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Abstract. We report on the numerical modelling of rectification in a gated two-dimensional 

electron gas. We demonstrate that drift-diffusion-based and energy-relaxation-based models 

predict different features of rectified terahertz radiation as a function of gate bias. Whereas the 

widely accepted mechanism for rectification is considered to be plasmonic-based, there are 

conditions when diffusion currents originating by non-local carrier heating can dominate the 

response. Moreover, diffusive contributions can substantially enhance the response becoming an 

important phenomenon, which has to be considered in future designs of efficient transistor-based 

terahertz rectifiers. 

 

 

The prediction of plasma wave-resonances [1] in sub-micrometer-long channel field-effect 

transistors, (FETs) triggered a strong interest in applied aspects of plasmonic effects, which promise the 

extension of otherwise standard device operation beyond the conventional cut-off frequency limits. The 

plasmons, relating to a wave-like propagation of charge carriers, can manifest already at microwaves, 

yet they become increasingly pronounced in the terahertz (THz) frequency range. By now, it has been 

numerously reported in experimental [2, 3] and theoretic [4, 5] studies that plasmonic rectification can 

be employed for efficient detection of THz radiation. Despite such progress, there are many unresolved 

questions left regarding the validity of predictions from existing hydrodynamic models when applied 

for the modeling of practical devices (rectifiers or detectors).  

In this contribution, we present numerical modeling results of THz rectification in sub-micrometer 

size AlGaN/GaN high electron mobility transistors (HEMT). For our numerical calculations, we employ 

a commercial SYNOPSIS TCAD package allowing to solve coupled Poisson, drift-diffusion, continuity 

and energy relaxation equations in multi-dimensional (2D or 3D) geometries. These equations form the 

basis for the so-called quasi-hydrodynamic or energy-transport model, which differs from a full-

hydrodynamic approach by the omission of momentum relaxation [6]. For the reference calculations 

(excluding carrier heating) we employ simple drift-diffusion equations, which are analogous to a 

distributed RC transmission line model [7].  

Figure 1 presents the 2D profile of the structure. All numerical simulations are performed in 2D 

assuming homogeneous properties in lateral dimension set to be 1 µm wide. The 2D-electon gas is 

formed between the 25nm-thick Al0.2Ga0.8N layer and the undoped (intrinsic) GaN substrate. The gate 

length is set to 300 nm whereas the ungated parts are selected to be slightly asymmetric: 300-nm-long 

at the source side and 500-nm-long at the drain side. The ungated regions are covered with a 25-nm-

thick Si3N4 passivation layer. At the SiN/AlGaN interface we include 5·1013 cm-2 donors located 0.4 eV 
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Figure 1. The structure of 

AlGaN/GaN HEMT employed 

for numerical simulations of 

THz rectification. 

 

 

from the center of forbidden energy gap. Figure 2a shows the calculated static resistance as a function 

of gate bias. The knowledge of the static resistance allows estimation of the current responsivity in 

quasi-static conditions as it is usually performed for rectifying diodes [8]. ℜ𝐼,𝑄𝑆 = 1/(2𝜎)𝑑𝜎/𝑑𝑈𝐺 =
−1/(2𝑅)𝑑𝑅/𝑑𝑈𝐺 . For the selected structure, the quasi-static current responsivity (presented in figure 

2) peaks at -3.52 V reaching 5.47 A/W. 

In order to calculate the rectification of THz radiation, we applied an oscillating voltage with an 

amplitude of 50 mV to the drain terminal placing the source terminal on ground. A fixed gate voltage 

implies that the gate terminal is equivalently shorted for all oscillating signals except of DC. Such a 

connection ensures asymmetric boundary conditions which are necessary for efficient rectification. We 

monitor the drain current in time domain which, after performing a Fast Fourier Transformation, allows 

obtaining the complex device impedance. The rectified signal is obtained from transient data by 

calculating the average current over one oscillation period after omitting the first 2 periods. 

 

 

 

 

 

 

Figure 2. a) Modelled static resistance of the channel as a function of gate bias; b) static current 

responsivity as a function of the gate bias. 
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Figure 3. a) Current responsivity as a function of gate bias for various frequencies calculated with 

drift diffusion model, and b) calculated using hydrodynamic model. 

 

We estimate the current responsivity by calculating the ratio between detected current and AC power 

absorbed by the device. Figure 3 presents the main simulation results. Since the oscillating signal is 

applied at the drain side, the current has negative sign. The left panel (a) presents the simulated 

responsivity using a drift-diffusion transport description whereas the right panel (b) presents modelling 

results when using the energy-transport hydrodynamic model. For comparatively low frequencies (100 

GHz) both models predict similar rectification with a peak responsivity of about 2.8 A/W. With 

increasing frequency, the absolute value of the current responsivity decreases. Although intrinsic 

rectification in a distributed RC model should not be frequency dependent, such decrease originates 

from increasingly important power loss on the ungated parts at higher frequencies. It is important to 

note, that a hydrodynamic model predicts a reversal in the direction of the rectified current for large gate 

bias (in respect to threshold voltage) which cannot be explained by plasmon-based models. These 

predictions are supported with experimental data [9] of THz detection using AlGaN/GaN HEMTs with 

integrated broadband antennas. 

Our experiments did not show this strong crossover between plasmonic mixing and diffusion of 

“warm” carriers, which might indicate that the omitted momentum relaxation terms lead to an 

overestimation of diffusive contributions. Moreover, the current responsivity at the maximum of the 

 

Figure 4. a) The lateral distribution of the amplitude of density oscillations using 600 GHz excitation 

for zero gate bias; b) Lateral distribution of averaged electronic temperature for two gate voltages. 
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absolute value of response is substantially increasing over drift-diffusion simulations at THz frequencies 

indicating the importance for thorough simulations of non-equilibrium carriers [10].  

Figure 4 (a) demonstrates the distribution of the amplitude of the oscillating charge carriers for zero 

gate bias conditions, whereas the right panel (b) presents the distribution of average electronic 

temperature at zero gate bias and at gate bias resulting to the maximum of absolute current responsivity. 

Therefore, even if the carrier temperature does not change much, its lateral distribution results in an 

additional diffusion current, which at zero gate bias dominates the response with respect to plasmonic 

detection, whereas close to the threshold, the plasmonic detection is enhanced. 

In summary, we show that heating of charge carriers by the coupled high-frequency radiation plays 

an important role in the modelled response of field-effect transistor-based THz detectors.  
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