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Abstract

The Haezendonck—Goovaerts (HG) risk measure defined on Orlicz spaces via the so-called
normalised Young function is a direct generalisation of the Expected Shortfall risk measure.
The HG measure is known to be a coherent one, thus making it more robust than some
of the alternatives, such as Value-at-Risk, for aggregating and comparing risks, and at
the same time more flexible for capital allocation problems, risk premium estimation,
solvency assessment, and stress testing in insurance and finance. As random risk in
practical applications is often assessed in a portfolio setting—a collection of insurance
policies or financial assets, like stocks or bonds—we examine the situation in which the
total portfolio risk is expressed as the sum of individual random risks. For this, we consider
the sum S,(f) = (1 + ...+ Gy of possibly dependent and non-identically distributed real-
valued random variables {1, ..., ¢, with consistently varying distributions. Assuming
that the collection {&1, ...,&,} follows the dependence structure, similar to the asymptotic
independence, we obtain the asymptotic estimations of the HG risk measure for the sum
SEF) when the confidence level tends to 1. The formulas presented in our work show that in
the case where a portfolio of random losses contains consistently varying losses and the
others are asymptotically negligible, it is sufficient for risk assessment to consider only the
tails of those dominant losses.

Keywords: sum of random variables; asymptotic independence; tail-moment; heavy tail;
consistently varying distribution; Haezendonck—Goovaerts risk measure

MSC: 91B05; 60F10; 91G15

1. Introduction

Risk measurement plays a central role in modern actuarial science, financial regulation,
and quantitative risk management. As markets become increasingly complex and uncer-
tain, the limitations of classical risk measures, such as variance, Value-at-Risk (VaR), and
Expected Shortfall (ES), have become more apparent. In particular, widely used regulatory
metrics often fail to adequately capture tail risk, lack desirable coherence properties, or
provide insufficient flexibility to model risk preferences. For instance, it is well known that
the VaR measure in general does not satisfy the sub-additivity axiom, and, as a result, fails
to obey the diversification principle. Additionally, as it is defined as a certain percentile of
the loss distribution, it does not account for the severity of losses beyond that percentile [1].
Therefore, it may underestimate risk in market stress situations under extreme asset price
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fluctuations [2]. These challenges have motivated the search for more robust and theoret-
ically sound alternatives. One such alternative is the so-called Haezendonck-Goovaerts
(HG) risk measure, which is defined in Section 1.6. The HG risk measure, like other risk
measures, is a method to assess the amount of capital we should hold to protect ourselves
against impending losses, taking into account the level of risk aversion. The HG risk
measure is actually a family of risk measures that depend on the so-called Young function
@. Choosing another Young function yields a different version of this risk measure. The HG
risk measure derived from the principles of premium calculation in [3] unifies economic
intuition with strong mathematical foundations. According to the results of [4,5], the HG
risk measure has many properties necessary for risk measurements. In particular, this
measure belongs to the class of coherent risk measures in the sense of Artzner et al. [1], as
it is monotonic, translation-invariant, sub-additive, and homogeneous, and, as a result, is a
monetary and convex risk measure as in [6,7]. It is well known that the simplest case of HG
risk measure is the Expected Shortfall (ES) (or, synonymously, Conditional Value-at-Risk
or Tail Value-at-Risk or Conditional Tail Expectation, considered in detail in [8]. The ES
risk measure can be obtained from the HG risk measure using the Young function ¢(t) = t.
Therefore, the HG risk measure is a direct generalisation of the ES risk measure.

The HG risk measure is particularly useful in actuarial science and financial risk
management, where capturing heavy-tailed and extreme losses is essential. Its foundation
in Orlicz functions allows flexible modelling of risk aversion and tail behavior, making
it well suited for premium calculation, solvency assessment, and capital allocation. In
particular, the flexibility to select the Young function, which characterises the behaviour of
the measure, gives more control over the degree to which extreme losses influence the risk
assessment. It is important to note that, despite being more theoretically grounded than
some of the alternatives, the HG risk measure might be more challenging to implement in
practice.

Tang and Yang in [9] provided a formula for calculating the HG risk measure when
the Young function is a power function, see Theorem 3 below. However, in the same article,
the authors mention that in the general case, an analytical formula for calculating the HG
risk measure does not exist, since the calculation of the values of this measure is related
to finding quantiles. In this case, the authors of the article [9] suggest using asymptotic
formulas by writing one of the formulas of this form for random risk with a regularly
varying tail, see Theorem 4 below.

We observe that a random risk is often expressed as a sum of random variables when
it represents the aggregate loss of multiple individual risks. This occurs, for example, when
modelling total claims in an insurance portfolio, where each claim amount is a random
variable. It also arises in finance when a portfolio’s total loss is composed of the losses of
individual assets. More generally, any situation involving accumulated, component-wise,
or event-based contributions—such as operational losses, credit defaults, or catastrophe
events—naturally leads to a representation as a sum of random variables. In this paper,
we consider the case where the random risk is written as a sum of random variables that
are somehow dependent. We consider the case where, among the summable random
variables, there is a subset of variables with consistently varying tails, and the tails of the
other random variables are vanishing with respect to the latter. The main results of the
work are formulated in Theorems 6 and 7.
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1.1. Preliminaries

Letn e N={1,2,...},and let {{3,...,&n} be a collection of possibly dependent and
non-identically distributed random variables (r.v.’s). Denote

s =+ )

In the main results of the paper, we assume that random summands have consistently
varying distributions. Before a more detailed discussion on heavy-tailed distributions,
we first define the support of any distribution or distribution function (d.f.). For a d.f.
F : R — [0,1], the support of F is defined as

suppF = {x: F(x+6) — F(x —6) > 0forall 6 >0}
= {x:F(x—6)—F(x+0) >0foralls >0},

where F = 1 — F denotes the tail function (t.f). If suppF C [0,0), then we say that
the distribution (or d.f.) F is supported on R*. If supp F ¢ [0, o), then we say that the
distribution (or d.f.) F is supported on R.

1.2. Heavy-Tailed Distributions

In this subsection, we discuss the class of heavy-tailed distributions and the most
popular and closest subclasses of this class of distributions.

e Adf Fsupported on R is said to be heavy-tailed, written as F € €, if for all 6 > 0, we have
/ e®*dF (x) = co.

Due to the alternative expectation formula (see, e.g., [10,11]), we have
/ *dF(x) =146 / ¥ F(x) dx
[0,00) 0
implying that

Fes = F(x)>0,xeR;
Fe # < limsupe®™ F(x) = o foreach § > 0.

X—r00

e Adf Fsupported on R is said to be reqularly varying with index a > 0, written as F € Xy,
if for any y > 0, we have _
im li(xy) =y "
X—00 F(x)

It is easy to verify that the Pareto law with d.f.

F) = (1= e )Tl

belongs to the class %, for any positive a.

o Adf. F supported on R is said to be extended regularly varying with indices 0 < a < B,
written as F € ERYV (, gy, if for any y > 1, we have

y*ﬁ < liminf Ii(xy) < limsup ny) <y

o F(x) 0 xoe F(x)

|
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Due to the results of [12], the distribution with t.f.
F(x) =exp{ — |logx| — (logx — |logx|)?}, x > 1,

belongs to the class U &%V (4 py-

0<a<p

o Adf Fsupported on R is said to be consistently varying, written as F € €, if

F(xy)

limlimsup ==~ =
yTl x*)oop F(x)

It can be shown (see [13,14]) that the distribution with t.f.

_ X
F(x) — p\_logsz (2—]7— (1 — p)2Ung>CJ>’ x =1,

belongs to the subclass ¢\ |J %, for any parameter p € (0,1).
a=>0

e Adf F supported on R is said to be dominatedly varying, written as F € 9, if for any
y € (0,1), we have B
lim sup M < o0

X—»00 x)

The presented definition implies that the generalized Peter-Paul distribution with d.f.
F(x) =1—b o8] x >1,

belongs to the subclass & \ ¢ for all possible parameters a > 0,b > 1, see [15].
It is well known (see, for instance, [13]) that

%=\)%.c | ERY (ap) CC C D CH.

a=0 0<a<p

The following two indices are important to determine whether the distribution F belongs
to the aforementioned classes. The first index is the so-called upper Matuszewska index
(see, e.g., [16] (Section 2), [12,17]), defined as

F(xy)

F(xy)} = — lim log lim inf — .
10gy X—00 F(x) y—oo 1ogy X—00 F(x)

];r:inf{—

y>1

The other index, the so-called L-index, is defined as

Ly = limliminfw.
y\L] X—00 F(x)

For instance, this index is used in the main results of [18-20]. The definitions of the

aforementioned heavy-tailed distribution classes imply that

FeP & Jf <oo & Lp > 0;
Fe? & Lr=1= J§ <o
FEX = Lr=1,]f =

The classes of distributions # and Z have been extensively used in real analysis and
various spheres of probability (see, e.g., [16,21-24]). The class of consistently varying
distributions ¢ was introduced as a generalization of the class % in [25] and was referred
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to as “intermediate regular variation”. The concept of consistent variation has been applied
in various studies within the context of applied probability, including queueing systems
and ruin theory (see, e.g., [12,13,26-32]).

1.3. Asymptotic Relations

In this subsection, we introduce the notation used throughout the paper. For two
positive functions f and g, we write the following;:

P f(x)

x) < x) if limsup®™—=<% <1;
fx) 5 8(x) mSup
s f(x)

x)=0(g(x if limsup —= < oo;
f(x) = O(g(x)) mSup

flx) = g(x) if f(x)=0(g(x)) and g(x) = O(f(x));

flx) ~ g(x) if lim ——= =

xX—00 X—00 g(x)

In addition, we use the standard notation for indicators:

Ly(w) 1 ifweA,
AlW) =
0 ifwéA;

and for positive and negative parts of any real x,

+

x" :=max{0,x}, x~ :=max{0, —x}.

1.4. Quasi-Asymptotic Independence

In this paper, we suppose that the collection {¢, ..., &, } consists of pairwise quasi-
asymptotically independent r.v.’s. This dependence structure, which is a direct generaliza-
tion of independence, was introduced by Chen and Yuen [28] and has been considered in
[33-39], among others.

*  Real-valued rv.’s §1,...,Cn, n € N, with distributions supported on R are called pairwise
quasi-asymptotically independent (pQAI), if for all pairs of indices k,1 € {1,...,n}, k # 1, it
holds that

i P& > x, & > x) tim P(&F >x, & >x)
e P(EF > x) +P(5 >x)  xoeP(5 > x) +P(& > x)

The following statement is Theorem 3.1 in [28]. It provides an asymptotic result for the tail
probabilities of sums of pQAI r.v.’s with distributions from the class %

Theorem 1. Let {y,...,&u} bea collection of real-valued pQAI r.v.’s, such that Fz, € € for all
ke {1,...,n}. Then, for the random sum defined in (1), we have

(@) - =
P(Sn > X) x:;oongk(x).
k=1

The following statement directly generalises Theorem 1. The paper [40] (see Theorem
4 and the remark below the theorem) gives its detailed proof.
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Theorem 2. Let {&y,...,n} bea collection of real-valued pQAI r.v.’s, such that Fz, € € for some
L € {1,...,n}, and for other indices k # L suppose Fz, € € or P(|¢x| > x) = o(Fg, (x)). If

E(&5)" < oo, th hpe(0al
Joax (&))" < oo, then for each B € [0, a]

(€)\B b
]E<(Sn ) H{S,(f)>x}> x:oo kEZI E(ék H{§k>x}>' @)
and for each B € (0, a],

2((6-0)") 2 £ B0’ 0

ke,

where T, C {1,...,n} is a subset of indices such that Fz_ € € for k € 1.

1.5. Positively Decreasing Distribution

In this paper, we will use another concept to describe the monotonicity of a function.
This concept can be applied to a fairly broad class of functions, see [41,42]. However, we
will only consider the relevant subclass of d.f.’s considered in [16,43,44] among others.

e Adf Fsupported on R is said to have a positively decreasing tail, written as F € PD, if for
any fixed y € (0,1) _
F(yx)

Iiminf —= > 1,
xX—00 F(x)

or equivalently _
lim sup I-;(yx) <1
X—00 F(.X')

foranyy > 1.
We observe that

Ky = U%’NCPD; HNPD =0; €NPD #£.

a>0

Other properties of distributions from the class PD are presented in [43].

1.6. Haezendonck—Goovaerts Risk Measure

To give a precise definition of the HG risk measure, let us suppose that X is a real-
valued r.v. with a d.f. Fx representing a random risk.

e A function ¢ defined on R is said to be a normalised Young function if ¢ is nonnegative and
convex on the interval [0, 00) and such that ¢(0) =0, (1) =1, ¢p(c0) = o0.

The Orlicz space L? and the Orlicz heart L} of real-valued r.v.’s X associated with the
function ¢ are defined as

L? = {X : E(¢(cX)) < oo for some ¢ > O}, LY = {X :E(¢(cX)) < ooforall c > O}.
It is obvious that L? = L{ if

lim sup 9(27)

xseo ()

< 0

*  Let ¢ be a Young function, q € (0,1), and X € ILg) . The Haezendonck—Goovaerts (HG) risk
measure for variable X is defined as

HG¢(X) = inf (x +h(x,q)), 4)

https://doi.org/10.3390/axioms15010020
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where h = h(x,q) is a solution of the equation

Eq)((X—hW) =1-q ()

if Fx(x) > 0, and h(x,q) = 0if Fx(x) = 0.

According to Proposition 3(b,d) from [5], the minimiser (x., k) to the Equation (4)
exists for all ¢ € (0,1), and it is unique if the function ¢ is strictly convex. The HG risk
measure has received much attention in insurance and finance. The risk measure was first
introduced by Haezendonck-Goovaerts in [3]. For more results on HG risk measures, see,
e.g., [5,9,45,46] and references therein. As it is remarked in [9], an analytic expression for
the risk measure HG,;(X) is not possible in general because an explicit solution of Equation
(5) is generally not available. However, in the case of the power function ¢(t) = t*, 2 > 1,
the analytic expressions and asymptotic formulas can be derived for certain distributions.
Below, we present two statements from the paper [9] (see Equality (1.3), Theorem 2.1, and
Theorem 4.1).

Theorem 3. Consider the power Young function ¢(t) = t** with > > 1.
(i) Ifqge(0,1),x=1and EX" < oo, then

IE(X—&(q))+

T ©®)

F
HG(X) = Fx(q) +
— _
where Fx(q) = inf {x € R: Fx(x) > q} = inf{x € R: Fx(x) < 1— g} is the quantile
function of r.v. X.
F
(i) Ifge(0,1),x>1P(X =Fx(1)) =0,and E(X1)* < oo, then

— )\
HGy(X) =x+ <E((X1x))> , )
-9
where x = x(q) € ( — 00, 1%(1)) is the unique solution of the equation
E(X-x*)")"
( ) =1—q. (8)

(E((X—x)Jr)%)%_l

Theorem 4. Consider the power Young function ¢(t) = t* with » > 1, and let X be the
real-valued r.v. such that Fx € %, for some o > s¢. Then,

a(w — 5¢) /)1

M1 D/a

1/a 5

(B(a— 5, )) "~ Fx(q),

where

1
B(a,b) = / vy 11 —y)dy, a>0,b>0,
0
is the beta function.

In this paper, we obtain asymptotic formulas similar to those in Theorem 4 of HG
risk measure for distributions from the class ¥. More precisely, we derive asymptotic
formulas for the HG risk measure when the risk variable X represents a sum of consistently
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(€)

varying risks S;7’. The main results of this paper are based on general Formulas (7), (8) and
asymptotic relations (2), (3).

Note that the obtained asymptotic formulas can be applied to a special-form set of
random variables {61 X3, ...,0, X}, where {Xy, ..., X, } are real-valued primary r.v.’s, and
{61,...,0,} are nonnegative random weights. In such a case, the sum (1) becomes the
randomly weighted sum

n
06X
S = Y 0 Xy
k=1

In actuarial applications, this sum usually represents the present value of the total future net
loss of the insurance company during the first n time periods. In this case, the real-valued
r.v. Xy represents a net loss of an insurance company during the k-th time period, and
the random weight 6y is a stochastic discount factor from time k to time 0. A financial
interpretation of the sum S,(lex) is based on the construction of the portfolio. Each invest-
ment portfolio consists of n lines of risks with random losses Xj and random weights 0
describing the investment environment. In such a case, the sum S,(fX) represents the total
amount of future losses potentially incurred by the investment portfolio. The problems

related to the asymptotic behavior of the sum S,(fX) were considered in [37,47-61], and

asymptotic properties of distributions of sums Sg{ex)

related to the asymptotic behavior of
risk measures, similar to the ES risk measure, were considered in [62—-67].

The transition from the asymptotic properties of the sum S,(f) to the analogous proper-
ties of the sum S,(f)X) is ensured by the product-convolution properties reviewed in detail in
Chapter 5 of [44]. We only recall that for two independent r.v.’s. X and Y, the distribution
of the product XY is described by the product-convolution of the d.f.’s. Fx ® Fy. Below,
we formulate a particular statement on the product-convolution closure (see Proposition

5.2(iii), Proposition 5.3(iii), Proposition 5.4(i) in [44]).

Theorem 5. Let F be a distribution on R and G be a distribution such that G(0—) = 0 and
G(0) < 1.

(i) IfF € %y and G(yx) = o(F(x)) for somey > 0, then F @ G € Za;

(i) IfF € € and G(yx) = o(F(x)) forsomey > 0,then F® G € €;

(iii) IfF € 2, thenF®G € 9.

The rest of the paper is organised as follows. In Section 2, we provide a formulation of
the main results. Section 3 deals with the auxiliary results that are essentially related to the
properties of quantile functions. Section 4 presents the proof of the asymptotic formulas for
the HG risk measure. Section 5 deals with the analysis of the particular example illustrating
the accuracy of the derived asymptotic formula. Finally, Section 6 concludes.

2. Main Results

In this section, we state two theorems on the asymptotic behavior of the HG risk
measure in the case where that measure is determined for the sum of distributions from the
class €. The first theorem is derived for the sum of simple r.v.’s, and the second theorem is
derived for the sum of weighted r.v.’s.

Theorem 6. Consider the power Young function ¢(t) = t** with ¢ > 1, and let {&y,...,in} bea
collection of real-valued pQAI r.v.’s.

https://doi.org/10.3390/axioms15010020
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(i) Let s =1, 1mkax E((j,j) < oo, Fr, € € for some L € {1,...,n}, and for other indices
<k<n

k # Llet Fr, € € or P(|8x| > x) = o(Fg (x)). If Fr, € PD forallk € I, = {k €
{1,...,n} : F € €}, then

HG, (51(1@) o ﬁn(ﬂ) + 1‘1 kgﬂ E(ﬁfk - ﬁn(‘?))+/

—
where Hy, is the quantile function of the d.f.

H, := max {0,1 - kEZIn fé’k}‘

(i) Let s > 2, 1r£1ka<an(ij,j)% < oo, Fr, € ¢ for some L € {1,...,n}, and for other indices

k # Llet Fr, € € or P(|Cx| > x) = o(Fg, (x)). Let, in addition,

_ P — x—1

F I3

max lim sup M max lim sup ﬂ <1 )
k€L, x—oo  Fg (x) k€L x—oo Fg (yx)

for somey > 1, where T, = {k € {1,...,} : F_ € €}. Then,
) ~ % L Y +\
HG,(517) 50+ (12 L 5(@-5)")")
where X = X(q) is the unique solution to the equation
=1\ %
(Zkezn E((Ck - 9?)+) )
<ZkeIn E((ﬁk - 55)+) )

As mentioned earlier, our second main theorem is on the asymptotics of the HG risk

x—1

measure for a weighted sum. We remark only that in this theorem, we suppose that not
some, but all distributions of primary r.v.’s belong to the class %

Theorem 7. Consider the same power Young function as in Theorem 6. Let {X1,...,X,} bea
collection of real-valued pQAI r.v.’s with corresponding d.f.’s {Fx,, ..., Fx, } belonging to class
€. Let {01, ...,0,} be another collection of arbitrary dependent, nonnegative, and nondegenerate
at zero r.v.’s. Suppose that collections {X1,...,X,} and {60y, ...,0,} are independent and that

max {EO7} is finite for some p > max [i .
1<k<n{ i} s finite f P 1<k<n]FXk

Q) Ifx=1, max E(X,") < oo, and Fx, € PD forallk € {1,...,n}, then,

KN

HGy (SS;X)) & H(q) + 1q k_zl E(Gka — ﬁ;:(q)) y

-
where H}; is the quantile function of the d.f.

H}; := max {0,1 — kizll-"gkxk}.

https:/ /doi.org/10.3390/axioms15010020


https://doi.org/10.3390/axioms15010020

Axioms 2026, 15, 20

10 of 31

(i) Let > >2and max E(X,j)% < oo. Let, in addition,
1<k<n

—= P4 — x—1

. Fx, (yx) . Fx, (x)

max limsup = max limsup = <1
I<ksn x—eo Fx (%) I<ksn x—eo Fx, (yx)

for some y > 1. Then,
1/
(6X)) , 4+ 1§ et
HGq(Sn )qux (9) + (1_qk_leE((9ka x*(q)) ) ) ,
where x* = x*(q) is the unique solution to the equation

(ztm(@s-<) ")

(st 2(mn-e)'))

3. Auxiliary Statements

3.1. Some Properties of Quantile Functions

In this subsection, we formulate and prove several auxiliary results on useful proper-
ties of the quantile functions. Analogs of many of the statements formulated below can be
found in articles [41,42,68,69]. For completeness, we present their complete proofs.

Lemma 1. Let F be a d.f. from the class €. Then,

F(?(q))ﬁq, and F(;(P))JOP

where .
F(q) =inf{x:F(x) > q},q€ (0,1),

is the quantile function for F, and

pa —

F(p) =inf{x:F(x) < p},p e (0,1),
is the quantile function for t.f. F.

Proof. Letq € (0,1). Since d.f. is right-continuous, the set {x : F(x) > q} := A is closed.
Hence, ;(q) € A, which implies that

-
F(F(p)>q (10)
for any g € (0,1). Therefore,
-
F(F@) 2 0 (11)
g1l

For the first asymptotic relation of the lemma, it remains to prove that

“
lim sup M <L

p (12)
q11

https://doi.org/10.3390/axioms15010020
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Suppose, on the contrary, that

> 1.

-
_ F(F@)
lim sup
gt q
Then, there exist A > 0 and the sequence g, 1 1 such that
—
F( F (Qn)
i L)

n—oo ‘111

=1+A4,

implying that F( <IF(qn)) > (1+ A/2)qy for large n. Since F(x) < 1 for all x, we have that

gn < (14+4/2)7"

for large n. This is impossible because g, 1T 1. The obtained contradiction proves
estimate (12). Estimates (11) and (12) imply the first asymptotic relation of the lemma.
Now, consider the second relation of the lemma. Let p > 0. Due to inequality (10), we

have
f(f(p)) =1—F(inf{x:F(x) <p}) =1—F(inf{x: F(x) > 1—p})
=1-F(F1-p) <p, (13)
implying that
F(F(p) < p. 14
(F(p) 5r (14)

It remains to prove that

>1. (15)

Suppose, on the contrary, that

From this, it follows that there exist A € (0,1) and a sequence p,, | 0 such that

/=
n—00 pi’l

Hence,

T

F(

(pn)) = F(inf(x : F(x) < pa}) < (1= A/2)ps,
or, equivalently,

F(inf{x : F(x) < pn}) = F(inf{x: F(x) 2 1—py) > 1 — pp + pu(A/2)
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for large n.
Let us temporarily denote

Xy =inf{x: F(x) > 1—pn}.

Since F(x) > 0 for all x, the sequence x, is nondecreasing, and x, 1 co. In addition, the
d.f. F is right-continuous so that F(x,) > 1 — p,. For fixed n, there are two possible cases:
F(xy) =1— pyor F(x,) > 1 — py. In the first case, we get

1_Pn>1_Pn+Pn(A/2)r

which is impossible due to the positivity of A. Consequently, the d.f. F has a jump at each
point x,,, from which it follows that

F((1—en)xn) <1—pyu and F(x,) > (1—pn) + pu(A/2),

or, equivalently,
F((1—¢n)xn) > pn and F(x,) < pa(1—A/2)

for some sequence ¢, | 0. These estimates imply that

F(((1-
fim FUL—e)%) 2
n—oo F(xn) 2—A

for some sequences x,; 1T oo and ¢, | 0. The derived relation contradicts the condition
F € €, because it should be
F((1—-e¢)x

lim lim sup M <1

el0 x—oo F (x)
by the definition of the class € presented in Section 1.2.

The obtained contradiction proves the validity of inequality (15), which, together with

estimate (14), proves the second asymptotic relation of the lemma. O

Lemma 2. Let F be a d.f. from the class PD. Then,

—

F (F(x)) ~ x, and F(F(x)) ~ X,

X—00 X—00

«
where the quantile functions F and ? are defined in Lemma 1.

-
Proof. Consider the first relation. By the definition of the quantile function F, we have

F (F(x)) = inf{y : F(y) < F(x)).

Since the function F is nonincreasing, that is F(y) < F(x) for y > x, we have that
F

F (F(x))< x, implying

F(F) < x (16)
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It remains to prove that
<
F (F(x)) z «x (17)
X—00
Suppose, on the contrary, that
£
F(F(x
liminf (F()) <1
X—00 x

In such a case, there exist A € (0,1) and a sequence x, 1 oo such that

lim 7% (F(xn))

n—co Xn

=1-A.

Hence,
-

F (F(xy)) =inf{y : F(y) < F(xn)} < (1 —2A/3)xy,
for sufficiently large 1, say n > Nj. This relation implies that

F((- ) <P

Since the function F is nonincreasing, it must be

F((1-5)n) = Fic)

(o))

lim —
n1—>oo F(Xn)

for n > Nj. Therefore,

which contradicts the definition of F € PD presented in Section 1.5. Consequently, the
asymptotic relation (17) holds. Relations (16) and (17) imply the first one of the lemma.
The second relation of the lemma follows from the equalities

o E(F(2)

xX—00 X

1
lim ~inf{y : F(y) > F(x)}

S D
= lim —inf{y : F(y) < F(x)}
&
F(F
g @)
X—00 X

The lemma is now proved. O

Lemma 3. Let d.f. F € PD. Then, for any two positive functions a(x) and b(x) such that
a(x) o b(x) and a(x) e 0, we have that

T

(a(x)) -~ F (b(x))

X—00

b(p) and a(p) — 0, we have

and for any positive functions a(p), b(p) such that a(p) i i
p p

Fa(p) - F (6(9).
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Proof. It suffices to prove the first equivalence relation because the second relation follows
from the first one by noting that

Fagy . FO0)
"UEGr) TTTE(B(2))

Consider the first relation. Firstly, we will show that

—

Fa()

liminf —

T F(b(x)

We will proceed with the proof by contradiction again. Assume that

(18)

lim inf ;(a(x))

T Fow)

This means that there exist A > 0 and a sequence x,, T co such that

<1

lim
n—oo

It follows that

$—
for some sequence F (a(x,))/(1—A/2) Al This contradicts the definition of F € PD
in Section 1.2.
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It remains to prove that

—

Fa() _,

lim sup —
T OF(b(x))

Suppose, on the contrary, that

—

F(a(x))

lim sup =

T OF(0(v)

> 1.

It follows that there exist A > 0 and a sequence x; 1 o such that

p
F(a

fim ) g

n—o00

F(b(xn))
Consequently,

Fla(x)) > (1 " 2) F (b))

—
for large n. By the definition of F, it follows that

a(xy) < F((l + é) <lz(b(xn))).

This relation, together with (13), implies

F<(1+§);(b(xn))> ()
F(Fo()) 7 o)

since a(x) o b(x). Thus,

for some sequence F (b(xy)) AL This contradicts the definition of F € PD in Section 1.2.

The lemma is now proved. [

Lemma 4. Let F and G be two d.f.'s such that F € ¢ N'PD, and G(x) ~ cF(x) for some

X—00
constant ¢ > 0. Then,

E(l_P)prIo;( _g)

Proof. The condition F € PD and Lemmas 2 and 3 imply that

X o~ <%(f(x)) ~ ;(G(ar)) (19)

x—00 xX—r00 c
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The conditions F € ' NPD and G(x) o cF(x) imply that G € ¥ NPD. Hence, G(x) > 0
— —

for all x € R, and therefore, G(p) — o0 as p | 0. By taking x = G(p) in (19), we get

c(r) ~ F (25( ) ).

pl0 c

By Lemma 1, we have

or, equivalently,

The lemma is proved. O

3.2. Properties of the Special Function in Equation (8)
Let X be an r.v. such that E(XT)” < oo and Fx(x) = P(X > x) > 0 forall x € R. Let

(E((x-x)"")
(B(x-0t))

be a well-defined function from Equation (8). In this subsection, we consider properties of

Tx(x) = x €R, (20)

the function yx and its components. The first such statement is proved in [9] (Lemma 2.1).

Lemma 5. Let X be an r.v. such that E(X*)™ < co and Fx(x) > 0 for all real x. If 5 > 1, then
function g(x) := E((X — x)T)” is continuously differentiable with

!

g (x)=—-xE((X— x)+)%_1, x € R.

If ¢ = 1, then for each x € R, the derivative from the right g, (x) = —F(x) and the derivative
from the left g (x) = —F(x —0).

Other statements directly concern the properties of the function yx.

Lemma 6. Let X be an r.v. such that E(X+)™ < coand Fx(x) > 0 forall x € R. Let yx be the
function defined in Equation (20). If 5 > 1, then

lim yx(x) =1 and lim rx(x) =0.

X—r—00

Proof. While the main steps of the proof are outlined in [9] (see the proof of Theorem 2.1),
we provide the complete proof here in more detail. Since Fx(x) > 0, we have that

E(X-x)")" = %/Xoo(u —x)* 'Fx(u)du >0

https://doi.org/10.3390/axioms15010020
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for any x € R. By using the classical Holder’s inequality, we get

(E((X =0 M (0))

e (B((x—x+)")""
e ) mn) )
(E((x—x)%)")

= Fx(x),

which implies the second equality of the lemma.
Let us consider the first equality. It is obvious that

=1\ %
(E((thﬁ) )
lim yx(x) = lim

X——00 xX—00 (E(%)ﬂ)ﬂil '

The classical ¢,-inequality and inequality (a +b)" < a™ +b™ provided for any real numbers

(21)

a, b imply that for positive x

E<(X+x)*>’{l g]E(}<++x>’”

1 4y 2—1
x x <6%<X"1E(X ) +1> =
where
1 if 1<x<2,
Cy =
2772 if 2> 2.
Hence,

lim (E((X+x)+)%_l>% _ <IE? 11%((X+x)+)%_1>% =1

by the dominated convergence theorem.

e (5(5) )

Now, we can derive the first equality of the lemma by substituting the last two relations

Similarly,

into equality (21). The lemma is proved. [

Lemma 7. Let X be an r.v. such that E(X+)™ < co and Fx(x) > 0 for x € R. If 5 > 2, then the
function vyx is continuous and strongly decreasing on R.

Proof. At first, let us consider the case » > 2. By denoting 7, = (X — x)™*, we have

7x(x) = (Enr )
—1°
(Byz)”
Due to Lemma 5, we get
) E 1\ 71 - o
() = e =0 e (g 2 = (o0 1)), e
X
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The classical Cauchy-Schwarz inequality and condition Fx(x) > 0, x € R, imply that

Nl—

Eny ' =B nf < < (Epz2) : (Bnz)".

Therefore, 'y/X(x) < 0 for x € R implying the assertion of the lemma in the case s > 2.
Now, let us suppose that s = 2. In this case,

(En)?
Enz -~

x(x) =

Using Lemma 5, we obtain the derivative from the right

{1x}, (@) = -2 (If:;)z (Fx)En? - (En,)?)

is negative for any x € R due to the Holder inequality

Nl—=
=
N\»—l

— (En?)*(F(x))?,

where the strictness of the inequality follows from the condition Fx(x) > 0,x € R. In the

Enpx = Enxl(x00)(X) < (E73) (El(m)(x))

same way, we get that the derivative from the left {’yx} ) is also negative for any real x
because

E77x 1 (3,00) (X) = EfjxLy,00) (X), x € R.

The derived properties of the function yx imply that this function is continuous and
strongly decreasing on R. The lemma is proved. O

Lemma 8. Let X be an r.v. such that E(X*)” < coand Fx € €. If 5 > 1, then

lim lim sup x(xy) <1
¥ x>0 X (x>

Proof. If E(X*)% is finite, then
E((X-x)")= p/ (u —x)P7IP(X > u)du
X

for any 0 < p < s. Therefore, for all positive x and y

7x(xy) (E« —xm”1>”<E<<x_x>+>">”‘l
1

7x(x) X —x)H)* E((X —yx)*)”

u—xy )*2Fx(u )du>%< [ (u—x)* " Fx(u)du >%1
(u—x)*2Fx(u)du f;;(u—xy)”*lfx(u)du

(f;o(u—x ) 2Fx(uy)du> (fxoo(u—x)”lFX(u)du >%_1

fxoo u—x)*2Fx(u)du fxoo(u —x)* 1Fx(uy)du
_ x—1
su Fx(u)
) (u;x) Fx(”]/)) ' )

, rx(xy) _ Fx(uy)
limsu lim sup sup = .
x—>oop 'YX(x) ( x—)oop u>€ FX( )

Ify € (0,1), then
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Since d.f. Fx € ¢, the last inequality implies the statement of the lemma. O
Lemma 9. Let X be an r.v. with d.f. Fx such that E(XT)” < oo and
= » = n—1
<lim sup L,X (yx)> (lim sup Fx(x) ) <1 (23)
X—00 FX(X) X—»00 Fx(yx)
for some ¢ > 1 and some y > 1. Then,
Tx(xy)

<1

limsu
xeoop 'YX(x)

for somey > 1.

Remark 1. Since Fx(x) > Fx(vx) for any v > 1, condition (23) implies that Fx € PD. If
Fx € % for some a > O, then the condition (23) holds for all 5 > 1. If Fx € ERV (45, C €

with some 0 < o < B < oo, then condition (23) holds in the case 1 < s < %

Proof of the lemma. Let »» > 1 and y > 1 be such that condition (23) holds. By
estimate (22), we obtain

_ P — x—1
lim sup x(xy) < limsup | sup M sup M
oo Yx(X) x—v00 uSx Fx(u) uSx FX(M]/)

= (imaup 2XC0) (s P20

X—»00 Fx(x) X—00 Fx(xy

Now, the lemma follows from condition (23). The lemma is proved. [

Corollary 1. Let s > 2 and let X be an r.v. with d.f. Fx satisfying condition (23). Then, the
function «yx defined in equality (20) is the t.f. of d.f. 1 — yx belonging to the class € N PD.

The corollary immediately follows from Lemmas 6-9.

3.3. Some Closure Properties

In this subsection, we present some closure properties of d.f.’s with respect to the
dependence structure and the product convolution. We use the results of this subsection to
derive Theorem 7. The proof of the first such lemma can be found in [18] (Lemma 4).

Lemma 10. Let Xy, Xp be QAI rv.'s with df. Fx, € 9, Fx, € 2. Let 61,0, be two non-
negative nondegenerate at zero r.v.’s such that vectors (Xi, Xp) and (61, 0,) are independent. If
max {6,605} < oo for some p > max{J{ ,J§ _} then the r.vs 61X and 6, X5 are QAL

1 2

The second lemma on the closure of class 4" with respect to the product convolution is
proved in [70] (Lemma 2.5).

Lemma 11. Let X and 0 be independent r.v.’s, and let d.f. Fx belong to the class €. If 0 is a
nonnegative, nondegenerate at zero r.v. such that K0P < oo for some p > | I-fx , then d.f. Fyx of the
product 0X also belongs to the class €.

The next lemma is on the closure of class PD.
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Lemma12. Let X bean r.v. withd.f. Fx € PDN 2, and let 6 be an independent of X, nonnegative,
and nondegenerate at zero r.v. such that EOP < oo for some p > | F+x . Then, the product d.f. Fyx
belongs to the class PD.

Proof. Fix y > 1 such that B
lim sup M

<1,
X—»00 Fx(X)

and leta € (0,1) and b > 0 be such that P(b > 0) > 0. If x is sufficiently large, then

Fox(xy) P(OX >xy,0 <x%) POX > xy,0 > x?)

Fox(x)  P(X>x) | P(OX> )
P(OX > xy, 0 < x7) n P(6 > x)
T POX > x,0<x%)  P(OX>x,0>0)
P(6X > xy,0 < 0 < x7) n Eo?
S POX >x,0<0<x)  xPP(0 > b)P(X > x/b)
= (yx _
< wup FX(v) e 1 Fx(x)
X 0<u<xt FX(%) P(Q > b) qufX(x) f(%)
Fx(zy) E6? 1 Fx(x)

= sup (24)

Zz>yl-a fx(z) P(Q > b) x“pfx(x) F(%) ’

Since Fx € 2, it is obvious that Fx = O(Fx(x/b)). Moreover, lim x1Fx(x) = oo for
X—00

q > Ji; see, e.g., Lemma 3.5 in [54]. If p > ] , then there exists a € (0,1) such that

ap > ];;. For this particular g, the second term on the right side of (24) tends to zero as x

tends to infinity. Consequently, for this particular a € (0,1)

lim sup M < limsup sup IiX (zy) = limsup lix(xy ) <L (25)

X—00 ng(x) X300 y3yl-a Fx(Z) xX—v00 Fx(X)

The lemma is proved. We remark only that a similar statement, but for a positive random
weight, is proved in Theorem 4.1 of [71]. O

Lemma 13. Let X be an r.v. with d.f. Fx € 9, and let 6 be an independent of X, nonnegative, and
nondegenerate at zero v.v. such that EQP < oo for some p > | ;; . Then, forally > 0

lim sup M < limsup M and limsup M < limsup f x(x) .
x—o0 Fox(x) x—o00  Fx(x) x—o0  Fox(yx) x—00 Fx(yx)
Proof. According to (25)
lim sup FfX(yx) < limsup sup liX () = limsup liX ()
x—eo Fox(x) x—00  >yl-a Fx(2) x—eo Fx(x)

with some special 2 € (0,1). Hence, the first inequality of the lemma holds. Similarly
to (24), we obtain

Fox(x) " F(z) E6P 1 Fx(x)
Fox () ~ 2P F(yz) T B0 > B) (yx)Ex(x) Fx(yx/b)
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for large x, b > 0 such that P( > b) > 0, and for a € (0,1) such that ap > ];;. The
same arguments as in the derivation of (25) imply the second inequality of the lemma. The
lemma is proved. [

4. Proof of the Main Results

Proof of Theorem 6.
o Let us begin with part (i) of the theorem. By relation (2) of Theorem 2, we have

() Tgpony) v B B(5 o), 29)
ke,
for any B € [0,1]. In the particular case, if § = 0, we get
X—00

Fo(0) =P(S > x) ~ ¥ Fp(x) ~ Halx). (27)
ke,

We observe that Fg, (x) > 0 for each k € Z, if x is sufficiently large. Hence, according to the
min-max inequality

. a am ar+...+ay ay A
— e — P L ——————— K —,...— 2,
mm{bl’ bm} b+ .. +bn {b1 bm} (28)

provided if a; > 0,and b; > 0 fori € {1,...,m}, we get that

min = < = < max =—— (29)

for each y € (0,1] and sufficiently large x. This double inequality shows that the d.f. H,,
together with the d.f. F (@) belongs to the class ¢ N PD. Hence, by Lemma 4, we have

E.0(4) ~ Ha(g). (30)

n qr1

For g € (0,1), by equality (6) and the min-max inequality (28), we derive that

HG, (s1?)
— 1 — +
() + 5 & (8~ Ha(0)
— — + — +
Eo@) E(SF —Fo@)  E(SF - Ha(o)
S max§ — ’ @ & ¥ — +
Hu) E(SE - Hi@)) T E(G— Hu(o)
e n
— — + — —
Fe(q) E(Sz(f) - Hn(ﬂi)) IP’(S,(P > uF e (q)/ Hn(‘i))
<2 maxy 1, = - sup ({;'; (31)
Hy(q) kZZ E(Ck - Hn(Q)) u>Hy(q) P(Sn” > u)
€Lln

because, according to the alternative expectation formula,

[ P(y > u)du
E(n—x1)t 5 <5 P(y > ux1/x3)
E(—x)* S 0P TR S
T—*x [ P(y > u)du 2 u>xp U

X2
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for all positive x1, xp, and every r.v. 57 such that P(y > x) > 0, x € R. Now, lete € (0,1/2).
By relations (30) and (31), we get that

HG, (1)
H Ly E(&—Hy())
n(q)‘i‘qkén <€k_ n(Q))
— +
]E(Sr(zg) —Hn(Q)) IP’(S,(F) > u(l—c¢))
< (14 ¢)maxy 1, = T sup @
Y E(ék — H, (Q)) u;ﬁn(q) P(S” > u)
ke,

-
for all g sufficiently close to the unit from the left. Since H, (q) — o0 if ¢ T 1, we get from
the last estimate

. HG, (s17)
lim sup — ) = T
qm Hn(q)—i_lquezzl E(gk_Hn(Q))

(€)
P(Sy > u(l—
< (14 ¢) maxq 1, limsup = + limsup sup ( (g)u( )
M fE(G—Hi@) M i FSn > )

E(S) —x)" P(s® < 41 —
= (1+ ¢) max 1,1imsupM lim sup sup (Sx u(l-¢))

i L E(E—x)" xoe wex P(SYE) > u)
ke,

The fact that Fo €%, relation (3) of Theorem 2, and the arbitrariness of € € (0,1/2) imply
that '

. HG, (s¥)
lim sup — X pn - <L (32)
M H) + T E(G - Ha(o)

In a similar way, we can obtain

o HG, ()
hr;lﬁnf = ) = T
() + 5 & B(&— Ha(0)

E(S;’ — P(S 1
> (1—¢)min 1,liminf("—x)+1iminfinf (Sn >)M( +e))
x—+00 kZI E(& —x)" *7® uxx ]P)(Sr(zg > 1)
€ n

forall e € (0,1/2), and by similar arguments, we can derive that

()
lim inf Ho <Sn )

— + =
T @)+ E(E - Ha)

The last estimate, jointly with inequality (32), finishes the proof of the first part of Theorem 6.
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e Now, suppose s > 2, and all conditions of part (ii) of Theorem 6 are satisfied. Due
to Theorem 3

HG,(S%)) =%+ T , (33)
where X = X(q) is the unique solution of the equation
—1\ *
(= -5)")
=750(X) =1-1.

(e(s-07))"

Let H), be the d.f. defined in part (i) of Theorem 6. Due to the asymptotic relation (27), the
upper bound in (29), and the conditions of the theorem, we have that the d.f.’s Foe y and Hy

both belong to the class . In addition, according to relation (27), the min-max mequahty
(28), and condition (9), we get that

—_ ” — -1
i Feo (yx) ; Feo (%)
imsup ="—— imsup =—"——
xoeo Foe (1) r-e Foo) (%)
= (limsup Hn(yx)> <hmsup n(x) )
X—00 Hn(.X') X—00 Hn(yX)

-1
< | maxlimsup =—— Fo,(vx) max lim sup = Falo) <1 (34)
k€, x—oo F(?k( ) k€, x—oo ng (yx)

for some y > 1. Therefore, Corollary 1 implies that the d.f. 1 — MG belongs to the class
% N PD. '
For sufficiently large x, by the alternative expectation formula, we have that

(E E((@k—xﬁ)%_l) ( }ou—x *2Hy,(u )du)%

ke,

x—1 S -
( )y E((ék—xﬁ)}‘) <%xf(u—x)”1Hn(u)du>

ke,
(@)
G T

where {,, is an r.v. with d.f. Hy. Due to the estimate (34) d.f. F;, = H,, satisfies condition (23)
which, according to Corollary 1, implies that the d.f. 1 — 7, belongs to the class ' N PD
together with the d.f. 1 —

On the other hand, relatlon (3) of Theorem 2 implies that

x—1

Ts0 (0) 2 75,(%).

X—r 00
Consequently, all conditions of Lemma 4 are satisfied withc = 1and d.f’s1 -+ (&) T=1¢,.

According to this lemma, we get that

ﬂqnﬁfW) (35)
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Now, we continue the proof of this part in the same way as in the proof of part (i). For
any q € (0,1), by relation (33) and the min-max inequality (28), we get

HG, (%)

1/

E((S,({:) —97(67))+)% ke%nE(@k_f(q))Jr)%
9) | v E((gk—f(q))+)%kezz B((@-%@)")"

keZ,

= max

If g is sufficiently close to the unit from the left, then

£ E((@-we)")" S (= %) Halu)du

ke, x(q)

L E(@-%@)") T (u—2(g) 1 Halu)du

ke,

<<%vn)%sup(é$”)

x(q) >5(q) Hn(u)

Consequently, for g sufficiently close to the unit from the left, we have

1/

B -5@) )" Ha(5)

Since x(q) Fﬁ 00, X(q) ~ X(q) and the d.f. H, belongs to the class ¢, the last estimate and
l q
the asymptotic relation (3) of Theorem 2 imply that

(€)
lim sup HGy (Sv”) 7 S L
1 »
" Eg)+ <£qu1 B( (@ —%@)") )
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Similarly, we can derive that

(3]
limTilnf HGy (Si") =1
q P :
s+ (4,2 2((65)"))
ke,

This finishes the proof of the second part of the theorem. O

Proof of Theorem 7.

o We begin with case s = 1. According to the conditions and Lemma 10, a collection of
rv’s {61Xy,...,0,X,} follows the pQAI dependence structure. By Lemma 11, we have
that the d.f.’s Fy, x, belong to the class ¢ forall k € {1,2,...,n}. Since 1mkax IEXk+ < oo and

KN

p> lrgka<x ];; , by Lemma 3.5 of [54], we get that E 6 X;” < oo fork € {1,2,...,n}, because
KN k

sup {v: / x’dF(x) < oo} <JF

[0,00)

for every d.f. F from the class & . Finally, by Lemma 12, we derive that Fy, x, € PD for all
k€ {1,2,...,n}. Hence, the collection of r.v.s {61 Xy, ..., 0, X, } satisfies all conditions of
part (i) of Theorem 6. This implies the statement of Theorem 7(i).

e Now, let us consider part (ii) of the theorem. If ¢ > 2, Theorem 7(ii) follows from
Theorem 6(ii) by completely analogous reasoning as in the first part of the proof, only
instead of Lemma 12, we need to use Lemma 13. [

5. Illustrative Example

In this section, we present an example showing how Theorem 6 can be applied to the
evaluation of the HG risk measure when the risk level is close to unity and the leading risk
has a consistently varying distribution.

Example 1. Let us consider collection of independent r.v.'s {1, &2, &3, §a } with the following d.f.’s:

F(x) = (1 - (x_|_11)3>ﬂ[0,00)(x)/ F(x) = (1 - 2(x1+1)3)ﬂ[0'°°)(x)’

F3(x) = Fy(x) = (1 — e ")T[g 0y (%).

We derive asymptotic formulas for HG, risk measures in the cases of the power Young functions
@(t) = t* with »c = 1and » = 2.

It is clear that the collection of r.v.’s satisfies the conditions of Theorem 6 with
7y = {1,2}. In the case » = 1, we have

HGq(Sf) ) o fL;(q) + 1:1 (E(§1 - 134(‘1)) +E(& - 134(51)))/

where I<?I4 is the quantile function of the d.f.
Hy = max{0,1—F; — F}.

For large x
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Therefore,
— 1

Hdﬂz‘j744*—1
Y §(1—‘7)

for g sufficiently close to unity. For any sufficiently large x,

1 1

Yt = = oVt = =

E(gl x) 2(x+ 1)2/ ]E(Cz x) 4(X+ 1)2
Therefore, in the case » = 1
1 1 3 2 2
(€ 3
HG,(S ~ -1+ . —(1—
\/ 3

1 /3\3
)

The graph of this function, together with the values of HG,(S,"’) obtained using the Monte-
Carlo (MC) method, can be seen in Figure 1. The Monte-Carlo simulations were performed
using statistical software R (v4.0.3); the graphs provided in this section were generated in
R using ggplot2 and tikzDevice libraries. .

— H G,,(Sff)) obtained using MC

— — Asymptotic approximation of H Gq(SA(f))

20

10

0.900 0.925 0.950 0.975 1.000

Figure 1. Simulated and asymptotically approximated values of HG, (SEE) ) in the case s = 1.
If 2c = 2, then

1/2

HGy(5) ~ #(9) + —m— (B((@ - 2() ) + E((@ - 2(q)*)?)

qt v1—g
where X(g) is the solution of the equation

E(G —x)"+E(E —x)"

=1-—q.
E((& —x)*)* +E((&—)*)°
In the case under consideration,
@ - =5, E@-x)" = ——
! T 2(x4+1)2 > T 4(x+1)2
1 1
E(@ - =5p B@-x) = 50y
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Hence,

and
3 3
HGq 51/ 6]

The graph of this function, together with the values of HG, (S (5)) obtained using the
Monte-Carlo method, can be seen in Figure 2.

0 NG

— HG,(S,"’) obtained using MC

- — Asymptotic approximation of H G,,(Sfp)
20
10

0.900 0.925 0.950 0.975 1.000

(5))

Figure 2. Simulated and asymptotically approximated values of HG4(S,”’) in the case » = 2.

6. Concluding Remarks

The study of risk measures is a relatively popular topic in probability theory, as risk
measures are applied in numerous fields where uncertainty and potential losses must be
quantified, including banking and finance, insurance, investment management, and energy
markets. Acceptable properties of risk measures are listed, for example, in the work [1].
The book [72] discusses classical mathematical problems related to risk measures. The
mathematical problems of risk measures are still being intensively studied today. Let us
mention a few works. Distortion risk measures are considered, e.g., in [73,74]. The duality
of risk measures is considered in [75]. Risk measures with special properties are analysed,
e.g., in [76-78]. In addition, we note that our results complement those of the papers [79-82],
which also utilise higher-order moments in the construction of risk measures.

As already mentioned, the HG risk measure is a direct generalisation of the ES risk
measure by introducing a governing Young function. Other generalisations of the ES
measure are obtained by replacing quantiles with generalised quantiles or expectiles. Such
risk measures are described and studied in [83-85].

In our paper, we study the properties of the HG risk measure, which was first defined
in [3]. The main result of our work is given in Theorem 6. It follows from this result
that, to find the asymptotics of the HG risk measure for the sum of random risks, it
is sufficient to determine the appropriate characteristics of the sum of dominant risks.
From Theorem 6, we see that such a result holds when the distribution functions of the
dominant risks are consistently varying and satisfy additional requirements related to
having positively decreasing tails. In addition, Theorem 6 implies that in order to find
the asymptotics of the HG risk measure for the sum of random risks, there is no need to
calculate complex convolutions. It is enough to construct the distribution function from the
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sum of the distribution functions of the selected group. The next main theorem of the work,
Theorem 7, is actually a consequence of Theorem 6. This theorem demonstrates that the
procedure for determining the asymptotics of the HG risk measure also applies in cases
where a set of random variables with random weights is considered.

Possibly similar results on the asymptotic behavior of the HG risk measure can be
obtained for a wider class of distributions 2, i.e., for distributions with dominatedly
varying d.f.’s. However, in this case, the asymptotic formulas should have additional
constants resulting in less strict asymptotic bounds, or additional constraints should be
imposed on the d.f.’s of random risks to preserve exact asymptotic relations. In the near
future, we hope to determine how the asymptotic formulas of the HG risk measure change
when the distribution class ¥ is replaced by the wider distribution class 2.
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Abbreviations

The following abbreviations are used in this manuscript:

HG Haezendonck-Goovaerts risk measure
HG;  Haezendonck-Goovaerts risk measure with level g

ES Expected Shortfall (particular case of HG risk measure)
r.v. random variable

d.f. distribution function

t.f. tail function

pQAI (pairwise) quasi-asymptotically independent (random variables)
PD positively decreasing (distribution function)
MC Monte-Carlo (method)
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