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ABSTRACT

Background. Continuous kidney replacement therapy (CKRT) has emerged as a valuable treatment option in critically ill neonates
and infants with acute kidney injury (AKI) requiring dialysis. In this population, we apply artificial intelligence (Al) to identify factors
influencing mortality and short-term adverse kidney outcomes.

Methods. The study involved neonates and infants included in the EurAKId Registry (NCT 02960867), who underwent CKRT treat-
ment. Using the Al XGBoost models, we identified key clinical factors associated with short-term outcomes: mortality before hospital
discharge, as well as proteinuria at discharge. We considered the patients’ clinical characteristics, anthropometric features, and CKRT
technical settings.

Results. The study comprised 95 patients: 31.6% neonates and 68.4% infants with a median age at hospital admission of 1 month
(interquartile range, IQR 0-7 months). Ten children were born prematurely. The overall mortality rate was 47.3% and did not differ
significantly between neonates and infants (53.3% vs 44.4%, respectively, P = .422). The XGBoost model for predicting mortality had
the accuracy of 59.53% =+ 0.96% and AUC of 0.64 + 0.11. Lower urine output at CKRT initiation, a greater rise in serum creatinine (SCr),
longer time to dialysis initiation, and lower blood pressure were associated with increased risk of mortality. Proteinuria at hospital
discharge was present in 30.6% of survivors. The XGBoost model for predicting proteinuria had the accuracy of 79.11% + 2.46% and
AUC (0.74 + 0.04). Higher SCr concentrations at hospital admission and at CKRT start, as well as primary kidney disease were the most
important risk factors for proteinuria.

Conclusion. We propose the XGBoost models for identifying factors associated with short-term outcomes of CKRT in neonates and
infants. Lower urine output at CKRT start, more severe AKI progression and longer time to CKRT initiation might be important risk
factors for mortality in infants and neonates. Primary kidney disease and related biochemical parameters are strong predictors of
proteinuria at hospital discharge.
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KEY LEARNING POINTS

What was known:

increased mortality and adverse kidney outcomes.

This study adds:

outcomes of CKRT in neonates and infants.

Potential impact:

in this vulnerable population.

e AKIin critically ill neonates and infants is a common complication associated with difficult dialysis management, as well as

¢ Recently, artificial intelligence (AI) models have been developed to improve prediction of AKI occurrence in different settings.
Application of Al in neonatal AKI my increase the likelihood of precocious diagnosis and successful management.

e The present study proposes the implementation of Al models to identify predictive factors influencing mortality and short-term

¢ In neonates and infants, more severe AKI progression between admission and CKRT initiation, together with longer time since
dialysis initiation and longer dialysis duration were associated with increased risk of mortality.

e More than a quarter of patients who survived CKRT presented proteinuria. Proteinuria at hospital discharge was associated with
and higher SCr at admission and dialysis start and with primary kidney disease.

e In this study, the Al XGBoost identify potential predictive factors for mortality and development of proteinuria in survivors.
e Although larger studies are required to provide definitive results, paying attention to these factors might be clinically relevant

INTRODUCTION

Acute kidney injury (AKI) occurs in around a quarter of hospi-
talized children [1] and the need for acute kidney replacement
therapy (KRT) is increasing in all pediatric population age groups
[2]. In the youngest children, peritoneal dialysis (PD) remains a
long-established KRT of choice [3-5]. In recent decades, continu-
ous kidney replacement therapy (CKRT) has emerged as an im-
portant treatment modality in critically ill neonates and infants
requiring dialysis in the acute setting [6]. In this vulnerable
population, where physiological reserves are minimal, managing
kidney dysfunction requires careful consideration of both the
patient’s unique developmental physiology and the technical
challenges associated with extracorporeal therapies [7].

Neonates and infants present distinct challenges in CKRT due
to their small body size, immaturity, and increased sensitivity to
fluid and electrolyte imbalances. The hemodynamic instability,
commonly seen in critically ill infants, demands especially pre-
cise fluid management, making CKRT particularly beneficial for
this population.

Recent advances in CKRT technology, tailored specifically for
pediatric and neonatal use, have improved the safety and efficacy
of this therapy [8-10]. Although the survival rate for children re-
ceiving CKRT has improved in recent decades, mortality remains
considerably high [11]. The patients surviving CKRT procedures
are at risk of developing adverse kidney outcomes both in short-
and long-term observation [12, 13].

Artificial Intelligence (Al) methods revolutionize the analysis
of scientific data in different fields including nephrology [14].
Recent studies show that Al-based models employing tree-based
algorithms (e.g. random forest or XGBoost), neural networks, or
support vector machines, can be used to predict the occurrence
of AKI post-surgery [15-18], severe burn injuries [19], or in critical
care setting [20, 21].

The objective of this study is to identify factors influencing mor-
tality and the occurrence of adverse kidney outcomes in short-
term observation in neonates and infants with AKI using the Al
XGBoost models.

MATERIALS AND METHODS

EurAKId Registry (European Registry of Pediatric
Acute Kidney Injury Dialysis Treatment)

The EurAKId Registry (ClinicalTrials.gov NCT 02960867) is a
prospective, international study gathering data on acute pediatric
KRT from 14 European pediatric nephrology centers. It was es-
tablished in September 2016 by the ESCAPE Network (European
Study Consortium for Chronic Kidney Disorders Affecting Pedi-
atric Patients) based on the results of a survey conducted earlier
that year. Each participating center has obtained and presented a
local bioethics committee approval.

The registry is based on an online case-report questionnaire
and collects data on patients 0-18 years of age, who require acute
KRT.Itincludes three KRT modalities—PD, intermittent hemodial-
ysis (HD), and CKRT—chosen in accordance with regional stan-
dards of care) conducted both in intensive care and ward settings,
due to AKI and other indications, for example inborn errors of
metabolism, sepsis, or fluid overload (FO). Pre-existing chronic kid-
ney disease (by KDIGO definition) is an exclusion criterion. AKI di-
agnosis, AKI staging, and CKD exclusion are defined by the on-site
investigators in accordance with current guidelines. Data are col-
lected in seven domains: demographic and admission data, clin-
ical parameters at dialysis start, data at pediatric intensive care
unit admission, modality-specific (PD, iHD, and CKRT) data, and
data on the occurrence short-term outcomes (mortality, protein-
uria, hypertension, and requirement for chronic dialysis at hospi-
tal discharge, all assessed by regional investigators). All definitions
are available in previous publications [22].

Study group

The present study comprises children up to 12 months of age in-
cluded in the EurAKId Registry who underwent CKRT between
September 2016 and September 2023. During this period, 450 pa-
tients were enrolled in the registry, of whom 136 met the age cri-
teria for this study. We excluded 41 children (37 patients treated
with PD, two patients treated with iHD and two with significant
missing data). In total, 95 patients were included in the present
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Patients enrolled in EurAKId
Registry
n=450

Patients > 12 months of age
n=314

Patients up to 12 months of age
n=136

Patients excluded:
- patients on PD n=37
- patients on iHD n=2
- significant missing data n=2

Figure 1: Patient selection for the study.

analysis (Fig. 1). The study focuses on CKRT because it presents
specific technical and clinical challenges in neonates and infants;
among children up to 12 months, CKRT was the most representa-
tive and homogeneous group.

Baseline characteristics

Based on patient characteristics reported in the registry, we de-
fined the study population. We included basic anthropometric
parameters and demographic data, baseline clinical characteris-
tics, and serum creatinine (SCr) concentrations. The full list of
variables considered in this study is available in the Supplemen-
tary Material (Supplementary Table 2). The cohort was divided
by age into two groups: neonates aged <1 month and infants
(1-12 months). For the patients admitted to the pediatric inten-
sive care unit, the illness severity was assessed using the PRISM
III score. Urine output decline (calculated as the difference be-
tween urine output at admission and at dialysis initiation) and SCr
rise (calculated as the difference between SCr at dialysis start and
at hospital admission) were used as indicators of AKI trajectory.
We identified seven categories of primary disease: cardiac disease,
shock, acute kidney disease, inborn error of metabolism (IEM),
malignancy/hematologic disease, liver disease, and pulmonary
disease.

CKRT technical aspects and settings

We analyzed the technical aspects and settings of performed
CKRT procedures. They are available in the Supplementary Mate-
rial (Supplementary Table 2). Due to significant technical distinc-
tive features, the analyzed population was divided by the use of

Patients included in the study
n=95

standard CKRT, and ECMO-related CKRT. Depending on the CKRT
modality, the prescribed dialysis dose was calculated as dialysate
flow rate in CVVHD, replacement flow rate in CVVH, or the sum of
both for CVWHDF.

Primary and secondary outcome measures

The primary endpoint was mortality before hospital discharge.
Secondary endpoints were assessed at hospital discharge and in-
cluded: need for chronic dialysis, presence of proteinuria, and
presence of hypertension.

Basic statistical analyses

Depending on the distribution (assessed with the Shapiro-Wilk
test), data were expressed as mean +standard deviation (SD) for
variables with normal distribution or median (interquartile range,
IQR) for variables with distribution other than normal. The follow-
ing statistical tests were applied: Mann-Whitney U-test, Kruskal-
Wallis ANOVA test, and chi-squared test. The results were consid-
ered significant with P < .05. Basic statistical analyses were per-
formed using Dell Statistica v.13.3 software.

Machine learning-based analyses

We used a machine learning (ML) method, specifically XGBoost
gradient-based decision trees to analyze nonlinear relations be-
tween observed variables and the outcome measures: mortal-
ity, proteinuria, and hypertension. Independent binary classifiers
were used to predict the outcomes given the set of observations
by minimizing the negative log-likelihood of the Bernoulli distri-
bution defined by the target variable XGBoost was chosen due to
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its high performance proven by numerous applications, natural
way of managing missing data, and simple explainability. How-
ever, for clarity, we also compared the performance of the XGBoost
model with other approaches including: Cox model, random for-
est, decision tree, linear regression, K-nearest neighbors, and naive
Bayes.

Explanation of the classifiers’ decisions

In this study, we put special attention to the explanations of
models decisions, as our goal was to explore the predictors of
short-term AKI outcomes. Therefore, we investigated the struc-
ture of the trained classifiers with the SHAP technique, which
measures the contribution of each feature to the final prediction
of the model based on all splits in trained decision trees. SHAP
values were calculated for each attribute in each case from our
dataset. We report (i) the mean absolute SHAP value for each
attribute and (ii) the actual contribution (positive/negative) of a
given attribute for a particular range of values. For readability,
we present only important features that exceed 0.1 mean ab-
solute SHAP value. The full list of variables is provided in the
Supplementary Material.

Experiment methodology

Cross-validation was used to assess the performance of the
trained classifier. We randomly divided the dataset into 10 sep-
arate pieces and trained XGBoost models using different combi-
nations of 9 out of 10 available parts, while evaluating it on the
hold-out 10th piece. To ensure the consistency of final results, we
additionally reran the same analyses five times using different
random splits. We then averaged the results over all runs and all
splits. For metrics, we used accuracy, specificity, sensitivity, posi-
tive predictive value (PPV), and area under the receiver-operating
characteristic (ROC) curve (AUC). We report the average value with
its SD. For explainability, we average SHAP values over individ-
ual models. However, since our goal was to assess the main risk
factors, we extracted the SHAP values only from the models that
achieved satisfactory AUC score >0.6 on a given cross-validation
test split. To avoid overfitting of the data we did not use any au-
tomatic fine-tuning of the XGBoost parameters relying on the de-
fault values while limiting the number of decision trees to 40 for
the mortality and 20 for the proteinuria model.

In the following we discuss the predictors for mortality and
proteinuria, focusing on the XGBoost due to its superior perfor-
mance. The comparison of the factors identified by XGBoost and
simple Cox models is presented in the Supplementary Material
(Appendix 2).

RESULTS
Study group characteristics

The anthropometric, demographic, and basic clinical features of
analyzed patients are displayed in Table 1. The study group com-
prised 30 neonates and 65 infants. On admission, the median SCr
level was 0.6 mg/dl (IQR 0.2-1.2) and median urine output was
2.3 ml/kg/h (IQR 0.8-4.1). At CKRT initiation, SCr level was sig-
nificantly higher comparing to baseline (0.9 mg/dl, IQR 0.5-1.4,
P < .001). In the entire cohort, urine output decrease was sta-
tistically insignificant (—1.5 ml/kg/h, IQR —3.9-0.0, P = .145), and
urine output at CKRT start did not differ significantly between sur-
vivors and non-survivors (1.1 ml/kg/h, IQR 0.2-3.5 vs 2.1 ml/kg/h,
IQR 0.0-4.1 respectively; P = .880). FO at dialysis initiation was
3.6% (IQR 0.0-10.6%) and was equal in the two groups (survivors

4.0%, IQR 0.0-9.1%; non-survivors 3.7%, IQR 0.0-14.8%). Median
time from hospital admission to CKRT initiation was 4 days
(IQR 1-15) and was significantly shorter in survivors than non-
survivors (2 days, IQR 0-8.5 vs 10 days, IQR 2.0-32.0 respectively,
P <.001).In 29.5% of patients CKRT was initiated within 1 day after
admission.

CKRT management

In the analyzed group, the median CKRT duration was 116 hours
(IQR 56-219) per patient, with the mean circuit lifetime of 29 hours
(IQR 18-46). In most patients (84.2%, n = 80), CKRT was performed
using the Prismaflex/Prismax devices. Five infants (body weight
3.8-8.6 kg, none of them premature) underwent procedures on
CARPEDIEM device, three children on Aquarius device, and in
seven patients the system was not specified. The most commonly
applied anticoagulation was heparin (57.9%), followed by proce-
dures with no anticoagulation (20%), and regional citrate anti-
coagulation (16.8%), no data on anticoagulation in five patients.
CVVHDF was the leading CKRT modality (46.3%). CVVHD and
CVVH were applied in 9.5% and 8.4% of patients, respectively.
ECMO-related CKRT procedures were conducted in 33 (34.7%)
patients. Among the remaining 62 patients, the most common
vascular access site was right internal jugular vein (56.5%), fol-
lowed by femoral (21.0%), left internal jugular (12.9%), and subcla-
vian veins (8.1%). One patient (1.1%) required a CKRT-therapeutic
plasma exchange tandem therapy. The technical aspects of CKRT
procedures by ECMO and non-ECMO groups are displayed in
Supplementary Table 1.

In the entire analyzed population, the median prescribed dial-
ysis dose was 3187 ml/h/1.73 m? (IQR 2359-3844) and differed
significantly regarding the patient’s primary disease (P = .020).
The highest dialysis dose was prescribed in the IEM group
(6513 ml/h/1.73 m?, IQR 307717 281).

Mortality

The overall mortality rate was 47.3% (n = 44) and did not differ
significantly between neonates and infants (53.3% vs 44.4% re-
spectively, P = 422, chi-squared test). Using the XGBoost model,
we identified factors influencing the occurrence of the mortal-
ity endpoint, of which the most important predictors were urine
output at dialysis start and SCr rise. The feature importance of
the variables included in the model is displayed in Fig. 2a. The
mean accuracy of the model was 59.53% + 0.96% (sensitivity
54.90 + 1.54, specificity 63.90 + 1.72, PPV 60.84 + 1.43), and the
AUC was 0.64 + 0.11 (Fig. 4a). Lower urine output at dialysis start
as well as a larger rise in SCr, longer time from admission to
dialysis initiation, lower blood pressure at admission, lower body
weight at admission, CKRT modality other than CVVHDE, longer
dialysis duration, and larger urine output decline were associated
with increased risk of mortality (Fig. 2b). ECMO use was included
in the model but did not surpass the SHAP importance threshold
(>0.1).

Proteinuria

Proteinuria at hospital discharge was present in 30.6% (n = 15) of
Survivors.

Higher serum creatinine concentration at hospital admission
and primary kidney disease were the most important predictors
identified in the XGBoost model. Figure 3 displays the importance
scores (Fig. 3a) and influence of parameter values on the occur-
rence of proteinuria (Fig. 3b) for the remaining variables. The
mean model accuracy was 79.11 + 2.46 (sensitivity 54.67 + 5.40,
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Table 1: Demographic, anthropometric, and clinical characteristics of the study group.

Survivors (n = 49)

Non-survivors (n = 44)

Parameter Entire cohort (n = 95)
Sex (n, boys/girls) 58/37
Born prematurely (n, %) 10 (10.5%)
Age (months) 1(0-7)
Race (n, %)
Caucasian 90 (94.7%)
Asian 2(2.1%)
Black 1(1.1%)
Unknown 2 (2.1%)

Body length at admission (cm)

Weight at admission (kg)
BSA (m?)
Primary disease (n, %)

55.0 (50.0-65.0)
4.0 (3.2-7.0)
0.25 (0.21-0.36)

Pulmonary 3 (24.2%)
Cardiac 2 (12.6%)
Liver 2 (12.6%)
IEM 2 (12.6%)
Kidney 1(11.6%)
Malignancy/hematologic 0 (10.5%)
Shock 0 (10.5%)
Other® 5 (5.4%)
Nephrotoxic drugs (n, %) 3 (45.3%)
1 32 (74.4%)
2 6 (14.0%)
3 5 (11.6%)
AKI (n, %) 65 (68.4%)
Stage
1 11 (16.9%)
2 19 (29.2%)
3 34 (52.3%)
No data 1(1.6%)
PICU admission (n, %) 93 (97.9%)
MODS (1, %) 69 (72.6%)
Number of organs involved (n,
2 11 (15.9%)
3 38 (55.1%)
4 17 (24.6%)
>4 3 (4.4%)
Vasopressor use (n, %) 69 (72.6%)

27/22 29/15
7 (14.3%) 3 (6.8%)
5 (0-8) 1 (0-6.5)

47 (96.0%)

42 (95.4%)

1 (2.0%) 1(2.3%)
0 0
1 (2.0%) 1(2.3%)
59.0 (50.0-68.0) 52.0 (50.0-60.0)
46 (3.5-7.6) 3.8 (3.0-6.1)

0.29 (0.22-0.37)

12 (24.5%)

0.22 (0.20-0.31)

11 (25.6%)

5 (10.2%) 7 (16.3%)
6 (12.3%) 5 (11.6%)
8 (16.3%) 4(9.3%)
10 (20.4%) 1 (2.3%)
3 (6.1%) 6 (14.0%)
5 (10.2%) 5 (11.6%)
0 (0.0%) 4(9.3%)

18 (36.7%)
13 (72.2%)
3 (16.7%)
2 (11.1%)
33 (67.4%)

23 (52.3%)
17 (74.0%)
3 (13.0%)
3 (13.0%)
32 (72.7%)

Total PRISM III score

14.0 (10.0-19.0)

3(9.1%) 8 (25%)

9 (27.3%) 10 (31.3%)
21 (63.6%) 13 (40.6%)
0 (0%) 1(3.1%)
48 (97.9%) 44 (100.0%)
0 (61.2%) 7 (84.1%)
6 (20.0%) 4 (10.8%)
19 (63.3%) 19 (51.4%)
5 (16.7%) 12 (32.4%)
0 (0.0%) 2 (5.4%)
32 (65.3%) 35 (79.5%)
13.0 (8.0-22.0) 14.0 (10.0-17.0)

@Including three immunologic disorders, one neurologic disorder; missing data in one patient

No data on survival in two patients.

BSA, body surface area; MODS, multiorgan dysfunction syndrome; PICU, pediatric intensive care unit.

specificity 90.67 + 3.34, PPV 76.38 + 6.46). The AUC was 0.74 + 0.04
(Fig. 4b).

Other outcome measures

We found no significant predictors for the remaining outcome
measures set for this study. Hypertension was present in 24.5%
(n = 12) of survivors, and the XGBoost model had predictive ac-
curacy comparable to random. Only one patient required chronic
KRT at hospital discharge.

DISCUSSION

In this analysis of prospectively collected data, we propose XG-
Boost models to identify factors influencing mortality and pro-
teinuria in neonates and infants requiring CKRT. Comparied
to the traditional Cox models, the performance of XGBoost
was superior, particularly in predicting proteinuria at discharge
(Supplementary material, Appendix 2). We believe this improve-
ment in performance by the XGBoost model may be partially

attributed to its native ability to handle missing and correlated
data. Meanwhile, Cox models prioritize categorical variables with
well-defined effects, which it can represent efficiently.

In our cohort of CKRT-treated neonates and infants, the overall
mortality rate was 47.3%. This is consistent with the recent WE-
ROCK study report [11], and lower than the rates from the ppCRRT
study conducted previously [24]. Our XGBoost model identified
low urine output at CKRT initiation as the most important mor-
tality predictor. Interestingly, it was not associated with FO rate
and had an importance of 0.14. In literature, FO is the most well-
established predictor, contributing to increased risk of mortality
in CKRT-treated children [25] as well as in critically ill neonates
[26]. Of note, the median FO rate in the presented group was rela-
tively low (3.6%) and did not differ significantly between survivors
and non-survivors. As this study represents a recent cohort, our
results suggest that CKRT may have been initiated earlier, which
may enable the new prognostic factors for mortality to emerge.

We found that more severe AKI progression (defined as larger
urine output decline and SCr rise) between admission and CKRT
initiation was also a factor predicting mortality. Although all
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@ Urine Output at Dialysis Start [ml/kg] - 0-55
Serum Creatinine Rise [mg/dI] -GGG 0.48
Days from Admission to Dialysis Start - R 040
Systolic Blood Pressure at Admission [mmHg] NG o 33
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Catheter Diameter - 0.20
Urine Output [ml/kg/h] - 0.17
Ultrafiltration [ml/kg/h] - 0.16
Replacement Flow Rate [ml/kg/h] - 0.15
Fluid Overload at Dialysis Start [%] - 0.14
Serum Creatinine at Admission [mg/dl] - 0.14
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Figure 2: (a) Importance of factors influencing mortality identified in the XGBoost model. (b) Influence of the identified factors on mortality. Green,

decreasing risk; red, increasing risk.

children met the criteria for severe AKI (KDIGO stage 3) at CKRT
initiation, their functional deterioration varied in rate and magni-
tude, affecting outcomes. Longer time from admission to dialysis
initiation and longer dialysis duration were also associated with
higher mortality (importance scores 0.40 and 0.25, respectively).
As the registry lacks exact AKI diagnosis times, we used the in-

terval from hospital admission to CKRT initiation as a proxy. This
provides a consistent metric for both early AKI at ICU admission
and AKI developing later due to secondary insults such as nephro-
toxicity or sepsis. Randomized controlled trials in adults have re-
ported contradicting results regarding the impact of early CKRT
initiation on outcomes [27, 28], but a metanalysis [29] showed
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Figure 3: (a) Importance of factors influencing proteinuria at hospital discharge, identified in the XGBoost model. (b) Influence of the identified factors
on proteinuria at hospital discharge. Green, decreasing risk; red, increasing risk.

reduced mortality and dialysis-dependency with early CKRT initi-
ation. Retrospective pediatric studies [30, 31] also found reduced
mortality rate with earlier start. The recent WE-ROCK study [32]
linked delayed CKRT initiation to higher mortality and major ad-
verse kidney events on 90 days (MAKE-90) in children and young
adults. The influence of CKRT duration on mortality is not thor-
oughly studied. One pediatric study [33] showed slightly higher
mortality in children with longer CKRT duration, but with no
statistical significance. Prolonged CKRT was also associated with
lower chances of kidney function recovery [34].

An important factor in the XGBoost model was low blood pres-
sure at admission, which together with high heart rate might be
attributed to hemodynamic instability. Lower body weight was
also associated with increased mortality. Although not statisti-
cally significant, the mortality tended to be higher in neonates
than infants. Most of the cohort underwent CKRT on adult equip-
ment adapted for pediatric use. Only five patients received treat-
ment with the dedicated, miniaturized machine (CARPEDIEM).
Adult machines have been adapted and used successfully even
in the smallest children for decades now [24, 35, 36]. However,
recent reports provide new evidence on CARPEDIEM’s safety and

efficacy [8]. A comparison between the ppCRRT study and the Ital-
ian CARPEDIEM registry [37] covering two different eras, showed
better survival to CKRT discontinuation in the dedicated infant
machine group.

Interestingly, CVVHDF was identified as a factor improving the
outcome with modest importance (0.28). This stands in contrast
to the previously conducted studies. A recent adult network met-
analysis showed that no single CKRT modality was superior to
others [38]. Moreover, a pediatric study showed no difference in
CKRT modality between survivors and non-survivors [39]. Our
findings suggest that combined convective-diffusive clearance
might be beneficial for the youngest critically ill patients. This,
however, requires further, preferably prospective studies on larger
cohorts, and should be interpreted with caution.

The other XGBoost model proposed in the present study iden-
tified several factors predictive of proteinuria in CKRT survivors.
This model had satisfactory accuracy (79.11% + 2.46%) and AUC
(0.74 £ 0.04). In our cohort of neonates and infants, proteinuria
at hospital discharge was associated with higher serum creati-
nine levels at admission and at CKRT start, and primary kid-
ney disease. These factors likely reflect more extensive kidney
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Figure 4: (a) ROC curve for predicting mortality. (b) ROC curve for predicting proteinuria at hospital discharge.

impairment, contributing to the need for CKRT. Interestingly,
lower replacement and dialysate flow rates emerged as predictive
factors, which once again might suggest potential benefits of the
combined diffusive-convective clearance for kidney outcomes.
However, it is important to note that predictors identified using
Al tools do not necessarily equate to causal risk factors.

We were not able to develop a model predicting the occur-
rence of hypertension at hospital discharge with accuracy sig-
nificantly higher than random, probably due to a low number
of patients. Although the numbers of patients with protein-
uria and hypertension at discharge were relatively low, they ac-
count for a significant percentage of survivors. This underlines
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the need for periodical nephrological follow-up after the AKI
episode.

The primary goal of our Al model was to identify the potential
predictive factors for mortality and proteinuria in CKRT sur-
vivors. Among the methods tested, the XGBoost algorithm demon-
strated superior performance compared to alternatives like deci-
sion trees and random forest models, as well as the Cox model
(Supplementary material, Appendices 1 and 2). This finding aligns
with recent research that underscores its effectiveness [40]. Fu-
ture efforts to develop computer-aided diagnostic systems could
benefit from integrating more advanced ML techniques, such as
deep learning or multi-modal approaches. However, the success
of these methods will largely depend on the size and quality of
the available dataset [14].

This study presents a European, multicenter cohort of neonates
and infants receiving CKRT in Europe. We analyzed data on CKRT
management in these patients and, for the first time, we applied
advanced Al to identify factors influencing outcomes and propose
the models predicting selected outcome measures. However, we
acknowledge that this study has several limitations. The multi-
center character of the study limited our access to further data
not collected in the EurAKId Registry that might have been use-
ful. Moreover, as the AKI diagnosis and grading was performed by
on-site investigators, the results might have been influenced by
the varying severity of the patients’ conditions. Notably, the initial
AKI stage had low importance score in the XGBoost model (0.04).
A relatively high mortality rate significantly reduced the number
of patients for assessing the secondary outcomes (proteinuria, hy-
pertension, need for chronic KRT), making it impossible to build
a satisfactory XGBoost model for two of them. In this study, we
build our XGBoost models to automatically find the combinations
of high-risk factors for mortality and proteinuria. However, given
the limited performance of the final models, further studies are
needed to consider them as a direct tool supporting the decisions
of the medical team. As our analysis was based on internal cross-
validation within a single dataset, external validation with ad-
ditional data is necessary for the accurate evaluation of models
performance. Notably, our study focuses on neonates and infants
receiving CKRT, excluding patients on PD, which remains a com-
monly chosen modality in this population. Therefore, the results
do not reflect the outcomes of overall neonatal and infantile AKI
requiring dialysis.

CONCLUSION

Based on the proposed XGBoost models, we conclude that more
severe AKI progression and longer time to CKRT initiation might
be importantrisk factors for mortality in children up to 12 months
of age. Primary kidney disease and related biochemical param-
eters are strong predictors of proteinuria at hospital discharge.
Although some findings align with existing knowledge, our Al ap-
proach allowed us to quantify and rank their predictive contribu-
tion using SHAP analysis, which we believe adds interpretability
and methodological value. Moreover, the validation of this model
might lead to analyzing even more numerous and complex vari-
ables for a more personalized risk stratification. While the predic-
tive performance in our study is modest, the XGBoost models help
prioritize key risk factors and may support early risk stratifica-
tion in clinical settings. Future prospective validation and model
refinement are warranted before clinical implementation. Larger
studies are needed to provide definitive results and develop mod-
els applicable in clinical routine.
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