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Abstract

Since 1975, it has been known that the Hurwitz zeta-function has a unique property to
approximate by its shifts all analytic functions defined in the strip ® = {s = o+t :
1/2 < o < 1}. However, such an approximation causes efficiency problems, and applying
short intervals is one of the measures to make that approximation more effective. In this
paper, we consider the simultaneous approximation of a tuple of analytic functions in
the strip © by discrete shifts ({(s + ikhy,a1), ..., (s + ikhy, ;) ) with positive hy, ..., h, of
Hurwitz zeta-functions in the interval [N, N + M| with M = max;¢j<, (h]il(Nhj)Z?)/ 70)
Two cases are considered: 1° the set { (h;log(m +«;), m € No, j =1,...,7),27} is linearly
independent over Q; and 2° a general case, where a; and /; are arbitrary. In case 1°, we
obtain that the set of approximating shifts has a positive lower density (and density) for
every tuple of analytic functions. In case 2°, the set of approximated functions forms a
certain closed set. For the proof, an approach based on new limit theorems on weakly
convergent probability measures in the space of analytic functions in short intervals is
applied. The power 1 = 23/70 comes from a new mean square estimate for the Hurwitz
zeta-function.

Keywords: approximation of analytic functions; Hurwitz zeta-function; Riemann zeta-function;
universality; weak convergence of probability measures

MSC: 11M35

1. Introduction

Throughout the paper, s = ¢ + it is the main complex variable. We consider the
approximation of analytic functions by Hurwitz zeta-functions. Let « € (0, 1] be a fixed
parameter. The Hurwitz zeta-function (s, «) was introduced in [1] and, for o > 1, is
defined by the Dirichlet series
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Moreover, (s, «) has an analytic continuation to C \ {1}, and the point s = 1 is its simple
pole and Res;_1{(s, «) = 1. Clearly, {(s, 1) coincides with the Riemann zeta-function

o(s) = i% o>1,

m=1

and
o(s/3) = @ - 120,

The latter observations show that the function (s, &) is an extension of the famous Riemann
zeta-function. Unlike {(s), the function {(s, &), except for values « = 1 and « = 1/2, has no
Euler product over prime numbers. Hence, the value distribution of {(s,«) differs from
that of {(s). For example, it is well known that (s) # 0 for ¢ > 1, while {(s, «), where
« # 1, « # 1/2, has infinitely many zeros in the latter half-plane [2—4].

On the other hand, the function {(s, «) has an indirect connection to the distribution
of prime numbers in arithmetic progressions. The main tool for investigations of the
asymptotics for

n(x;a,q)= ). 1, pisprimenumber, (a,9) =1, x — oo,
psx
p=a(mod q)

is Dirichlet L-functions. Let x : N — C be a Dirichlet character modulo g (where x(m) is
periodic with period g, completely multiplicative, x(m) = 0if (m,q) > 1, and x(m) # 0
for (m,q) = 1). The Dirichlet L-function L(s, x) with character yx, for ¢ > 1, is given by

0= 3 A

m

and has meromorphic continuation to the whole C. From the periodicity of y, it follows that

Lisx) =47 f_lx(m)é(s,”;)-

Thus, properties of {(s, ) with rational a can be applied for investigations of Dirichlet
L-functions, and consequently for 7t(x;4a,q). Nevertheless, applications of the Hurwitz
zeta-function are not limited by the distribution of prime numbers; {(s, a) plays an im-
portant role in special function theory, algebraic number theory, probability theory, and
even quantum mechanics. The classical theory of {(s,«) can be found in [5-7]. One sig-
nificant feature of (s, «) is connected to the approximation of analytic functions by shifts
{(s+it,a), T € R. This approximation is of a novel type in function theory, and is called
universality: shifts of one and the same function (s, «) approximate the whole class of
analytic functions. The universality of the Riemann zeta-function {(s) was discovered by
S.M. Voronin in [8-13]. After Voronin, the universality of {(s) was studied by many authors
(see [14-18]). We recall some universality results for {(s,a). For® = {s € C: 0 € (1/2,1)},
denote by K the class of compact subsets of the strip © with connected complements, and
by H(K), K € K, the set of continuous functions on K that are analytic inside of K. Let
mp A be the Lebesgue measure of measurable set A C R. Then, the following result is
known [14-16,18,19].
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Proposition 1. Suppose that « is rational # 1 or # 1/2, or a transcendental number, and K € IC,
f(s) € H(K). Then, for every € > 0,

T—o0 seK

liminf;,mL{T € [0,T] :sup |{(s+it,a) — f(s)] < e} > 0.

Moreover, the limit

seK

Tli_rgo]l,mL{T €[0,T] :sup |C(s+it,a) — f(s)| < s}

exists and is positive for all but at most countably many e > 0.

If f(s) # 0 on K, then the proposition remains valid forx =1 or « = 1/2 as well.

The case of algebraic irrational « (« is a root of a polynomial # 0 with rational
coefficients) has been considered in [20]. Denote by d the degree of «, and put f =
4-2771(4.45)72 and v = Bd 2. Then the universality of {(s,a) with algebraic irrational «
is contained in the following statement.

Proposition 2 (see [20]). Suppose that & € (0,7), 1 — v+ < 09 < 1,59 + 09 + ito, and f(s) is
a continuous function on the disc |s — so| < r, r > 0, and analytic inside of that disc. Let a € (0,1)
and e € (0,|f(so)|). Then, for all but finitely many « € [a, 1) of degree at most dy — 2B/ d3 + & with

1/2
d0< L 7
1—09p+6

there are T € [T,2T] and x = « (e, f, T) > 0 such that

max |{(s+it,a) — f(s)] < 3e.
[s—so|<Kr
Here, T = T(«, f,€) is given explicitly, the set of exceptional a can be described effectively, and x
can be effectively computable as well.

Propositions 1 and 2 are of the so-called continuous type because T in shifts {(s + i, «)
can take arbitrary values in the interval. In parallel to continuous universality theorems
for zeta-functions, theorems of discrete universality are studied when T takes values from
certain discrete sets. The first discrete universality theorem for zeta-functions has been
obtained by A. Reich. In [21], he proved the discrete universality of Dedekind zeta-functions
{k(s) of algebraic number fields K on the approximation of analytic functions by shifts
(k (s +ikh), k € N, where h is a fixed real number.

For statements of discrete universality theorems, we introduce some notation. Denote
by #A the cardinality of the set A, and, for N € Ny = NU {0}, put

1
Mn(...) = m#{ogkg N:...},
where in place of dots a condition satisfied for k is to be written. The first discrete univer-
sality theorem for {(s, «) has been obtained by B. Bagchi.
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Proposition 3 (see [15], Corollary 5.3.7). Suppose that « is a rational number # 1, # 1/2, and
Ke K, f(s) € H(K), h > 0. Then, for every € > 0,

seK

lig]llinfMN (sup |C(s +ikh,a) — f(s)| < e) > 0. (1)

Discrete universality of {(s, #) with non-rational a involves the set
L(a, b, 7) = {(log(m+a) : m € Np), 2%}
which can be a multiset.

Proposition 4 (see [22,23]). Let the set L(«, h, 1) be linearly independent over Q. Then, for every
Ke K, f(s) € H(K) and € > 0, the inequality (1) is valid. Moreover, the lower limit in (1) can be
replaced by the limit for all but at most countably many e > 0.

The second assertion of Proposition 4 has been obtained in [23,24]. As was noted
in [22], one can take « = 1/t and h € Q in Proposition 4.

In [25], A. Sourmelidis proved that continuous universality for {(s, #) implies a discrete
one with shifts {(s + ikh,«), h > 0. Hence, Proposition 1 implies Proposition 3 not only
with rational but also with transcendental «. On the other hand, Proposition 4 may be true
with algebraic irrational «; however, examples of such « are not known.

Also, a joint universality of Hurwitz zeta-functions is considered. In this case, a
tuple (f1(s),..., f+(s)) of analytic functions is approximated simultaneously by shifts
(C(s+it,a1),...,{(s+iT,ar)) with both continuous and discrete T. Obviously, for this,
the functions {(s,a1),...,{(s, a;) must be independent in a certain sense. This indepen-
dence may be described in terms of parameters w1, ..., a,, for example, that ay,...,a;
are algebraically independent over Q, i.e., there is no polynomial p(sy,...,s,) # 0 with
coefficients in Q such that p(ay,...,a;) = 0. A more general case involves the set
L(aq,...,ar) = {(log(m+aq1) : m € Ny),...,(log(m+a,) : m € Nyg)}. The following
statement is known [26].

Proposition 5. Suppose that the set L(aq, oy ) is linearly independent over Q. For j =1,...,r, let
K; € Kand fi(s) € H(K;). Then, for every e > 0,

liminf;mL{T €[0,T] : sup sup|l(s +iT,a;) — fi(s)] < s} > 0.

T—eo 1<j<r sek;

The first joint discrete universality theorem was obtained for Hurwitz zeta-functions
with rational parameters. For g € N, denote the Euler totient function as ¢(g); let
X1, .-+, Xg(q) be pairwise non-equivalent modulo Dirichlet characters g, and let

def [
A= (x,-(a)/ w(q)) 1<j<p(q)
1<a<y, (a,9)=1

be the quadratic matrix of order ¢(q). For some functions g,(s), 1 < a < g, (a,q) = 1,

define the matrix
Gdef —s !
&= (17800 1<ocq ()1

where BT means the transpose of a matrix B. Then in [27], we find the following result.
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Proposition 6. Suppose that K € K, foreach 1 < a < q, (a,q9) = 1; let g,(s) € H(K), and all
components of A~ be non-vanishing on K. Then, for every e > 0,

lim inf M ]( 'kh,ﬂ)— ] 0.
fminfMy | max max|C(s +ikh gals)| <& >

(2,q)=1
The most general joint discrete universality theorem for Hurwitz zeta-functions uses
the set
Lo ... a0 h,... 1)

’

={(mlog(m+waq1):meNy),...,(hlog(m+a,):meNy),2n}, hy,....h >0.

Proposition 7 (see [28], Theorem 1.7). Suppose that the set L(«, ..., ap;he, ..., hy; 70) is linearly
independent over Q. For j = 1,...,r, let K; € K, fi(s) € H(K;j). Then, for every ¢ > 0,
the inequality
lim inf My ( sup sup [{(s + ikhj,a;) — fi(s)] < s) >0
N—oco0

1<j<r SGK]'

holds.

Propositions 1 and 3-7 imply that there are infinitely many shifts of the Hurwitz
zeta-function approximating a given analytic function or a tuple of analytic functions;
however, any concrete shift is not known. In this sense, the mentioned results are ineffective.
Proposition 2 has effectivity features because it indicates the explicit interval containing
values T with approximating property.

Another way towards effectivisation of universality for zeta-functions consists of
shortening of intervals with approximating values 7. This idea leads to extension of
universality theorems for zeta-functions in short intervals. The first result in this direction
for the Riemann zeta-function has been given in [29], and improved in [30,31]. We recall that
some universality results for Hurwitz zeta-function in short intervals. The main theorem
of [32] is stated as follows.

Proposition 8 (see [32], Theorem 4). Suppose that the numbers a1, ..., a, are algebraically
independent over Q, and T27/82 < H < TV2, Forj=1,...,rletK; € Kand f](s) € H(K])
Then, for every e > 0,

1
liminf —m;< 7 € [T, T+ H| : sup sup[{(s +iT,a;) — fi(s)| <ep >0.
T—eo H 1<j<r s€k;

Moreover, the limit

1
lim —mpq 7€ [T, T+ H]: sup sup|l(s +it,a;) — fi(s)| <e
T—eo H 1<j<rsek;

exists, is explicitly given, and positive for all but at most countably many e > 0.

The case with r = 1 for transcendental &« was obtained in [33].
For N € Nand M € N, set

WN,M(...):7#{N<k<N+M:...},
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where in place of dots a condition satisfied by k is to be written. A version of Proposition 4
in short intervals has been proved in [34].

Proposition 9 (see [34], Theorem 1.5). Suppose that the set L(«, h, 7v) is linearly independent
over Q, and h=1(Nh)?/82 < M < h=Y(Nh)Y2. Then, for every K € K, f(s) € H(K) and
e>0,

hmmeNM <sup |C(s +ikh,a) — f(s)| < s) > 0.
seK

Moreover, the lower limit can be replaced by the limit for all but at most countably many e > 0.

The purpose of this paper is to connect Propositions 8 and 9, i.e., to obtain joint discrete
universality for Hurwitz zeta-functions in short intervals.

Theorem 1. Suppose that the set L(a1, ..., ar; hl, <, hy; 70) is linearly independent over Q, and
maxigjgr h] (Nh )P/ M < m1n1<]<,h (Nh )2 Forj=1,...,r let K; € K and
fi(s) € H(K;). Then, for every € > 0,

hmmeNM<sup sup [((s +ikhj, aj) — fi(s)| < z—:) > 0.

1<j<rsek;

Moreover, the limit

lim Wy | sup sup (s +ikhj, ;) — fi(s)] < e
N=eo 1<j<rsek;

exists and is positive for all but at most countably many e > 0.

Denote by H(D) the space of analytic functions on the strip © endowed with the
topology of uniform convergence on compacta, and let

H'(D) = H®) x --- x H(D).

H"(®) is considered with the product topology.

Theorem 2. Suppose that the pammeter ;i € (0,1), a; # 1/2, and the positive numbers hy, . .., hy
are arbitrary, and maxi<j<, b Y(NRj)B/7 < M < minggje, h Y(Nh;j)1/2. Then there exists
a closed non-empty set Fal,...,ar,hll---/hr C H"(D) such that, for compact sets Ky,..., K, C D,

(fi(s),..., fr(5)) € Fay,_arshy,...n, and every e > 0,

liminf Wy p ( sup sup |{(s + ikhj, ;) — fi(s)] < S) > 0.

N—eo 1<j<r sek;

Moreover, the limit

Lim Wy m ( sup sup |{(s +ikhj, ;) — fi(s)] < 8)

N0 1<j<r sek;
exists and is positive for all but at most countably many ¢ > 0.

We observe that 23/70 < 27/82.
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Remark 1. We suppose in Theorem 2 that a; # 1 and aj # 1/2 because, in these cases, {(s, a;)
coincides with the Riemann zeta-function {(s), or differs from it by a simple multiple 2° — 1. The
function {(s) has the Euler product, and, for studying its universality, another scheme is used.
Moreover, the above restriction for &, in the case r = 1, removes confusion because the universality
for {(s) in short intervals is known, and Theorem 2 then becomes meaningless.

Theorems 1 and 2 will be proved in Section 4. Section 2 is devoted to mean value
estimates for Hurwitz zeta-functions in short intervals. In Section 3, we will prove limit the-
orems on weakly convergent probability measures in the space of analytic functions H' (D).

2. Estimates in Short Intervals

Throughout the paper, we will often use the notation a <3 b, a € C, b > 0, which
means that there exists a constant ¢ = ¢(0) > 0 such that |a| < cb. Thus, a <y b is an
equivalent of a = Oy(b).

Lemma 1. Suppose that « € (0,1)\ {1/2} and o € (1/2,31/52] are fixed, and T?/70 < H <
TY. Then, uniformly in H, the estimate

T+H
/ 1C(0 +it,0)|?dt <oq H
T—-H

holds.

Proof. In the proof of Theorem 2 from [35], the bound of Lemma 1 was obtained for
T?/82 < H < T7 and fixed ¢ € (1/2,7/12). For this, the exponent pair (11/30,16/30)
for the estimation of mean squares of Dirichlet polynomials has been applied. Using the
exponent pair (9/26,7/13) in place of (11/30,16/30) gives Lemma 1. [

Since the present paper is devoted to discrete value distribution problems of Hurwitz
zeta-functions, we need a discrete version of Lemma 1. To pass from Lemma 1 to its discrete
analogue, we will apply the following Gallagher lemma which connects continuous and
discrete mean squares.

Lemma 2 (see [36], Lemma 1.4). Suppose that 6 > 0, Tp, T > 6, A is a finite non-empty set,
AC [TO+5/2,T0—0—T—§/2],and

No(t)= ), 1, te A
TeA
[t—T|<d

Let a complex-valuable function Z(t) be continuous on the interval [Ty, Ty + T], and have a
continuous derivative inside this interval. Then the inequality

1 To-‘rT To+T TO_AI_T 1/2
ENSWz0P<s [ 1z@Pd+ | [ 12@Pd [ 12/0Fd
teA T T T

is valid.



8 of 22

Mathematics 2025, 13, 3654

Lemma 3. Suppose that a € (0,1) \ {1/2}, and fixed o € [1/2,31/52],h > 0, i1 (Nh)®/70
M < h=Y(Nh)2 and |t| < log?(NHh). Then the estimate

N+M
Y Qo+ it +ikh,a)[* <o M(14+ )

k=N
is valid.

Proof. We apply Lemma 2, withé =1, Ty = N—-1/2, T=M+1, A={ke N:k ¢
[N,N + M|} and Z(t) = (0 + ihTt + it,«). Obviously,

ME) = ) 1=1
leA
[k—I]<1

Therefore, in virtue of Lemma 2,

N+M

N+M
Y [Q(0 + it + ik, )2 < / 7(0 + it + ihT, a) P dt
k=N N=1
N+M N+M 172
+(/ |0 (o + it + iht,a)|? dT / |§’(U+it+ih7,o¢)|2d‘r) . @
N=1 N-1
Clearly, for large N,
N+M N+M-+t/h (N+M)h+|t|
/ 1C(0 + it + ihT, &) 2 dt = IZ(0 + ihT, )2 dT <, / C(o+it,a)2d.
N—-1 (N=1)+t/h (N—M)h—|t|

We have Mh + |t| > (Nh)®/70 for M > h Y (Nh)®/7, and Mh + |t| < (Nh)V/2 +
log?(Nh) < (Nh)? for |t| < log?(Nh) and large N. Hence, Lemma 1 gives

N+M

00 + it +iht, @) 2 dT <gop Mh+ |t <pon M(1+ |t]). (3)

N-1
Observe that ({(¢ + it + iht, ), = ih{' (0 + it + iht, «). Therefore, a standard application

of the Cauchy integral formula and (3) leads to the estimate

N+M
/ ' (0 + it +ihT, &) |2 AT g g M(1 4+ t]).

N-1

This, together with (3) and (2), yields the estimate of the lemma. O

Let, for brevity, « = (aq,...,a,), and {(s,&) = ({(s,a1),...,{(s,ar)). For the investi-
gation of (s, &), we introduce an auxiliary object. Let 6 > 1/2 be a fixed number, and, for

n € N,and m € Ny,

N
wn(m,zxj)—exp{—<mi“/> }, j=1,...r1,
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where exp{a} = e”. Define the series

which is absolutely convergent in any half-plane ¢ > op with a finite 0y. Let { (s,a) =
(Cu(s,a1),...,(s,ar)). Our aim is to replace the investigation of {(s, «) by a simpler one of
¢, (s,a). We will show that {(s,a) and { (s, &) coincide in the mean. To describe this, we
need the metric in the space H' (D).

It is well known (see, for example, [37]) that there exists a sequence of compact subsets
{Ky : m € N} C D such that K, C Ky, 41 forallm € N,

(o)
D= U Ky,
m=1

and every compact set K C D lies in some Ky,. For g1,¢> € H(D), put

o(51,22) ii SUP,ck,, 181(s) — g2(s)|
Ve T L om T sup, g 1g1(s) — g2(5)]

Then, p is a metric in H(®), which induces its topology of uniform convergence on
compact sets.
Now, letg, = (§n1,---,81y) € H'(D),1 =1,2. Then

pr(glfg2) - maX P(glm/me)

1<m

is the metric in H"(®), inducing its product topology.
We now state the main lemma of this section. Let h = (hy, ..., k).

Lemma 4. Suppose that a; € (0,1)\ {1/2} forj =1,...,r, and maxi<j<r b ho (Nh N23/70
M < minygje, by '(Nh; )1/2 Then

N+M
lim 11msupM_i_1 Z pr( (s +ikha), T (S-I—ikh,&)) =0.

©
n— N—oo

Proof. The definitions of the metrics p, and p show that it suffices to prove the equalities

1 N+M
hmhrnsup sup |((s + ikh;,a;) — Cn(s + ikhj,a;)| =0, j=1,...,r, (4)
00 M+1kX;\I ek 175 n 177

for every compact set K C ®.

We will fix the parameter «, the number /1 > 0, and a compact set K C ®, and recall
the integral representation for {,(s,«). Let, as usual, I'(s) stand for the Euler gamma-
function, and

where 0 is the number from the definition of w, (m, «). Then the integral representation

0+ico
/ {(s+z,a)x,(z)dz )

0—ico
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holds. It follows easily from the classical Mellin formula

b+ico
e 1= % / I'(z)a~*dz, a,b>0,
b—ico
and the definition of &, (s).

There exists 1/4 > 6 > 0suchthat1/2+26 <o <1—-46foralls =0 +it € K. Now,
we choose more precisely § = 1/2 + §, and introduce 6 = 1/2 4 6§ — 0. Clearly, 8 < 0 but
6 > —1/2 + 26. Therefore, the integrand in (5) has a simple pole z = 1 — s of the function
{(s + z,a) with residue «, (1 — s), and a simple pole z = 0 of I'(z/6) with residue {(s, «),
both of which lie in the strip (6, 0). Hence, taking into account the exponential decreasing
of the gamma-function,

['(o+it) < exp{—c|t|]}, ¢>0, (6)

and applying the residue theorem, we obtain, for s € K,

0-+ioco

Enls,0) = g(s,0) = 5 / C(s+ 72, 0)kn(2) dz + n (1 — 5).

Hence,

sup|{ (s + ikh, &) — Lu(s + ikh, )|

seK
< /‘é(%+f5+ikh+i*r,oc) sup Kn(%+(5—s+i’r)‘d”r
o sekK
+ sup |k, (1 — s — ikh)]|. 7)
seK

For simplification of further estimations, we present some elementary results. For o > 1/2
and |t| > 2 (see, for example, [38]), the estimate

(o +it,a) Kpp |2
holds, and, in view of (6), we have, fors = o + it € K,

Kn<% —l—(S—s—i—iT) < nV/ 20 Cexpl it —t|} <gnCexp{—ci|t]}, 1 >0, (8

and
e 1-o _c 1/2-26 _

kn(1—s —ikh) < n'~7exp{—§|t +kh|} < n exp{—cokh}, ¢ >0.

Therefore,
7log2(Nh) 0
/ + / ’é(%—ﬁ-&—i—ikh—l—ir,zx) supKn(%—f—é—s—i—iT)’dT
seK
- log? (Nh)
—log?(Nh) o0
<k [ [ [ ) P exp{ it} dr
- log? (Nh)

<L K n7’5<(kh)1/2 + 1) exp{—C3 logz(Nh)}, c3 >0,
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and
1N 1os 1N
VT 1—s—ikh)| < [ — —ookh
M+lk;\]i2£‘1<”( s — ikh)| <k n M+1k§,eXp{ okh}
<P exp{~§ NI} 1 exp(~$kn}
k=N
< 1'% exp{—%Nh}.
This and (7) lead to
1 N+M
7 2 Sup|l(s+ikh,a) = Cu(s + ikh, )|
M+1 k:ZN seK "

log? (Nh)
<nK Og./. <Ml—i_1t§j‘€<%+§+ikh+ir,a”>supKn(%+(5—s+iT>|‘dr

seK
—log?(Nh)
1 N+M
+nl— ) ((kh)l/2 + 1) exp{—c3log?(Nh)} + n1/>"% exp{~%Nh}
M+1 5
d:EfAl+A2+n1/2_2‘5exp{f%Nh}. ©9)

It is easily seen that, for large N,
Ay < n*‘s(Nh)l/zexp{—%logz(Nh)}. (10)

For the estimation of A1, we will apply Lemma 3. Thus, for T < logz(N h),

M

+

1 N
M+1

1/2
‘g(% + 6+ ikh +ir,a)‘ < <M1+1 tij(g(; + 6+ ikh + ir,a) ‘2>

g (L+ T2

Il
z

Hence, by (8),

log?(Nh)
Aq <Ly, K 1 nt (1 + |T|>1/2 exp{—clr} dr <Ly K1 n-o. (11)
—log?(Nh)

Now, summarising the results (9)-(11), we obtain

1 N+M
—_ sup |((s + ikh, &) — {n(s + ikh, a)|
M1 '

L Kh n® +n°(Nh)'/? exp{—%3 logz(Nh)} + /2w exp{—%Nh}. (12

We notice that the implied constant in (12) depends on §; however, this is omitted because
6 depends on K.

Taking N — o0 in (12), and then n — oo, we obtain (4) with a; = « and h; = h. The
proof of the lemma is complete. [J

3. Results on Weak Convergence

This section is devoted to discrete limit theorems on weakly convergent probability
measures in the space H" (D). Recall the definition of weak convergence. As usual, denote
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by B(X') the Borel o-field of a topological space X'. Let Q,, n € N, and Q be probability
measures on the measurable space (X, B(X')). Then Q, converges weakly to Q as n — o
(Qn ;HLOJ Q) if, for every real continuous bounded function f on X, the equality

lim [ £dQ. = [ fdQ
X X

holds. The theory of weak convergence of probability measures is presented in the mono-
graph [39].
In this section, we will deal with the probability measure

Py mah(A) = Wm (Q(S +ikh,a) € A), A € B(H'(9)).

We will consider the asymptotic behaviour of Py a4, a8 N — oo by using some auxiliary

spaces and probability measures on them. We start with analysing probability measures on

a certain group. Weak convergence on locally compact groups is developed in [40].
Denote by () the Cartesian product of unit circles over Ny, i.e.,

Q= J[{seC:|s|=1}.

meNy

With the product topology and pointwise multiplication, (2 is a compact Abelian group,
which is the product of compact sets (Tikhonov theorem [41,42]). From this, the existence of
the probability Haar measure u follows [43]. Denote by w = (w(m) : m € Ny) the elements
of Q).

Introduce one more group

Q' =01 x - xQ,

where Q); = Qforallj =1,...,r. Then, again, ()" is a compact topological Abelian group,
and, on (Q)", B(Q)")), the probability Haar measure # can be defined. Let w = (wi,...,wy),
w; €0y j=1,...,1, be elements of (). Notice that the Haar measure pis the product of
Haar measures yij, j = 1,...,7,ie,for A= Ay x -+ X A, € B(QY), AieQj=1,...r1,
we have

#(A) = pa(Ar) - pr(Ar).
For A € B(Q)"), define the probability measure

QnMan(A) = WN,M((((m +a) " m e No),. co ((m o) M im e No)) € A)
and consider its weak convergence as N — co.

Lemma 5. Suppose that «; € (0,1) \ {1/2} and hj > 0, where j = 1,...,r, are arbitrary, and
M — coisas N — oo. Then, on (Q), B(Q)")), there exists a probability measure Q, j, such that

w
ONMah —— Quh-
N—oo

Proof. As it is mentioned in [40], for the proof of weak convergence on groups, it is conve-
nient to use Fourier transforms. Since characters of the group ()" have the representation

[TIT )" (m),

j=1meNy
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where the star * indicates that the integers [;;, # 0 only for a finite number of m € N, the
Fourier transform fN,M,&h(li,...,ll),lj = (ljm €Z meNy),j=1,...,r, of the measure
ON, M, is defined by

fNman(ly, - l) = /(H IT w,l-jm(m)) dQN, M-
o

j:1 meNy

Hence, we find

M r

-
Z
+

Inman(ly, - ) = " (m+ ocj)*”jmkhj
S M+1 =i e,
1 N+M i Z*
= — expy —ik )_h; limlog(m +a;) ¢.
M+1 /= j=1 ~ meN,

For

.
L=Lahl,...,L) d:ethj Z* Lim log(m + aj) = 2o

j=1 meNy
with v € Z, equality (13) yields
fnman(l, .. ) =1 (13)
Otherwise, we have
_ exp{—iNL} —exp{—i(N+M+1)L}
fN,M,&h(li”ll) - (M+1)(1 —exp{zL}) (]‘4)

in view of the formula for a sum of geometric progression. Therefore, taking into ac-
count (13) and (14), we obtain

1 ifL=2mv,ve?Z,

15
0 othewrwise (15)

Am (k) = {

because, in (14), the numerator is bounded and the denominator tends to co as N — co.
Since the group ()" is compact, it is the Lévy group. Hence, the convergence of Fourier
transforms implies weak convergence of the corresponding probability measures. Let the
probability measure Q, , on (Q), B(Q)")) be given by the Fourier transform

1 ifL=2mv,veZ,

16
0 othewrwise. (16)

f&h(li,...,ll) — {

Then, by (15), we have Qn M an LN Qup- O
T N—oo =

Lemma 6. Suppose that the set L(aq, ..., ar; h1,. .., hy; 1) is linearly independent over Q, and

M — o0 as N — oo. Then the relation Qn pan NL> u holds.
- —00 —

Proof. The lemma is a corollary of Lemma 5. Actually, since the set L(aq, ..., ar; by, ..., hy; 7T)
is linearly independent over Q, the equality L = 270 holds if and only if /; = 0 for
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j=1,...,r,and v = 0. Let 0 denote a collection consisting from zeros. Thus, in virtue
of (16), in this case,

Frllyyooorly) = { 1 (L, 1) = (0,...,0),

0 othewrwise,

and this proves the lemma because the right-hand side of the latter equality corresponds to
the Fourier transform of the Haar measure y on (Q", B(QY")). O

The next limit lemma concerns ¢ (s, a). For A € B(H'(D)), set

PN (A) = Wit (2, (5 + ikh,a) € A).

Lemma 7. Suppose that a; € (0,1) \ {1/2} and h; > 0,j = 1,...,r, are arbitrary numbers, and
M — o0as N — co. Then on (H" (D), B(H'(D))), there exists a probability measure P, , , such

thatPNanxh = >P711Xh'
Mught g 2

Proof. We will apply the principle of preservation of weak convergence under certain
mappings; see 5.1 of [39].

Define (mywn )
© wi(m)w,(m,«
Cu(s, i, wj) R wieQ, i=1,...,r
n\S, &j ]m;O (m+a)° i< 2]
and put

g, (s,,w) = (Culs, a1, w1),..., Culs, ar, wr)).

Consider the mapping vy, : " — H'" (D) given by

Ona(w) = ¢ (5,0w), we.

The series for , (s, aj, w;) are absolutely convergent in any half-plane ¢ > 0p; therefore, the
mapping vy 4 is continuous. Moreover, it follows that

vn,g(<(m + )" e NO),. . ((m + o) "y € No)> =, (s +ikh ),
and thus, for A € B(Q)"),
PN,M,n,g,h(A)
= WN,M(«(m +aq) e N()),. . ((m + o) "y € N())) € v;,iA)
= QN Mah (Vg A),

where Qn a q 1 18 the measure from Lemma 5, and v,, iA denotes the preimage of the set A.
Since v;, 4 is continuous, itis (B(H" (D)), B(Q)"))-measurable [39]. Hence, the limit measure
Q, in Lemma 5 defines a new measure Q, ;0,1 in (H'(D), B(H'(D))) given by

Quitna(A) = Qui(vysA), A€ B(H (9)).

These observations, Lemma 5, and Theorem 5.1 of [39] show that Py . converges
weakly to the measure Q, 0,1 as N — co. Thus, denoting P, ., = Qu 0,5, We have
w
Pn M —— P U
N—oo
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Lemma 8. Suppose that the set L(ay,...,ar;h1, ..., hy; 7T) is linearly independent over Q and
M — coas N — co. Then, the relation Py pppy o NL> uo; L holds.
wh o EOna

Proof. We repeat the proof of Lemma 7 using Lemma 6 in place of Lemma 5. [J

Lemma 7 is a key for the proof of weak convergence for Py 51, 5 in the general case.
Additionally, we need one classical result on convergence in distribution. Let X, n € N,
and X be X'-valued random elements with distributions P, and P, respectively. We say that

X, converges to X as n — oo in distribution (X, ]’HLOO> X) if and only if Py, }’HLOO> P.

Lemma 9 (see [39], Theorem 4.2). Suppose that the metric space (X, d) is separable, X-valued
random elements X,;; and Yy, n,1 € N, are defined on the same probability space with a measure v,
and the relations
Xu —25 X, VIEN,
n—oo
and

D
X — X
n—co

hold. If, for every § > 0,
lim limsup v{d(X,,;, Y») > 0} =0,

[=00  y00

then Y, L) X.
n—oo

Theorem 3. Suppose that a; € (0,1) \ {1/2} and h; > 0, j = 1,...,r, are arbitrary, and
max) <, h;l(Nhj)23/7O <M < minggje, h]fl(Nhj)l/z. Then, on (H" (D), B(H"(D))), there

exists a probability measure P, j, such that Py pp . n NL> Py p.
h b o Tk

Proof. First we will prove that the limit measure Py o is tight, i.e., that, for every e > 0,
there is a compact set K C H"(D) such that

Pan(K)>1—¢ (17)

for all n € N. We observe that it suffices to show the tightness for the marginal measures
of Pn ahr

Poaii(A}) = Pyop(H®),..., H(D), A;, H(D), ..., H(D)), A; € B(H(D)), j=1,...,r.

i ,

j-1
Actually, if P, . ,; are tight, then, for & > 0, there exists compact sets K; C H(®) such that

€
Pn,tx]-,hj (K]) > 1 - ;

forallm € N. Let K = Ky X - -+ X K;. Then

r

Pn,%h(Hr(:D) \K) < 2 Pn,aj,hj(H(g) \K]) <re
j=1

=&

N1 m

for all n € N. Hence, inequality (17) holds. Thus, it is sufficient to consider P, , , with
arbitrary « € (0,1) \ {1/2} and 1 > 0.
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Let K;,; be a compact set of H(®D) from the definition of the metric p. There exists ¢ > 0
such that ¢ > 1/2 + e for s = ¢ + it € K. Then, by Lemma 3, we have on the hypothesis
for M,

N+M
Y 5o+ ikh,a) > <k, an M.
k=N
Hence,
N+M N+M 172
Y. |g(o +ikh,a)| < (M Y §(0+ikh,¢x)|2> <gyah M.
k=N k=N

This, together with the Cauchy integral formula, yields

N+M
Y sup [{(0 + ikh,a)| <k, o0 M.
k=N s€Ky
Therefore, in view of (4),
N+M 1 N+M
sup lim su sup |Cn(s + ikh,a)| < sup limsu sup |((s + ikh, a)|
neg N—)oop M+1 k;\] seKI?n ! neg N—)oop M+1 k:ZN seKI,)n

1 N+M
+ sup limsup —— sup |0 (s +ikh, o) — {(s +ikh,a)| < Ck, pa < 00 (18)
neN N-—roo M+1 k:ZN s€Kp " ’

Suppose that 7y p , is a random variable defined on a certain probability space (T, A, v)
and having the distribution

1
v{nNmp = kh} = Ml k=N,N+1,..., N+ M.

Introduce the H(®)-valued random element

YN Muah = YNMunah(S) = Tu(s + N Mu, &),

and denote by Y, , , = Y}, o 1 (s) the random element having the distribution P, , ;. Then
the assertion of Lemma 7 implies

D
YN,M,n,tx,h ? Yn,zx,h . (19)
N—oo

Since convergence in H(®D) is uniform on compact sets, from this, we get

D
sup [Yn,m,nah(S)] o Sup Y (5)]- (20)
seKiy o s€Ky

Now, we fix ¢ > 0, and put V,;, = 2" CK,,,,“,hfl. Then (19) and (20) give

N—o0

V{ sup [Yian(s)| > Vm} = lim V{ sup [Yn,mmah(s)| 2 Vm}

s€Ky s€Kp
N+M
<suplimsup ———— sup |Cn(s + ikh, )|
neN N-—oo (M+ 1)Vm k;\[ seKy, "
<27 M, 1)

Let
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Then K is a uniformly bounded set in H(®), and hence it is compact; by (21),

)
V{Yn,a,h € K} =1 _V{Yn,a,h g K} >1—e¢ Z 27Mm—1—¢

m=1

for all n € N. Hence, by the definition of Y}, , j,,
Pn,a,h(K) 21l—e

foralln € N,ie., P, is tight. [

Now, we continue the direct proof of the theorem preserving the notation for
1IN, Mnah- Since the measure P, , j, is tight, by the classical Prokhorov theorem (see [39],
Theorem 6.1), it is relatively compact, i.e., every sequence of {P,,} contains a subse-
quence weakly convergent to a certain probability measure on (H" (D), B(H"(D))). Thus,
let {P,, o1} C {Pyan} be a subsequence such that Py, 4 HLOO> P, with a probability
measure on (H" (D), B(H"(D))).

Denoting

Yn,g,ﬁ = Yn,g,h(s)

the H"(®D)-valued random element with distribution P, , ,, we may rewrite this in the form

D
Yuun —— Pupe (22)
|—00

Moreover, setting

YN Muah = YNMunah(s) = T, (5 + 1IN Man &),

in virtue of Lemma 7, we have
D
YN Mumah = Ynuh- (23)
N—oo
Introduce one more H" (D )-valued random element

ZnMah = ZNMah(8) = (s + N Mah &)

Then, application of Lemma 4, for € > 0, yields

lim lim sup v{ o, (Zn,muhn YN M) = €}
I=e0 Nooo

= lim lim sup Wy um (pr(g(s +ikh, ), (s + ikih,a)) > s)

|—o0 N—oco — =ny
N+M

< lim 1 . o _
< llgghgjip e k;\] p,(g(s—l—zkh,g),gnl (s + ikih,a)) = 0.

Therefore, the latter equality, (22), and (23) show that Lemma 9 is applicable for the random
elements Zy a1 anr YN, Monpan @0d Yy j, which corresponds to the measure P, j,. This leads
to the relation
ZN,M,&& L P, ohr
N—c0

and the definition of Zy p1, » proves the theorem.
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The case of Theorem 3 with the linearly independent over Q set L(ay, ..., a1y, ..., hy; 7T)
is simpler, and we have a full answer. On the probability space (Q0", B(Q"), i), define the

H'"(9D)-valued random element

i(s,w ) = (E(s,wi,01), ., E(s, wr,ar)),

where (m)
X wi(m
gs,w',a' = ]7, .:1,...,1’,
(5:0j5) mZ::1 (m +a)s !

and denote by Péﬂ its distribution. Thus,

Pro(A) = p{w e O : {(s,wa) € A}, Aec B(H(D)).

Theorem 4. Suppose that the set L(aq, ..., 0. h1,. .., hy; 70) is linearly independent over Q, and
maxlgjgr h]_1 (Nh]')23/70 g M g minlgjgr h]_1 (Nh]')l/2. Then PN,M,g,h I\]ii—oo) Pg&.

Proof. Denote by Q; . the limit measure in Lemma 8, i.e., Qua = po, i This measure is
independent of M and &. In other words, we have the same situation as considered in [28];
see proofs of Lemma 2.6 and Theorem 2.1. Thus, we have the relation

Qua —— Pra. (24)

Let Y}, , be the H"(D)-valued random element with distribution Q,, ». Then, by Lemma 8,
the relation
D
YNMmah = Yna (25)
N—oo

holds. Moreover, Lemma 4 yields

Jim. li? sup v{or(ZNMah YN Mnan) =€} =0 (26)
—00
for every € > 0. Here, we have used the notations of the proof of Theorem 3. Now, Lemma 9
and (24)—(26) give the assumption of the theorem. [

4. Proofs of Universality Theorems

In this section, we will apply Theorems 3 and 4 for the proof of universality. Also, the
Mergelyan theorem on approximation of analytic functions will be useful.

Lemma 10 (see [44-46]). Suppose that K C C is a compact set with connected complement; u(s)
is a continuous function on K and is analytic inside of K. Then, for any e > 0, there is a polynomial
ek (s) such that

sup [14(5) — ok (5)] < e

sekK

The proof of Theorem 1 involves the support S; , of the measure P, ,. We recall that

S¢ .« is @ minimal closed subset of H'(®) such that P ,(S; ) = 1. The set S , consists of all
elements u € H'(D) with a property that Pro(Gu) > 0 for every open neighbourhood G,
of u.

Lemma 11 (see [28], Lemma 3.1). Suppose that the set L(a1, ..., & N1, ..., hy : 77) is linearly
independent over Q. Then S; , = H' (D).
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Proof of Theorem 1. By Lemma 10, there exist polynomials g1 (s), ..., q,(s) such that

sup sup|fj(s) —g;(s)| < 5. @7

1<j<r sek;

Introduce the set G, C H" (D) by

Ge = {(u1,...,ur) € H'(D) : sup sup |u;(s) —qi(s)| < ;}

1<]<rs€1<j

Then, G is an open neighbourhood of the set (g1 (s), ..., q:(s)). However, (g1(s),...,q:(s))
€ H'(9). Thus, in view of Lemma 11, the set G; is an open neighbourhood of an element
of the support of the measure I ,. Then, by the support property,

PQ&(GS) > 0. (28)
Taking into account inequality (27), we find that, for (uy,...,u,) € G,

sup sup |u;(s) — fi(s)] <e.

1<j<r sek;
Hence, it follows that
Ge C @d:ef{(ul,...,u,) € H'(D) : sup sup |fi(s) —u;(s)| < s}.
1<j<r sek;
Therefore, in virtue of (28),
P (Ge) > 0. (29)

Now, applying Theorem 4 and the equivalent of weak convergence of probability measures
in terms of open sets ([39], Theorem 2.1), by (29) we have

liminf Py a1 as(Ge) = Pro(Ge) > 0.
N—o0 et =

This, and the definitions of G, and PN Mo i Show that

lim inf Wy ( sup sup |{(s +ikhj, ;) — fi(s)] < z—:) >0,
N—oo

1<jgr seKj

i.e., the first assertion of the theorem is proved.
The boundary dG; of G; lies in the union of the sets in which, for at least one j,

sup |uj(s) — fi(s)| =&,
SEKj

and, for the other j,
sup |u;(s) — fi(s)] <e.
SEKj

Therefore, aégl N 8@82 = o for different positive €1 and e,. From this remark, it follows
Pra (9Ge) # 0 for at most countably many ¢ > 0, in other words, the set G, is a continuity

set of the measure P, (P4 (9Ge) = 0) for all but at most countably many ¢ > 0. Applying
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Theorem 4 and the equivalent of weak convergence of probability measures in terms of
continuity sets ([39], Theorem 2.1), we determine that the limit

~

Hm Py aran(Ge) = Pra(Ge)

N—oco Z
exists for all but at most countably many & > 0. This, (29), and the definitions of Py p14 1
and G, prove the second statement of the theorem. []

Proof of Theorem 2. Let P, j, be the limit measure in Theorem 3. Denote by F, ;, the support
of the measure P, j,. Then F, j, is a non-empty closed subset of H"(®). For arbitrary compact
setKy,..., K, of ©,and (fi(s), ..., fr(s)) € Fyy, define

Ge = {(ul,...,ur) € H'(D) : sup sup |u;(s) — fi(s)| < e}.

1<j<r sek;

Then G, is an open neighbourhood of the element (f1(s), ..., f+(s)) of the support of the
measure P, ,. Hence,
Py y(Ge) > 0. (30)

Therefore, Theorem 3, and the equivalent of weak convergence of probability measures in
terms of open sets yield

limianN,M,&h(gs) P P&h(gﬁ) >0,
N—oo

and this proves the first statement of the theorem.

For the proof of the second statement of the theorem, we repeat arguments used in
the proof of Theorem 1. The set G, is a continuity set of the measure P, j, for all but at most
countably many € > 0. Hence, using Theorem 3 and the equivalent of weak convergence in
terms of continuity sets, we find by (30) that the limit

lim PM,N,%;l(gg)
N—o0

exists and is positive for all but at most countably many &€ > 0. This proves the second
assertion of the theorem. [

5. Conclusions

In the paper, we obtained joint approximation theorems of analytic functions by
discrete shifts ({(s + ikhy,a1),...,0(s +ikhy,ar)), k € N,h; > 0forj=1,...,r, of Hurwitz
zeta-functions {(s,a1),...,{(s, a;). If the set {(hylog(m +aq) : m € Ny), ..., (h, log(m +
ar) : m € Ny), 27} is linearly independent over Q, then every tuple (fi(s),..., fr(s)) of
analytic functions on the strip {s € C:1/2 < ¢ < 1} is approximated by the above shifts,
and the set of approximating shifts has a positive lower density in the interval [N, N + M]
with max;¢j<, hj_l (Nh]-)23/70 <M < minjgjq; hj_l (Nh]-)l/z. This improves Proposition 7,
where the interval of length N was considered. In the general case, the above shifts also
preserve a good approximation property: they approximate a certain closed set of analytic
functions. The used method is based on new mean square estimates for the Hurwitz
zeta-function and multidimensional probabilistic limit theorem in short intervals. Note
that the general case earlier was not considered. A big problem arises in identifying the set
of approximated analytic functions. Also, the bounds for M should be extended.
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