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Abstract

The steady state Stokes-Brinkman equations coupled with a system of diffusion-convection equations
in a thin tube structure is considered. The Brinkman term differs from zero only in small balls near the
ends of the tubes. The boundary conditions are: given pressure and concentrations at the inflow and outflow
of the tube structure, the no slip boundary condition on the lateral boundary for the fluid, and Neumann
type condition on the lateral boundary for the diffusion-convection equations. In this paper, the existence,
uniqueness, and stability of the solution to such a problem are proved. Moreover, some a priori norm-
estimates depending on the small thickness of the tubes are also provided. This model is well suited to
describing thrombosis in blood vessels.
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1. Introduction

In this paper, we consider a tube structure made of a finite union of thin cylinders that can
simulate a network of blood vessels (see subsection 1.1 for the definition of such a structure and
Fig. 2).

In such a structure, we consider the steady state Stokes-Brinkman equations coupled with a
system of diffusion-convection equations, where the following boundary conditions are assumed:
given pressure and concentrations at the inflow and outflow of the tube structure, the no slip
boundary condition on the lateral boundary for the fluid, and the homogeneous Neumann bound-
ary condition on the lateral boundary for the diffusion-convection equations (see subsection 1.2
for the formulation of the problem).

The purpose of this work is to study the existence, uniqueness, and stability of the solution
to such a problem. Moreover, some a priori norm-estimates depending on the small thickness of
the tubes are provided (for a related problem in an infinite domain which does not depend on ¢
see [6]).

The Newtonian rheology for the fluid motion in thin structures corresponding to the station-
ary and nonstationary Navier-Stokes or Stokes equations was considered by many authors (for
instance, see [19] and references therein for an exhaustive view on the argument), while few pa-
pers studied non-Newtonian models (for instance, see [7], [8], [9], [13], and [17]). On the other
hand, purely Newtonian rheology is not perfectly adequate for the description of the blood flow
with clot formation zones (see [10] and [21] for the most important models for the blood). This
prompted us to study Stokes-Brinkman equations coupled with a system of diffusion-convection
equations. Really, the modeling of zones of thrombus formation could be better described by
the Brinkman equations combining the Stokes description of the fluid motion with the Darcy
filtration law. Indeed, the external part of the thrombus behaves as a porous medium, but ap-
proaching the surface of the thrombus it corresponds better to a Newtonian fluid. Moreover, the
permeability of the clot tissue depends on the concentrations of the cells and substances, that is
why the viscous flow is governed by nonlinear equations, when the Brinkman term depends on
the concentrations [22]. Also the problem is non-linear because the velocity of the fluid motion
equations appears as a coefficient in the convective terms of the diffusion-convection equations.

The paper is planned as follows. Subsection 1.1 is devoted to describe the thin tube struc-
ture, subsection 1.2 to introduce the problem, subsection 1.3 to state the main result (existence,
uniqueness, and a priori norm-estimates of the solution to the problem) which will be proved in
section 2, where also stability results are proved.

Full dimension numerical computations of flows in networks of thin tubes require huge com-
puter resources. To reduce these resources and accelerate computations one uses asymptotic
analysis where the small parameter is the ratio of thickness of thin tubes to their length (for
instance, see [3], [11], [12], [15], [16], [19], and [20]). Using a priori norm-estimates obtained
in the present paper, a forthcoming paper will be devoted to the construction of the asymptotic ex-
pansion justified by error estimate for Stokes-Brinkman equations with diffusion and convection
in a thin tube structure.

1.1. Definition of a thin tube structure

Let us recall the definitions of the tube structure and its graph given in [14] and [16] (for
structures made of elastic rods or plates, see [2], [4], and [16]).
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Fig. 1. Graphs of tube structures.

Definition 1.1. Let Oy, O», ..., Oy be N different points in R”,n = 2,3, and ey, ey, ..., ey be
M closed segments each connecting two of these points (i.e. each ¢j = O;; Ok;, where ij, k; €
{1,..., N},i; #kj). All points O; are supposed to be the ends of some segments ¢ ;. The segments
e; are called edges of the graph. A point O; is called a node, if it is the common end of at least
two edges and O; is called a vertex, if it is the end of the only one edge. Any two edges can
intersect only at the common node. The set of vertices is supposed to be non-empty.

Denote

M
B= Ue]-
j=1

the union of edges and assume that B is a connected set (see Fig. 1). Each point O;, a node
or a vertex, with all edges containing O; as an end point, is called the bundle ;. For instance,
Fig. | a) presents the graph as a union of edges ey, ..., es, points O1, O2, O3 are the nodes, points
04, Os, Og are the vertices, O1 with edges e; and e3 form bundle B;. Fig. 1 b) presents the
graph as a union of edges ey, ..., eg, points O1, O2, O3, O4 are the nodes, points Os, Og, O7 are
the vertices.

Let e be some edge, e = TOJ Consider two Cartesian coordinate systems in R”. The first

one has the origin in O; and the axis oix,ﬁ") has the direction of the ray [O; O;); the second one

has the origin in O; and the opposite direction, i.e. O ji,(,e) is directed over the ray [O; O;).
Below in various situations, we choose one or another coordinates system denoting the local
variable in both cases by x© and pointing out which end is taken as the origin of the coordinate
system.
With every edge e; we associate a bounded domain o/ c R"~! containing the origin and
having C2- smooth boundary 3o/, j =1, ..., M. For every edge e; = e and associated ol =0
we denote by TI%) the cylinder

ey
N9 ={x@eR" : 59 e Ole), ~—eo®},
&

where x© = (x{e), ...,x,(f_)l), le| is the length of the edge e and ¢ > 0 is a small parameter.

Notice that the edges e; and Cartesian coordinates of nodes and vertices O;, as well as the
domains o/, do not depend on &.
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Fig. 2. Tube structures.

Let Oy, ..., Oy, be nodes and Oy, +1, ..., Oy be vertices. Let o', ..., o' be bounded inde-
pendent of ¢ domains in R” containing the origin of R”; introduce the nodal domains

. —0 .
w’sz{xeR" : bew’}.

Every vertex O; is the end of one and only one edge ex which will also be denoted as eo;;

we will re-denote as well the domain % associated to this edge as o %/ . Notice that the subscript

k may be different from j.
Definition 1.2. By a tube structure, we call the following domain

b - (Cj n)U(Ued)

i=1

Suppose that it is a connected set and that the boundary 8 B, of B, is C2-smooth except for the
parts of the boundary which are the boundary of the bases

vi={e1x 9 ea?% xl9 =0}
of cylinders ng), i=N;+1,..., N (see Fig. 2).
Let r; be the maximal diameter of domains ', i =1, ..., N1, denote r = r; + 1.
1.2. Formulation of the problem
For any vector-field u defined on some surface with normal vector n denote
u; =u— (u-n)n,

the tangential component of the vector u. Here and below we use the bold script for the vectors.
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Let

N
re=a8:\ (J v
j=Ni+1

be the lateral surface of the domain B;. In the tube structure B, we define the spaces
WL2(B,) = {n e Wh2(B,) 1 qlr, =0, el =0, j=Ni+1,..., N},
K12(B,) = {n e WI2(B,) : divy =0}.

We denote B(O, R) the open ball in R"” with center O and radius R.
Let us introduce a vector-valued function fin L2(B,) and L scalar functions in L?(B,),

n
d
8k = 8k,0 — Z Iy, Sk
Xq
g=1

with gx 0 € L2(Bg), and gy 4 € Wl’z(Bg), vanishing on the part of the boundary I';, k=1, ..., L,
g=1,...,n.Denote D=V 4+ VT,

Let us consider the following boundary value problem for the steady-state Stokes equations
in a tube structure B,

—div(vg(x)Dug) 4 Re(x, co)us + Vpe = f£(x) in By,
divug, =0 in B,
—div(Mchk,g _ ck,gug) —gu(x) inBe, k=1,.... L,
N

u, =0 on 3B\ U ygj,
‘ j=Ni+1 (1.1
u., =0 on 7/5]., j=Ni+1,...,N,

pe=pl onyl, j=N +1,...N,

ac N

=t _ | | J

on =0 onaBg\' v,
J=N1+1

ce=c"onyl, j=N;+1,..,N.

In problem (1.1), v, € C (B;) is a function (effective dynamical viscosity related to the poros-
ity) greater than some positive constant independent of &, v, is equal to a positive constant
x—0
v© everywhere except for the balls B(O;, re) where is equal to given functions v® (—1),
- &

I=1,.., N, with v € CL(B(0,r)); R, € C1(B; x RL) is a n x n matrix-valued function
(resistance, inverse to effective permeability of porous medium) equal to zero everywhere ex-
x—0

S, with

€

RD e CcY(BO,r) x REY n x n non-negative symmetric matrix-valued bounded functions, Lip-
schitz with respect to the second variable; ¢; = (c1,,...,cr,.); n is the unit (external to B;)

cept for the balls B(Oy, re) where R.(x,-) is equal to given functions R(l)<

5
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Fig. 3. A thrombus can be considered as a zone of connection of two co-linear cylinders.

Fig. 4. Approximation of curved cylinders by a chain of straight ones.

normal vector to dB;, dng = Vg - n is the normal derivative of g; My, k =1, ..., L, are some
given positive constants independent of &, pj € R and %/ e RE, j=Ni+1,...,N, are some
given constants independent of &. In what follows, we assume that ¢>" = 0 and it is not restric-
tive.

The Brinkman equation was rigorously derived from the Navier-Stokes equation in a porous
medium in [1] and was extensively studied in fluid mechanics [5]. This model describes the New-
tonian flow in the tubes combined with the fluid filtration process through the zones B(Oy, re),
simulating the eventual clots or thrombi [22]. In these zones v, stands for the effective dynam-
ical velocity taking into account the porosity of the clot, while R stands for the inverse to the
effective permeability of the clot. From physical sense c(q)’] ,q=1,---, L, belongs to the interval
[0, 1]. Usually in applications, f =0, gr,q =0.

Note that in applications the thrombus formation may occur in the middle of a vessel. This
situation is taken into consideration by our model: the center of the thrombus is considered as a
node which is an end point of two co-linear edges (see Fig. 3).

Also in applications some slightly curved vessels can be replaced in the idealized geometry
B; by a chain of thin straight cylinders connected by smooth junction domains (see Fig. 4).

Alternatively, we need to introduce curved vessels instead of the straight ones. Such general-
ization hasn’t important influence for the proof of the existence, uniqueness, and estimates results
but makes much more technical construction of the asymptotic expansion of the solution.

Note that from the boundary condition u,|yg_,' = 0 and the divergence equation diva = 0,

it follows that —v.(x)onu - n|y_/ = 0. Thus the boundary condition p, = pj is equivalent to

—Vg(x) U, 'n+Ps:pj- R
Let us define a weak solution to problem (1.1) as a couple (ug,c¢;), u; € K"Z(Bg), C. €
W12(By), such that ¢, =%/ on y¢, j = Ny +1, ..., N, satisfying the integral identity
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1
/ (Eve(x)Due - D+ Re(x, ¢o)ug - 77) dx

B
N
+ Z pj/n~ndo—/f-ndx
j:N1+1 }/j Be
L ¢ (1.2)
+f Z(Mkvck,s — CkeWe) - VI — 8k,08k dx
B, k=1

L n 9
—Zngk,qKdeX=0,
4 q

k=1g=1

£

for every 7 € K1"2(B,), and for every ¢ € W'2(B,), k =1, ..., L, vanishing on y, j = Ny +
1, ..., N. Here and below for any two n x n matrices A and B having entries a;; and b;; denote

n
A - B the sum Z a;jbij.
i,j=1
Introduce p/* = p/ — pV, j = Nj+1,..., N. Consider an equivalent weak formulation: find
a couple (ug, ¢,), up € K'2(B,), ¢, € W'2(B,), such that ¢, =¢®/ on 3, j =Ny +1,..., N,
satisfying the integral identity

N

1
/ (Eva(x)Dua - Dy + Re(x, ¢o)ug - 77) dx
B

N—1
+ Y pjf/n-nda—/f-ndx

Jj=Ni+l B,
ve (1.3)

L
+/ D (MyVere — creue) - Vi — grotk dx
B, k=1

L n 9
_ZZ/gk,qgikdxzov
q

k=1 qleF

for every n € Il{\l’z(Bg), and for every ¢ € Wl’z(Bg), k=1,..., L, vanishing on yéi, j=Ni+
1,..,N.
The equivalence of these formulations follows from the identity

N—1 N
Z p”/wndc: Z p//n~ndo,
v v/

j=N1+1 j=N1+1

which is a corollary of the relation
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Jj=N1+1

N
Z /1}~nd0=0,
Ve

j
for the solenoidal vector-valued function 7.
1.3. Main result: existence and uniqueness of the solution

Let us introduce several constants independent of ¢.

1. There exists a constant C; > 0, independent of &, such that for any function v € WL2(B,)
vanishing on y and for any function w € W12(B,) vanishing on I, the lateral part of the
boundary of the thin tube structure, the following inequalities hold:

{ vl 28,y < CGIIVVIIL2(8,) (1.4)
lwllz2s,) < eCollVwliL2(a,),

where Cj > 0 is the first introduced constant independent of & (called Poincaré-Friendrichs con-
stant, see [16]).

Also, we will use the constants of the embedding theorems. There exists a constant C T > 0,
independent of ¢, such that for any function v € wl2(B,) vanishing on yEN and for any function
w € W12(B,) vanishing on Iy the following inequalities hold:

{ vl Lacp,) < €ACFIVVI 128, (1.5)
lwll 4,y < &' A CTIVW 28, '

where C} > 0 is the second introduced constant independent of ¢ (called embedding constant,
see [17], Lemma 3.2).
2. Considering an a priori estimate for a solution to the linear problem

—div(vg(x)DuS) 4+ Vp. =f(x) in Be,

divug, =0 in B,
N

u; =0 on 9B, U vl (1.6)
_ j=Ni+1
w,=0ony/, j=N;+1,...N,
pe=p’ onyl, j=Ni+1,...N,

we get

N-1

IVoeliz2s, = C3 (e 2 1051+ elfllags,))- (1.7)
J=N1+1

where C3 > 0 is the third introduced constant independent of e. Here f € L*(By), p/ R, j =
N1+ 1, ..., N. The proof is similar to the proof of Theorem 2.1 in [18].
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3. Considering an a priori estimate for a solution to the linear problem

n

0
—diV(Mchk’s) :gko—zagk,» inBg, k=1, ..., L,
i=1 "t
N

dce , (1.8)
I — J
o =00n B\ | U .
) Jj=Ni+1
c.=c®onyl, j=N +1,...N,
we get ([16])
N-—1 L n
IVeell2p,) < C3 (s("‘W PR ED IS ||gk,q||Lz<Bg)), (1.9)

j=N1+1 k=14=0

where C; > 0 is the fourth introduced constant independent of ¢. Here, gx 0 € LZ(BE), 8k, €
WI'Z(BS), vanishes on the part of the boundary I';, k=1,...,L, g =1,...,n, ¢/ e RL, Jj=
Ni+1,...,N.

4. The definition of R, ensures the existence of a constant C I, independent of ¢, such that

max | (x, )2 < CJ, (1.10)

X€B;,ce

where | - |2 is the Euclidean norm of a matrix. Also we assume that A is a uniform bound of the
Lipschitz constant of the function R, with respect to the second argument.
5. Denote

N—1
rgzmaxiZC;‘(sn/z Z |P;|+8||f||L2(Bg)>’

J=N1+1
i o (1.11)
2([‘;k (8(n71)/2 Z |cOJ| + Z Z Ing,q ”LZ(BE)) } s
j=Ni+1 k=14q=0
and assume that
re <min {(2c;nL(cf)2)—1, (C3(CH2)! } g~ 1Hn/2, (1.12)
and that
e =minfecicicy "1}, (1.13)

The following theorem states the main result of this paper.

Theorem 1.1. Let € be a positive parameter satisfying (1.13). Let £ € L*(By), 8ko € L2(B,),
k=1,.,L, gkg € W(Be), with g glr, =0, k=1,...,L, g =1,...n, pf€R, j=Ni +
1,..N—1,¢% eRE j=Ny+1,...,N, "N =0, be satisfying (1.12) with r, defined by



A. Gaudiello and G. Panasenko Journal of Differential Equations 450 (2026) 113728

(1.11). Then, problem (1.1) admits a unique weak solution (u., c;) € I/(\M(Bs) x W12(By) sat-
isfying

IVuellp2py <res  IVeellp2p,) <re- (1.14)

Remark 1.1. In applications normally the right-hand sides vanish: f=0, g , =0, k=1, ..., L,
q =0, ...,n, while the scaling of the unknown functions u, and ¢, is governed by the order of
the boundary value functions p;’f eR, j=N;+1,...,N—1,and b/ eRE, j=Ni1+1,...,N.
In this case the assumptions of Theorem 1.1 (1.12) and (1.13) are satisfied, for example, when
constants p}f satisfy the following condition

pj.‘ = 0(8_1+ﬂ), B >0,

while the concentrations ¢”/ are of order of one. These assumptions correspond to the velocity
tending to zero as ¢ tends to zero, so that in the diffusion-convection equation the diffusion term
dominates. However, the magnitude of the pressure is not small, it is of order 0(8’]“3 ), B >0,
and limit junctions conditions of Kirchhoff type appear for pressures (see [19]), so that they are
very important for the correct flow computations. In the forthcoming paper we construct and
justify the complete asymptotic expansion of the solution, evaluate the error of the asymptotic
approximations and evaluate the influence of the Brinkman term on the diffusion-convection
equation.

Note that if functions f, g4, k =1,...,L,g =0, ..., n, have norms of order of one in L*>®
instead of being equal to zero, the assumption (1.12) still holds true.

We will also prove the existence and uniqueness of the pressure function p, € L*(B,) for
(1.1) such that

N

1
/(Eve(x)Dug~Dn+Rg(x,cs)u€~n>dx~|— Z pj/n~nda
B: SN (1.15)
—/f-ndx:/pedivndx,
B B

for every 5 € WI*Q(BE). We prove an a priori estimate for the pressure. We also prove the conti-
nuity of the solution with respect to data.

2. Proof of the main results
2.1. Proof of Theorem 1.1

Proof. The proof follows the fixed point theorem argument. Consider the closed balls By, = {v €
K'2(Be) : | V¥l 125, <re} and By ={d € (W2 (B)l: d=0o0ny, VAl 2, <re).

Consider the fixed point operator T : By, X By, — By, X Bj such that T'(v, d) is a couple (w, b)
solution to the following problem

10
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L
1
/ (Eve(x)Dw -Dnp+ ZMkak -V + Re(x,d)v - r;) dx

B, k=1
N-1
=— Z pj/n-ndo+/f~ndx 2.1
j=N1+1 -
J 1+ Vsj Be
L L n 9
dyv-V d —rdx,
+/k2_1:( kv - Vi -I-gk,OCk) x"‘];;/gk,q ox, Sk dx
B " 97 B,

for every n € fl’z(Bg), and for every ¢ € wi2(B), k=1,..., L, vanishing on ygj, j=Ni +
I,..N;b=c"ony!, j=N;+1,...N,c"V =0.

1. Let us prove that if (v,d) € By, x Bp then T (v,d) € By, x Bp. Indeed, taking ¢ = 0 in
(2.1) we get the weak formulation for the problem of the type (1.6) and applying the estimate
(1.7), we get

N-1
192y < CE(E 32 151+ el 2qn, ).
Jj=N1+1

where f=f — R, (x,d)v. So, thanks to (1.10) and (1.4), one has

€1 .28,y < 1€l 128,y + CalIVIl 208,y < Ifll12¢5,) + C5Coere.

Consequently,

VW 28,y <Te,

thanks to definition (1.11) and assumption (1.13).
Then, taking » =0 in (2.1) and applying (1.9), we get

N—-1 )
||Vb||Lz(BE)sC;<e<"—“/2 >+

J=Ni+1
L n L n 2.2)
Zzﬂgmlluw+ZZ”dkvi"L2<Bs>>~
k=1¢=0 k=1i=1

Using the Holder inequality and (1.5) we get

||dkvj||L2(Bs) = ||dk||L4(BS)||Uj||L4(BS) (2.3)
< (Cf)zgl_n/ZHdeHLZ(Bg)||VUj||L2(38) = (CT)ZSI_"/27’€2~ '

11



A. Gaudiello and G. Panasenko Journal of Differential Equations 450 (2026) 113728

Eventually, combining (2.2) and (2.3), and using (1.11) and (1.12), we obtain

IVDllz2p.)
N—-1 L n
S D DI ED D) D T SRR e
j=Ni+1 k=14=0
=Tre.
2. Let us prove that T is a contraction.
Introduce
oy = max {C;(c;‘)zg‘*n/%x, eCICECE, C;‘nL(c;“)ze‘*”/zrg} . (2.4)

Due to (1.12) and (1.13), o < 1.

Let (v1,d;) and (v2, d2) be two couples from By, x By, and let (w;, b;) be T (v;,d;),i =1,2.
Subtracting the integral identities (2.1) with ¢ = 0 and using (1.7), the Holder inequality, the
definition of A, (1.10), (1.5), (1.4), and (2.4), we get the estimate

191 = w2l 25, = €3 (IRe (r, VI = Re(x, d)Vall s, )
< €3 (M1 — dall g, Iv2ll 4, + IVt = V2ll2gs,))
< C;((CT)Za‘—"/2r8A||V(d1 —d)ll12p,) +eCCHIVVI — v2)||Lz(Bg>)
=@ (IV@ =)l 25 + 101 = VD) 1205, ).

Subtracting the integral identities (2.1) with » = 0 and using (1.9), the Holder inequality, (1.5),
and (2.4), we get the estimate

V(b — b2)||L2(Ba)
< Cé‘nL(lld] — 2l IVilliLa,) + ld2liLacp,y VI — V2||L4(Bg))
= CnLCD?e 21 (19 = @) 2, + 1901 = V2l s, )
<o (1Y@ = )l 25 + IV =¥l 205, )-

So, T is a contraction and applying the fixed point theorem we get the assertion of Theo-
reml.1. O

2.2. Continuous dependence of the velocity and concentration on the data

Theorem 2.1. Let £V, £ € L2(B,), g, 817 € L*(Be), k=1, ..., L, g g,f; e WIL2(B,),
)

2 1 2 .
gealr, =0, g r, =0, k=1,...L, g=1...n p;'", pfP eR, j=N +1,..N—1,
i 0@ eRE =Ny +1,...,N, &N = 0N =0, be data of two problems of
the form (1.1), where f, g, p;f, c%J are replaced by £V, g,ﬁl), p;f(l), P M and £2), g,iz),
p;f(z), 0 0@ respectively. Assume that conditions (1.12), (1.13), are satisfied for both sets of

12
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data. Let (u‘(g]), cgl)) and (ugz), Cs )) be solutions (from Theorem 1.1) to these problems corre-

spondzng to the data marked (1) and (2) respectively, satisfying inequalities ||Vu8 lz28,) <Te
||Vc‘9 ||L2(B y <re, i =1,2. Then, the following estimate holds true.

1 2 1 2
IVal” = V|l 25, + 1V = Vel |25,

< 2 S0 D) g,
1-“6 j=Ni+1 J J ¢ (25)
N
_ 1 2
PO S (000 000 1 Y 3 gl gi,;an(Bg)).
j=Ni+1 k=1¢=0

Proof. Subtracting the integral identity (2.1) for w=v =u, (M from the same identity for w =

V= u§2) with test functlon ¢k = 0, and then subtracting (2.1) for b=d = cgl) from the same

identity with b=d = cg taking n =0, and applying the same arguments as in the second part
of the proof of Theorem 1.1, we get estimate (2.5). O

2.3. Reconstruction of the pressure

Let us reconstruct the pressure p.. We will use the following theorem proved in [18], see also
[19].

Theorem 2.2. Let ® be a lii}gar bounded functional defined on the space VT/I'Z(Bg), n— D(n)
vanishing on the subspace K L2(B,). Then there exists a unique function p € L%(B,) such that

() can be presented in a form /p(x)divn(x)dx.

B

__Taking & =0 in (1.2) we get the weak formulation of the form ® () = 0 for every 7 €
K'2(B,), where

1
d(n) = / (Evs(X)Dug D+ Re(x, ¢ce)ug - r/) dx

Be
(2.6)
+ Z p]/)] nda—/f ndx.
J=N1+1 i
Applying Theorem 2.2, we get the existence of a function p, € L*(B;) such that
() = / pedivpdx,  ¥pe W'2(By). 2.7)

B

To evaluate the pressure we will use the following result proved in Lemma 2.8 in [18] (see
also [19]).

13
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Lemma 2.1. Let h be a function in L*>(By). Then the divergence equation
divw(x) = h(x), x € Bg, (2.8)
admits at least one solution w € Wl’z(Bg), satisfying the estimate
1YW 208,y < ce =1l 25, 2.9)
Here constant c is independent of ¢.

Taking in (2.7) 5 solution to equation (2.8) with & = p, we get

O = / pe(o)divy(r)dx = / P2(x)dx.

B Be

On the other hand see Lemma 2.3.16 in [19],

@) < C5IVuell 2,1Vl 128,

N
+C (e 2 pil el ) IVAl2m,),
J=N1+1

with the constants C5 and C¢ independent of . Applying now estimate (2.9) for || V|| ;2(g,) and
(1.14) for ||V |l 12(p,), we get the following assertion.

Theorem 2.3. The following estimate holds

N
||p£ ”LZ(BS) < C;k&‘_S/z (En/2 Z |P/| + 8||f||L2(B€)
j=Ni+1

J=N1+1 k=14=0

N . L n
+e(1=1/2 > |CO’J| +2 2 ||gk,q||L2(B€))~

3. Conclusion

In this paper, we introduce a thin tube structure B,, where ¢ is a small positive parameter de-
scribing the thickness of the tubes. A boundary value problem for the Stokes-Brinkman equation
coupled with the diffusion-convection equation is considered in B.. The boundary conditions
are: given pressure and concentrations at the inflow and outflow of B, the no slip boundary
condition on the lateral boundary of B, for the fluid, and Neumann type condition on the lateral
boundary of B, for the diffusion-convection equations. This problem is well suited to describing
thrombosis in blood vessels. The existence, uniqueness, and stability of the solution to such a
problem are proved. Moreover, some a priori norm-estimates depending on ¢ are also provided.
In particular, these results hold true in real life applications, where the internal forces are null and
the given pressures at the inflow and outflow of B can also depend on & with order O (¢~!*#),
B > 0. By starting from the results and in particular from a priori norm-estimates obtained in the
present paper, in a forthcoming paper we will construct the asymptotic expansion in B, justified
by error estimate, for Stokes-Brinkman equations with diffusion and convection.

14
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