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Abstract

Background: Gamma-range auditory steady-state responses (ASSRs) are emerging as
promising translational biomarkers of neural network function. While extensively studied
in human neuropsychiatric and neurodevelopmental research, their application in animal
models has expanded in recent years, providing mechanistic insights into disease-related
neural dynamics. However, methodological approaches vary widely, findings remain
fragmented, and outcomes are not easily generalized. Methods: A literature search was
conducted in March 2025 across PubMed and Scopus to identify studies investigating
gamma-range ASSRs (30-100 Hz) in animal models with relevance to psychiatric and
developmental conditions. Results: Most studies employed rodents, with a smaller num-
ber involving non-human primates, and used pharmacological, genetic, lesion-based, or
developmental manipulations relevant to schizophrenia, autism spectrum disorder, and
related conditions. ASSRs were highly sensitive to NMDA receptor antagonism, state- and
trait-related factors, and exhibited region- and layer-specific generation patterns centered
on the auditory cortex. Less common paradigms, such as chirps and gap-in-noise, also
demonstrated translational potential. Conclusions: Animal research confirms that gamma-
range ASSRs provide a sensitive, cross-species readout of circuit dysfunctions observed
in psychiatric and neurodevelopmental disorders. To maximize their translational utility,
future work should prioritize methodological harmonization, systematic inclusion of sex
and behavioral state factors, and replication across laboratories. Strengthening these aspects
will enhance the value of ASSRs as biomarkers for early detection, patient stratification,
and treatment monitoring in clinical psychiatry.
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1. Introduction

Gamma-range auditory steady-state responses (ASSRs) have been extensively studied
in humans as potential neurophysiological markers for psychiatric and neurodevelopmen-
tal disorders [1]. These responses reflect neural entrainment elicited by periodic auditory
stimulation, typically in the form of click trains or amplitude-modulated (AM) tones within
the gamma frequency range (30-100 Hz) [2]. It should be noted, however, that synchroniza-
tion within this range likely reflects contributions from distinct neural generators: lower
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gamma frequencies (30-50 Hz) are predominantly cortical, whereas higher frequencies
(>80 Hz) may involve more subcortical and brainstem sources, as the frequency range of
phase-locked responses decreases along the ascending auditory pathway [3,4]. Because
gamma ASSRs depend on the integrity of excitatory—inhibitory balance [5], gamma ASSRs
are consistently altered in disorders such as schizophrenia (5Z), where deficits at 40 Hz
have been reported in patients [6], in ultra-high-risk individuals [7], and even proposed as
predictors of treatment outcomes [6,8]. Comparable alterations have also been described
in autism spectrum disorders (ASD), where reductions in gamma synchrony are associ-
ated with impaired cortical network development [9]. While influential reviews such as
O’Donnell et al. (2013) [1] established the promise of ASSRs as psychiatric biomarkers, they
did not provide a structured synthesis of animal studies or systematically evaluate how
different disease models reproduce alterations observed in patients. The present review
addresses this gap.

Animal models allow controlled manipulation of neural circuits, neurotransmitter
systems, and developmental trajectories, enabling mechanistic insights that cannot be
achieved in humans. Moreover, the comparability of auditory stimulation paradigms across
species makes ASSRs particularly suitable for translational research. Early experimental
work in species such as cats [10], guinea pigs [11], gerbils [12], and rabbits [3] laid the
foundation for understanding ASSR physiology, but recent efforts have shifted mainly to
work on mice, rats, and monkeys to align more closely with translational psychiatry and
disease modeling. Rodent models provide valuable mechanistic insight owing to their
genetic manipulability and experimental accessibility, though their translatability to human
neurophysiology remains limited across many domains [13-16]. Over the past decade,
pharmacological [17-19], genetic [20-22], lesion-based [23,24], and developmental [25,26]
models have been applied to study ASSRs, with the goal of reproducing patient-relevant
alterations and probing underlying mechanisms.

Importantly, gamma ASSRs are not only descriptive readouts but also provide
mechanistic information, as they index the capacity of neural circuits to sustain syn-
chronized oscillations and reflect the balance of excitation and inhibition in cortical net-
works [5]. These mechanisms are directly implicated in psychiatric and neurodevelop-
mental disorders [25,27], where disrupted gamma synchrony has been linked to cognitive
impairments in attention [28], working memory [29], and sensory processing [5]. Develop-
mental animal models further allow the investigation of how ASSRs emerge and change
across maturation, providing a window into altered trajectories relevant for ASD [30,31]
and Fragile X syndrome (FXS) [25,32].

Despite their promise, findings from animal studies remain fragmented. Variability
in stimulation protocols, recording methods, experimental states, and modeling strate-
gies complicates cross-study synthesis and limits the integration of preclinical data into
clinically meaningful frameworks. Addressing this challenge is essential, given the ur-
gent need for objective biomarkers that can support early detection, patient stratifica-
tion, and treatment monitoring in psychiatry. ASSRs are particularly promising in this
regard because they are non-invasive, repeatable, and measurable across species using
analogous paradigms.

Taken together, these considerations highlight the need for a structured synthe-
sis of animal research on gamma-range ASSRs. This review addresses how gamma-
range ASSRs are elicited, manipulated, and interpreted in animal models, and whether
they reproduce alterations observed in patients. By focusing on disease-relevant mod-
els and excluding studies limited to basic auditory physiology without translational
value, we aim to clarify the role of animal ASSRs as a cross-species biomarker, identify
key methodological challenges, and outline future directions to strengthen their transla-
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tional impact in developing clinically relevant biomarkers for diagnosis, prognosis, and
treatment monitoring.

2. Materials and Methods

We conducted a semi-structured literature review to provide a focused overview of
how gamma-range ASSRs are used in animal research. This approach enabled a systematic
mapping of relevant studies while maintaining flexibility in selection, allowing us to
emphasize works with translational relevance without being limited by overly rigid criteria.
Unlike fully systematic reviews, our goal was not exhaustive coverage but a representative
synthesis of current research.

To identify relevant studies, we conducted database searches in PubMed and Scopus
(March 2025) using combinations of keywords related to auditory steady-state responses,
animal models, and electrophysiological methods. Search strings included terms such
as “auditory steady-state response” OR “ASSR” OR “steady-state auditory evoked potential”
combined with “animal model,” “rat,” “mouse,” “rodent,” or “monkey” and with “EEG,”
“electrophysiology,” “evoked potential,” or “local field potential”. The full keyword lists are
provided in Appendix A.

The selection process followed predefined inclusion and exclusion criteria to ensure
relevance to the study’s aim. We focused on original research articles presenting empirical
findings; studies conducted in rodent models with additional inclusion of nonhuman
primate studies relevant to neuropsychiatric disorders; research specifically assessing
gamma-range ASSRs (30-100 Hz); studies utilizing electroencephalography (EEG), elec-
trocorticography (ECoG), or local field potentials (LFPs) as core measurement techniques;
and articles published in English. Only peer-reviewed publications were considered;
preprints, unpublished data, and conference abstracts were excluded. We did not include
non-original research (e.g., reviews, theoretical papers, meta-analyses, case reports); studies
not published in English; research focused primarily on hearing mechanisms rather than
on neurophysiological or neuropsychiatric implications of ASSR; and studies utilizing
irrelevant auditory paradigms, such as transient evoked potentials instead of steady-state
responses. The study selection process was independently conducted by two researchers,
who screened article titles, abstracts, and full texts where necessary to ensure relevance. In
cases where the abstract did not provide sufficient information, the full text was reviewed
to confirm eligibility. Discrepancies between reviewers were resolved through discussion
and consensus.

Because our aim was not the exhaustive coverage of all animal ASSR research but
rather a synthesis with translational relevance, we applied an additional filter beyond
database-based inclusion criteria. Specifically, studies were retained only if their design,
outcomes, or manipulations allowed meaningful comparison to human neuropsychiatric
or neurophysiological research. For example, reports focusing exclusively on auditory
physiology (e.g., cochlear or brainstem responses without cortical readouts), or those
limited to methodological validation without psychiatric or network-level interpretation,
were excluded. Similarly, works using transient auditory evoked potentials rather than
steady-state paradigms were not considered. This approach was chosen to maintain focus
on findings with clear cross-species value for understanding psychiatric disorders, while
acknowledging that it necessarily omits some technically relevant but less translationally
oriented studies.

3. Results

The initial search identified 132 records (PubMed: 36; Scopus: 96) (Figure 1). After
removing duplicates (1 = 32), 100 unique articles remained (Figure 1). Following screening
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Identification

and the application of predefined inclusion criteria, 56 studies were included in this review
(Figure 1, Table S1).
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Figure 1. Scheme of studies inclusion process. Top-left: The records were identified in PubMed and
Scopus databases. The duplicates were removed before screening. Top-right: The records identified
from citation searching. Middle: The records were screened and excluded by predefined exclusion
criteria. Bottom: 56 studies were included in the review.

Given the semi-structured nature of the review, some relevant studies may have been
missed due to database limitations, keyword filtering, or the exclusion of gray literature.
Nonetheless, this review provides a comprehensive and representative synthesis of cur-
rent ASSR research in animal models relevant to neuropsychiatric disorders. Figure 2
summarizes the main findings after generalizing the included works.

3.1. Disease Models

Most studies employed mice (29) and rats (23), emphasizing their central role in
ASSR-related translational research. A smaller number used nonhuman primates, in-
cluding macaques (2), common marmosets (2), and rhesus monkeys (1). Mouse mod-
els included both wild-type (WT) and genetically modified strains (e.g., SRKO, Fmrl
KO, GRIN2A KO) to model ASD (13 studies), while rat studies predominantly uti-
lized pharmacological agents to model SZ (16 studies), with fewer studies address-
ing other psychiatric or neurological conditions. Among the pharmacological mod-
els, MK-801 was the most commonly used drug (9 studies), followed by ketamine (7)
and phencyclidine (PCP) (2) (all being non-competitive antagonists of the N-methyl-
D-aspartate (NMDA) receptor complex), indicating a research preference for NMDA
receptor antagonists.
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Figure 2. Summary of gamma-range ASSR animal studies included in the review. Top-left: Distri-
bution of model types, showing the proportion of pharmacological, optogenetic, genetic, combined
genetic-pharmacological, lesion-based, and other/no-manipulation approaches. Top-right: Sex distri-
bution, showing the predominance of male-only studies and limited inclusion of females. Bottom-left:
Stimulation frequencies used, with 40 Hz as the most common, followed by 80 Hz and other gamma-
band ranges. Bottom-right: Species distribution, highlighting mice and rats as the most frequent
models, with fewer studies in nonhuman primates.

3.2. Group Characteristics and Experimental Contexts

Regarding experimental design, 28 studies used only male subjects, 6 studies used
only females, 15 used both sexes, and sex was not reported in 7 studies (Figure 1). The
number of animals per study ranged from 5 to 164 in rodent models, and from 2 to 5 in
nonhuman primate studies. Three studies did not report animal numbers. Regarding
experimental conditions, freely moving animals were used in 40 studies, head-fixed setups
in 13, and anesthetized conditions in 3.

3.3. Stimulation Protocols

Stimulation protocols covered a wide frequency range (1-480 Hz), focusing strongly
on the gamma band (30-80 Hz). Stimuli were primarily click trains; however, some studies
also employed AM tones, chirps, or gap-in-noise paradigms. Studies often used multiple
stimulation frequencies, where 40 Hz was the most frequently used stimulation frequency
(53 studies), followed by 80 Hz (15 studies), reflecting their relevance for gamma-range
ASSR investigations (Figure 1).

4. Discussion

This section synthesizes key methodological patterns and findings across the re-
viewed studies, emphasizing their implications for understanding and modeling neu-
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ropsychiatric disorders. We examine how neurochemical manipulations and disease-
specific models have been used to probe the mechanisms underlying gamma-range
ASSRs, explore the neural circuitry and spatial organization of ASSR generation, and
consider how brain traits and states, and methodological settings shape ASSR out-
comes. These aspects are critical for improving the translational value of animal mod-
els and advancing the utility of ASSRs as neurophysiological markers of psychiatric and
neurodevelopmental conditions.

We first consider how different disease models (pharmacological, genetic, lesion-based)
utilize gamma-range ASSRs to capture circuit dysfunctions relevant to psychiatric and
neurodevelopmental disorders. Next, we examine the neural circuits that generate ASSRs,
highlighting cortical and subcortical contributions and their implications for understanding
disorder-related alterations. We then explore how transient brain states (e.g., arousal,
anesthesia, attention) and stable biological traits (e.g., sex, hormonal status) shape ASSR
outcomes and influence translational relevance. Finally, we discuss methodological factors,
including stimulation paradigms, recording approaches, and experimental designs that
affect comparability across studies and limit cross-species translation

4.1. Disease Modeling

A central advantage of animal research lies in the ability to establish models that
reproduce core features of neuropsychiatric and neurodevelopmental disorders. Gamma-
range ASSRs have proven particularly useful in this context, as they provide a sensitive
readout for circuit-level dysfunctions that parallel those observed in patients. SZ, where
alterations of ASSRs have been consistently observed in clinical populations [33], has
been modeled most extensively, using multiple approaches that converge on impaired
gamma synchronization. Pharmacological induction of NMDA receptor hypofunction is
widely accepted as a rodent model of SZ-like pathophysiology and consistently produces
reductions in 40 Hz ASSRs, albeit with some variability across dose, brain region, and
protocol (e.g., [17,34-36]). Notably, pharmacological NMDA receptor blockade evokes
similar decreases in healthy humans [37,38], underscoring the translational validity of
this approach. Complementary non-pharmacological models such as the neonatal ventral
hippocampal lesion (NVHL) have also demonstrated persistent reductions in gamma-range
ASSRs [23,39], supporting their relevance for developmental aspects of SZ.

Genetic models further expand this repertoire, including PLC-1 knock-out (KO)
mice [40], Grinl mutants with glycogen synthase kinase-3 beta (GSK3[3) modulation [20,41],
and serine racemase (SRKO) mice modeling D-serine metabolism disruption [42], again
mimicking ASSR reductions observed in humans.

Beyond SZ, ASD has been investigated in relation to gamma-range ASSRs [9], par-
ticularly in Fmrl and PTEN mutants, where reductions in phase-locking and altered
developmental trajectories [31,43,44] mirror findings of altered responses in human cohorts.
Several studies have also extended ASSR applications to other conditions: systemic lupus
erythematosus (anti-P antibody model, [45]), FXS with potential pharmacological rescue
using minocycline [44], and inflammation-related changes induced by interferon-alpha
(IFN-«) treatment [46].

Taken together, these diverse models indicate that gamma-range ASSRs constitute a
unifying translational tool for probing circuit-level dysfunctions across neuropsychiatric
and neurodevelopmental disorders. Notably, many alterations observed in animal studies
closely parallel those reported in patients, underscoring the validity of ASSRs as cross-
species biomarkers that bridge mechanistic investigations in animal models with clinically
relevant phenomena in humans.
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4.2. Localization of ASSRs and Neural Circuitry

While disease models demonstrate that gamma-range ASSRs are sensitive to neuropsy-
chiatric and developmental pathophysiology, understanding the precise neural circuits
underlying these alterations requires localization studies that animal models are uniquely
positioned to provide.

Across models, the auditory cortex (AC) emerges as the dominant generator of these
responses. For instance, Li et al. (2018) [24] demonstrated that ASSR deficits in the NVHL
model were localized specifically to the primary AC, with non-primary auditory regions
remaining unaffected. Consistent with this, Gautam et al. (2024) [47] showed that gamma
synchrony emerged rapidly in the AC, highlighting its role as the earliest cortical locus
of entrainment.

The prefrontal cortex (PFC) appears to play a more variable role. While some studies
reported robust gamma entrainment (e.g., [44,48]), others failed to detect clear responses
(e.g., [49]), suggesting that PFC involvement may be weaker, more state-dependent, or
reliant on cross-regional interactions. Further structural specificity has been revealed by
laminar recordings. Li et al. (2021) [50] found that 40 Hz responses were present across
all cortical layers of the AC, with the strongest activity in the thalamorecipient granular
layer. Johnson et al. (2024) [51] emphasized that superficial and deep layers are critical for
temporal precision, supporting coordinated entrainment across networks. Optogenetic
activation studies add to this picture: stimulating basal forebrain parvalbumin-positive
neurons was shown to enhance AC-PFC coupling [52,53], providing causal evidence for
top-down modulation in sustaining gamma synchrony [54,55].

In addition to cortical regions, subcortical structures also contribute to ASSR gen-
eration. The hippocampus and amygdala have been implicated in supporting gamma
synchronization [49], and the thalamus is particularly critical as a relay structure.
Wang et al. (2020) showed that NMDA receptor blockade in the medial geniculate
body (MGB) significantly suppressed 40 Hz ASSRs in the AC but not in the PFC, re-
inforcing its role as a key driver of auditory gamma entrainment [45,46,56]. Method-
ological advances are beginning to bridge these findings across species. For example,
Jiricek et al. (2021) [57] used multichannel EEG and source localization in rats to identify
generators not only in auditory but also in motor cortices, with motor activity interpreted
as reflecting behavioral freezing in response to stimulation. This highlights the impor-
tance of monitoring behavioral state when interpreting ASSR dynamics. They also high-
light the variability that may arise due to methodological differences, behavioral or brain
state fluctuations, and intrinsic network properties that influence the capacity to sustain
gamma synchrony.

These neuroanatomical insights are not only mechanistically informative but also align
with the circuits implicated in neuropsychiatric and neurodevelopmental disorders [58-60].
By linking AC dysfunction with distributed cortical-subcortical networks, animal models
provide a translational framework for understanding how gamma synchrony disruptions
manifest in conditions such as SZ and ASD.

4.3. State and Trait Modulation of ASSRs

Gamma-range ASSRs are sensitive to both state-dependent and trait-related influences,
including arousal [61], consciousness levels [62], and biological sex [63]. Animal models
provide unique opportunities to examine how these factors modulate neural synchrony,
offering insights that are difficult to obtain in human studies and directly relevant to the
variability observed in psychiatric populations.

Most experiments have been conducted in freely moving animals, allowing for natural-
istic behavior but introducing variability in motor activity and internal brain state. Behavior
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was rarely tracked systematically, leaving distinctions between spontaneous movement
and arousal-related effects underexplored. Li et al. (2020) [64], for example, reported that
movement did not affect late-latency ASSRs and only influenced early-latency components,
yet the influence of spontaneous versus evoked arousal remains unclear. Head-fixed prepa-
rations offer tighter experimental control but raise concerns about stress and altered arousal
states, while anesthetized designs provide stability at the cost of suppressing neural syn-
chronization. Wang et al. (2018) [49] observed significant reductions in 40 Hz ASSR power
and phase-locking under anesthesia, mirroring reductions seen in humans during decreased
consciousness [62]. In the same study, a mild arousing stimulus (foot shock) enhanced
40 Hz ASSRs and strengthened functional connectivity from auditory to medial PFC, point-
ing to a circuit mechanism by which arousal boosts sensory processing. These findings
resonate with clinical reports showing altered arousal regulation in SZ [65] and mood
disorders [66], where state fluctuations may exacerbate gamma synchrony deficits [67].
Importantly, no study has systematically compared different experimental states under
matched protocols, underscoring the need for standardized or at least well-reported condi-
tions to improve comparability across studies.

Experimental manipulations provide further evidence of state-dependent modulation.
Optogenetic activation of basal forebrain parvalbumin-positive neurons altered cortical
gamma activity in a state-dependent fashion (Kim et al., 2015 [48]), likely by synchronizing
inhibitory networks [40]. Hwang et al. (2019) [52] showed that synchronized stimulation
of these neurons enhanced ASSR magnitude and reorganized cortical topography in a
manner consistent with increased attention, a finding directly relevant to attention deficits
in SZ and ADHD [68]. In line, McNally et al. (2020) [69] reported that disruption of the
ascending arousal system suppressed gamma ASSRs, resembling functional impairments
observed in SZ [70]. Taken together, these findings suggest that arousal-related circuits
exert powerful control over cortical gamma synchrony and provide mechanistic links to
psychiatric symptom domains.

In addition to dynamic states, stable biological traits also influence ASSRs. Most
reviewed studies used only male animals, limiting the understanding of sex-related
differences. However, studies that included both sexes reported differences in ampli-
tude, phase-locking, and developmental trajectories, particularly in models of FXS (Fmr1)
and ASD (PTEN mutants) [31,43]. Male model mice showed more persistent deficits in
40 Hz phase-locking, whereas female mice exhibited earlier maturation of temporal pro-
cessing. One study further suggested that the estrus cycle stage may modulate cortical
oscillations [71], a finding consistent with prior human evidence [72]. Such sex and hor-
monal influences are clinically relevant, as women and men show different prevalence rates
and symptom profiles in disorders such as SZ [73], ASD [74], and depression [75,76]. Fur-
thermore, hormonal fluctuations are increasingly recognized as modulators of psychiatric
symptom expression [77,78].

Taken together, evidence from animal models shows that both transient brain states
(e.g., arousal, anesthesia, attention) and intrinsic traits (e.g., sex, hormone status) sub-
stantially shape ASSR dynamics. These influences parallel patient observations, where
altered arousal regulation, attention deficits, and sex-related variability are hallmarks of
neuropsychiatric and neurodevelopmental conditions. In addition, sample sizes varied
widely, from very small groups of two to five nonhuman primates to over one hundred
rodents, raising concerns about statistical power and reproducibility in the smaller studies.
Accounting for brain states and ensuring adequately powered designs are essential for both
experimental planning and data interpretation; these are prerequisites for establishing the
translational validity of animal ASSR models.
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4.4. Evidence from Non-Human Primates

Although rodent models yield important mechanistic insights, their relevance to
human neurophysiology is often restricted. Research in non-human primates provides
an essential translational link between rodent and human studies [79,80] of auditory
steady-state responses. Although relatively few, these studies demonstrate that gamma-
range ASSRs are conserved across primate species, with broadly comparable topography
and frequency tuning to those observed in humans [81-83]. Moreover, pharmacological
manipulations [83] and intracranial recordings [84] in awake animals confirm that cortical
network entrainment can be reliably assessed in these models using EEG and ECoG
techniques. Taken together, these findings highlight the translational value of primate
models for validating neural mechanisms underlying ASSR generation and for bridging
preclinical and clinical research.

4.5. Methodological Settings

Based on the reviewed studies, there is a notable degree of methodological consistency
in the use of stimulation (e.g., 40-50 Hz clicks) to elicit responses, reflecting its established
relevance for probing cortical synchronization. However, some also included other fre-
quencies (e.g., 20, 25, 30, 60, 80 Hz), which may impact response profiles and limit direct
comparability across studies. Importantly, less common paradigms such as chirps and
gap-in-noise, though rarely used in human research, also demonstrated translational va-
lidity in animal models. All studies targeted auditory and frontal cortical areas, yet there
was considerable variability in electrode placement (spanning primary auditory, frontal,
and parietal regions) and in recording techniques (ranging from surface EEG, ECoG to
LFP). These methodological differences may influence signal characteristics and compa-
rability, and should be considered when interpreting findings, particularly in cross-study
comparisons of signal strength, localization, and spectral characteristics.

From a translational perspective, reliance on a limited set of paradigms (primarily
40 Hz clicks) has the advantage of aligning with clinical protocols used in SZ and ASD
research. However, expanding to more diverse paradigms may help uncover additional
circuit properties relevant to disorders characterized by abnormal sensory processing, such
as Fragile X syndrome or attention-deficit conditions. Likewise, greater methodological
standardization, particularly in electrode placement, behavioral state tracking, and report-
ing practices, would improve reproducibility and enable clearer mapping between animal
and human findings.

4.6. Limitation

It should be noted that our semi-structured approach deliberately prioritized stud-
ies with translational relevance to neuropsychiatric research, which means that some
technically relevant but less clinically oriented reports (e.g., those focused solely on audi-
tory physiology or methodological validation) were not included. While this narrows
the scope, it strengthens the review’s focus on findings most directly comparable to
human studies.

5. Conclusions

This review highlights the methodological diversity and translational potential of
gamma-range ASSRs in animal models of neuropsychiatric and neurodevelopmental disor-
ders. Across diverse models, ASSRs consistently emerged as a sensitive marker of cortical
network function. In particular, their disruption in models of SZ and ASD supports their
value for probing circuit-level dysfunctions that parallel human pathology. The use of
pharmacological, genetic, lesion-based, and developmental models demonstrates that
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ASSRs can capture convergent deficits across distinct experimental approaches, reinforcing
their potential as a cross-species biomarker. At the same time, methodological variability,
including differences in stimulation paradigms, recording techniques, subject character-
istics, and experimental states, remains a barrier to comparability and standardization.
Taken together, animal ASSR studies reproduce key alterations consistently reported in
SZ and ASD, while extending insights to other models (Fragile X, lupus, inflammation).
Future research should prioritize methodological harmonization, systematic inclusion of
female animals, and broader application of ASSRs across a wider range of disease models
to strengthen their translational impact on understanding, diagnosing, and monitoring
neuropsychiatric and neurodevelopmental disorders.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/brainscil5111159/s1. Table S1: Summary of studies included in the
review. Refs. [50,85-101] are cited in Supplementary Materials file.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Auditory cortex
AM Amplitude-modulated
ASD Autism spectrum disorders

ASSRs  Auditory steady state responses
BF-PV  Basal forebrain parvalbumin
ECoG Electrocorticography

EEG Electroencephalography

EGF Epidermal growth factor

FXS Fragile X Syndrome

GABA  Gamma-aminobutyric acid
GlyT1 Glycine transporter 1

GSK3 3 Glycogen synthase kinase-3
IFN-& Interferon-alpha

KO Knock-out

LFP Local field potentials

MGB Medial geniculate body

NMDA  N-methyl D-aspartate

NVHL  Neonatal ventral hippocampal lesion
Pcdhl0  Protocadherin 10

pCP Phencyclidine

PFC Prefrontal cortex

PV Parvalbumin
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SRKO Serine racemase knock-out
Sz Schizophrenia

TRN Thalamic reticular nucleus
WT Wild-type

Appendix A

The keyword combination used for search in PubMed database is following: (“au-
ditory steady-state response”[Title/ Abstract] OR “ASSR”[Title/ Abstract] OR “steady-
state auditory evoked potential’[Title/ Abstract]) AND (“animal model”[Title/Abstract]
OR “rat”[Title/ Abstract] OR “mouse”[Title/Abstract] OR “mice”[Title/ Abstract] OR “ro-
dent”[Title/ Abstract] OR “monkey”[Title/ Abstract]) AND (“EEG”[Title/Abstract] OR
“electrophysiology”[Title/ Abstract] OR “evoked potential"[Title/ Abstract] OR “local field
potential”[Title/ Abstract]).

The keyword combinations used for search in Scopus database are following: “au-
ditory steady-state response*” OR “ASSR” OR “steady-state auditory evoked potential*”
OR “SSAEP” AND “animal model*” OR “rat” OR “mouse” OR “mice” OR “rodent*” OR
“monkey” AND “EEG” OR “electrophysiology” OR “evoked potential*” OR “local field
potential*” OR “LFP”.
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