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Linear relations of four conjugates
of an algebraic number

Zygimantas Baronénas, Paulius Drungilas, and Jonas Jankauskas

Abstract. We characterize all algebraic numbers « of degree d € {4,5,6,7} for which there exist
four distinct algebraic conjugates a1, a2, a3, and a4 of « satisfying the relation a; + a2 = a3 + a4.
In particular, we prove that an algebraic number « of degree 6 satisfies this relation with a; + a3 ¢ Q
if and only if « is the sum of a quadratic and a cubic algebraic number. Moreover, we describe all
possible Galois groups of the normal closure of Q(«) for such algebraic numbers a. We also consider
similar relations a; + a2 + a3 + a4 = 0 and a; + @3 + a3 = a4 for algebraic numbers of degree up to 7.

1 Introduction

Let o == &, a0, . . ., ag be the algebraic conjugates of an algebraic number « of degree
d over Q. In the present article, we will be interested in algebraic numbers « of small
degree d (namely, d < 7) whose conjugates satisfy one of the equations

)] aptoyt+az+oay=0, ap+ 0oy +a3 =04 OF & + &y = &3 + 0y.

The main motivation to study 1 stems from the article of Dubickas and Jankauskas [5]
where they investigated the linear relations a; = a; + a3 and a; + a, + a3 = 0 in con-
jugates of an algebraic number o of degree d < 8 over Q. They proved that solutions
to those equations exist only in the case d = 6 (except for the trivial solution of the
second equation in cubic numbers with trace zero) and gave explicit formulas for
all possible minimal polynomials of such algebraic numbers. In particular, equation
@ = &y + a3 is solvable in roots of an irreducible sextic polynomial if and only if it is
an irreducible polynomial of the form

p(x) = x° +2ax* + a®x* + b e Q[x].

Similarly, for d in the range 4 < d < 8 (the case d = 3 is trivial), equation & + a, +
a3 = 0 is solvable if and only if d = 6 and the minimal polynomial of « over Q is an
irreducible polynomial of the form

p(x) = x® + 2ax* + 2bx° + (a* - *t)x* + 2(ab — cet)x + b* - e*t

for some rational numbers a, b, ¢, e € Q and some square-free integer ¢ € Z.
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2 7. Baronénas, P. Drungilas and J. Jankauskas

Let ay, az, a3 be three distinct algebraic conjugates of an algebraic number «
of degree d < 8. Recently, Virbalas [16] extended the research of Dubickas and
Jankauskas [5] by determining all possible linear relations of the form aa; + ba, +
caz = 0 with non-zero rational numbers a, b, c. He also obtained a complete list of
transitive groups that can occur as Galois groups for the minimal polynomial of such
an algebraic number a. Moreover, Virbalas [15] proved that for any prime number
p 2 5 there does not exist an irreducible polynomial p(x) € Q[x] of degree 2p with
three distinct roots adding up to zero.

Recently, Dubickas and Virbalas [7] proved that every nontrivial linear relation
between algebraic conjugates has a corresponding multiplicative relation. They also
gave a complete characterization of all possible linear relations between four distinct
algebraic conjugates of degree 4 (see also [10]). Moreover, Serrano Holgado [8] char-
acterized irreducible quartic polynomials (not necessarily over Q) having nontrivial
multiplicative relations among their roots.

Recall that a real algebraic integer a >1 is called a Pisot number if all of its
conjugates «;, other than « itself, satisfy |a;| < 1. Dubickas, Hare, and Jankauskas
in [4] showed that there are no Pisot numbers whose conjugates satisfy the equation
a1 = oy + a3. They also proved the impossibility of

(2) x]+ 0y =03+ 0y

in conjugates of a Pisot number of degree d > 4, by showing that there is a unique Pisot
number, namely, & = (1+ /3 +21/5)/2 whose conjugates satisfy 2. This particular
number « was first found in [6].

Throughout this article, the term algebraic number means algebraic number over
the field of rational numbers Q. Similarly, the term irreducible polynomial means
irreducible over Q. Let a1 = a, a3, . .., &y be the algebraic conjugates of an algebraic
number « of degree d. Then tr(a) := o + ay + -+ ay is called the trace (or the
absolute trace) of «. In the present article, we restrict ourselves to the degrees in the
range 4 < d < 7. The case d = 8 is more complicated and will be treated in the future.
We will not assume that « is a Pisot number in the equations 1. For the first two
equations in 1, we have the following result.

Theorem1 Let « be an algebraic number of degree d, where d € {4,5,6,7}.
(i)  Some four distinct algebraic conjugates of « satisfy the relation
o +oy+oaz+oay=0

ifand only ifd = 4 and tr(a) = 0 or d = 6 and the minimal polynomial of a is an
irreducible polynomial of the form

x® +ax* + bx? + c e Q[x].
(ii) No four distinct conjugates of a satisfy the relation

o+ oy + o3 = oy,
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The following theorem treats algebraic numbers « of degree d € {4,5,6,7} with
some four distinct algebraic conjugates satisfying the relation

3) o+ ) = a3 + oy,

Note that for any r € Q, replacing & with « — r does not affect the relation (3). By
setting r = tr(«)/d, we obtain an algebraic number « — tr(«)/d whose trace equals
zero. Therefore, without loss of generality, we assume that « has zero trace.

Theorem 2 Let a be an algebraic number of degree d € {4,5,6,7} and tr(a) = 0.
Denote by p(x) the minimal polynomial of a. Suppose that some four distinct algebraic
conjugates of o satisfy the relation (3). Then either d =4 or d = 6. Moreover, the
following statements are true:

(i) Ifd = 4, then p(x) is an irreducible polynomial of the form
p(x)=x*+ax*+b

for some rational numbers a,b e Q. Conversely, for any such irreducible
polynomial p(x), the four distinct roots of p(x) satisfy the relation (3).

(ii)  Suppose that d = 6 and the sum oy + y in (3) is a rational number. Then p(x) is
an irreducible polynomial of the form

p(x) =x%+ax* +bx* + ¢

for some rational numbers a,b,c € Q. Conversely, for any such irreducible
polynomial p(x), some four distinct roots of p(x) satisfy the relation (3).

(iii) Suppose that d = 6 and the sum oy + ay in (3) is not a rational number (i.e.,
a1 + ay € C\Q). Then p(x) is an irreducible polynomial of the form

p(x) = x°+ (2b - 3a)x* + 2cx® + (3a* + b*)x* + 2c¢(3a + b)x
—a®-2a*b-ab®+ 2

for some rational numbers a,b,c € Q. Conversely, for any such irreducible
polynomial p(x), some four distinct roots of p(x) satisfy the relation (3).

The following theorem gives an alternative description of sextic algebraic numbers
o that satisfy the relation (3) with a; + ay ¢ Q. We will derive this result from
Proposition 11 (see Section 2).

Theorem 3  Let o be an algebraic number of degree 6. Some four distinct algebraic
conjugates of « satisfy the relation ay + oy = a3 + oy =: § ¢ Q if and only if « equals the
sum of a quadratic and a cubic algebraic number.

Let a be an algebraic number of degree d and let G be the Galois group of the
normal closure of Q(a) over Q. Note that this normal closure is also the splitting
field of the minimal polynomial of & over Q, and therefore G is the Galois group
of this polynomial. The group G is determined (in a unique way) by its action on
8 ={a, a2, .., a4} it corresponds to some transitive subgroup of the full symmetric
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Table 1: One-parameter families of even sextic polynomials p(x) with
corresponding Galois groups G.

Polynomial p(x) Galois group G of p(x) |
2+ (2 +5)xt+ ((t-1)2+5)x* +1 Cs
X6 + 3t2 S3
x® 4212 Dg
x® —34x% — 18 Ay
x-32x2+ 13 Ay xCy
x8 + t2xt - 18 Sy
x8 + (31£2)%x% + (31£2)° Sy
x6 + (2t2)2x2 + (2t2)3 S4 X C2

group S;. Next, we will consider possible groups G, related to the algebraic numbers
« in Theorems 1 and 2.

If d = 4 and the linear relation in Theorem 11is satisfied, then G is isomorphic to one
of five transitive subgroups of the symmetric group S4, namely, V4 (Klein 4-group),
C4 (a cyclic group of order 4), D4 (a dihedral group of order 8), A4 (the alternating
group), or Sy itself. There are no more transitive subgroups of S, (see, e.g., [2, Chapter
3] or [12]).

If d =6 and some four distinct conjugates of a satisfy the relation in (i) of
Theorem 1, then we need to look at the transitive subgroups of S¢. Awtrey and Jakes in
[1] investigated the Galois groups of even sextic polynomials x® + ax* + bx? + ¢ with
coeflicients from a field of characteristic # 2. In this particular case, there are eight
possibilities for the Galois group G:

(4) C6) 83) D6) A4) A4 x C2> SI) SZ: S4 X CZ:

where S} and S are certain transitive subgroups of S¢ of order 24. Note that, in total,
there are 16 transitive subgroups of Se (see, e.g., [2, Chapter 3]). Awtrey and Jakes
in [1] also provided one-parameter families of even sextic polynomials (for values of
t € Q that result in irreducible polynomials) with specified Galois group over Q (see
Table 1).

If d = 4 and the linear relation in (3) is satisfied, then G is one of three transitive
subgroups of the symmetric group S4: Vi, C4, or Dy. This result is due to Kappe and
Warren (see [9, Theorem 3]). Again, Awtrey and Jakes in [1] provided one-parameter
families of even quartic polynomials (except for values of t € QQ that result in reducible
polynomials) with specified Galois group over Q (see Table 2).

If d = 6 and some four distinct conjugates of « satisfy a; + ap = a3 + a4 € Q, then
the Galois group is, again, one of the already mentioned eight transitive subgroups
in 4.

The most interesting case is the following.

Theorem 4  Let a be an algebraic number of degree 6 and tr(a) = 0. Suppose that
some four distinct algebraic conjugates of « satisfy the relation

mtay=as+ags=L¢Q.
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Table 2: One-parameter families of even
quartic polynomials p(x) with corresponding

Galois groups G.
Polynomial p(x) | Galois group G of p(x) |
xt+ (2t +1)2 Vi
x* +4tx® + 2 Cy
X+ 2+1, t£0 Dy

Table 3: Minimal polynomials p(x) from part (iii) of Theorem 2 with the
corresponding Galois groups G.

Polynomial p(x) (a,b,¢) | Galois group G of p(x) |
x8—6x* +4x® +12x* +24x -4 | (2,0,2) Dg
x8 = 3x* + 203 + 1262 - 12x +17 | (-1, -3,1) Cs
x6 = 3x* +8x% +12x% - 48x + 32| (-1,-3,4) S

Table 4: Polynomials p(x) that are not of the
form given in (iii) of Theorem 2 with the
corresponding Galois groups G.

Polynomial p(x) | Galois group G of p(x) |
x+2x3+2 Dg
X0 +x3+1 Cs

x® +54x% + 1029 Ss

Then, the Galois group of the normal closure of Q(«a) over Q is isomorphic to one of
three groups: the dihedral group Dg of order 12, the symmetric group Ss, or the cyclic
group Ce.

Theorem 4 follows from Proposition 11, which gives more details on the possible
Galois group of the normal closure of Q(«). Moreover, all three groups in Theorem 4
arise as Galois groups in this setting, i.e., for any group G € {Ds, S3, Cs }, there exists
an algebraic number « of degree 6 satisfying a; + oz = a3 + ay ¢ Q such that the
Galois group of the normal closure of Q(«) over Q is isomorphic to G. Corresponding
examples are provided in Table 3.

The converse of Theorem 4 is false, i.e., for any group G € {Dg, S3, C¢ }, there exists
an algebraic number « of degree 6 such that the Galois group of the normal closure of
Q(«) over Q is isomorphic to G and no four distinct algebraic conjugates of « satisfy
the relation a; + a; = a3 + 4. Indeed, it suffices to take an irreducible polynomial of
degree 6, having the specified Galois group, which is not of the form given in (iii) of
Theorem 2. Such examples are provided in Table 4.

The article is organized as follows. Some auxiliary results are stated in Section 2.
The proofs of the main results are given in Section 3. We first prove Propositions 10
and 11. Theorem 4 directly follows from Proposition 11. Then, we use Proposition 11
to prove Theorem 3, which then is used to prove Theorem 2.
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2 Auxiliary results

The following result is due to Kurbatov [11]. We will use it to eliminate impossible
relations among algebraic conjugates.

Lemma 5 The equality
kiog + kyoy + -+ kgag =0

with conjugates &, &y, .. ., &g of an algebraic number « of prime degree d over Q and
ki, kas.... kg €Z canonly hold if ky = ky = - = kg.

Smyth’s result from [13] is useful for similar purposes.

Lemma 6 If ay, ay, a3 are three conjugates of an algebraic number satisfying oy # o,
then 20, £ ay + as.

The following result is a generalization of Lemma 6 proved by Dubickas [3].

Lemma 7 If B1, B2, ..., Bn where n >3, are distinct algebraic numbers conjugate
over a field of characteristic zero K and ki, k,, ..., k, are non-zero rational numbers
satisfying |ki| 2 |kz| + -+ + | kn| then

kipr+kafo+--+ kyfn ¢ K.
Dubickas and Jankauskas, in their paper [5], proved the following result.
Lemma 8  The equality
kiog + kyoy + -+ kgag =0
with conjugates o, ®a,...,a5 of an algebraic number a of degree d over Q and
ks ks, ..., kg € Z satisfying ¥%, k; + 0 can only hold if tr(&) := ay + oy + -+ + &g = 0.

The following result is a partial case of Theorem 1.3 in [17].

Lemma 9  Suppose that o and f3 are algebraic numbers over Q of degree m and n,
respectively. If m and n are coprime integers, then o + f3 is a primitive element of the

compositum Q(a, B), i.e., Q(a, f) = Q(a + 8).
To prove Proposition 11 and Theorem 2, we will need the following result.

Proposition 10 Let « be an algebraic number of degree d = 6 and tr(a) = 0. Suppose
that some four distinct conjugates of « satisfy the relation

a;+ay = a3 + ay.

Then either ay + ay = 0 or o + oy is an algebraic number of degree 3 and tr( oy + a;) =0.

Denote 77:=(125436), o=n*=(135)(264), and 7=(12)(3 4)(5 6),
permutations of the symmetric group Se. Theorem 4 is a corollary of the following
proposition, which will also be used in the proof of Theorem 3.
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Proposition 11 Let a be an algebraic number of degree 6 and tr(«) = 0. Suppose that
some four distinct algebraic conjugates of « satisfy the relation

(X1+(X2:(X3+0(4:3ﬁ¢@.

Then, 8 is a cubic algebraic number and it is possible to label the algebraic conjugates
a1, 0, . .., A Of & in such a way that these satisfy the relations

ﬂ1=061+0£2=063+064,
(5) Ba=as+as = az + ag,

ﬁ3:061+066:064+065,

where 31 = 3, B2, B3 are the algebraic conjugates of 5. Let G be the Galois group of the
normal closure of Q(a) over Q. Consider G as a subgroup of Ss, acting on the indices of
the conjugates oy, @2, . . ., &g of a. Then, given the relations (6), there are exactly three
possible cases:

(1) G={(r,m|1*=n’=id, tnt=n") = D

(2) G={(m|n®=id)=Cs

(3) G={id,0,0% 1,70,70°} = S;.

3 Proofs

Proof of Theorem 1 (i) Suppose that some four distinct algebraic conjugates of an
algebraic number « of degree d € {4,5, 6,7} satisfy the relation o + &y + a3 + a4 = 0.
The case d = 4 is trivial in view of tr(a) = a; + @ + a3 + a4. By Lemma 5, d cannot
be 5 or 7 Let d = 6. Lemma 8 implies that tr(a) = 0. Then, as + ag = tr(a) — (a7 +
o + a3 + aag) = 0. Hence, ag = —as. Let p(x) be the minimal polynomial of « over Q.
We have that p(ag) = p(—as) = 0. Hence, a5 isa root of p(—x). Thus, p(x) divides the
polynomial p(—x). Since both polynomials p(x) and p(—x) are of the same degree
and their constant terms coincide, we have that p(—x) = p(x). So p(x) is of the form

x® + ax* + bx* + c e Q[x].
The converse is clear, since the roots &, a3, . . ., &g of such polynomial satisfy
;= —Q2, Q3= -0y, O =6

Thus, a; + ay + a3 + a4 = 0.

(ii) Suppose that some four distinct algebraic conjugates of an algebraic number
o of degree d € {4,5,6,7} satisfy the relation a; + oy + a3 = ay. If d = 4, then, by
Lemma 8, tr(a) = a3 + ap + a3 + a4 = 0 and we obtain oy + ag = (07 + &y + a3) +
oy = 0. A contradiction. By Lemma 5, d cannot be 5 or 7. Hence, d = 6. By Lemma 8,
tr(a) = a; + -+ ag = 0. Since a1 + a + a3 = oy, we have that

O=0g+-+ag =204 + s + g,

which is impossible in view of Lemma 7. [ ]
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Proof of Proposition 10  Let « be an algebraic number of degree d = 6 such that
tr(a) = 0 and some four distinct conjugates of « satisfy the relation

a0y =0as+ g = f
Let
8 :={a, ay, a3, ay, as, g}
be the full set of algebraic conjugates of «. Then, in view of tr(«) = 0, we have
mtoay=a3+as=f, as+as=-2p.

Let G be the Galois group of the normal closure of Q(«;) over Q. The group G
is determined (in a unique way) by its action on 8: it corresponds to some transitive
subgroup of the full symmetric group Se. First, consider the trivial case:

o +oy=a3+as=a, s+ ag=-24a,

where a € Q. Select an automorphism ¢ € G that maps «; to as. Setting ¢(az) = ay,
we obtain as + oy = a. We claim that k = 6. Indeed, if 1< k <2, then a; +a, = a
together with a5 + ay = a imply as = a; or as = a, which is impossible. Similarly,
it 3 < k <4, then a3 + a4 = a together with a5 + ay = a imply a5 = a3 or a5 = g, and
we get another contradiction. Clearly, k # 5, so the only option is a5 + &g = a. But we
already know that a5 + ag = —2a. Thus, a = —2a, meaning that a = 0.

Now assume that

mt+ar=as+ag=pf, as+as=-2p

where 8 ¢ Q. We will prove that 3, := f§ is a cubic algebraic number.

Let us write all possible distinct expressions of f; in terms of a; + &; (sum of
two distinct « conjugates). Assume that there are exactly / distinct expressions (two
expressions «; + & and &, + a, are distinct if {1, j} # {u,v}):

Pr=ai+ar=a3+as =0, +a,=....

Notice that I > 2, since the equality a; + «, = a3 + a4 provides at least two distinct
expressions of 5;. We will show that [ = 2. Indeed, assume that [ > 3. Then, we have at
least three distinct expressions of §; as a sum of two distinct conjugates of a:

(6) Pr=a1+ay=03+0a4 =0y +a,.

Then, {u,v} = {5,6}.Indeed, if u € {1,2,3,4}, then (6) implies that &, coincides with
one of the conjugates oy, a2, a3, g, which is impossible, since all three expressions
in (6) are distinct. Similarly, v € {1,2,3,4} also leads to a contradiction. Hence,
{u,v} = {5,6}. So (6) becomes

Pr=o1+a,=a3+ a4 = a5+ a.
Adding all these expressions of ;, we obtain
3Br=am+ary+az+ag+as+ag=0,

which is impossible in view of 5; ¢ Q.
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Now, we have that [ = 2 and
(7) ﬁ1:OC1+062:0(3+064.

Next, we will obtain an upper bound for deg(8;). Note that by acting on (7) with
an appropriate automorphism from G, we can obtain expressions of the form (7) for
every algebraic conjugate of f:

ﬁ]z(xl + 0y =03 + 0y,

(8) /32 = Wiy + Oy = Aijyy + Uiy

/3t =Wy T A, T Ay G,

Here, t is the degree of §; and f31, 2, . . . , B¢ are the algebraic conjugates of 3;. We have
precisely 2 - t distinct expressions of the form a; + a; in (8), since there are exactly ¢
algebraic conjugates of 3; and every such conjugate has exactly two expressions. On
the other hand, since deg(«) = 6, we have at most (g) = 15 possible pairs of indices
for distinct expressions «; + « ;. Hence, 2t <15 and t = deg(f;) < 7.

Next, we will show that, in fact, deg(31) is divisible by 3. Indeed, in (8), there are
2t distinct expressions of conjugates of f8; as sums «; + ;. Each such sum contains
two conjugates of «. Hence, there are exactly 2 - 2t appearances of conjugates of « in
(8). On the other hand, since G is transitive on the set of algebraic conjugates of «,
each a; must appear the same number of times in (8). Suppose that every «; appears
exactly k times in (8). So we have exactly k - deg(a) = 6k appearances of conjugates of
«a in (8). Hence, 4t = 6k, and therefore ¢ is divisible by 3. Recall that t = deg(f3;) < 7.
So deg(f1) =3 or6.

Finally, we will show that deg(8;) # 6. Indeed, assume that deg(3;) = 6. Since each
conjugate of f; has exactly two distinct expressions of the form «; + a;, we obtain
6 -2 = 12 distinct expressions. Recall that there are at most (g) = 15 possible pairs of
indices for distinct expressions «; + «; and also

“2B1=—(o1 + az) — (a3 + ag) = as + a.

By applying all automorphisms from G to —23; = as + ag, we get at least deg(81) = 6
expressions of the form «; + «; for algebraic conjugates of —2f3;. These expressions
must be distinct from each other and from the 12 expressions that we already have.
Note that there is no pair of indices (i, j) such that 8; = =23;. Indeed, let g(x) be the
minimal polynomial of the B, 5, ..., 8; and assume that 3; = —28;. In such a case,
q(x) and (-2)'q(-3) would be the same polynomial. This implies that either t = 0
or g(x) = x', which are both impossible. But in that case, there would be

12+6=18

distinct expressions a; + «;. A contradiction, since there are at most 15 distinct such
expressions. Hence, deg(;) # 6, and the only possibility is deg(f;) = 3. |

Proof of Proposition 11 ~ Let o be an algebraic number of degree d =6 and
tr(a) = 0. Assume that some four distinct algebraic conjugates of « satisfy the relation

9) mtay=as+ag=P¢Q.
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Then, by Proposition 10, 8 is a cubic algebraic number and ¢r(f3) = 0.Let 81 = 8, 82, B3
be the algebraic conjugates of 3. Let G be the Galois group of the normal closure of
Q(a) over Q. Consider G as a subgroup of Sg, acting on the indices of the conjugates
a1, 0, . .., &g of a. Take two automorphisms of G such that one maps ; to 3, and
another maps f8; to 3. Acting with these automorphisms on (9), we obtain

Pr=o1+a,=a3+ay,
(10) ﬁz = Wiyt Oy = Qipy + Uiy

ﬁ3 = Wiy + Oy, = Qg + Ky,

where each «;,, is an algebraic conjugate of «. In view of tr(a) = 0, we also obtain
corresponding relations

—Zﬁl = 05 + g,
(11) _ZﬁZ = Wiy T Uiy
—2ﬁ3 = Wiy + Ky

Note that for every k = 2,3 the numbers iy, ix2, ix3, ixa> iks» ike are distinct. We will
specify the indices in (10) and (11) by relabeling the conjugates ay, &, ..., as, if
necessary. First, we will prove that each —2f; has a unique expression in terms of
«; + a; (recall that two expressions &; + & and «,, + &, are distinct if {7, j} # {u,v}).
Indeed, say, —2f3; has two distinct expressions:

(12) 2B = a5+ as = oy + .

If u=5 (or u =6), then by (12), v =6 (or v =5, respectively). In this scenario, the
expressions «, + «, and as + ag become identical. This implies that u ¢ {5,6}.
A similar argument shows that v ¢ {5,6}. Consequently, u,v € {1,2,3,4}. Without
loss of generality, let u = 1. We then examine the following cases for (u,v):

Casel: If (u,v) = (1,1), then as + ag = 201, which contradicts Lemma 6.

Case2: If (u,v) =(1,2), then equations (10) and (12) yield -2f; = 8; implying
B1 = 0. This contradicts the condition that 8, ¢ Q.

Case3: If(u,v) = (1,3), then we have f; = a1 + ay and —28; = & + a3. Substituting
the first into the second gives 3a; +2a; + a3 = 0, which contradicts
Lemma 7.

Case 4: Similarly, (u,v) # (1,4).

These cases imply that u ¢ {1,2,3,4}. Therefore, —2f; has a unique expression in
terms of a; + a;. Since fy, 82, B3 are algebraic conjugates of f3;, it follows that every
—2py (for k =1,2,3) also has a unique expression in terms of a&; + ;.

Now, we will prove that all the a’s appear exactly once in (11). Indeed, note that
each conjugate of a appears exactly three times counting both (10) and (11): the
set {og, ..., 06}, {Xip>.- > Aiye }> and {ay,, ..., & } make three copies of the set of
conjugates of «, and since each appears exactly twice in (10) (as was proven in the
proof of Proposition 10), there must be one full set of conjugates in (11).

We have that {a;,,, ai,, @i, @iy } = {01, 42, a3, a4 . Without loss of generality,
we can assume that a;,, = ay. If &y, = a2, then -2, = f3;. Substituting this expression
of B into tr(B) =p1+ B2+ f3=0 yields 8, =85, which is impossible. Hence,
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i, € {3, a4 ). Note that a3 and a4 appear symmetrically in the first equation
of (10). Without loss of generality, by relabeling a3 and a4, if necessary, we can
assume that a;,, = a4. From this, we immediately derive that {a;, , a;,,, @i,,> @i, | =
{ay, a3, a5, a6 }. Note that 8, # as + ag. Indeed, if B, = a5 + ag, then B, = 2.
Substituting this expression of §, into tr() = B1 + ff2 + B3 = 0 yields f; = 83, which
is impossible. Thus, a5 and «; appear in distinct expressions of 3, in (10), as well as a;
and a3. Without loss of generality, we can assume that «;, = a, and «;,, = a3. Since
a5 and ag appear symmetrically in the first equation of (11), by relabeling a5 and as,
if necessary, we can assume that «;,, = a5 and «;,, = ag. So far, we have obtained

/))1:051-4-0(2:063"-0(4, —2[3120(54-066,
/32:062+(X5:(X3+0(6, —2/32:061-1-0(4,
/33 = Oy Uy, = Ay + Ay, _2ﬁ3 =iy + Ay

Since {a;,,,ai, | = {a2, a3}, without loss of generality, we assume that a;,, = a;
and a;,, = as. Then, {a;,, a;,,, Ay, Ay, } = {1, 44, a5, a6 }. Note that 3 # as + as.
Indeed, if B3 = as + a6, then B3 = -2f;. Substituting this expression of 5 into
tr(B) = B1 + B2+ B3 = 0 yields fB; = B2, which is impossible. Therefore, a5 and g
appear in distinct expressions of 3 in (10), as well as a; and a4. Thus, without loss of
generality, we can assume that «;,, = o and a;,, = a4. Now, we have two possible cases:

Bi=a1+as=0a4+0as OF B3=01+ 0 =0y + As.

The first case is impossible. Indeed, by adding f; = o1 + a, 82 = ax + a5 and
B3 = a1 + a5, we obtain

0:ﬂ1+ﬂ2+ﬁ3:2(061+0(2+0C5):2(/31+(XS),

and hence f3; = —as, which is impossible, since 6 = deg(—as) # deg(31) = 3. Finally,
we can rewrite equations (10) and (11) as follows:

Pi=o1+az=a;s+ay,
(13) B2 =02+ a5 = a3 + a,
Bs =1+ ag = ag + as,
-2f31 = a5 + A,
(14) 2B = + ay,
-2f35 = oy + as.

Now, we will prove that the Galois group G is of order |G| = 6 or 12. Since G is
transitive, the Orbit-Stabilizer Theorem implies

|G| = |Orb(ay)] - |Stab(ey)| = 6 - [Stab(ay)],

where Stab(a;) = {y € G: y(a;) = a;}. Hence, if we can show that |Stab(a)| < 2,
then it follows that |G| = 6 or 12. Let € Stab(a;).

If y stabilizes a;, then, in view of =28, = &1 + a4 and —2f3 = a; + a3, ¥ stabilizes
B2, a3, and ay. Since B, = a; + as, it follows that y stabilizes as. Hence, y stabilizes
every conjugate of a. Therefore, y = id.
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Suppose that y(a,) # ay. Since y(a) = a; and every conjugate of a appears
exactly once in (14), it follows that y stabilizes 5, and a4. Moreover, from (13), we
obtain that v maps 81 = a; + & to 83 = a1 + a6 and vice versa. Hence, y(a;) = as
and y(ag) = ap. Furthermore, ¥ maps —2f3; = as + ag to =283 = a + a3 and vice
versa. So ¥(a3) = as and y(as) = a3. Hence, v = (26)(35) € Sg.

We have proved that if every y € Stab () stabilizes a,, then the stabilizer subgroup
Stab(a;) is trivial and G has order 6. If there exists y € Stab(«;) which does not
stabilize a,, then Stab(a;) = {id, (26)(35)} and accordingly G has order 6 -2 = 12.
Hence, if G has order 12, then necessarily (26)(35) € G.

Next, we will prove that the group G contains the permutation ¢ := (135)(2 6 4)
€ S¢. Indeed, since f; is a cubic algebraic number, the Galois group G contains an
element, denote it by ¢, that permutes the conjugates of 3;. Without loss of generality,
we can assume that

(B1) =Bz ¢(B2) =Ps @(B3)=p

(by exchanging ¢ with ¢?, if necessary).

Relations in (14) imply that ¢ maps {a;, a4} to {@s, a3 }. Consider two possible
cases: p(a;) = ap and @(o) = a3.

If (a;) = ay, then @(ay) = a3. The expressions of $; and f3; in (13) imply that
¢ maps {aj,a} to {ay, as5}. Since ¢(a1) = ap, we obtain ¢(a;) = as. Similarly,
we see that ¢ maps {a3, a4} to {a3, a}. Since ¢(aq) = a3, we derive ¢(a3) = a.
The expressions of 8, and 85 in (13) imply that ¢ maps {ay, a5} to {ay, as}. Since
¢(az) = as, we obtain ¢(as) = ay. We are left with only one option for ¢(as), i.e.,
¢(ag) = a;. Hence, ¢ = (12543 6). Note that ¢* = (135)(26 4) = ¢. So that in this
case (p(ay) = ay) the permutation ¢ is contained in G.

If (1) = a3, then @(ay) = a,. The expressions of ff; and f3; in (13) imply that
¢ maps {a, a2} to {a3,a6}. Since ¢(a;) = a3, we have ¢(a;) = ag. Similarly,
we see that ¢ maps {as, a4} to {az, as}. Since ¢p(as) = a2, we get ¢(az) = as.
The expressions of f$, and S5 in (13) imply that ¢ maps {a,, as} to {a, e }. Since
9o(ay) = ag, we obtain ¢(as) = a;. We are left with only one option for ¢(as), i.e.,
¢(ag) = ag. Hence, 9 = (135)(264) = 0.

We have proved that the group G contains the permutation ¢ = (13 5)(2 6 4).
Now, we are in a position to find all possible groups G.

A simple computation with SageMath [14] shows that there is a unique transitive
subgroup of S which has order 12 and contains permutations (26)(35) and
0 = (135)(2 6 4). This subgroup is generated by the permutations 7 = (12)(34)(56)
and 7 = (12543 6) and is isomorphic to the dihedral group D¢ of order 12.

Similarly, there are exactly four transitive subgroups of S¢ which have order 6 and
contain the permutation o = (135)(2 6 4). These are
« G; = (0, 1) isomorphic to S3, where 7= (12)(34)(56);

« G, = (m) isomorphic to the cyclic group Cs, where 7 = (125436);
¢ G3 =((165234)) isomorphic to the cyclic group Cs;
« G4 =((145632)) isomorphic to the cyclic group Cs.

Note that the groups Gs and G4 do not preserve the relations in (14). Indeed, the
generator of G3 maps o + a4 to o6 + a7 while the generator of G4 maps a; + a4 to
a4 + as. Hence, G # G3 and G # Gg.
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We have proved that there are three options for the group G:
(1) G=<T,7T>§D6;
(2) G={(o,7)=2Ss
(3) G= <7T > ~ Cs.

This completes the proof of Proposition 11. [ ]

Proof of Theorem 3 Necessity. Suppose that « is an algebraic number of degree
6 whose four distinct algebraic conjugates satisfy the relation oy + az = a3 + oy =
B ¢ Q. Note that for any r € Q, the number « — r will also have this property. More-
over, « equals the sum of a quadratic and a cubic algebraic number ifand only if & — 7
has the same property. Hence, by taking r = tr(«)/6, we can assume that « has trace
zero, tr(a) = 0. Let G be the Galois group of the normal closure of Q(«) over Q.
Consider G as a subgroup of S, acting on the indices of the conjugates a3, a2, . .., &
of a. Then, by Proposition 11, we have the following:

(i)  Bisa cubic algebraic number.

(ii) One can label the algebraic conjugates oy, a3, ..., as of & in such a way that
these satisfy the relations

ﬁ12a1+a2:a3+a4,
(15) B2 =0+ a5 = a3 + ag,

ﬁ3:061+066:064+065,

where 3, = 3, B2, 35 are the algebraic conjugates of 3.
(iii) Given the relations (15), there are exactly three options for the Galois group G:
(1) G=(r,n|7*=7n°=id, tnr=7) 2 D¢;
(2) G=(n|n®=id)=Cs;
(3) G={id,0,0% 1,710,710} = S;.
Here, 7= (125436),0 =(135)(264) and 7 = (12)(34)(56).
Consider the number a; — a4. The expression of 31 in (15) implies that a — a3 =
—(ay — aq). Moreover,

(o —as) = o — a3 = —(01 — as),
7'[(0(1 — (X4) =0 — Q3 = —(061 — 0(4),

o(a;—ay) =a3 —ar = a; — ay.

Hence, &y — a4 is a quadratic algebraic number. Moreover, the relations 8, = a, + a5 =
a3 + g together with tr(a) = 0 imply -2, = a1 + a4, which is equivalent to
o] — 4

;P

Consequently, a = «; is the sum of the quadratic algebraic number (a; — a4)/2 and
the cubic algebraic number —f,.

Sufficiency. Assume that « is the sum of a quadratic algebraic number y and a cubic
algebraic number §. We will prove that « has degree 6 and some four distinct algebraic
conjugates of « satisfy the relation a; + a3 = a3 + a4 ¢ Q. Indeed, let y; = y, y, be the
algebraic conjugates of y and let &; = J, 82, 63 be the algebraic conjugates of §. Since the

o) =
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compositum Q(y, §) contains y and § of degree 2 and 3, respectively, it follows that the
degree of Q(y, §) is divisible by 2 - 3 = 6. On the other hand, [Q(y, §) : Q] < [Q(y) :
Q]-[Q(8) : Q] =2-3=6. Hence, [Q(y,6) : Q] = 6. By Lemma 9, we obtain that
Q(y,8) = Q(y + 9). Therefore, & = y + § has degree 6. Hence, the numbers y; + ¢,
fori =1,2and j =1,2,3, are distinct algebraic conjugates of y + §. The identity

(n+81)+(y2+82) = (y1+82) + (y2+ &)
implies that four distinct algebraic conjugates of « = y + § satisfy
A+ Ay = a3 + iy,

where a; =91+ 381, az=y2+82, az=y1+6, and a4 =y, + ;. Finally, since
tr(y) = y1 + y2 and tr(8) = 61 + 8, + 85 are rational numbers, we obtain that

o+ =y + 01+ 2+ 0, =tr(y)+tr(8) -8
is a cubic algebraic number, and therefore a; + a; ¢ Q. [ ]

Proof of Theorem 2 Let a be an algebraic number of degree d € {4,5,6,7} such
that ¢tr(«) = 0. Suppose that four distinct conjugates of a; := « satisfy the relation

(16) a+ay = a3+ ay.

By Lemma5,d # 5and d # 7. Hence, d = 4 or 6.

(i) Suppose that d = 4. Then, (16) together with tr(a) = 0 imply a; + oy = a3 +
ay = 0. Hence, a, = —ay, and therefore the minimal polynomial p(x) of « is of the
form p(x) = x* + ax* + b e Q[x].

Conversely, let p(x)=x*+ax*+beQ[x] be an irreducible polynomial. Let
B,y € C be two distinct roots of p(x) such thaty # —-B. Then a; = 3, an = =f3, a3 = 9,
and a4 = —y are all the roots of p(x) and the relation (16) holds.

(ii) Suppose that d = 6 and the sum «a; + «; in (16) is a rational number. Then,
by Proposition 10, a; + &, = a3 + a4 = 0. This implies that a, = —a;. Therefore, the
minimal polynomial p(x) of « is of the form p(x) = x® + ax* + bx* + c € Q[x].
Similarly, as in case (ii), we see that some four distinct roots of any such irreducible
polynomial satisfy the relation (16).

(iii) Suppose that d = 6 and the sum a; + «; in (16) is not a rational number. Then,
by Theorem 3, « is a sum of a quadratic algebraic number y and a cubic algebraic
number J. Let y; = y, y, be the algebraic conjugates of y and let §; = 6, §,, &5 be the
algebraic conjugates of §. Then, the numbers y; + §;, for i = 1,2 and j = 1, 2, 3, are the
algebraic conjugates of a = y + 8. We have that tr(«) = 0. On the other hand, tr(«)
equals the sum of all the numbers y; + 6j, for i =1,2 and j = 1,2, 3. The later sum
equals 3(y; +y2) +2(8; + 82 + 83). Hence, 0 = tr(a) = 3tr(y) + 2tr(8). Therefore,
tr(y)/2 + tr(8)/3 = 0 and we can represent « as

- 2) 5

Note that y — tr(y)/2 and & — tr(8)/3 are quadratic and cubic algebraic numbers,
respectively, both having trace zero. Consequently, without loss of generality, we can
assume that tr(y) = 0 and #r(8) = 0 in the expression « = y + §. Then, the minimal
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polynomial of y is of the form x* — a and the minimal polynomial of § is of the form

R(x) = x> + bx + ¢, where a, b, c € Q. Moreover, in view of tr(y) = 0 and y1y, = —a,
we obtain that y; = +\/a and y, = ¥/a. Now, the minimal polynomial p(x) of a can
be expressed as

p(x)= [T (x=yi=8;)= [T (x=yi=8)(x—yi—82)(x—yi— )

i=1,2 i=1,2
j=1.2.3
= R(x = y)R(x - y2) = R(x = Va)R(x + V/a)
17) =x%+(2b-3a)x* +2cx” + (3a® + b*)x* + 2c(3a + b)x

—a®-2a%b - ab® + 2.

Conversely, given an irreducible polynomial p(x) of the form (17), we can factor it
as p(x) = R(x — /a)R(x + \/a), where R(x) = x> + bx + c. Note that \/a ¢ Q, since
p(x) is irreducible. Consequently, \/a is a quadratic algebraic number. Moreover,
R(x) is irreducible. Indeed, if R(x) factors as R(x) = P(x)Q(x) with some poly-
nomials P(x), Q(x) € Q[x] both of degree > 1, then

p(x) =R(x—+a)R(x++/a)=P(x-+a)P(x+a)Q(x - a)Q(x +/a)
with both polynomials P(x —+/a)P(x ++/a) and Q(x —+/a)Q(x ++/a) having

rational coefficients. This contradicts the assumption that p(x) is irreducible. Hence,
R(x) is irreducible. Finally, the factorization p(x) = R(x — /a)R(x + \/a) implies
that every root of p(x) is a sum of a quadratic algebraic number ++/a and a root of
R(x), which is a cubic algebraic number. Therefore, by Theorem 3, some four distinct
roots of p(x) satisfy the relation (16) with a; + a; ¢ Q. [

Notes.

1. The polynomial in (17) is obtained by expanding the product R(x — /a)R(x +
\/a). This can be done either by hand or using a computer algebra system, e.g.,
SageMath [14].

2. The polynomial in (17) is irreducible if and only if a is not the square of a rational
number and the polynomial R(x) = x> + bx + ¢ has no roots in Q.
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