of Bε for the diffusion-convection equations. This problem is well suited to describing 
thrombosis in blood vessels. The existence, uniqueness, and stability of the solution to such a 
problem are proved. Moreover, some a priori norm-estimates depending on ε are also provided. 
In particular, these results hold true in real life applications, where the internal forces are null and 
the given pressures at the inflow and outflow of Bε can also depend on ε with order O(ε−1+β), 
β > 0. By starting from the results and in particular from a priori norm-estimates obtained in the 
present paper, in a forthcoming paper we will construct the asymptotic expansion in Bε, justified 
by error estimate, for Stokes-Brinkman equations with diffusion and convection.
14 
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