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Abstract

IMPORTANCE Anastomotic leakage is a severe complication after colorectal surgery that can
significantly affect clinical outcomes and patient prognosis. Although multiple risk factors for
anastomotic leakage have been identified, predicting the incidence of anastomotic leakage
remains difficult.

OBJECTIVE To develop a machine learning predictive model that combines logits from different
base models to predict the incidence of anastomotic leakage more accurately.

DESIGN, SETTING, AND PARTICIPANTS This retrospective prognostic study was conducted across
13 centers in Europe and North America between January 1, 2012, and December 31, 2020, and with
data from the European Society of Coloproctology (ESCP). The study population included patients 18
years or older who underwent colon resection with anastomosis and had a follow-up of at least 6
months. Patients with metastatic disease and insufficient follow-up were excluded. A total of 6079
patients from 13 centers across different countries were included in the analysis with an additional
3041 patients from the ESCP. Data analysis was conducted from October 2024 to January 2025.

EXPOSURE Colon anastomosis for various reasons, including neoplasia, diverticulitis, ischemia,
iatrogenic or traumatic perforation, or inflammatory bowel disease.

MAIN OUTCOMES AND MEASURES The primary outcome of this study was to predict anastomotic
leakage using a cross-attention–based meta-model, which integrated predictions from base models
and patient-level clinical features. The F1 score was used to assess the prediction performance of
the models.

RESULTS A total of 9120 patients (mean [SD] age, 61.26 [15.71] years; 4636 [50.8%] male) from the
513 centers and the ESCP were included in the analysis. There was no difference in distribution
between the 13 centers and the ESCP dataset. The model’s predictive performance achieved overall
F1 scores of 87% (95% CI, 78%-95%) and 70% across tests using a cross-validation process and
external validation test set, respectively. The meta-model’s performance was better than that of its
component parts (eg, CatBoost: cross-validation F1 score, 87% [95% CI, 78%-95%]; external
validation F1 score, 70%).

CONCLUSIONS AND RELEVANCE In this prognostic study of patients who underwent colon
resection with anastomosis, a meta-model was found to improve predictive accuracy. Additional
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Abstract (continued)

prospective studies are needed to assess the clinical utility of the model in real-time settings and its
integration into surgical workflows.
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Introduction

Anastomotic leakage (AL) is among the most severe complications after colorectal surgery, with
varying incidence rates of 2.8% to 30%.1-4 It is defined as a defect in the intestinal wall at the
anastomotic site, resulting in communication between the intraluminal and extraluminal space.5 AL
is associated with higher reoperative rates, longer hospital stays, and increased morbidity and
mortality, with rates equivalent to 20.0% to 35.0% and 2.0% to 16.4% respectively.1,6 Several risk
factors are implicated in the development of AL, including disease characteristics, surgical indication,
and preoperative and intraoperative surgical techniques.7 A deeper understanding of the complex
relationship and correlation among these factors can assist in predicting the risk of AL more
accurately. Identifying modifiable risk factors can potentially optimize resource allocation, enhance
patient preparation, and guide surgeons toward the optimal surgical technique at the patient level.8

Despite these efforts, objectively and accurately predicting the incidence of AL for patients remains
difficult even for experienced surgeons.9

Machine learning (ML) is a rapidly evolving tool with the potential to develop more accurate
predictive models, which in turn could help decrease the rates of AL. ML offers a framework that can
analyze a large multicenter dataset and integrate diverse patient variables into unified risk models
for patient-specific predictions.10 Unlike traditional methods, ML can analyze complex, nonlinear
relationships among variables, enabling more precise predictions.11 Such tools can successfully
support preoperative planning, allowing surgeons to identify high-risk patients and tailor their
surgical techniques accordingly.12 Identifying the optimal model is difficult because several predictive
models with varying predictive accuracy have been developed.9,12 An overarching model that
integrates and analyzes the predictions of the separate models can potentially create a more
accurate and generalizable prediction of AL. This study aims to develop and evaluate a meta-model
that integrates logits from different existing predictive models combined with patient-specific
features to predict AL risk after colorectal surgery.

Methods

Study Design and Participants
This retrospective prognostic study was conducted across centers in Europe and North America and
with data from the European Society of Coloproctology (ESCP). The ESCP cohort is a prospective
dataset that has been collected through international collaboration led by the ESCP Cohort Studies
Working Group.13 Data were collected from 13 cohorts of adult patients undergoing colonic resection
and anastomosis for various reasons, including neoplasia, diverticulitis, ischemia, iatrogenic or
traumatic perforation, or inflammatory bowel disease, between January 1, 2012, and December 31,
2020, with a follow-up of at least 6 months. Participating centers are listed in the eAppendix 1 in
Supplement 1. Data collection was conducted by consultants, surgical residents, or medical students
under supervision (eTable 5 in Supplement 1). Patients younger than 18 years, those with insufficient
follow-up (<3 months), and those with metastatic, recurrent, or unresectable disease were excluded.
The patient flowchart is available in eFigure 1 in Supplement 1. Additional training and validation were
conducted using data from participants in a registered, previously published, prospective audit,
multicenter trial conducted by the 2015 European Society of Coloproctology Collaborating Group.13

Details about cohort data collection can be found in the Descriptive Statistics section of eTables 1 and
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2 in Supplement 1). All centers obtained institutional review board and ethics approval for their
respective institutions. This study was conducted in accordance with the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline
for developing clinical prediction models14 as well as the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guideline.15

Outcomes
The primary outcome of this study was to predict AL using a cross-attention–based meta-model that
integrated predictions from base models and patient-specific clinical features. By incorporating both
model-derived logits and original feature representations, the approach aimed to provide robust
predictions across diverse clinical settings. Furthermore, the generalizability of the model was
assessed by validating its performance on an external dataset, ensuring its applicability across
various health care environments.

Model Development
We developed and tested the predictive model using a specific cross-clinic model validation in
addition to a 5-fold cross-validation and external evaluation to ensure consistency of the model
performance. AL was diagnosed based on clinical sign of leakage, confirmed by radiologic imaging or
endoscopy or identified at reoperation. Recorded variables included 34 preoperative risk factors that
have been reported in the literature, such as age, sex, body mass index (BMI), active smoking, pack-
years, alcohol abuse (no, 1-2 alcoholic beverages per day, or >2 alcoholic beverages per day), prior
abdominal surgery, preoperative leukocytosis (white blood cell count >10 000/μL [to convert to
×109/L, multiply by 0.001]), preoperative steroid use, American Society of Anesthesiologists score
(I-IV), Charlson Comorbidity Index, kidney function (chronic kidney disease stages G1-G5), albumin
level, hemoglobin level, C-reactive protein level, neoadjuvant therapy, intake of immunosuppressive
drugs, dosage of steroids, use of nonsteroidal anti-inflammatory drugs, preoperative blood
transfusion, tumor necrosis factor α inhibitors, liver metastasis (at the time of surgery proven by
radiologic imaging or biopsy preoperatively), indication (eg, tumor, diverticular disease, ileus,
ischemia, volvulus, Crohn disease, and others), type of surgery (eg, sigmoid resection, left or
extended left hemicolectomy, right or extended right hemicolectomy, transverse colectomy,
Hartman reversal, colon segment resection, and ileocecal resection), emergency surgery, bowel
perforation, surgical approach (laparoscopic, robotic, or open), anastomotic technique (hand-sewn
or stapler), conversion to open, surgeon’s experience (consultant or teaching operation), nutrition
status, diverting ostomy, type of anastomosis (colon-colon anastomosis, colorectal anastomosis, or
ileocolonic anastomosis), and anastomotic configuration (end to end, side to end, side to side, or end
to side).

We started the preprocessing phase by thoroughly analyzing the baseline features of all patient
data. We excluded any variable with 30% or more missing values from the dataset to minimize
potential bias from missing data. For the remaining data, k-nearest neighbors imputation was used,
ensuring the preservation of the distribution of the overall dataset.

Categorical features were converted to numerical formats using ordinal encoding. Minimum to
maximum scaling normalized all numerical features to a range of (0,1), preventing any single feature
from dominating due to scale differences. After that, we applied feature engineering by generating
polynomial features with a degree of 2 for capturing higher-order associations between variables.

To address class imbalance within the dataset, we implemented the synthetic minority over-
sampling technique (SMOTE), which generates synthetic instances for the minority class based on
the k-nearest neighbors of existing samples. This method improved the model’s ability to learn from
minority class examples. Additionally, we applied Tomek links to eliminate noisy or borderline
synthetic instances, refining the dataset and enhancing the quality of the training data.

The training process included a section in which 4 models (CatBoost, LightGBM, random forest,
and bagging classifier) were trained to extract logits. This information was subsequently fed into a
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cross-attention–based neural network serving as a meta-model, which takes those logits and
processed features as inputs for final predictions. A summary of the workflow is shown in eFigure 2
in Supplement 1. The multihead self-attention layer plays a crucial role in analyzing embeddings by
dividing them into multiple attention heads, with each head independently computing attention.
This layer uses a series of essential operations, including query, key, and value-dense layers, a scaled
dot-product attention mechanism, multihead processing with concatenation, and a final dense layer
to merge the outputs of all attention heads into a cohesive representation.

Building on this foundation, the cross-attention layer leverages the principles of the multihead
self-attention mechanism to compute associations between the base model predictions and feature
representations. By aligning and combining these inputs, the model effectively captures interactions
and dependencies that are critical for accurate prediction.

The meta-model processing workflow integrates these components into a seamless pipeline.
First, the base model predictions are embedded into a higher-dimensional space. Self-attention is
then applied to these embedded predictions. Simultaneously, cross-attention is computed between
the base predictions and the original features, enabling the model to dynamically align and merge
information from both sources. Following this, the combined representations are processed through
global average pooling to reduce dimensionality and enhance generalization. Finally, dense layers
with regularization and dropout are applied, ensuring robust and reliable predictions.

A schematic diagram illustrating the architecture of the meta-model is provided in eFigure 3 in
Supplement 1, offering a visual representation of the interplay among its various components. The
model parameter of the final model can be found in eTable 3 in Supplement 1. The choice of base
learners, preprocessing steps, and feature engineering was based on an extensive ablation study
evaluating 144 model combinations (eAppendix 2 and eFigures 4 and 5 in Supplement 1), identifying
the optimal configuration that yielded the highest F1 score.

Model Validation
The validation process was carefully designed to mitigate bias and ensure consistent performance
across various data subsets. This approach involved several essential steps, beginning with 5-fold
stratified cross-validation, which divided the dataset into 5-folds while maintaining class proportions.
This method preserved the representation of both majority and minority classes in training and
validation splits, promoting model reliability.

In addition to cross-validation, a per-center evaluation was conducted to test the robustness of
the model in different clinical settings. For each center, the data from that specific center were
designated as the test set, whereas the base models were trained on data from the other centers.
Predictions generated by the base models for the test center were combined with the original
features and used to train the meta-model. This center-specific approach provided insights into the
model’s adaptability and generalizability.

To enhance predictive accuracy, threshold optimization was performed for each model on the
validation set. This step identified the optimal decision threshold, ensuring a balanced trade-off
between sensitivity and specificity. After threshold optimization, a center validation was performed
using an independent dataset from the ESCP, demonstrating the model’s capability to generalize to
novel datasets. The feature importance has also been assessed.

Statistical Analysis
Patient characteristics were summarized using mean (SD) for continuous variables and number
(percentage) for categorical variables. To ensure robust hypothesis testing, statistical analyses were
conducted using Shapiro-Wilk tests for normality, Levene tests for homogeneity of variance, 2-tailed,
unpaired t tests for comparisons of means, and Mann-Whitney U tests for nonparametric
comparisons. These analyses were performed from October 2024 to January 2025 with a 95%
confidence level to validate the hypothesis that the meta-model’s performance significantly
exceeded that of the individual base models.

JAMA Network Open | Surgery A Clinical Prediction Model for Anastomotic Leakage in Colorectal Surgery

JAMA Network Open. 2025;8(10):e2538267. doi:10.1001/jamanetworkopen.2025.38267 (Reprinted) October 20, 2025 4/13

Downloaded from jamanetwork.com by guest on 10/27/2025

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.38267&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.38267
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.38267&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.38267
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.38267&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.38267
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.38267&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.38267


The computational workflow for the analysis was implemented using Python, version 3.10
(Python Software Foundation). The TensorFlow library was used for constructing and training the
neural network–based meta-model, whereas Scikit-Learn (Python Software Foundation) supported
preprocessing, feature engineering, and model evaluation tasks. These tools ensured a reliable and
efficient analysis pipeline. Data analysis was conducted from January 2015 to March 2015.

Results

A total of 9120 patients (mean [SD] age, 61.26 [15.71] years; 4636 [50.8%] male and 4484 [49.2%])
were studied, including 6079 patients from 13 centers across different countries and an additional
3041 patients from the ESCP holdout dataset. An exploratory data analysis was conducted to profile
patients, focusing on demographic features and the distribution of comorbidities. The mean (SD)
age distribution for the 13 clinics and the holdout set from the ESCP 5 were slightly different (58.7
years [14.9] vs 66.3 [15.9] years, respectively). The mean BMI (calculated as weight in kilograms
divided by height in meters squared) of the 13 participating clinics was slightly higher than for the
ESCP dataset (27.4 vs 26.3). In the main dataset, 1021 patients (16.8%) were smokers vs 942 (31%)
for the ESCP dataset.

Of the 34 remaining variables, the features contributing most to the attention layer were the
logits of the 4 models, C-reactive protein levels, Charlson Comorbidity Index, prior abdominal
surgery, albumin level, BMI, indication, surgical approach, surgeon’s experience, emergency surgery,
and some interaction terms between the features. The importance of each feature is visualized in
Figure 1 as the Shapley Additive Explanation values.

The model’s predictive performance was assessed using a 10-fold cross-validation process,
achieving an overall F1 macroscore of 87% (95% CI, 78%-95%) across test centers (with the final
model chosen based on the F1 score performance on external validation). The detailed results are
presented in Table 1. Additionally, the model was evaluated on an external validation test set,
achieving an F1 score of 70% (Table 1). The F1 scores of the external validation can be found in Table 1.
The different thresholds of the models were also evaluated (Figure 2; eFigure 6 in Supplement 1).
The calibration plots can be found in eFigure 7 in Supplement 1.

The performance of the meta-model was compared against alternative approaches, including
its individual components (CatBoost, LightGBM, random forest, and bagging classifier). These
comparisons were conducted using cross-validation and external validation. Benchmark results are
summarized in Table 1.

The final model was selected based on its superior F1 score performance during external
validation. The performance of the meta-model was also evaluated and compared against the
individual models on all the clinics separately, always leaving one clinic out for testing (Table 2). To
ensure that the meta-model performed significantly better than the individual base models,
statistical significance was assessed using McNemar tests for paired comparisons of predicted
outcomes. These tests were repeated across all centers using cross-validation and the external
validation set to confirm the robustness of the results. The statistical analysis demonstrated a
significant improvement in performance for the meta-model compared with individual models in
both validation scenarios (details provided in eAppendix 3 in Supplement 1). The class distributions
of the 2 datasets (from the participating clinics and from the holdout set), combined with statistical
tests to show the domain shift between the 2 datasets, are shown in eFigure 8 in Supplement 1.

Finally, the ML meta-model was integrated into a user-friendly web application prototype
designed to predict the probability of AL based on preoperative clinical data. The prototype
application allows clinicians to simulate various scenarios by modifying patient information, surgical
approach, and surgeon experience, providing tailored recommendations with associated
probabilities of AL. This tool has the potential to support clinical decision-making by optimizing
patient-specific surgical strategies.16
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Discussion

AL remains one of the most devastating complications of colorectal surgery, associated with
increased mortality, morbidity, reduced survival, and increased cancer recurrence rates.17

Additionally, AL significantly increases the financial burden on health care systems due to intensive
care unit admissions, longer hospitalization, and resource use.17 To our knowledge, this is the first
study to develop a meta-model that combines logits from different existing predictive models with a
cross-attention mechanism to predict AL after colorectal surgery. By incorporating baseline
characteristics, risk factors, and intraoperative factors, the model guides toward the optimal surgery
to minimize AL risk for each patient. Thus, our tool might help reduce morbidity, mortality, and the
future financial burden associated with AL.

Although surgical decisions are often straightforward in patients with extreme risk profiles, it
becomes more complex in intermediate-risk patients, such as younger patients with few
comorbidities or nonemergency indications. As detailed in eTable 4 in Supplement 1, we constructed
5 fictional cases to illustrate the model’s predictive capacity and ability to capture nuanced clinical
variation. It enables differentiation between cases that might appear similar but differ in subtle risk
profiles, highlighting its potential to support actual decision-making. The “black-box” phenomenon
of a ML algorithm applies here, making it challenging to understand how slight changes of variables
affect the model’s output.

Although clinicians are experts in dealing with risks and uncertain situations, surgeons are poor
in predicting AL risk.18-20 A cutoff value to define intermediate-risk patients for AL would be of

Figure 1. Shapley Additive Explanation (SHAP) Value Graphic for the Meta-Model
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utmost importance to clinical decision-making. There is no universally accepted threshold or
definition of what constitutes a patient as intermediate risk for AL. However, this is the cohort of
interest who clinicians aim to identify before surgery to adapt the patient’s preoperative condition or
adjust the intraoperative surgical strategy. Currently, the decision of whether a patient receives an

Table 1. Performance Evaluation of All Models Used

Model and metric Cross-validation External validation
Meta-model

Accuracy 0.97 (0.80-0.98) 0.88

AUC 0.89 (0.83-0.95) 0.78

Precision 0.91 (0.85-0.95) 0.73

Recall 0.82 (0.81-0.93) 0.66

F1 score 0.87 (0.78-0.95) 0.70

CatBoost

Accuracy 0.96 (0.90-0.97) 0.87

AUC 0.89 (0.87-0.91) 0.67

Precision 0.87 (0.80-0.88) 0.69

Recall 0.81 (0.79-0.88) 0.61

F1 score 0.85 (0.80-0.87) 0.65

LightGBM

Accuracy 0.96 (0.82-0.97) 0.87

AUC 0.88 (0.86-0.89) 0.71

Precision 0.87 (0.70-0.90) 0.71

Recall 0.80 (0.70-0.83) 0.67

F1 score 0.85 (0.79-0.89) 0.69

Random forest

Accuracy 0.94 (0.79-0.97) 0.82

AUC 0.88 (0.89-0.90) 0.75

Precision 0.85 (0.81-0.88) 0.65

Recall 0.81 (0.78-0.83) 0.60

F1 score 0.85 (0.84-0.86) 0.63

Bagging classifier

Accuracy 0.95 (0.89-0.97) 0.86

AUC 0.81 (0.80-0.84) 0.66

Precision 0.84 (0.78-0.91) 0.68

Recall 0.79 (0.72-0.84) 0.64

F1 score 0.82 (0.77-0.90) 0.65
Abbreviation: AUC, area under the receiver operating
characteristic curve.

Figure 2. Example Plot for the Threshold Optimization for 1 Participating Clinic
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anastomosis or a diverting stoma is up to the surgeon’s estimation of AL in the particular patient. This
decision is driven by known risk factors, personal experience, and the intraoperative situs. A
surgeon’s intuition should not be underestimated because it often influences decision-making.
However, this gut feeling is difficult to measure and objectify and therefore challenging to
incorporate into objective tools. At the same time, surgeons are prone to bias; for example, being
criticized for an AL in a recent case or loss of a patient due to AL has an influence on objective
decision-making on colorectal surgeons.21 Thus, scores and widely accepted tools within the
colorectal surgical community provide a foundation upon which surgeons can base and, if necessary,
justify their decisions legally. This underlines the importance of establishing clear cutoffs and expert
opinions to stratify patients at intermediate risk for AL, reflecting the at-risk subgroup.

Risk perception is also subjective; a 5% risk may seem low to a surgeon but high to a patient. In
some cultures, complications after surgery are seen as unfortunate but acceptable, whereas in other
regions blame and legal action can be associated. This can also affect a surgeon’s point of view;
practicing in a highly litigious environment may cause a surgeon to view lower risks as more
significant because legal and reputational consequences are feared.22

In addition, outcome severity clearly skews perception. A 5% risk of a mild complication
resulting, for example, in antibiotic application feels different than a 5% risk of a reoperation and

Table 2. Performance Evaluation of the Meta-Model for the Participating Clinicsa

Test clinic

F1 scores, %

Meta-model CatBoost LightGBM Random forest
Bagging
classified

European and North American centers

University Hospital of Würzburg 91 90 91 88 85

University Medical Center
Hamburg-Eppendorf

84 82 85 82 84

Kirk Kerkorian School of Medicine
at UNLV

94 91 91 94 97

University Hospital of Basel 95 95 95 96 91

Cantonal Hospital Basel-Landschaft 53 49 49 68 49

GZO Spital Wetzikon 83 79 83 72 72

Brody School of Medicine, East
Carolina University

75 76 67 71 65

Military University Hospital Prague 91 91 91 85 82

Teaching Hospital Emmental 83 82 81 80 74

Vilnius University 95 90 92 89 87

Claraspital 100 100 100 100 100

Dalhousie University 95 93 93 92 95

Mean (SD) 87 (0.13) 85 (0.13) 85 (0.14) 82 (0.10) 70 (0.15)

European Society of Coloproctology

University Hospital of Würzburg 71 65 72 60 57

University Medical Center
Hamburg-Eppendorf

69 63 70 61 66

Kirk Kerkorian School of Medicine
at UNLV

68 65 67 65 70

University Hospital of Basel 70 62 70 63 67

Cantonal Hospital Basel-Landschaft 69 67 70 60 70

GZO Spital Wetzikon 70 63 67 68 62

Brody School of Medicine, East
Carolina University

73 68 70 64 59

Military University Hospital Prague 67 64 67 65 61

Teaching Hospital Emmental 69 66 71 62 66

Vilnius University 70 64 70 61 66

Claraspital 70 66 68 65 66

Dalhousie University 70 64 70 66 66

Mean (SD) 65 (0.01) 69 (0.02) 63 (0.02) 63 (0.03) 65 (0.04)

a Data were analyzed using a leave-one-clinic-out
cross-validation approach. Each row corresponds to
a test clinic, where the models were trained on all
clinics except for the one in that row and then tested
on that excluded clinic. For example, in the
University Hospital of Würzburg row, all models were
trained on data from all clinics except the University
Hospital of Würzburg and then evaluated on the
University Hospital of Würzburg dataset. In the
second row, the same process was applied but with
University Medical Center Hamburg-Eppendorf as
the excluded test clinic and so on for each clinic. The
same leave-one-clinic-out training procedure was
used for the European Society of Coloproctology
rows, but instead of testing only on the left-out clinic,
the trained models were additionally evaluated on
the European Society of Coloproctology external
validation dataset. This dual evaluation setup allows
for assessing how well the models generalize to
unseen clinical environments. The variation in
performance across clinics and the generally lower
scores on the European Society of Coloproctology
dataset indicate potential domain shifts and highlight
the importance of external validation.
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stoma placement after elective surgery. For lifesaving surgery a higher risk may be acceptable but not
in an elective setting with alternative treatment.23,24 Emotions such as fear can affect how a risk is
perceived. Although patients with anxiety are naturally more risk averse, others may be more
optimistic and risk tolerant.23 How a patient perceives a risk also depends on trust in the health care
professional and communication style. Understanding that 1 of 20 patients is affected may sound
worse than a 95% chance of not experiencing an AL.25

Risk perception and trust in decision-making based on an artificial intelligence tool seems to be
well received by patients who believe that the surgeon remains the primary decision maker.26 Our
model on AL prediction offers personalized, numeric risk estimates to guide individualized surgical
planning, informed patient discussions, and expectation management for patients.

Unlike prior studies27-30 that relied predominantly on linear regression or single ML algorithms,
our approach leverages ML to account for nonlinear associations and dependencies among
features.27 In terms of performance, our model can achieve an F1 score of 87% in cross-validation and
70% in the external test set, respectively, which is higher than the values of traditional statistical
models.14,27,31 The cross-attention mechanism enables better feature extraction and decision-making
compared with conventional ML approaches, which are limited by the inability to generalize to the
clinical setting.12 This implies that the meta-model demonstrates high performance in predicting AL
risk. Furthermore, our methods ensure that the model’s performance metrics are not inflated by
overfitting or localized biases.

Limitations
Our study has limitations. Despite the success of our meta-model in predicting AL and integrating
multisource information, the model focused only on patient-specific features and preoperative risk
factors, excluding postoperative factors. Thus, future studies should consider additional factors that
may influence AL risk, which could potentially refine the predictive accuracy, particularly
intraoperative and real-time data, such as operative time, blood loss, hypothermia, vasopressor
application, or fluid administration.32-34 Other variables, which are less convenient to measure or
quantify, such as tension on the anastomosis, could further enhance intraoperative AL risk
calculation.35 Although these variables were outside the scope of this study, advancements in real-
time monitoring technologies could enable their integration into predictive models. Such
enhancements would provide a more comprehensive approach to AL prediction. Furthermore, an
additional predictive tool for identifying patients at risk for AL in the postoperative setting could aid
in surveillance and resource allocation. Patients discovered at an early stage of leakage may be
spared reoperation or takedown of the anastomosis, and early-stage sepsis can be targeted to reduce
additional morbidity.

Further prospective studies are needed to refine our meta-model and evaluate its application in
varied clinical environments. Additionally, the usability of this tool in clinical settings depends on the
practicality of data input. Although the model uses 34 input features, we recognize that this may be
impractical in many settings. Reducing the number of variables through feature selection led to a
decrease in predictive performance. However, the tool allows partial input, and clinicians can
prioritize entering all available data. A trade-off between completeness and usability represents a key
area for future improvement.

Conclusions

In this prognostic study, we highlighted the potential of advanced ML methods to enhance surgical
outcome prediction. By addressing key challenges such as domain shifts and leveraging diverse
clinical datasets, our approach provided a scalable and robust framework for AL prediction. Future
work should focus on prospective validation, assessment of the clinical utility of the model in real-
time settings, and integration into surgical workflows. This combination of data-driven insights and
clinical expertise could substantially improve predictive accuracy.
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