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ABSTRACT 

Background. Continuous kidney replacement therapy (CKRT) has emerged as a valuable treatment option in critically ill neonates 
and infants with acute kidney injury (AKI) requiring dialysis. In this population, we apply artificial intelligence (AI) to identify factors 
influencing mortality and short-term adverse kidney outcomes. 

Methods. The study involved neonates and infants included in the EurAKId Registry (NCT 02960867), who underwent CKRT treat- 
ment. Using the AI XGBoost models, we identified key clinical factors associated with short-term outcomes: mortality before hospital 
discharge, as well as proteinuria at discharge. We considered the patients’ clinical characteristics, anthropometric features, and CKRT 

technical settings. 

Results. The study comprised 95 patients: 31.6% neonates and 68.4% infants with a median age at hospital admission of 1 month 

(interquartile range, IQR 0–7 months). Ten children were born prematurely. The overall mortality rate was 47.3% and did not differ 
significantly between neonates and infants (53.3% vs 44.4%, respectively, P = .422). The XGBoost model for predicting mortality had 
the accuracy of 59.53% ± 0.96% and AUC of 0.64 ± 0.11. Lower urine output at CKRT initiation, a greater rise in serum creatinine (SCr), 
longer time to dialysis initiation, and lower blood pressure were associated with increased risk of mortality. Proteinuria at hospital 
discharge was present in 30.6% of survivors. The XGBoost model for predicting proteinuria had the accuracy of 79.11% ± 2.46% and 
AUC (0.74 ± 0.04). Higher SCr concentrations at hospital admission and at CKRT start, as well as primary kidney disease were the most 
important risk factors for proteinuria. 

Conclusion. We propose the XGBoost models for identifying factors associated with short-term outcomes of CKRT in neonates and 
infants. Lower urine output at CKRT start, more severe AKI progression and longer time to CKRT initiation might be important risk 
factors for mortality in infants and neonates. Primary kidney disease and related biochemical parameters are strong predictors of 
proteinuria at hospital discharge. 

Keywords: acute kidney injury, artificial intelligence, continuous kidney replacement therapies, neonates and infants, outcomes 
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KEY LEARNING POINTS 

What was known : 

• AKI in critically ill neonates and infants is a common comp
increased mortality and adverse kidney outcomes.

• Recently, artificial intelligence (AI) models have been develo
Application of AI in neonatal AKI my increase the likelihood

This study adds : 

• The present study proposes the implementation of AI model
outcomes of CKRT in neonates and infants.

• In neonates and infants, more severe AKI progression betwe
dialysis initiation and longer dialysis duration were associat

• More than a quarter of patients who survived CKRT presente
and higher SCr at admission and dialysis start and with prim

Potential impact : 

• In this study, the AI XGBoost identify potential predictive fac
• Although larger studies are required to provide definitive re

in this vulnerable population.

NTRODUCTION 

cute kidney injury (AKI) occurs in around a quarter of hospi-
alized children [1 ] and the need for acute kidney replacement
herapy (KRT) is increasing in all pediatric population age groups
2 ]. In the youngest children, peritoneal dialysis (PD) remains a
ong-established KRT of choice [3 –5 ]. In recent decades, continu-
us kidney replacement therapy (CKRT) has emerged as an im-
ortant treatment modality in critically ill neonates and infants
equiring dialysis in the acute setting [6 ]. In this vulnerable
opulation, where physiological reserves are minimal, managing
idney dysfunction requires careful consideration of both the
atient’s unique developmental physiology and the technical
hallenges associated with extracorporeal therapies [7 ]. 
Neonates and infants present distinct challenges in CKRT due

o their small body size, immaturity, and increased sensitivity to
uid and electrolyte imbalances. The hemodynamic instability,
ommonly seen in critically ill infants, demands especially pre-
ise fluid management, making CKRT particularly beneficial for
his population. 
Recent advances in CKRT technology, tailored specifically for

ediatric and neonatal use, have improved the safety and efficacy
f this therapy [8 –10 ]. Although the survival rate for children re-
eiving CKRT has improved in recent decades, mortality remains
onsiderably high [11 ]. The patients surviving CKRT procedures
re at risk of developing adverse kidney outcomes both in short-
nd long-term observation [12 , 13 ]. 
Artificial Intelligence (AI) methods revolutionize the analysis

f scientific data in different fields including nephrology [14 ].
ecent studies show that AI-based models employing tree-based
lgorithms (e.g. random forest or XGBoost), neural networks, or
upport vector machines, can be used to predict the occurrence
f AKI post-surgery [15 –18 ], severe burn injuries [19 ], or in critical
are setting [20 , 21 ]. 
The objective of this study is to identify factors influencing mor-

ality and the occurrence of adverse kidney outcomes in short-
erm observation in neonates and infants with AKI using the AI
GBoost models. 
ion associated with difficult dialysis management, as well as 

to improve prediction of AKI occurrence in different settings. 
recocious diagnosis and successful management.

entify predictive factors influencing mortality and short-term 

dmission and CKRT initiation, together with longer time since 
ith increased risk of mortality.
teinuria. Proteinuria at hospital discharge was associated with 
kidney disease.

for mortality and development of proteinuria in survivors.
, paying attention to these factors might be clinically relevant 

ATERIALS AND METHODS 

urAKId Registry (European Registry of Pediatric 
cute Kidney Injury Dialysis Treatment) 
he EurAKId Registry (ClinicalTrials.gov NCT 02960867) is a
rospective, international study gathering data on acute pediatric
RT from 14 European pediatric nephrology centers. It was es-
ablished in September 2016 by the ESCAPE Network (European
tudy Consortium for Chronic Kidney Disorders Affecting Pedi-
tric Patients) based on the results of a survey conducted earlier
hat year. Each participating center has obtained and presented a
ocal bioethics committee approval. 
The registry is based on an online case-report questionnaire

nd collects data on patients 0–18 years of age, who require acute
RT. It includes three KRT modalities—PD, intermittent hemodial-
sis (iHD), and CKRT—chosen in accordance with regional stan-
ards of care) conducted both in intensive care and ward settings,
ue to AKI and other indications, for example inborn errors of
etabolism, sepsis, or fluid overload (FO). Pre-existing chronic kid-
ey disease (by KDIGO definition) is an exclusion criterion. AKI di-
gnosis, AKI staging, and CKD exclusion are defined by the on-site
nvestigators in accordance with current guidelines. Data are col-
ected in seven domains: demographic and admission data, clin-
cal parameters at dialysis start, data at pediatric intensive care
nit admission, modality-specific (PD, iHD, and CKRT) data, and
ata on the occurrence short-term outcomes (mortality, protein-
ria, hypertension, and requirement for chronic dialysis at hospi-
al discharge, all assessed by regional investigators). All definitions
re available in previous publications [22 ]. 

tudy group 

he present study comprises children up to 12 months of age in-
luded in the EurAKId Registry who underwent CKRT between
eptember 2016 and September 2023. During this period, 450 pa-
ients were enrolled in the registry, of whom 136 met the age cri-
eria for this study. We excluded 41 children (37 patients treated
ith PD, two patients treated with iHD and two with significant
issing data). In total, 95 patients were included in the present
5
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Figure 1: Patient selection for the study. 
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analysis (Fig. 1 ). The study focuses on CKRT because it presents
specific technical and clinical challenges in neonates and infants;
among children up to 12 months, CKRT was the most representa-
tive and homogeneous group. 

Baseline characteristics 
Based on patient characteristics reported in the registry, we de-
fined the study population. We included basic anthropometric
parameters and demographic data, baseline clinical characteris-
tics, and serum creatinine (SCr) concentrations. The full list of
variables considered in this study is available in the Supplemen-
tary Material ( Supplementary Table 2). The cohort was divided
by age into two groups: neonates aged < 1 month and infants
(1–12 months). For the patients admitted to the pediatric inten-
sive care unit, the illness severity was assessed using the PRISM
III score. Urine output decline (calculated as the difference be-
tween urine output at admission and at dialysis initiation) and SCr
rise (calculated as the difference between SCr at dialysis start and
at hospital admission) were used as indicators of AKI trajectory.
We identified seven categories of primary disease: cardiac disease,
shock, acute kidney disease, inborn error of metabolism (IEM),
malignancy/hematologic disease, liver disease, and pulmonary
disease. 

CKRT technical aspects and settings 
We analyzed the technical aspects and settings of performed
CKRT procedures. They are available in the Supplementary Mate-
rial ( Supplementary Table 2). Due to significant technical distinc-
tive features, the analyzed population was divided by the use of
standard CKRT, and ECMO-related CKRT. Depending on the CKRT 

modality, the prescribed dialysis dose was calculated as dialysate 
flow rate in CVVHD, replacement flow rate in CVVH, or the sum of
both for CVVHDF. 

Primary and secondary outcome measures 
The primary endpoint was mortality before hospital discharge.
Secondary endpoints were assessed at hospital discharge and in- 
cluded: need for chronic dialysis, presence of proteinuria, and 
presence of hypertension. 

Basic statistical analyses 
Depending on the distribution (assessed with the Shapiro–Wilk 
test), data were expressed as mean ± standard deviation (SD) for 
variables with normal distribution or median (interquartile range,
IQR) for variables with distribution other than normal. The follow- 
ing statistical tests were applied: Mann–Whitney U -test, Kruskal–
Wallis ANOVA test, and chi-squared test. The results were consid- 
ered significant with P < .05. Basic statistical analyses were per- 
formed using Dell Statistica v.13.3 software. 

Machine learning-based analyses 
We used a machine learning (ML) method, specifically XGBoost 
gradient-based decision trees to analyze nonlinear relations be- 
tween observed variables and the outcome measures: mortal- 
ity, proteinuria, and hypertension. Independent binary classifiers 
were used to predict the outcomes given the set of observations 
by minimizing the negative log-likelihood of the Bernoulli distri- 
bution defined by the target variable XGBoost was chosen due to 
5
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ts high performance proven by numerous applications, natural
ay of managing missing data, and simple explainability. How-
ver, for clarity, we also compared the performance of the XGBoost
odel with other approaches including: Cox model, random for-
st, decision tree, linear regression, K -nearest neighbors, and naive
ayes. 

xplanation of the classifiers’ decisions 
n this study, we put special attention to the explanations of
odels decisions, as our goal was to explore the predictors of
hort-term AKI outcomes. Therefore, we investigated the struc-
ure of the trained classifiers with the SHAP technique, which
easures the contribution of each feature to the final prediction
f the model based on all splits in trained decision trees. SHAP
alues were calculated for each attribute in each case from our
ataset. We report (i) the mean absolute SHAP value for each
ttribute and (ii) the actual contribution (positive/negative) of a
iven attribute for a particular range of values. For readability,
e present only important features that exceed 0.1 mean ab-
olute SHAP value. The full list of variables is provided in the
upplementary Material. 

xperiment methodology 

ross-validation was used to assess the performance of the
rained classifier. We randomly divided the dataset into 10 sep-
rate pieces and trained XGBoost models using different combi-
ations of 9 out of 10 available parts, while evaluating it on the
old-out 10th piece. To ensure the consistency of final results, we
dditionally reran the same analyses five times using different
andom splits. We then averaged the results over all runs and all
plits. For metrics, we used accuracy, specificity, sensitivity, posi-
ive predictive value (PPV), and area under the receiver-operating
haracteristic (ROC) curve (AUC). We report the average value with
ts SD. For explainability, we average SHAP values over individ-
al models. However, since our goal was to assess the main risk
actors, we extracted the SHAP values only from the models that
chieved satisfactory AUC score > 0.6 on a given cross-validation
est split. To avoid overfitting of the data we did not use any au-
omatic fine-tuning of the XGBoost parameters relying on the de-
ault values while limiting the number of decision trees to 40 for
he mortality and 20 for the proteinuria model. 
In the following we discuss the predictors for mortality and

roteinuria, focusing on the XGBoost due to its superior perfor-
ance. The comparison of the factors identified by XGBoost and
imple Cox models is presented in the Supplementary Material
 Appendix 2). 

ESULTS 

tudy group characteristics 
he anthropometric, demographic, and basic clinical features of
nalyzed patients are displayed in Table 1 . The study group com-
rised 30 neonates and 65 infants. On admission, the median SCr
evel was 0.6 mg/dl (IQR 0.2–1.2) and median urine output was
.3 ml/kg/h (IQR 0.8–4.1). At CKRT initiation, SCr level was sig-
ificantly higher comparing to baseline (0.9 mg/dl, IQR 0.5–1.4,
 < .001). In the entire cohort, urine output decrease was sta-
istically insignificant ( −1.5 ml/kg/h, IQR −3.9–0.0, P = .145), and
rine output at CKRT start did not differ significantly between sur-
ivors and non-survivors (1.1 ml/kg/h, IQR 0.2–3.5 vs 2.1 ml/kg/h,
QR 0.0–4.1 respectively; P = .880). FO at dialysis initiation was
.6% (IQR 0.0–10.6%) and was equal in the two groups (survivors
.0%, IQR 0.0–9.1%; non-survivors 3.7%, IQR 0.0–14.8%). Median
ime from hospital admission to CKRT initiation was 4 days
IQR 1–15) and was significantly shorter in survivors than non-
urvivors (2 days, IQR 0–8.5 vs 10 days, IQR 2.0–32.0 respectively,
 < .001). In 29.5% of patients CKRT was initiated within 1 day after
dmission. 

KRT management 
n the analyzed group, the median CKRT duration was 116 hours
IQR 56–219) per patient, with the mean circuit lifetime of 29 hours
IQR 18–46). In most patients (84.2%, n = 80), CKRT was performed
sing the Prismaflex/Prismax devices. Five infants (body weight
.8–8.6 kg, none of them premature) underwent procedures on
ARPEDIEM device, three children on Aquarius device, and in
even patients the system was not specified. The most commonly
pplied anticoagulation was heparin (57.9%), followed by proce-
ures with no anticoagulation (20%), and regional citrate anti-
oagulation (16.8%), no data on anticoagulation in five patients.
VVHDF was the leading CKRT modality (46.3%). CVVHD and
VVH were applied in 9.5% and 8.4% of patients, respectively.
CMO-related CKRT procedures were conducted in 33 (34.7%)
atients. Among the remaining 62 patients, the most common
ascular access site was right internal jugular vein (56.5%), fol-
owed by femoral (21.0%), left internal jugular (12.9%), and subcla-
ian veins (8.1%). One patient (1.1%) required a CKRT-therapeutic
lasma exchange tandem therapy. The technical aspects of CKRT
rocedures by ECMO and non-ECMO groups are displayed in
upplementary Table 1. 
In the entire analyzed population, the median prescribed dial-

sis dose was 3187 ml/h/1.73 m2 (IQR 2359–3844) and differed
ignificantly regarding the patient’s primary disease ( P = .020).
he highest dialysis dose was prescribed in the IEM group
6513 ml/h/1.73 m2 , IQR 3077–17 281). 

ortality 

he overall mortality rate was 47.3% ( n = 44) and did not differ
ignificantly between neonates and infants (53.3% vs 44.4% re-
pectively, P = .422, chi-squared test). Using the XGBoost model,
e identified factors influencing the occurrence of the mortal-

ty endpoint, of which the most important predictors were urine
utput at dialysis start and SCr rise. The feature importance of
he variables included in the model is displayed in Fig. 2 a. The
ean accuracy of the model was 59.53% ± 0.96% (sensitivity
4.90 ± 1.54, specificity 63.90 ± 1.72, PPV 60.84 ± 1.43), and the
UC was 0.64 ± 0.11 (Fig. 4 a). Lower urine output at dialysis start
s well as a larger rise in SCr, longer time from admission to
ialysis initiation, lower blood pressure at admission, lower body
eight at admission, CKRT modality other than CVVHDF, longer
ialysis duration, and larger urine output decline were associated
ith increased risk of mortality (Fig. 2 b). ECMO use was included

n the model but did not surpass the SHAP importance threshold
 > 0.1). 

roteinuria 

roteinuria at hospital discharge was present in 30.6% ( n = 15) of
urvivors. 
Higher serum creatinine concentration at hospital admission

nd primary kidney disease were the most important predictors
dentified in the XGBoost model. Figure 3 displays the importance
cores (Fig. 3 a) and influence of parameter values on the occur-
ence of proteinuria (Fig. 3 b) for the remaining variables. The
ean model accuracy was 79.11 ± 2.46 (sensitivity 54.67 ± 5.40,
 5
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Table 1: Demographic, anthropometric, and clinical characteristics of the study group. 

Parameter Entire cohort ( n = 95) Survivors ( n = 49) Non-survivors ( n = 44) 

Sex ( n , boys/girls) 58/37 27/22 29/15 
Born prematurely ( n , %) 10 (10.5%) 7 (14.3%) 3 (6.8%)
Age (months) 1 (0–7) 5 (0–8) 1 (0–6.5)
Race ( n , %) 
Caucasian 90 (94.7%) 47 (96.0%) 42 (95.4%)
Asian 2 (2.1%) 1 (2.0%) 1 (2.3%)
Black 1 (1.1%) 0 0

Unknown 2 (2.1%) 1 (2.0%) 1 (2.3%)
Body length at admission (cm) 55.0 (50.0–65.0) 59.0 (50.0–68.0) 52.0 (50.0–60.0) 
Weight at admission (kg) 4.0 (3.2–7.0) 4.6 (3.5–7.6) 3.8 (3.0–6.1) 
BSA (m2 ) 0.25 (0.21–0.36) 0.29 (0.22–0.37) 0.22 (0.20–0.31) 
Primary disease ( n , %) 
Pulmonary 23 (24.2%) 12 (24.5%) 11 (25.6%) 
Cardiac 12 (12.6%) 5 (10.2%) 7 (16.3%) 
Liver 12 (12.6%) 6 (12.3%) 5 (11.6%) 
IEM 12 (12.6%) 8 (16.3%) 4 (9.3%) 
Kidney 11 (11.6%) 10 (20.4%) 1 (2.3%) 
Malignancy/hematologic 10 (10.5%) 3 (6.1%) 6 (14.0%) 
Shock 10 (10.5%) 5 (10.2%) 5 (11.6%) 

Other a 5 (5.4%) 0 (0.0%) 4 (9.3%) 
Nephrotoxic drugs ( n , %) 43 (45.3%) 18 (36.7%) 23 (52.3%) 
1 32 (74.4%) 13 (72.2%) 17 (74.0%) 
2 6 (14.0%) 3 (16.7%) 3 (13.0%) 
3 5 (11.6%) 2 (11.1%) 3 (13.0%) 

AKI ( n , %) 65 (68.4%) 33 (67.4%) 32 (72.7%) 
Stage 

1 11 (16.9%) 3 (9.1%) 8 (25%) 
2 19 (29.2%) 9 (27.3%) 10 (31.3%) 
3 34 (52.3%) 21 (63.6%) 13 (40.6%) 
No data 1 (1.6%) 0 (0%) 1 (3.1%) 

PICU admission ( n , %) 93 (97.9%) 48 (97.9%) 44 (100.0%) 
MODS ( n , %) 69 (72.6%) 30 (61.2%) 37 (84.1%) 
Number of organs involved ( n , % of MODS) 

2 11 (15.9%) 6 (20.0%) 4 (10.8%) 
3 38 (55.1%) 19 (63.3%) 19 (51.4%) 
4 17 (24.6%) 5 (16.7%) 12 (32.4%) 
> 4 3 (4.4%) 0 (0.0%) 2 (5.4%) 

Vasopressor use ( n , %) 69 (72.6%) 32 (65.3%) 35 (79.5%) 
Total PRISM III score 14.0 (10.0–19.0) 13.0 (8.0–22.0) 14.0 (10.0–17.0) 

a Including three immunologic disorders, one neurologic disorder; missing data in one patient 
No data on survival in two patients. 
BSA, body surface area; MODS, multiorgan dysfunction syndrome; PICU, pediatric intensive care unit. 
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specificity 90.67 ± 3.34, PPV 76.38 ± 6.46). The AUC was 0.74 ± 0.04
(Fig. 4 b). 

Other outcome measures 
We found no significant predictors for the remaining outcome
measures set for this study. Hypertension was present in 24.5%
( n = 12) of survivors, and the XGBoost model had predictive ac-
curacy comparable to random. Only one patient required chronic
KRT at hospital discharge. 

DISCUSSION 

In this analysis of prospectively collected data, we propose XG-
Boost models to identify factors influencing mortality and pro-
teinuria in neonates and infants requiring CKRT. Comparied
to the traditional Cox models, the performance of XGBoost
was superior, particularly in predicting proteinuria at discharge
( Supplementary material, Appendix 2). We believe this improve-
ment in performance by the XGBoost model may be partially
attributed to its native ability to handle missing and correlated 
data. Meanwhile, Cox models prioritize categorical variables with 
well-defined effects, which it can represent efficiently. 

In our cohort of CKRT-treated neonates and infants, the overall 
mortality rate was 47.3%. This is consistent with the recent WE- 
ROCK study report [11 ], and lower than the rates from the ppCRRT
study conducted previously [24 ]. Our XGBoost model identified 
low urine output at CKRT initiation as the most important mor- 
tality predictor. Interestingly, it was not associated with FO rate 
and had an importance of 0.14. In literature, FO is the most well-
established predictor, contributing to increased risk of mortality 
in CKRT-treated children [25 ] as well as in critically ill neonates
[26 ]. Of note, the median FO rate in the presented group was rela-
tively low (3.6%) and did not differ significantly between survivors 
and non-survivors. As this study represents a recent cohort, our 
results suggest that CKRT may have been initiated earlier, which 
may enable the new prognostic factors for mortality to emerge. 

We found that more severe AKI progression (defined as larger 
urine output decline and SCr rise) between admission and CKRT 

initiation was also a factor predicting mortality. Although all 
5
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a

b

Figure 2: ( a ) Importance of factors influencing mortality identified in the XGBoost model. ( b ) Influence of the identified factors on mortality. Green, 
decreasing risk; red, increasing risk. 
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hildren met the criteria for severe AKI (KDIGO stage 3) at CKRT
nitiation, their functional deterioration varied in rate and magni-
ude, affecting outcomes. Longer time from admission to dialysis
nitiation and longer dialysis duration were also associated with
igher mortality (importance scores 0.40 and 0.25, respectively).
s the registry lacks exact AKI diagnosis times, we used the in-
erval from hospital admission to CKRT initiation as a proxy. This
rovides a consistent metric for both early AKI at ICU admission
nd AKI developing later due to secondary insults such as nephro-
oxicity or sepsis. Randomized controlled trials in adults have re-
orted contradicting results regarding the impact of early CKRT
nitiation on outcomes [27 , 28 ], but a metanalysis [29 ] showed
 5
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a

b

Figure 3: ( a ) Importance of factors influencing proteinuria at hospital discharge, identified in the XGBoost model. ( b ) Influence of the identified factors 
on proteinuria at hospital discharge. Green, decreasing risk; red, increasing risk. 
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reduced mortality and dialysis-dependency with early CKRT initi-
ation. Retrospective pediatric studies [30 , 31 ] also found reduced
mortality rate with earlier start. The recent WE-ROCK study [32 ]
linked delayed CKRT initiation to higher mortality and major ad-
verse kidney events on 90 days (MAKE-90) in children and young
adults. The influence of CKRT duration on mortality is not thor-
oughly studied. One pediatric study [33 ] showed slightly higher
mortality in children with longer CKRT duration, but with no
statistical significance. Prolonged CKRT was also associated with
lower chances of kidney function recovery [34 ]. 

An important factor in the XGBoost model was low blood pres-
sure at admission, which together with high heart rate might be
attributed to hemodynamic instability. Lower body weight was
also associated with increased mortality. Although not statisti-
cally significant, the mortality tended to be higher in neonates
than infants. Most of the cohort underwent CKRT on adult equip-
ment adapted for pediatric use. Only five patients received treat-
ment with the dedicated, miniaturized machine (CARPEDIEM).
Adult machines have been adapted and used successfully even
in the smallest children for decades now [24 , 35 , 36 ]. However,
recent reports provide new evidence on CARPEDIEM’s safety and
efficacy [8 ]. A comparison between the ppCRRT study and the Ital-
ian CARPEDIEM registry [37 ] covering two different eras, showed 
better survival to CKRT discontinuation in the dedicated infant 
machine group. 

Interestingly, CVVHDF was identified as a factor improving the 
outcome with modest importance (0.28). This stands in contrast 
to the previously conducted studies. A recent adult network met- 
analysis showed that no single CKRT modality was superior to 
others [38 ]. Moreover, a pediatric study showed no difference in
CKRT modality between survivors and non-survivors [39 ]. Our 
findings suggest that combined convective–diffusive clearance 
might be beneficial for the youngest critically ill patients. This,
however, requires further, preferably prospective studies on larger 
cohorts, and should be interpreted with caution. 

The other XGBoost model proposed in the present study iden- 
tified several factors predictive of proteinuria in CKRT survivors.
This model had satisfactory accuracy (79.11% ± 2.46%) and AUC 

(0.74 ± 0.04). In our cohort of neonates and infants, proteinuria 
at hospital discharge was associated with higher serum creati- 
nine levels at admission and at CKRT start, and primary kid- 
ney disease. These factors likely reflect more extensive kidney 
5
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a

b

Figure 4: ( a ) ROC curve for predicting mortality. ( b ) ROC curve for predicting proteinuria at hospital discharge. 
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mpairment, contributing to the need for CKRT. Interestingly,
ower replacement and dialysate flow rates emerged as predictive
actors, which once again might suggest potential benefits of the
ombined diffusive-convective clearance for kidney outcomes.
owever, it is important to note that predictors identified using
I tools do not necessarily equate to causal risk factors. 
We were not able to develop a model predicting the occur-
ence of hypertension at hospital discharge with accuracy sig-
ificantly higher than random, probably due to a low number
f patients. Although the numbers of patients with protein-
ria and hypertension at discharge were relatively low, they ac-
ount for a significant percentage of survivors. This underlines
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the need for periodical nephrological follow-up after the AKI
episode. 

The primary goal of our AI model was to identify the potential
predictive factors for mortality and proteinuria in CKRT sur-
vivors. Among the methods tested, the XGBoost algorithm demon-
strated superior performance compared to alternatives like deci-
sion trees and random forest models, as well as the Cox model
( Supplementarymaterial, Appendices 1 and 2). This finding aligns
with recent research that underscores its effectiveness [40 ]. Fu-
ture efforts to develop computer-aided diagnostic systems could
benefit from integrating more advanced ML techniques, such as
deep learning or multi-modal approaches. However, the success
of these methods will largely depend on the size and quality of
the available dataset [14 ]. 

This study presents a European, multicenter cohort of neonates
and infants receiving CKRT in Europe. We analyzed data on CKRT
management in these patients and, for the first time, we applied
advanced AI to identify factors influencing outcomes and propose
the models predicting selected outcome measures. However, we
acknowledge that this study has several limitations. The multi-
center character of the study limited our access to further data
not collected in the EurAKId Registry that might have been use-
ful. Moreover, as the AKI diagnosis and grading was performed by
on-site investigators, the results might have been influenced by
the varying severity of the patients’ conditions. Notably, the initial
AKI stage had low importance score in the XGBoost model (0.04).
A relatively high mortality rate significantly reduced the number
of patients for assessing the secondary outcomes (proteinuria, hy-
pertension, need for chronic KRT), making it impossible to build
a satisfactory XGBoost model for two of them. In this study, we
build our XGBoost models to automatically find the combinations
of high-risk factors for mortality and proteinuria. However, given
the limited performance of the final models, further studies are
needed to consider them as a direct tool supporting the decisions
of the medical team. As our analysis was based on internal cross-
validation within a single dataset, external validation with ad-
ditional data is necessary for the accurate evaluation of models
performance. Notably, our study focuses on neonates and infants
receiving CKRT, excluding patients on PD, which remains a com-
monly chosen modality in this population. Therefore, the results
do not reflect the outcomes of overall neonatal and infantile AKI
requiring dialysis. 

CONCLUSION 

Based on the proposed XGBoost models, we conclude that more
severe AKI progression and longer time to CKRT initiation might
be important risk factors for mortality in children up to 12 months
of age. Primary kidney disease and related biochemical param-
eters are strong predictors of proteinuria at hospital discharge.
Although some findings align with existing knowledge, our AI ap-
proach allowed us to quantify and rank their predictive contribu-
tion using SHAP analysis, which we believe adds interpretability
and methodological value. Moreover, the validation of this model
might lead to analyzing even more numerous and complex vari-
ables for a more personalized risk stratification. While the predic-
tive performance in our study is modest, the XGBoost models help
prioritize key risk factors and may support early risk stratifica-
tion in clinical settings. Future prospective validation and model
refinement are warranted before clinical implementation. Larger
studies are needed to provide definitive results and develop mod-
els applicable in clinical routine. 
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