VILNIAUS UNIVERSITETAS

FIZINIŲ IR TECHNOLOGIJOS MOKSLŲ CENTRAS

LINA PAVASARYTĖ

LANTANOIDŲ ALIUMINIO GRANATŲ SINTEZĖ ZOLIŲ-GELIŲ METODU IR LIUMINESCENCINIŲ BEI STRUKTŪRINIŲ SAVYBIŲ TYRIMAS

Daktaro disertacijos santrauka

Fiziniai mokslai, Chemija (03 P)

Vilnius, 2018

Disertacija parengta 2013-2017 metais Vilniaus universitete.

Moksliniai vadovai:

prof. dr. Aldona Beganskienė (Vilniaus universitetas, fiziniai mokslai, chemija - 03 P) (nuo 2013-10-01 iki 2016-10-03).

prof. habil. dr. Aivaras Kareiva (Vilniaus universitetas, fiziniai mokslai, chemija - 03 P) (nuo 2016-10-04 iki 2017-09-30).

Disertacija ginama viešame disertacijos gynimo tarybos posėdyje

Pirmininkas – prof. habil. dr. Audrius Padarauskas (Vilniaus universitetas, fiziniai mokslai, chemija – 03P).

Nariai:

doc. dr. Remigijus Ivanauskas (Kauno technologijos universitetas, fiziniai mokslai, chemija – 03P);

dr. Jurga Juodkazytė (Fizinių ir technologijos mokslų centras, fiziniai mokslai, chemija – 03P);

prof. dr. Rasa Pauliukaitė (Fizinių ir technologijos mokslų centras, fiziniai mokslai, chemija – 03P);

prof. habil. dr. Leonid Vasylechko (Lvovo politechnikos nacionalinis universitetas, Ukraina, fiziniai mokslai, chemija – 03P).

Disertacija bus ginama viešame disertacijos gynimo tarybos posėdyje 2018 m. sausio mėn. 19 d. 14 val. Vilniaus universiteto Chemijos ir geomokslų fakulteto Neorganinės chemijos auditorijoje.

Adresas: Naugarduko 24, LT-03225 Vilnius, Lietuva. Tel.: 2193108. Faksas: 2330987.

Disertacijos santrauka išsiuntinėta 2017 m. gruodžio mėn. 19d.

Disertaciją galima peržiūrėti Vilniaus universiteto, FTMC Chemijos instituto bibliotekose ir VU interneto svetainėje adresu: <u>www.vu.lt/lt/naujienos/ivykiu-kalendorius</u>

VILNIUS UNIVERSITY

CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY

LINA PAVASARYTĖ

INVESTIGATION OF LUMINESCENT AND STRUCTURAL PROPERTIES OF LANTHANIDE ALUMINIUM GARNETS SYNTHESIZED BY SOL-GEL METHOD

Doctoral dissertation

Physical Sciences, Chemistry (03 P)

Vilnius, 2018

The dissertation was carried out from 2013 to 2017 at Vilnius University.

Scientific supervisors:

Prof. Dr. Aldona Beganskienė (Vilnius University, Physical Sciences, Chemistry - 03 P) (From 2013-10-01 to 2016-10-03).

Prof. Habil. Dr. Aivaras Kareiva (Vilnius University, Physical Sciences, Chemistry - 03 P) (From 2016-10-04 to 2017-09-30).

Evaluation board:

Chairman:

Prof. Habil. Dr. Audrius Padarauskas (Vilnius University, Physical Sciences, Chemistry - 03 P).

Members:

Doc. Dr. Remigijus Ivanauskas (Kaunas University of Technology, Physical Sciences, Chemistry - 03 P).

Dr. Jurga Juodkazytė (Center for Physical Sciences and Technology, Physical Sciences, Chemistry - 03 P).

Prof. Dr. Rasa Pauliukaitė (Center for Physical Sciences and Technology, Physical Sciences, Chemistry - 03 P).

Prof. Habil. Dr. Leonid Vasylechko (Lviv Polytechnic National University, Ukraine, Physical Sciences, Chemistry - 03 P).

The official discussion will be held on 2 p.m. 19th January 2018 at the meeting of the Evaluation Board at the Auditorium of Inorganic Chemistry of the Faculty of Chemistry and Geosciences of Vilnius University.

Address: Naugarduko 24, LT-03225 Vilnius, Lithuania. Tel. 2193108. Fax: 2330987.

The summary of doctoral dissertation was mailed on the 19 of December 2017.

The dissertation is available at the Library of Vilnius University, at the Library of Institute of Chemistry CPST and on the VU website link: <u>www.vu.lt/lt/naujienos/ivykiu-kalendorius</u>

ĮVADAS

Itrio aliuminio granatas (Y₃Al₅O₁₂, YAG), turintis kubinę kristalinę gardelę bei legiruotas pereinamųjų metalų ar lantanoidų jonais, yra svarbi kieto kūno lazerių medžiaga, plačiai naudojama liuminescencinėse ir optinio pluošto telekomunikacijų sistemose. Dėl unikalių optinių savybių, cheminio stabilumo bei didelio terminio atsparumo YAG, legiruotas retaisiais žemės elementais naudojamas lazeriuose, scintiliatoriuose, katodiniuose spindulių vamzdžiuose, elektroliuminescencinėse sistemose, lauko emisijos ekranuose, plazminiuose bei optiniuose ekranuose.

Buvo įrodyta, kad fosforinių medžiagų kristalinės gardelės ypatumai veikia medžiagų liuminescencines savybes. Žinoma, kad kristalinės medžiagos fizikinės savybės priklauso nuo kristalinės gardelės, fazinio grynumo, dalelių dydžio bei kristališkumo. YAG atveju aliuminio jonai gali būti pakeisti galio ar geležies jonais, tuo tarpu grynas itrio-indžio ar itrio-skandžio granatas nėra gautas. Optinėse medžiagose, į kurių sudėtį jeina retieji žemių metalai, svarbiausia charakteristika yra fluorecencijos efektyvumas. Vienu retuoju elementu legiruotose sistemose liuminescencijos efektyvumas didėja didinant legiruojamo elemento koncentracija. Esant tam tikrai koncentracijai emisijos intensyvumas gali mažėti dėl atsiradusio koncentracijos gesinimo efekto. Tačiau, ta pati jungini legiruojant keliais skirtingais retaisiais žemių elementais, fluorescencijos efektyvumas gali išaugti dėl energijos pernašos Tokiose medžiagose energija perduodama iš vieno jono proceso. (sensibilizatoriaus) kitam jonui (aktyvatoriui). Energijos pernašos procesas yra labai svarbus dėl pritaikymo optiniuose prietaisuose. Publikuota daug straipsnių apie energijos pernašą tarp kelių retųjų žemių metalų, ypatingai tarp $Ce^{3+} \rightarrow Tb^{3+}, Dy^{3+} \rightarrow Sm^{3+}, Tb^{3+} \rightarrow Sm^{3+}, Sm^{3+} \rightarrow Eu^{3+} ir Tb^{3+} \rightarrow Eu^{3+}.$ Norint padidinti aktyvatoriaus jono emisijos našumą, reikia didinti sensibilizatoriaus jono koncentraciją. Didinant sensibilizatoriaus koncentraciją, liuminescencijos gesinimo efektas nepasireiškia, tačiau jonų agregavimas veikia kaip gesinimo centrai.

Pagrindinis šio disertacinio darbo tikslas buvo zolių-gelių metodu susintetinti naujus mišrius metalų granatus, legiruotus europiu ir samariu, ir ištirti jų struktūrinius ypatumus, liuminescencines savybes bei nustatyti tarp šių savybių galimą koreliaciją. Šiam tikslui įgyvendinti buvo suformuluoti tokie disertacijos uždaviniai:

- zolių-gelių metodu susintetinti Eu³⁺ legiruotus Tb₃Al₅O₁₂:Eu³⁺, Dy₃Al₅O₁₂:Eu³⁺, Ho₃Al₅O₁₂:Eu³⁺, Er₃Al₅O₁₂:Eu³⁺, Tm₃Al₅O₁₂:Eu³⁺, Yb₃Al₅O₁₂:Eu³⁺ ir Lu₃Al₅O₁₂:Eu³⁺ granatus ir ištirti jų liuminescencines savybes;
- solvoterminiu metodu žemoje temperatūroje susintetinti ir apibūdinti Ho₃Al₅O₁₂:Eu³⁺ granatą;
- zolių-gelių metodu susintetinti YAG pavyzdžius, legiruotus skirtingais Nd³⁺ ir Eu³⁺ kiekiais, bei ištirti jų struktūrines ir liuminescencines savybes;
- zolių-gelių metodu susintetinti YAG pavyzdžius, legiruotus skirtingais Sm³⁺ ir Eu³⁺ kiekiais ir bei ištirti jų struktūrines ir liuminescencines savybes.

1. EKSPERIMENTO METODIKA

Įvairūs lantanoidų aliuminio granatai buvo susintetinti zolių-gelių ir solvoterminiu sintezės metodais.

2. REZULTATAI IR JŲ APTARIMAS

2.1. Eu³⁺ legiruotų Tb, Dy ir Ho aliuminio granatų sintezė zolių-gelių metodu ir tyrimas

Šioje daktaro disertacijos dalyje pateikta vandeninių zolių-geliu metodu susintetintų Tb₃Al₅O₁₂ (TAG), Dy₃Al₅O₁₂ (DAG) ir Ho₃Al₅O₁₂ (HAG) granatų, legiruotų Eu³⁺ jonu, tyrimų rezultatai. Visoms sintezėms naudotas kompleksus sudarantis reagentas - 1,2-etandiolis.

2.1.1. Struktūriniai tyrimai

Rentgeno spindulių difrakcinės analizės metodu nustatytas lantanoidų aliuminio granatų (LnAG) fazinis grynumas ir sudėties pokyčiai, keičiant įvedamo Eu³⁺ kiekį. 1 paveiksle pateiktos Tb₃Al₅O₁₂ (TAG), Dy₃Al₅O₁₂ (DAG) ir Ho₃Al₅O₁₂ (HAG) granatų, legiruotų europiu bei susintetintų 1000 °C temperatūroje, difraktogramos. Visos trys XRD difraktogramos atitinka Tb₃Al₅O₁₂ (PDF [04-006-4054]), Dy₃Al₅O₁₂ (PDF [04-006-4053]) ir Ho₃Al₅O₁₂ (PDF [04-001-9715]) junginių standartinius XRD duomenis.

1 pav. Tb₃Al₅O₁₂ (a), Dy₃Al₅O₁₂ (b) ir Ho₃Al₅O₁₂ (c), legiruotų europiu ir kaitintų 1000 °C temperatūroje, difraktogramos.

Iš 2 paveiksle pateiktų SEM nuotraukų matyti, kad 1000 °C temperatūroje susintetinti granatai yra sudaryti iš homogeniškai pasiskirsčiusių plokštuminių kristalų, kurie linkę aglomeruotis. Dy₃Al₅O₁₂:Eu³⁺ ir Ho₃Al₅O₁₂:Eu³⁺ granatų dalelės šiek tiek skiriasi lyginant su Tb₃Al₅O₁₂:Eu³⁺.

 $Ho_3Al_5O_{12}:0,5\%Eu^{3+}$ (c) granatų SEM nuotraukos.

2.1.2. Optinės savybės

Ho₃Al₅O₁₂:Eu granato fluorescencijos duomenys pateikti 3 paveiksle.

Pav. 3. Ho₃Al₅O₁₂:Eu³⁺ granatų sužadinimo ir emisijos spektrai: 0,5% Eu (a), 0,75% Eu (b), 1% Eu (c).

Kaip matome, mėginys, kuris yra legiruotas 0,5% Eu³⁺, pasižymi intensyviausia europio emisija. Iš literatūros duomenų žinoma, kad sferinės ($\leq 2 \mu m$), didelio tankio dalelės pasižymi maža šviesos sklaida ir geresnėmis liuminescencinėmis savybėmis. Tai galėtų paaiškinti kodėl HoAG granatas,

legiruotas 0,5% europiu, pasižymi intensyviausia liuminescencija. 4 ir 5 paveiksluose pateikti Tb₃Al₅O₁₂:Eu ir Dy₃Al₅O₁₂:Eu granatų sužadinimo ir emisijos spektrai.

4 pav. Tb₃Al₅O₁₂:Eu³⁺ granatų sužadinimo (a) ir emisijos (b) spektrai.

Emisijos spektrai užrašyti naudojant 277 nm sužadinimo spinduliuotę. Intensyviausios emisijos smailės aptiktos ties 550 ir 720 nm, kurios puikiai sutampa su teorinėmis Eu³⁺ šuolių emisijomis, atsirandančiomis dėl ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (591nm), ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (611nm) bei ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ (708nm) optinių šuolių. 4 paveiksle taip pat stebimi ${}^{7}F_{6} \rightarrow {}^{5}H_{5,6,7}$ ir ${}^{7}F_{6} \rightarrow {}^{5}D_{3}$ optiniai šuoliai būdingi Tb³⁺ jonui.

5 pav. Dy₃Al₅O₁₂:Eu³⁺ granatų sužadinimo (a) ir emisijos (b) spektrai.

2.2. Eu³⁺ legiruotų Er, Yb, Lu ir Tm lantanoidų aliuminio granatų sintezė zolių-gelių metodu ir apibūdinimas

Šioje daktaro disertacijos dalyje pateikta vandeninių zolių-geliu metodu susintetintų $Er_3Al_5O_{12}$ (EAG), $Tm_3Al_5O_{12}$ (TAG), $Yb_3Al_5O_{12}$ (YAG) ir $Lu_3Al_5O_{12}$ (LAG) granatų, legiruotų Eu^{3+} jonu, tyrimų rezultatai.

2.2.1. Struktūrinė analizė

Er₃Al₅O₁₂ (EAG), Tm₃Al₅O₁₂ (TAG), Yb₃Al₅O₁₂ (YAG) ir Lu₃Al₅O₁₂ (LAG) granatų, legiruotų europiu, rentgeno spindulių difraktogramos pateiktos 6 paveiksle.

6 pav. Er₃Al₅O₁₂:Eu (a), Tm₃Al₅O₁₂:Eu (b), Yb₃Al₅O₁₂:Eu (c) ir Lu₃Al₅O₁₂:Eu (d) granatų, kaitintų 1000 °C temperatūroje, difraktogramos.

Rentgeno spindulių difraktogramos akivaizdžiai rodo, kad $Ln_3Al_5O_{12}$:Eu junginiai, gauti 1000 °C temperatūroje, yra vienfaziai, ką liudija standartinės e $Er_3Al_5O_{12}$ (PDF [01-078-1451]), $Tm_3Al_5O_{12}$:Eu (PDF [00-017-0734]), Yb_3Al_5O_{12} (PDF [01-073-1369]) ir $Lu_3Al_5O_{12}$ (PDF [01-073-1368]) difraktogramos.

Peršviečiamoji elektroninė mikroskopija buvo panaudota galutinių sintezės produktų apibūdinimui. 7 paveiksle pateiktos Er₃Al₅O₁₂:Eu granatų

miltelių pavyzdžių TEM nuotraukos patvirtina homogeniškų mišrių granatų formavimąsi.

7 Pav. Er₃Al₅O₁₂:Eu granatų TEM nuotraukos (0% Eu (a), 0.1% Eu (b), 0.25% Eu (c), 0.5% Eu (d), 0.75% Eu (e), 1% Eu (f)).

Matome, kad pavienės pailgos nano matmenų granato dalelės yra linkusios aglomeruotis. Didinant įvedamo europio kiekį stebimas akivaizdus aglomeracijos laipsnio padidėjimas. Tm₃Al₅O₁₂:Eu, Yb₃Al₅O₁₂:Eu ir Lu₃Al₅O₁₂:Eu granatų TEM nuotraukos parodo tą pačią dalelių tendenciją aglomeruotis, kaip ir Er₃Al₅O₁₂:Eu granatų atveju.

2.2.2. Optinės savybės

Emisijos spektrai buvo užrašyti kambario temperatūroje naudojant 394 nm sužadinimą, o sužadinimo spektrai registruoti naudojant 590 nm emisiją, būdingą Eu³⁺ jonui. LuAG:Eu³⁺ sužadinimo ir emisijos spektrai pateikti 8 paveiksle. Sužadinimo spektro intensyviausia smailė stebima ties 394 nm, kuri priskiriama ${}^{7}F_{0}\rightarrow{}^{5}L_{6}$ optiniams šuoliams. Emisijos spektre stebimos Eu³⁺ jonui charakteringos smailės prie 591 nm, 594 nm, 609 nm, 630 nm, 648-662 nm, 696 nm, 701 nm, 709 nm, 716 nm ir 744 nm. Įdomu pažymėti, Er₃Al₅O₁₂, Tm₃Al₅O₁₂ bei Yb₃Al₅O₁₂:Eu granatai liuminescencinėmis savybėmis nepasižymėjo.

8 pav. Lu₃Al₅O₁₂:Eu granatų sužadinimo (a) ir emisijos (b) spektrai.

2.3. Eu³⁺ legiruoto holmio aliuminio granato sintezė solvoterminiu metodu bei gautų produktų apibūdinimas

Šiame skyriuje pateikti holmio aliuminio granatų, legiruotų Eu³⁺ jonu, sintezės solvoterminiu metodu rezultatai. 9 paveiksle pateiktos holmio aliuminio granato, susitntetinto 220 °C ir kaitinto įvairiose temperatūrose, XRD difraktogramos. Gauti duomenys patvirtina, šios temperatūros pakanka holmio aliuminio granato kristalinei fazei gauti (PDF [04-001-9715]). HoAG, papildomai kaitinto 500 °C (4 h), difraktogramos yra identiškos tik susintetintų autoclave junginių difraktogramoms. Tačiau didinant temperatūrą atspindžių smailės siaurėja ir intensyvėja, patvirtindamos didesnį junginių kristališkumą.

9 pav. Solvoterminiu metodu susintetinto Ho₃Al₅O₁₂ granato difraktogramos.

HoAG ir HoAG:Eu³⁺ mėginių, iškaitintų skirtingose temperatūrose, SEM nuotraukos pateiktos 10 paveiksle.

10 pav. HoAG, susintetinto 220 °C (a), HoAG:0.25%Eu³⁺, kaitinto 500 °C (b), HoAG (c) ir HoAG:0.25%Eu³⁺ (d), kaitintų 1200 °C, SEM nuotraukos.

Matyti, kad susidariusių dalelių dydis labai priklauso nuo kaitinimo temperatūros. 220 °C ir 500 °C temperatūrose susidaro pavienės, mažesnės nei 100 nm dalelės. HoAG ir HoAG:Eu³⁺, kaitintų 1200 °C temperatūroje, dalelės yra didesnės ir linkusios aglomeruotis.

2.4. Y_{3-x}Nd_xAl₃O₁₂ granato, legiruoto Eu³⁺, sintezė zolių-gelių metodu ir apibūdinimas

Šiame skyriuje pateikti YAG granatų, susintetintų vandeniniu zolių-gelių metodu ir legiruotų skirtingu neodimio kiekiu bei YAG:Nd granatų, legiruotų įvairiu Eu³⁺ kiekiu, tyrimo rezultatai.

2.4.1. Struktūrinė analizė

11 paveiksle pateikta $Y_{3-x}Nd_xAl_5O_{12}$, $Y_{3-x}Nd_xAl_5O_{12}$:0.5%, ir $Y_{2.9}Nd_{0.1}Al_5O_{12}$:Eu susintetintų zolių-gelių metodu 1000 °C temperatūroje, rentgeno spindulių difraktogramos.

11 pav. Y₃Al₅O₁₂:Nd (a), Y_{3-x}Nd_xAl₅O₁₂:0.5%Eu (b) ir Y_{2.9}Nd_{0.1}Al₅O₁₂:Eu (c) granatų difraktogramos. Vertikalios linijos - standartinio YAG XRD duomenys.

Galutinių produktų XRD difraktogramos parodė, kad sintezės metu susidarė vienfaziai junginiai, pasižymintis granato kristaline struktūra. Tą patvirtina standartinės XRD difraktogramos, pateiktos duomenų bazėje ($Y_3Al_5O_{12}$ [PDF 88-2048].Taip pat buvo pastebėta, kad visos XRD difraktogramos buvo labai panašios. Šį panašumą aiškiname tuo, kad visų sintezėje naudotų lantanoidų joninis spindulys skiriasi nuo Y^{3+} (r = 1.053 Å) katijoninio spindulio labai nežymiai. Be to, legiruojančio elemento koncentracijos buvo labai mažos, kurios neįtakojo smailių pasislinkimų XRD difraktogramose.

Morfologiniai Y_{3-x}Nd_xAl₅O₁₂, Y_{2.9}Nd_{0.1}Al₅O₁₂:Eu ir Y_{3-x}Nd_xAl₅O₁₂:Eu tyrimai parodė, kad susidarė skirtingos formos dalelių homogeniški junginiai. Y_{2.9}Nd_{0.1}Al₅O₁₂:Eu granatų SEM nuotraukos pateiktos 12 paveiksle.

12 pav. Y_{2.9}Nd_{0.1}Al₅O₁₂:Eu garnetų SEM nuotraukos (Eu: 0,1% (a); 0,25% (b); 0,5% (c); 0,75% (d); 1% (f)).

Akivaizdu, kad paviršiuje tolygiai pasiskirsčiusios namometrinės dalelės sudaro didesnius aglomeratus.

Nelegiruotame Y₃Al₅O₁₂ granate itrio katijonai užima dodekaedrines padėtis. Kiekvienas dodekaedras dalijasi poliedro viršūnėmis su keturiais tetraedrais (AlO₄), briaunomis su dviem tetraedrais (AlO₄), keturiais oktaedrais (AlO₆) ir dar trimis dodekaedrais. Eu³⁺ ir Nd³⁺ jonai lantanoidų aliuminio granate taip pat turėtų užimti dodekaedrines padėtis. Šių katijonų padėtis kristale tirta kieto kūno branduolių magnetinio rezonanso (BMR) spektrometrija, analizuojant BMR aktyvų ²⁷Al branduolį. Y_{3-x}Nd_xAl₅O₁₂:0.5%Eu granatų ²⁷Al MAS BMR spektrai pateikti pateikti 13 ir 14 paveiksluose. ²⁷Al branduolio, esančio šalia legiruoto Nd³⁺ jono, rezonansinis dažnis spektre pasislinkęs link mažesnių verčių lyginant su ²⁷Al branduoliu esančiu šalia pakeisto Y³⁺ (13 pav.).

13 pav. Y_{3-x}Nd_xAl₅O₁₂:0.5%Eu granatų ²⁷Al MAS BMR spektrai (a). Skirtingų aliuminio branduolių signalų priklausomybė nuo neodimio koncentracijos (b).

14 pav. $Y_{2.9}Nd_{0.1}Al_5O_{12}$:Eu ²⁷Al MAS BMR spektrai legiruojant skirtingu Eu kiekiu (0, 0,1, 0,25, 0,5, 0,75 ir 1%).

²⁷Al MAS BMR spektrai neabejotinai patvirtina sėkmingą Y_{2.9}Nd_{0.1}Al₅O₁₂:Eu granato legiravimą Eu³⁺ jonu (14 pav.). Kadangi Eu³⁺ jonas turi šešis nesuporuotus elektronus, stebimas didelis artimiausio ²⁷Al branduolio poslinkis. Al^{VI} branduolys, turintis vieną europio katijoną kaimynystėje, atsispindi spektrinėje juostoje ties 113 ppm. Tyrimų duomenys patvirtina tiesinę Al(1Eu) smailės intensyvumo priklausomybę nuo kiekio. Ši išraiška patvirtina, kad europis homogeniškai pasiskirsto kristalinėje gardelėje.

2.4.2. Optinės savybės

15 paveikslas rodo $Y_{3-x}Nd_xAl_5O_{12}$:0.5%Eu granatų sužadinimo ir emisijos spektrų priklausomybę nuo neodimio koncentracijos, kai Eu³⁺ kiekis yra pastovus.

15 pav. Y_{3-x}Nd_xAl₅O₁₂:0.5% Eu granatų sužadinimo (a) ir emisijos (b) spektrai.

Sužadinimo spektras užrašytas kambario temperatūroje esant 588 nm emisijai, o emisijos spektras – sužadinant 1064 nm spinduliuote. Sužadinimo spektre aptikta 10 smailių ties 380, 430, 470, 520, 580, 630, 680, 750, 810, ir 880 nm. Smailės priskirtinos optiniams šuoliams iš Nd³⁺ jono ⁴I_{9/2} valentinės juostos į sužadinimo juostas (${}^{4}D_{3/2} + {}^{4}D_{5/2} + {}^{2}I_{11/2} + {}^{2}L_{15/2} + {}^{4}D_{7/2} + {}^{2}I_{13/2}$), (${}^{2}P_{1/2}$ + ${}^{2}D_{5/2}$), (${}^{2}G_{9/2} + {}^{2}D_{3/2} + {}^{4}G_{11/2} + {}^{2}K_{15/2}$), (${}^{4}G_{7/2} + {}^{4}G_{9/2} + {}^{2}K_{13/2}$), (${}^{2}G_{5/2} + {}^{2}G_{7/2}$), (${}^{2}H_{11/2}$), (${}^{4}F_{9/2}$), (${}^{4}F_{7/2} + {}^{4}S_{3/2}$), (${}^{4}F_{5/2} + {}^{2}H_{9/2}$), (${}^{4}F_{3/2}$) atitinkamai.

Emisijos spektre aptiktos kelios smailių grupės ties 850-950 nm ir 1050-1125 nm, kurių intensyvumai kildinami iš ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ ir ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ optinių šuolių, būdingų Nd³⁺. Smailė ties 1340 nm identifikuoja ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ optinį šuolį. Intensyviausia liuminescencija pasižymi mėginys, legiruotas 0.1 mol neodimio. Matyti, kad smailių intensyvumas mažėja didinant legiruojamo neodimio kiekį. Be to, Y_{3-x}Nd_xAl₅O₁₂:0.5%Eu sužadinimo spektre tie 395 nm atsiranda papildoma smailė, kuri nėra būdinga neodimiui. Ši juosta priskirtina Eu³⁺ optiniam šuoliui ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$. Šis reiškinys patvirtina energijos pernašą tarp Eu³⁺ \rightarrow Nd³⁺ jonų.

2.5. Y_{3-x}Sm_xAl₃O₁₂ granato legiruoto Eu³⁺ sintezė zolių-gelių metodu ir gautų junginių analizė

Šioje disertacijos dalyje yra pateikti YAG granatų, susintetintų vandeniniu zolių-gelių metodu ir legiruotų skirtingu samario kiekiu bei YAG:Sm granatų, legiruotų įvairiu Eu³⁺ kiekiu, tyrimo rezultatai.

2.5.1. Struktūrinė analizė

XRD tyrimai parodė, kad sintetinti $Y_{2.9}Sm_{0.1}Al_5O_{12}$, $Y_{3-x}Sm_xAl_5O_{12}$:0.5%Eu, $Y_{2.9}Sm_{0.1}Al_5O_{12}$:Eu junginiai yra granato kristalinės fazės junginai. Taigi, Sm^{3+} ir Eu³⁺ jonai įterpti į itrio aliuminio gardelę pakeičia Y^{3+} joną. Nežymus susintetintų junginių difrakcinių smailių pasislinkimas, lyginant su $Y_3Al_5O_{12}$, atsiranda dėl skirtingų legiruojamų jonų spindulių verčių.

Y_{2.9}Sm_{0.1}Al₅O₁₂:Eu junginių SEM nuotraukos pateiktos 16 paveiksle.

16 pav. Y_{2.9}Sm_{0.1}Al₅O₁₂:Eu granatų SEM nuotraukos (Eu: 0% (a); 0.1% (b); 0.25% (c); 0.5% (d); 0.75% (e); 1% (f)).

Nuotraukos patvirtina, jog susintetinti produktai yra homogeniški, sudaryti iš kelių nanometrų dyžio sferinių dalelių. Y_{3-x}Sm_xAl₅O₁₂ ir Y_{3-x}Sm_xAl₅O₁₂:1%Eu granatų paviršiaus morfologija yra panaši.

 $Y_{2.9}Sm_{0.1}Al_5O_{12}$:Eu ²⁷Al MAS BMR spektruose (17 pav.) ²⁷Al branduolio, esančio šalia samario jono, rezonasinis dažnis pasislinkęs prie aukštesnių verčių, lyginant su ²⁷Al branduolio, esančio šalia itrio. Granatuose, legiruotuose mažesniu samario kiekiu, stebimos dvi intensyvios spektrinės juostos ties 68 ppm ir 0 ppm. Signalai atitinkamai priskiriami tetraedriškai ir oktaedriškai koordinuotam aliuminio branduoliui, esančiam šalia itrio. Kiek mažesnio intensyvumo smailės ties 88 ppm ir 6 ppm stebimos dėl Al^{IV} ir Al^{VI} atomų, esančių šalia samario (Al^{IV}(1Sm) ir Al^{VI}(1Sm)). Didinant samario kiekį mėginyje, smailės ties 88 ppm ir 6 ppm išplatėja. Legiruojant didesniu samario kiekiu (pvz. x = 0.8), atsiranda papildomos smailės ties 19 ppm ir 25 ppm. Šių smailių atsiradimas siejamas su didesniu samario kiekiu aliuminio kaimynystėje. Al^{VI} branduolio, esančio šalia europio jono, rezonasinis dažnis

stebimas ties 112 ppm. ²⁷Al MAS BMR spektrai patvirtina sėkmingą bei homogenišką europio įvedimą į YAG:Sm granato kristalinę gardelę.

17 pav. Y_{2.9}Sm_{0.1}Al₅O₁₂:Eu granatų ²⁷Al MAS NMR spektrai.

2.5.2.Optinės savybės

Y_{3-x}Sm_xAl₅O₁₂:0.5%Eu (18 pav.) emisijos ir sužadinimo spektrai matuoti kambario temperatūroje atitinkamai prie 405.5 nm ir 617.5 nm. Liuminescencijos tyrimų rezultatai pateikti 18 ir 20 paveiksluose. Intensyviausios linijos sužadinimo spektre yra išsidėsčiusios ties 346, 361, 375, 404, 417, 419, 463, 467, 479, 485 ir 500 nm. Smailės kildinamos dėl perėjimų iš Sm³⁺ jono ⁶H_{5/2} valentinės juostos į sužadinimo juostas, atitinkančias (${}^{4}D_{7/2}$), (${}^{4}D_{3/2}$), (${}^{6}P_{7/2}$), (${}^{6}P_{5/2} + {}^{4}M_{19/2}$), (${}^{4}I_{13/2} + {}^{4}M_{15/2}$), $({}^{4}I_{11/2})$, $({}^{4}I_{9/2})$ bei $({}^{4}G_{7/2})$. Intensyviausios emisijos juostų grupės aptiktos ties 559-576 nm; 592-617 nm; 651-666 nm ir 711-732 nm, atsirandančios dėl ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}; {}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}; {}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ ir ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ optinių šuolių, priskirtinų Sm³⁺ jonui. Intensyviausia emisija pasižymi granatas, legiruotas 0.1 molio Sm³⁺. Del mažo samario ${}^{4}G_{5/2}$ ir europio ${}^{5}D_{0}$ energijų lygmenų skirtumo, europio ${}^{5}D_{0}$ lygmeniui gali būti perduodama energija iš samario ${}^{4}G_{5/2}$ energetinio lygmens. Dėl šio energijos perdavimo YAG:Sm;Eu granate stebima europio emisija sužadinant 404.5 nm. Energetinės samario ir europio jonų diagramos yra pateiktos 19 paveiksle.

18 pav. Y_{3-x}Sm_xAl₅O₁₂:0.5%Eu granatų sužadinimo (a) ir emisijos (b) spektrai.

19 pav. Energetinės Sm^{3+} ir Eu^{3+} jonų diagramos.

20 pav. $Y_{2.9}Sm_{0.1}Al_5O_{12}$ ir $Y_{2.9}Sm_{0.1}Al_5O_{12}$:0.5%Eu granatų sužadinimo (a) ir emisijos (b) spektrai.

IŠVADOS

 Vandeniniu zolių-gelių metodu 1000 °C temperatūroje buvo sėkmingai susintetinti vienfaziai Tb₃Al₅O₁₂:Eu, Dy₃Al₅O₁₂:Eu, Ho₃Al₅O₁₂:Eu, Er₃Al₅O₁₂:Eu, Tm₃Al₅O₁₂:Eu, Yb₃Al₅O₁₂:Eu, Lu₃Al₅O₁₂:Eu, Y₃Al₅O₁₂:Nd,Eu ir Y₃Al₅O₁₂:Sm,Eu granato kristalinės struktūros junginiai.

2. SEM metodas leido įvertinti zolių-gelių metodu susintetintų Ln₃Al₅O₁₂:Eu mėginių paviršiaus morfologinius ypatumus. Nustatyta, kad pavienės submikroninės plokštuminės dalelės yra linkusios aglomeruotis. Taip

pat pastebėta, kad aglomeracijos laipsnis nežymiai didėja didinant įvedamo Eu³⁺ kiekį.

3. Vienfazis Ho₃Al₅O₁₂:Eu granatas pirmą kartą sėkmingai susintetintas solvoterminiu metodu žemoje 220 °C temperatūroje. SEM nuotraukos patvirtino, kad granatų kristališkumas didėja keliant kaitinimo temperatūrą iki 1000 °C - 1200 °C. Ho₃Al₅O₁₂:Eu dalelių dydis monotoniškai didėja nuo 100 nm (tik susintetintų) iki ~600 nm (kaitintų 1200 °C).

4. Tarp Ho₃Al₅O₁₂:Eu³⁺ susintetintų granatų intensyviausia emisija ties 591 nm pasižymėjo Ho₃Al₅O₁₂:0.5% Eu junginys. Tb₃Al₅O₁₂:Eu, Dy₃Al₅O₁₂:Eu bei Lu₃Al₅O₁₂:Eu granatų emisijos smailės stebimos 550-720 nm srityje, atitinkančios charakteringus Eu³⁺ elektronų ⁵D₀ \rightarrow ⁷F₁ (591-594 nm), ⁵D₀ \rightarrow ⁷F₂ (609-611 nm) ir ⁵D₀ \rightarrow ⁷F₄ (708-709 nm) šuolius. Er₃Al₅O₁₂, Yb₃Al₅O₁₂:Eu ir Tm₃Al₅O₁₂ granatai, legiruoti Eu³⁺, duotame intervale nešvytėjo.

5. Ištirti neodimio, samario ir europio pakaitų $Y_{3-x}Ln_xAl_5O_{12}$:Eu³⁺ (Ln – Nd³⁺ ir Sm³⁺) granatuose, susintetintuose zolių-gelių metodu, efektai. XRD rezultatai patvirtino, kad buvo gauti vienfaziai granatai, legiruoti skirtingais samario ir neodimio santykiais.

6. Nustatyta, kad Y_{3-x}Ln_xAl₅O₁₂, Y_{2.9}Ln_{0.1}Al₅O₁₂:Eu ir Y_{3-x}Ln_xAl₅O₁₂:Eu junginiai sudaryti iš nano matmenų sferinių, linkusių aglomeruotis, dalelių. Parodyta, kad lantanoido prigimtis bei koncentracija neturi įtakos susintetintų dalelių formai ir dydžiui.

7. Pakaitų koncentracijos įtaka struktūrinėms granatų YAG:Nd,Eu ir YAG:Sm,Eu savybėms pirmą kartą įvertinta ²⁷Al NMR spektroskopijos metodu. Gauti rezultatai patvirtino atsitiktinį Nd³⁺ ir Sm³⁺ jonų pasiskirstymą granatų struktūros junginių kristalinėje gardelėje bei sėkmingą YAG:Ln,Eu. legiravimą Eu³⁺ jonu.

8. $Y_{3-x}Nd_xAl_5O_{12}:Eu^{3+}$ sužadinimo spektrai užrašyti naudojant 1064 nm spinduliuotę neodimiui ir 591 nm - europiui. $Y_{3-x}Nd_xAl_5O_{12}:Eu^{3+}$ emisijos spektrai gauti sužadinant 588 nm (Nd) ir 394 nm (Eu) spinduliuote. Pavyzdys, legiruotas 0,1 mol Nd³⁺, pasižymėjo intensyviausia emisija. Tipiška didelio intensyvuymo Eu³⁺ jonui būdinga emisija aptikta ties 611 nm, atsirandanti dėl

24

 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ šuolio. Intensyviausia Eu³⁺ emisija nustatyta mėginyje, legiruotame 1% mol Eu³⁺. Pastebėta, kad didinant neodimio koncentraciją, Eu³⁺ emisijos smailių intensyvumas mažėjo dėl galimos tarp šių dviejų jonų energijos pernašos.

9. $Y_{3-x}Sm_xAl_5O_{12}:Eu^{3+}$ sužadinimo spektrai užrašytas naudojant 617.5 nm spinduliuotę samariui bei 591 nm - europiui. $Y_{3-x}Sm_xAl_5O_{12}:Eu^{3+}$ granatų emisijos spektrai užrašyti sužadinant 405.5 nm (Sm) ir 591 nm (Eu) spinduliuote. Pavyzdys, legiruotas 0,1 mol Sm³⁺, pasižymėjo intensyviausia emisija. Eu³⁺ jonams tipiška intensyvi raudona emisija nustatyta ties 708 nm, atsirandanti dėl ${}^5D_0 \rightarrow {}^7F_4$ šuolio. Intensyviausia Eu³⁺ emisija buvo pastebėta mėginyje, legiruotame 1% mol Eu³⁺. Pastebėta, kad didinant samario koncentraciją, Eu³⁺ emisijos smailių intensyvumas mažėjo dėl galimos tarp šių dviejų jonų energijos pernašos.

MOKSLINIŲ DARBŲ, APIBENDRINTŲ DAKTARO DISERTACIJOJE SĄRAŠAS

Straipsniai recenzuojamuose žurnaluose bei konferencijų medžiagose:

 L. Pavasaryte, B. J. Lopez, A. Kareiva, Solvothermal synthesis of Eu³⁺doped holmium aluminum garnet. Mendeleev Communications, 25 (2015) 284-385.

2. L. Pavasaryte, B. J. Lopez, A. Kareiva, On the sol-gel preparation of selected lanthanide aluminium garnets doped with europium. International Conference on Photonics, Optics and Laser Technology, 2015 Berlin. Photoptics. Prtugal: Scitepress – Science and Technology Publications. ISBN: 978-989-758-093-2, Vol. 2 (2015) 165-171.

3. L. Pavasaryte, A. Katelnikovas, V. Klimavicius, V. Balevicius, A. Krajnc, G. Mali, J. Plavec, A. Kareiva, Eu^{3+} - doped $Y_{3-x}Nd_xAl_3O_{12}$ garnet: synthesis and structural investigation, Physical Chemistry Chemical Physics, 19 (2017) 3729-3737.

Pranešimų mokslinėse konferencijose tezės:

1. L. Pavasaryte, B. J. Lopez, A. Kareiva, Sol-Gel Synthesis of Europium Doped Tb₃Al₅O₁₂, Dy₃Al₅O₁₂ and Ho₃Al₅O₁₂ Garnets. Chemistry and Chemical Technology 2015: international conference of Lithuanian Chemical Society, dedicated to Professor Vitas Daukšas on his 80th birth anniversary, Vilnius, Lithuania, 23 Januarry 2015, ISBN 978-609-459-461-8, p. 119-122.

2. L. Pavasaryte, B. J. Lopez, A. Kareiva, On the Sol-gel Preparation of Selected Lanthanide Aluminium Garnets Doped with Europium, Photooptics 2015: 3rd international conference on photonics, optics and laser technology, Berlin, Germany, 12-14 March 2015, ISBN: 978-989-758-093-2, (2015), p. 19-20.

3. L. Pavasaryte, V. Klimavicius, V. Balevicius, A. Krajnc, G. Mali, J. Plavec, A. Kareiva, Eu³⁺- Doped Y_{3-x}Nd_xAl₃O₁₂:synthesis and structural investigation. Open Reading 2016: 59th Scientific Conference for Students of Physics and Natural Sciences, Vilnius, Lithuania. 15-18 March 2016, ISBN 2029-4425, p. 172.

4. L. Pavasaryte, A. Katelnikovas, A. Kareiva, Synthesis and Luminescence Propeerties Of Eu^{3+} -Doped $Y_{3-x}Nd_xAl_3O_{12}$, Chemistry and Chemical Technology: international conference of Lithuanian Society of Chemistry : Lithuanian Academy of Science, Vilnius, Lithuania, 28-29 April 2016, ISBN 978-609-95511-3-5, p. 201.

5. L. Pavasaryte, YAG:Nd,Eu Garnets: synthesis, luminescense and structural investigation, Inovatyvioji ir Tvarkioji Chemija, Puvočiai, Lietuva, 9-10 December 2016, ISBN 978-609-459-772-5, p. 15.

6. L. Pavasaryte, V. Klimavicius, V. Balevicius, A. Kareiva, Investigation Of Structural Properties Of Eu³⁺-Doped Y_{3-x}Sm_xAl₃O₁₂ Garnets, Open Reading 2017: 60th International conference for students of physic and natural sciences, Vilnius, Lithuania. 14-17 March 2017, ISSN 2029-4425, p. 159.

7. L. Pavasarytė, V. Klimavicius, V. Balevicius, A. Katelnikovas, A. Kareiva, Investigation Of Structural ans Luminescence Properties Of Eu^{3+} -Doped Y_{3-x}Sm_xAl₃O₁₂ Garnets. International conference Functional materials

and Nanotechnologies 2017: internatiponl conference, Tartu, Estonia. 24-27 april 2017, ISBN 978-9985-4-1030-1, p. 172.

8. L. Pavasaryte, A. Katelnikovas, A. Kareiva, Investigation of Luminescence Properties of Eu^{3+} -Doped $Y_{3-x}Sm_xAl_3O_{12}$ Garnet. The international conference dedicated to the 215th birth anniversary of Ignacy Domeyko, Vilnius, Lithuania 28-30 July 2017, ISBN 978-609-459-862-3, p. 85.

GYVENIMO APRAŠYMAS

Gimimo data, vieta	1988 11 13, Kaišiadorys
Telefonas	+370 672 15991
El. paštas	lina.pavasaryte@gmail.com
Išsilavinimas	
2013- dabar	Fizinių mokslų srities, chemijos mokslo krypties
	doktorantūros studijos, Vilniaus universitetas
2011-2013	Chemijos magistro laipsnis, Vilniaus universitetas
2007-2011	Chemijos bakalauro kvalifikacinis laipsnis, Vilniaus
1995-2007	Vidurinis išsilavinimas, Kaišiadorių Algirdo Brazausko
	vidurinė mokykla

Darbo patirtis:

2013 08 -2017 09	Laborantė, Vilniaus Gedimino Technikos Universitetas
2014 09 – 2015 06	Asistentė, Vilniaus Gedimino Technikos Universitetas
2015 09 – iki dabar	Lektorė, Vilniaus Gedimino Technikos Universitetas
2017 09 – iki dabar	Tarptautinių studijų programų grupių koordinatorė,
	Užsienio ryšių direkcija, Vilniaus Gedimino Technikos
	Universitetas

Mokslinės stažuotės ir komandiruotės užsienyje

2014 05 04–2014 08 04	Stažuotė, Universitat Jaume I, Ispanija
2015 06 01–215 07 31	Stažuotė, NMR center, Slovėnija
2016 06 10 – 2016 08 09	Stažuotė, Hasselt University, Belgija

2017 02 06 - 2017 02 10	Komandiruotė, Sidi Mohamed Ben Abdellah University,
	Marokas
2017 05 22 - 2017 05 27	Komandiruotė, Technological Education Institute of Crete
	(Heraklion), Graikija
2017 06 04 - 2017 06 19	Komandiruotė, Institute of Technology of Cambodia,
	Kombodža
2017 06 27– 2017 06 29	Komandiruotė, European University Foundation, Italija

SUMMARY

INVESTIGATION OF LUMINESCENT AND STRUCTURAL PROPERTIES OF LANTHANIDE ALUMINIUM GARNETS SYNTHESIZED BY SOL-GEL METHOD

The aqueous sol-gel process was developed to prepare monophasic Tb₃Al₅O₁₂:Eu, Dy₃Al₅O₁₂:Eu, Ho₃Al₅O₁₂:Eu, Er₃Al₅O₁₂:Eu, Tm₃Al₅O₁₂:Eu, Yb₃Al₅O₁₂:Eu, Lu₃Al₅O₁₂:Eu, Y₃Al₅O₁₂:Nd,Eu and Y₃Al₅O₁₂:Sm,Eu garnet structure materials at 1000 °C. SEM micrographs of the Ln₃Al₅O₁₂:Eu samples showed that individual particles were submicro-sized plate-like crystals and they partially fused to form hard agglomerates, indicating good connectivity between the grains. It was also observed that agglomeration slightly increased with increasing the doping level of Eu³⁺. Monophasic Ho₃Al₅O₁₂:Eu was successfully synthesized for the first time by low temperature solvothermal method at 220 °C. SEM micrographs of Ho₃Al₅O₁₂:Eu³⁺ synthesized by sovothermal method showed that crystallinity of garnets increased significantly by additional annealing of the specimens at 1000 °C and 1200 °C. The particle size of these samples monotonically increased from 100 nm (as-synthesized) to about 600 nm (annealed at 1200 °C). The Ho₃Al₅O₁₂:0.5%Eu sample showed the most intensive europium emission at 591 nm in the series of Ho₃Al₅O₁₂:Eu³⁺ garnets. The emission peaks of Tb₃Al₅O₁₂:Eu, Dy₃Al₅O₁₂:Eu and Lu₃Al₅O₁₂:Eu garnets were located between 550 and 720 nm. The spectra show the characteristic emission of Eu³⁺ arising due to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (591-594 nm), ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (609-611 nm) and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ (708-709 nm) transitions. For the

Er₃Al₅O₁₂, Yb₃Al₅O₁₂:Eu and Tm₃Al₅O₁₂ garnets doped with Eu³⁺, however, no peaks in the luminescence spectra were observed. Neodymium, samarium and europium substitution effects in $Y_{3-x}Ln_xAl_5O_{12}$:Eu³⁺ (Ln - Nd³⁺ and Sm³⁺) garnets were also investigated. The XRD results revealed that neodymium and samarium doped garnets were single phase materials in whole investigated substitutional range. The Y_{3-x}Ln_xAl₅O₁₂, Y_{2.9}Ln_{0.1}Al₅O₁₂:Eu and Y₃₋ xLnxAl5O12:Eu solids were composed of nano-sized spherical agglomerated particles. Particle size and shape were not influence by nature of lanthanides and their concentration. ²⁷Al NMR spectroscopy showed for the first time the structural features of substituted garnets comparing the dependence of peaks intensity on the concentration of dopant in YAG:Nd,Eu and YAG:Sm,Eu. The results obtained revealed that the Nd³⁺ and Sm³⁺ ions are randomly dispersed throughout the crystal lattice of garnets and confirmed the successful incorporation of europium ions into the crystalline lattice of YAG:Ln,Eu. Excitation spectra for Y_{3-x}Nd_xAl₅O₁₂:Eu³⁺ were recorded monitoring emission at 1064 nm for neodymium and at 591 nm for europium. Emision spectra for $Y_{3-x}Nd_xAl_5O_{12}$:Eu³⁺ were obtained monitoring exitation at 588 nm for neodymium and at 394 nm for europium. The 0.1 mol Nd-doped sample showed the most intensive luminescence. For the Eu^{3+} ions a typical strong red emission was detected (611 nm originated from the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition). The most intensive Eu³⁺ emission was observed for the sample with 1% europium. Eu³⁺ fluorescence decreased with the increasing content of Nd³⁺ due to the energy transfer between these ions. Excitation spectra for Y_{3-x}Sm_xAl₅O₁₂:Eu³⁺ were recorded monitoring emission at 617.5 nm for samarium and at 591 nm for europium. Emision spectra for Y_{3-x}Sm_xAl₅O₁₂:Eu³⁺ were obtained monitoring exitation at 405.5 nm for samarium and at 393.5 nm for europium. The 0.1 mol Sm-doped sample showed the most intensive luminescence. For the Eu³⁺ ions a typical strong red emission was detected (708 nm originated from the ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transition). The most intensive Eu³⁺ emission was observed for the sample with 1% europium. Eu³⁺ fluorescence decreased also with the increasing content of Sm³⁺ due to the energy transfer between these ions.