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Abstract

Since 1975, it has been known that the Hurwitz zeta-function has a unique property to
approximate by its shifts all analytic functions defined in the strip D = {s = σ + it :
1/2 < σ < 1}. However, such an approximation causes efficiency problems, and applying
short intervals is one of the measures to make that approximation more effective. In this
paper, we consider the simultaneous approximation of a tuple of analytic functions in
the strip D by discrete shifts (ζ(s + ikh1, α1), . . . , ζ(s + ikhr, αr)) with positive h1, . . . , hr of
Hurwitz zeta-functions in the interval [N, N + M] with M = max1⩽j⩽r

(
h−1

j (Nhj)
23/70

)
.

Two cases are considered: 1◦ the set {(hj log(m + αj), m ∈ N0, j = 1, . . . , r), 2π} is linearly
independent over Q; and 2◦ a general case, where αj and hj are arbitrary. In case 1◦, we
obtain that the set of approximating shifts has a positive lower density (and density) for
every tuple of analytic functions. In case 2◦, the set of approximated functions forms a
certain closed set. For the proof, an approach based on new limit theorems on weakly
convergent probability measures in the space of analytic functions in short intervals is
applied. The power η = 23/70 comes from a new mean square estimate for the Hurwitz
zeta-function.

Keywords: approximation of analytic functions; Hurwitz zeta-function; Riemann zeta-function;
universality; weak convergence of probability measures

MSC: 11M35

1. Introduction
Throughout the paper, s = σ + it is the main complex variable. We consider the

approximation of analytic functions by Hurwitz zeta-functions. Let α ∈ (0, 1] be a fixed
parameter. The Hurwitz zeta-function ζ(s, α) was introduced in [1] and, for σ > 1, is
defined by the Dirichlet series

ζ(s, α) =
∞

∑
m=0

1
(m + α)s .
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Moreover, ζ(s, α) has an analytic continuation to C \ {1}, and the point s = 1 is its simple
pole and Ress=1ζ(s, α) = 1. Clearly, ζ(s, 1) coincides with the Riemann zeta-function

ζ(s) =
∞

∑
m=1

1
ms , σ > 1,

and
ζ
(

s, 1
2

)
= (2s − 1)ζ(s).

The latter observations show that the function ζ(s, α) is an extension of the famous Riemann
zeta-function. Unlike ζ(s), the function ζ(s, α), except for values α = 1 and α = 1/2, has no
Euler product over prime numbers. Hence, the value distribution of ζ(s, α) differs from
that of ζ(s). For example, it is well known that ζ(s) ̸= 0 for σ > 1, while ζ(s, α), where
α ̸= 1, α ̸= 1/2, has infinitely many zeros in the latter half-plane [2–4].

On the other hand, the function ζ(s, α) has an indirect connection to the distribution
of prime numbers in arithmetic progressions. The main tool for investigations of the
asymptotics for

π(x; a, q) = ∑
p⩽x

p≡a(mod q)

1, p is prime number, (a, q) = 1, x → ∞,

is Dirichlet L-functions. Let χ : N → C be a Dirichlet character modulo q (where χ(m) is
periodic with period q, completely multiplicative, χ(m) = 0 if (m, q) > 1, and χ(m) ̸= 0
for (m, q) = 1). The Dirichlet L-function L(s, χ) with character χ, for σ > 1, is given by

L(s, χ) =
∞

∑
m=1

χ(m)

ms ,

and has meromorphic continuation to the whole C. From the periodicity of χ, it follows that

L(s, χ) = q−s
q

∑
m=1

χ(m)ζ
(

s, m
q

)
.

Thus, properties of ζ(s, α) with rational α can be applied for investigations of Dirichlet
L-functions, and consequently for π(x; a, q). Nevertheless, applications of the Hurwitz
zeta-function are not limited by the distribution of prime numbers; ζ(s, α) plays an im-
portant role in special function theory, algebraic number theory, probability theory, and
even quantum mechanics. The classical theory of ζ(s, α) can be found in [5–7]. One sig-
nificant feature of ζ(s, α) is connected to the approximation of analytic functions by shifts
ζ(s + iτ, α), τ ∈ R. This approximation is of a novel type in function theory, and is called
universality: shifts of one and the same function ζ(s, α) approximate the whole class of
analytic functions. The universality of the Riemann zeta-function ζ(s) was discovered by
S.M. Voronin in [8–13]. After Voronin, the universality of ζ(s) was studied by many authors
(see [14–18]). We recall some universality results for ζ(s, α). For D = {s ∈ C : σ ∈ (1/2, 1)},
denote by K the class of compact subsets of the strip D with connected complements, and
by H(K), K ∈ K, the set of continuous functions on K that are analytic inside of K. Let
mL A be the Lebesgue measure of measurable set A ⊂ R. Then, the following result is
known [14–16,18,19].
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Proposition 1. Suppose that α is rational ̸= 1 or ̸= 1/2, or a transcendental number, and K ∈ K,
f (s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1
T

mL

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ, α)− f (s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1
T

mL

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ, α)− f (s)| < ε

}

exists and is positive for all but at most countably many ε > 0.

If f (s) ̸= 0 on K, then the proposition remains valid for α = 1 or α = 1/2 as well.
The case of algebraic irrational α (α is a root of a polynomial ̸≡ 0 with rational

coefficients) has been considered in [20]. Denote by d the degree of α, and put β =

4 · 27−1(4.45)−2 and γ = βd−2. Then the universality of ζ(s, α) with algebraic irrational α

is contained in the following statement.

Proposition 2 (see [20]). Suppose that δ ∈ (0, γ), 1− γ + δ ⩽ σ0 ⩽ 1, s0 + σ0 + it0, and f (s) is
a continuous function on the disc |s − s0| ⩽ r, r > 0, and analytic inside of that disc. Let a ∈ (0, 1)
and ε ∈ (0, | f (s0)|). Then, for all but finitely many α ∈ [a, 1) of degree at most d0 − 2β/d2

0 + δ with

d0 ⩽
(

β

1 − σ0 + δ

)1/2
,

there are τ ∈ [T, 2T] and κ = κ(ε, f , T) > 0 such that

max
|s−s0|⩽κr

|ζ(s + iτ, α)− f (s)| < 3ε.

Here, T = T(α, f , ε) is given explicitly, the set of exceptional α can be described effectively, and κ

can be effectively computable as well.

Propositions 1 and 2 are of the so-called continuous type because τ in shifts ζ(s + iτ, α)

can take arbitrary values in the interval. In parallel to continuous universality theorems
for zeta-functions, theorems of discrete universality are studied when τ takes values from
certain discrete sets. The first discrete universality theorem for zeta-functions has been
obtained by A. Reich. In [21], he proved the discrete universality of Dedekind zeta-functions
ζK(s) of algebraic number fields K on the approximation of analytic functions by shifts
ζK(s + ikh), k ∈ N, where h is a fixed real number.

For statements of discrete universality theorems, we introduce some notation. Denote
by #A the cardinality of the set A, and, for N ∈ N0 = N∪ {0}, put

MN(. . . ) =
1

N + 1
#{0 ⩽ k ⩽ N : . . . },

where in place of dots a condition satisfied for k is to be written. The first discrete univer-
sality theorem for ζ(s, α) has been obtained by B. Bagchi.
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Proposition 3 (see [15], Corollary 5.3.7). Suppose that α is a rational number ̸= 1, ̸= 1/2, and
K ∈ K, f (s) ∈ H(K), h > 0. Then, for every ε > 0,

lim inf
N→∞

MN

(
sup
s∈K

|ζ(s + ikh, α)− f (s)| < ε

)
> 0. (1)

Discrete universality of ζ(s, α) with non-rational α involves the set

L
(
α, h, π) = {(log(m + α) : m ∈ N0), 2π

h
}

which can be a multiset.

Proposition 4 (see [22,23]). Let the set L(α, h, π) be linearly independent over Q. Then, for every
K ∈ K, f (s) ∈ H(K) and ε > 0, the inequality (1) is valid. Moreover, the lower limit in (1) can be
replaced by the limit for all but at most countably many ε > 0.

The second assertion of Proposition 4 has been obtained in [23,24]. As was noted
in [22], one can take α = 1/π and h ∈ Q in Proposition 4.

In [25], A. Sourmelidis proved that continuous universality for ζ(s, α) implies a discrete
one with shifts ζ(s + ikh, α), h > 0. Hence, Proposition 1 implies Proposition 3 not only
with rational but also with transcendental α. On the other hand, Proposition 4 may be true
with algebraic irrational α; however, examples of such α are not known.

Also, a joint universality of Hurwitz zeta-functions is considered. In this case, a
tuple ( f1(s), . . . , fr(s)) of analytic functions is approximated simultaneously by shifts
(ζ(s + iτ, α1), . . . , ζ(s + iτ, αr)) with both continuous and discrete τ. Obviously, for this,
the functions ζ(s, α1), . . . , ζ(s, αr) must be independent in a certain sense. This indepen-
dence may be described in terms of parameters α1, . . . , αr, for example, that α1, . . . , αr

are algebraically independent over Q, i.e., there is no polynomial p(s1, . . . , sr) ̸≡ 0 with
coefficients in Q such that p(α1, . . . , αr) = 0. A more general case involves the set
L(α1, . . . , αr) = {(log(m + α1) : m ∈ N0), . . . , (log(m + αr) : m ∈ N0)}. The following
statement is known [26].

Proposition 5. Suppose that the set L(α1, αr) is linearly independent over Q. For j = 1, . . . , r, let
Kj ∈ K and f j(s) ∈ H(Kj). Then, for every ε > 0,

lim inf
T→∞

1
T

mL

{
τ ∈ [0, T] : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + iτ, αj)− f j(s)| < ε

}
> 0.

The first joint discrete universality theorem was obtained for Hurwitz zeta-functions
with rational parameters. For q ∈ N, denote the Euler totient function as φ(q); let
χ1, . . . , χφ(q) be pairwise non-equivalent modulo Dirichlet characters q, and let

A def
=
(

χj(a)/φ(q)
)

1⩽j⩽φ(q)
1⩽a⩽q, (a,q)=1

be the quadratic matrix of order φ(q). For some functions ga(s), 1 ⩽ a ⩽ q, (a, q) = 1,
define the matrix

ĝ def
=
(
q−sga(s)

)T
1⩽a⩽q (a,q)=1

where BT means the transpose of a matrix B. Then in [27], we find the following result.
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Proposition 6. Suppose that K ∈ K, for each 1 ⩽ a ⩽ q, (a, q) = 1; let ga(s) ∈ H(K), and all
components of A−1 ĝ be non-vanishing on K. Then, for every ε > 0,

lim inf
N→∞

MN

 max
1⩽a⩽q
(a,q)=1

max
s∈K

∣∣∣ζ(s + ikh, a
q

)
− ga(s)

∣∣∣ < ε

 > 0.

The most general joint discrete universality theorem for Hurwitz zeta-functions uses
the set

L(α, . . . , αr; h1, . . . , hr; π)

= {(h1 log(m + α1) : m ∈ N0), . . . , (hr log(m + αr) : m ∈ N0), 2π}, h1, . . . , hr > 0.

Proposition 7 (see [28], Theorem 1.7). Suppose that the set L(α, . . . , αr; h1, . . . , hr; π) is linearly
independent over Q. For j = 1, . . . , r, let Kj ∈ K, f j(s) ∈ H(Kj). Then, for every ε > 0,
the inequality

lim inf
N→∞

MN

(
sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + ikhj, αj)− f j(s)| < ε

)
> 0

holds.

Propositions 1 and 3–7 imply that there are infinitely many shifts of the Hurwitz
zeta-function approximating a given analytic function or a tuple of analytic functions;
however, any concrete shift is not known. In this sense, the mentioned results are ineffective.
Proposition 2 has effectivity features because it indicates the explicit interval containing
values τ with approximating property.

Another way towards effectivisation of universality for zeta-functions consists of
shortening of intervals with approximating values τ. This idea leads to extension of
universality theorems for zeta-functions in short intervals. The first result in this direction
for the Riemann zeta-function has been given in [29], and improved in [30,31]. We recall that
some universality results for Hurwitz zeta-function in short intervals. The main theorem
of [32] is stated as follows.

Proposition 8 (see [32], Theorem 4). Suppose that the numbers α1, . . . , αr are algebraically
independent over Q, and T27/82 ⩽ H ⩽ T1/2. For j = 1, . . . , r, let Kj ∈ K and f j(s) ∈ H(Kj).
Then, for every ε > 0,

lim inf
T→∞

1
H

mL

{
τ ∈ [T, T + H] : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + iτ, αj)− f j(s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1
H

mL

{
τ ∈ [T, T + H] : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + iτ, αj)− f j(s)| < ε

}

exists, is explicitly given, and positive for all but at most countably many ε > 0.

The case with r = 1 for transcendental α was obtained in [33].
For N ∈ N and M ∈ N, set

WN,M(. . . ) =
1

M + 1
#{N ⩽ k ⩽ N + M : . . . },
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where in place of dots a condition satisfied by k is to be written. A version of Proposition 4
in short intervals has been proved in [34].

Proposition 9 (see [34], Theorem 1.5). Suppose that the set L(α, h, π) is linearly independent
over Q, and h−1(Nh)27/82 ⩽ M ⩽ h−1(Nh)1/2. Then, for every K ∈ K, f (s) ∈ H(K) and
ε > 0,

lim inf
N→∞

WN,M

(
sup
s∈K

|ζ(s + ikh, α)− f (s)| < ε

)
> 0.

Moreover, the lower limit can be replaced by the limit for all but at most countably many ε > 0.

The purpose of this paper is to connect Propositions 8 and 9, i.e., to obtain joint discrete
universality for Hurwitz zeta-functions in short intervals.

Theorem 1. Suppose that the set L(α1, . . . , αr; h1, . . . , hr; π) is linearly independent over Q, and
max1⩽j⩽r h−1

j (Nhj)
23/70 ⩽ M ⩽ min1⩽j⩽r h−1

j (Nhj)
1/2. For j = 1, . . . , r, let Kj ∈ K and

f j(s) ∈ H(Kj). Then, for every ε > 0,

lim inf
N→∞

WN,M

(
sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + ikhj, αj)− f j(s)| < ε

)
> 0.

Moreover, the limit

lim
N→∞

WN,M

(
sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + ikhj, αj)− f j(s)| < ε

)

exists and is positive for all but at most countably many ε > 0.

Denote by H(D) the space of analytic functions on the strip D endowed with the
topology of uniform convergence on compacta, and let

Hr(D) = H(D)× · · · × H(D)︸ ︷︷ ︸
r

.

Hr(D) is considered with the product topology.

Theorem 2. Suppose that the parameter αj ∈ (0, 1), αj ̸= 1/2, and the positive numbers h1, . . . , hr

are arbitrary, and max1⩽j⩽r h−1
j (Nhj)

23/70 ⩽ M ⩽ min1⩽j⩽r h−1
j (Nhj)

1/2. Then there exists
a closed non-empty set Fα1,...,αr ;h1,...,hr ⊂ Hr(D) such that, for compact sets K1, . . . , Kr ⊂ D,
( f1(s), . . . , fr(s)) ∈ Fα1,...,αr ;h1,...,hr and every ε > 0,

lim inf
N→∞

WN,M

(
sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + ikhj, αj)− f j(s)| < ε

)
> 0.

Moreover, the limit

lim
N→∞

WN,M

(
sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + ikhj, αj)− f j(s)| < ε

)

exists and is positive for all but at most countably many ε > 0.

We observe that 23/70 < 27/82.
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Remark 1. We suppose in Theorem 2 that αj ̸= 1 and αj ̸= 1/2 because, in these cases, ζ(s, αj)

coincides with the Riemann zeta-function ζ(s), or differs from it by a simple multiple 2s − 1. The
function ζ(s) has the Euler product, and, for studying its universality, another scheme is used.
Moreover, the above restriction for αj, in the case r = 1, removes confusion because the universality
for ζ(s) in short intervals is known, and Theorem 2 then becomes meaningless.

Theorems 1 and 2 will be proved in Section 4. Section 2 is devoted to mean value
estimates for Hurwitz zeta-functions in short intervals. In Section 3, we will prove limit the-
orems on weakly convergent probability measures in the space of analytic functions Hr(D).

2. Estimates in Short Intervals
Throughout the paper, we will often use the notation a ≪θ b, a ∈ C, b > 0, which

means that there exists a constant c = c(θ) > 0 such that |a| ⩽ cb. Thus, a ≪θ b is an
equivalent of a = Oθ(b).

Lemma 1. Suppose that α ∈ (0, 1) \ {1/2} and σ ∈ (1/2, 31/52] are fixed, and T23/70 ⩽ H ⩽
Tσ. Then, uniformly in H, the estimate

T+H∫
T−H

|ζ(σ + it, α)|2 dt ≪σ,α H

holds.

Proof. In the proof of Theorem 2 from [35], the bound of Lemma 1 was obtained for
T27/82 ⩽ H ⩽ Tσ and fixed σ ∈ (1/2, 7/12). For this, the exponent pair (11/30, 16/30)
for the estimation of mean squares of Dirichlet polynomials has been applied. Using the
exponent pair (9/26, 7/13) in place of (11/30, 16/30) gives Lemma 1.

Since the present paper is devoted to discrete value distribution problems of Hurwitz
zeta-functions, we need a discrete version of Lemma 1. To pass from Lemma 1 to its discrete
analogue, we will apply the following Gallagher lemma which connects continuous and
discrete mean squares.

Lemma 2 (see [36], Lemma 1.4). Suppose that δ > 0, T0, T ⩾ δ, A is a finite non-empty set,
A ⊂ [T0 + δ/2, T0 + T − δ/2], and

Nδ(τ) = ∑
τ∈A

|t−τ|<δ

1, τ ∈ A.

Let a complex-valuable function Z(t) be continuous on the interval [T0, T0 + T], and have a
continuous derivative inside this interval. Then the inequality

∑
t∈A

N−1
δ (t)|Z(t)|2 ⩽

1
δ

T0+T∫
T0

|Z(t)|2 dt +

 T0+T∫
T0

|Z(t)|2 dt
T0+T∫
T0

|Z ′(t)|2 dt

1/2

is valid.
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Lemma 3. Suppose that α ∈ (0, 1) \ {1/2}, and fixed σ ∈ [1/2, 31/52], h > 0, h−1(Nh)23/70 ⩽
M ⩽ h−1(Nh)1/2 and |τ| ⩽ log2(Nh). Then the estimate

N+M

∑
k=N

|ζ(σ + it + ikh, α)|2 ≪σ,α,h M(1 + |t|)

is valid.

Proof. We apply Lemma 2, with δ = 1, T0 = N − 1/2, T = M + 1, A = {k ∈ N : k ∈
[N, N + M]} and Z(τ) = ζ(σ + ihτ + it, α). Obviously,

N1(k) = ∑
l∈A

|k−l|<1

1 = 1.

Therefore, in virtue of Lemma 2,

N+M

∑
k=N

|ζ(σ + it + ihk, α)|2 ≪h

N+M∫
N−1

|ζ(σ + it + ihτ, α)|2 dτ

+

 N+M∫
N−1

|ζ(σ + it + ihτ, α)|2 dτ

N+M∫
N−1

|ζ ′(σ + it + ihτ, α)|2 dτ

1/2

. (2)

Clearly, for large N,

N+M∫
N−1

|ζ(σ + it+ ihτ, α)|2 dt =
N+M+t/h∫

(N−1)+t/h

|ζ(σ + ihτ, α)|2 dτ ≪h

(N+M)h+|t|∫
(N−M)h−|t|

ζ(σ + iτ, α)|2 dτ.

We have Mh + |t| ⩾ (Nh)23/70 for M ⩾ h−1(Nh)23/70, and Mh + |t| ⩽ (Nh)1/2 +

log2(Nh) ⩽ (Nh)σ for |t| ⩽ log2(Nh) and large N. Hence, Lemma 1 gives

N+M∫
N−1

|ζ(σ + it + ihτ, α)|2 dτ ≪σ,α,h Mh + |t| ≪σ,α,h M(1 + |t|). (3)

Observe that (ζ(σ + it + ihτ, α))′τ = ihζ ′(σ + it + ihτ, α). Therefore, a standard application
of the Cauchy integral formula and (3) leads to the estimate

N+M∫
N−1

|ζ ′(σ + it + ihτ, α)|2 dτ ≪σ,α,h M(1 + |t|).

This, together with (3) and (2), yields the estimate of the lemma.

Let, for brevity, α = (α1, . . . , αr), and ζ(s, α) = (ζ(s, α1), . . . , ζ(s, αr)). For the investi-
gation of ζ(s, α), we introduce an auxiliary object. Let θ > 1/2 be a fixed number, and, for
n ∈ N, and m ∈ N0,

wn(m, αj) = exp
{
−
(m+αj

n

)θ
}

, j = 1, . . . , r,
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where exp{a} = ea. Define the series

ζn(s, αj) =
∞

∑
m=1

wn(m, αj)

(m + αj)s , j = 1, . . . , r,

which is absolutely convergent in any half-plane σ ⩾ σ0 with a finite σ0. Let ζn(s, α) =

(ζn(s, α1), . . . , ζ(s, αr)). Our aim is to replace the investigation of ζ(s, α) by a simpler one of
ζn(s, α). We will show that ζ(s, α) and ζn(s, α) coincide in the mean. To describe this, we
need the metric in the space Hr(D).

It is well known (see, for example, [37]) that there exists a sequence of compact subsets
{Km : m ∈ N} ⊂ D such that Km ⊂ Km+1 for all m ∈ N,

D =
∞
∪

m=1
Km,

and every compact set K ⊂ D lies in some Km. For g1, g2 ∈ H(D), put

ρ(g1, g2) =
∞

∑
m=1

1
2m

sups∈Km
|g1(s)− g2(s)|

1 + sups∈Km
|g1(s)− g2(s)|

.

Then, ρ is a metric in H(D), which induces its topology of uniform convergence on
compact sets.

Now, let g
l
= (gl1, . . . , glr) ∈ Hr(D), l = 1, 2. Then

ρr(g
1
, g

2
) = max

1⩽m⩽r
ρ(g1m, g2m)

is the metric in Hr(D), inducing its product topology.
We now state the main lemma of this section. Let h = (h1, . . . , hr).

Lemma 4. Suppose that αj ∈ (0, 1) \ {1/2} for j = 1, . . . , r, and max1⩽j⩽r h−1
j (Nhj)

23/70 ⩽

M ⩽ min1⩽j⩽r h−1
j (Nhj)

1/2. Then

lim
n→∞

lim sup
N→∞

1
M + 1

N+M

∑
k=N

ρr

(
ζ(s + ikh, α), ζn(s + ikh, α)

)
= 0.

Proof. The definitions of the metrics ρr and ρ show that it suffices to prove the equalities

lim
n→∞

lim sup
N→∞

1
M + 1

N+M

∑
k=N

sup
s∈K

|ζ(s + ikhj, αj)− ζn(s + ikhj, αj)| = 0, j = 1, . . . , r, (4)

for every compact set K ⊂ D.
We will fix the parameter α, the number h > 0, and a compact set K ⊂ D, and recall

the integral representation for ζn(s, α). Let, as usual, Γ(s) stand for the Euler gamma-
function, and

κn(s) = θ−1Γ
( s

θ

)
n−s,

where θ is the number from the definition of wn(m, α). Then the integral representation

ζn(s, α) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s + z, α)κn(z)dz (5)
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holds. It follows easily from the classical Mellin formula

e−a =
1

2πi

b+i∞∫
b−i∞

Γ(z)a−z dz, a, b > 0,

and the definition of κn(s).
There exists 1/4 > δ > 0 such that 1/2 + 2δ ⩽ σ ⩽ 1 − δ for all s = σ + it ∈ K. Now,

we choose more precisely θ = 1/2 + δ, and introduce θ̂ = 1/2 + δ − σ. Clearly, θ̂ < 0 but
θ̂ > −1/2 + 2δ. Therefore, the integrand in (5) has a simple pole z = 1 − s of the function
ζ(s + z, α) with residue κn(1 − s), and a simple pole z = 0 of Γ(z/θ) with residue ζ(s, α),
both of which lie in the strip (θ̂, θ). Hence, taking into account the exponential decreasing
of the gamma-function,

Γ(σ + it) ≪ exp{−c|t|}, c > 0, (6)

and applying the residue theorem, we obtain, for s ∈ K,

ζn(s, α)− ζ(s, α) =
1

2πi

θ̂+i∞∫
θ̂−i∞

ζ(s + z, α)κn(z)dz + κn(1 − s).

Hence,

sup
s∈K

|ζ(s + ikh, α)− ζn(s + ikh, α)|

≪
∞∫

−∞

∣∣∣ζ( 1
2 + δ + ikh + iτ, α

)∣∣∣ sup
s∈K

∣∣∣κn

(
1
2 + δ − s + iτ

)∣∣∣dτ

+ sup
s∈K

|κn(1 − s − ikh)|. (7)

For simplification of further estimations, we present some elementary results. For σ ⩾ 1/2
and |t| ⩾ 2 (see, for example, [38]), the estimate

ζ(σ + it, α) ≪σ,α |t|1/2

holds, and, in view of (6), we have, for s = σ + it ∈ K,

κn

(
1
2 + δ − s + iτ

)
≪ n1/2+δ−σ exp

{
− c

θ |τ − t|
}
≪K n−δ exp{−c1|τ|}, c1 > 0, (8)

and

κn(1 − s − ikh) ≪ n1−σ exp
{
− c

θ |t + kh|
}
≪K n1/2−2δ exp{−c2kh}, c2 > 0.

Therefore, − log2(Nh)∫
−∞

+

∞∫
log2(Nh)

∣∣∣ζ( 1
2 + δ + ikh + iτ, α

)∣∣∣ sup
s∈K

∣∣∣κn

(
1
2 + δ − s + iτ

)∣∣∣dτ

≪α,K n−δ

 − log2(Nh)∫
−∞

+

∞∫
log2(Nh)

(kh + |τ|)1/2 exp{−c1|τ|}dτ

≪α,K n−δ
(
(kh)1/2 + 1

)
exp

{
−c3 log2(Nh)

}
, c3 > 0,
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and

1
M + 1

N+M

∑
k=N

sup
s∈K

|κn(1 − s − ikh)| ≪K n1/2−2δ 1
M + 1

N+M

∑
k=N

exp{−c2kh}

≪K n1/2−2δ exp
{
− c2

2 Nh
} ∞

∑
k=N

exp
{
− c2

2 kh
}

≪h,K n1/2−2δ exp
{
− c2

2 Nh
}

.

This and (7) lead to

1
M + 1

N+M

∑
k=N

sup
s∈K

|ζ(s + ikh, α)− ζn(s + ikh, α)|

≪h,K

log2(Nh)∫
− log2(Nh)

(
1

M + 1

N+M

∑
k=N

∣∣∣ζ( 1
2 + δ + ikh + iτ, α

)∣∣∣) sup
s∈K

∣∣∣κn

(
1
2 + δ − s + iτ

)
|
∣∣∣dτ

+ n−δ 1
M + 1

N+M

∑
k=N

(
(kh)1/2 + 1

)
exp{−c3 log2(Nh)}+ n1/2−2δ exp

{
− c2

2 Nh
}

def
= A1 + A2 + n1/2−2δ exp

{
− c2

2 Nh
}

. (9)

It is easily seen that, for large N,

A2 ≪h n−δ(Nh)1/2 exp
{
− c3

2 log2(Nh)
}

. (10)

For the estimation of A1, we will apply Lemma 3. Thus, for τ ⩽ log2(Nh),

1
M + 1

N+M

∑
k=N

∣∣∣ζ( 1
2 + δ + ikh + iτ, α

)∣∣∣ ⩽ ( 1
M + 1

N+M

∑
k=N

∣∣∣ζ( 1
2 + δ + ikh + iτ, α

)∣∣∣2)1/2

≪α,K,h (1 + |τ|)1/2.

Hence, by (8),

A1 ≪α,K,h n−δ

log2(Nh)∫
− log2(Nh)

(1 + |τ|)1/2 exp{−c1τ}dτ ≪α,K,h n−δ. (11)

Now, summarising the results (9)–(11), we obtain

1
M + 1

N+M

∑
k=N

sup
s∈K

|ζ(s + ikh, α)− ζn(s + ikh, α)|

≪α,K,h n−δ + n−δ(Nh)1/2 exp
{
− c3

2 log2(Nh)
}
+ n1/2−2δ exp

{
− c2

2 Nh
}

. (12)

We notice that the implied constant in (12) depends on δ; however, this is omitted because
δ depends on K.

Taking N → ∞ in (12), and then n → ∞, we obtain (4) with αj = α and hj = h. The
proof of the lemma is complete.

3. Results on Weak Convergence
This section is devoted to discrete limit theorems on weakly convergent probability

measures in the space Hr(D). Recall the definition of weak convergence. As usual, denote
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by B(X ) the Borel σ-field of a topological space X . Let Qn, n ∈ N, and Q be probability
measures on the measurable space (X ,B(X )). Then Qn converges weakly to Q as n → ∞
(Qn

w−−−→
n→∞

Q) if, for every real continuous bounded function f on X , the equality

lim
n→∞

∫
X

f dQn =
∫
X

f dQ

holds. The theory of weak convergence of probability measures is presented in the mono-
graph [39].

In this section, we will deal with the probability measure

PN,M,α,h(A) = WN,M

(
ζ(s + ikh, α) ∈ A

)
, A ∈ B(Hr(D)).

We will consider the asymptotic behaviour of PN,M,α,ζ as N → ∞ by using some auxiliary
spaces and probability measures on them. We start with analysing probability measures on
a certain group. Weak convergence on locally compact groups is developed in [40].

Denote by Ω the Cartesian product of unit circles over N0, i.e.,

Ω = ∏
m∈N0

{s ∈ C : |s| = 1}.

With the product topology and pointwise multiplication, Ω is a compact Abelian group,
which is the product of compact sets (Tikhonov theorem [41,42]). From this, the existence of
the probability Haar measure µ follows [43]. Denote by ω = (ω(m) : m ∈ N0) the elements
of Ω.

Introduce one more group

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then, again, Ωr is a compact topological Abelian group,
and, on (Ωr,B(Ωr)), the probability Haar measure µ can be defined. Let ω = (ω1, . . . , ωr),
ωj ∈ Ωj, j = 1, . . . , r, be elements of Ωr. Notice that the Haar measure µ is the product of
Haar measures µj, j = 1, . . . , r, i.e., for A = A1 × · · · × Ar ∈ B(Ωr), Aj ∈ Ωj, j = 1, . . . , r,
we have

µ(A) = µ1(A1) · · · µr(Ar).

For A ∈ B(Ωr), define the probability measure

QN,M,α,h(A) = WN,M

(((
(m + α1)

−ikh1 : m ∈ N0

)
, . . . ,

(
(m + αr)

−ikhr : m ∈ N0

))
∈ A

)
and consider its weak convergence as N → ∞.

Lemma 5. Suppose that αj ∈ (0, 1) \ {1/2} and hj > 0, where j = 1, . . . , r, are arbitrary, and
M → ∞ is as N → ∞. Then, on (Ωr,B(Ωr)), there exists a probability measure Qα,h such that
QN,M,α,h

w−−−→
N→∞

Qα,h.

Proof. As it is mentioned in [40], for the proof of weak convergence on groups, it is conve-
nient to use Fourier transforms. Since characters of the group Ωr have the representation

r

∏
j=1

∏∗

m∈N0

ω
ljm
j (m),
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where the star ∗ indicates that the integers ljm ̸= 0 only for a finite number of m ∈ N, the
Fourier transform fN,M,α,h(l1, . . . , lr), l j = (ljm ∈ Z, m ∈ N0), j = 1, . . . , r, of the measure
QN,M,α,h is defined by

fN,M,α,h(l1, . . . , lr) =
∫

Ωr

(
r

∏
j=1

∏∗

m∈N0

ω
ljm
j (m)

)
dQN,M,α,h.

Hence, we find

fN,M,α,h(l1, . . . , lr) =
1

M + 1

N+M

∑
k=N

r

∏
j=1

∏∗

m∈N0

(m + αj)
−iljmkhj

=
1

M + 1

N+M

∑
k=N

exp

{
−ik

r

∑
j=1

hj ∑∗

m∈N0

ljm log(m + αj)

}
.

For

L = L(α, h, l1, . . . , lr)
def
=

r

∑
j=1

hj ∑∗

m∈N0

ljm log(m + αj) = 2πv

with v ∈ Z, equality (13) yields

fN,M,α,h(l1, . . . , lr) = 1. (13)

Otherwise, we have

fN,M,α,h(l1, . . . , lr) =
exp{−iNL} − exp{−i(N + M + 1)L}

(M + 1)(1 − exp{iL}) (14)

in view of the formula for a sum of geometric progression. Therefore, taking into ac-
count (13) and (14), we obtain

lim
N→∞

fN,M,α,h(l1, . . . , lr) =

{
1 if L = 2πv, v ∈ Z,
0 othewrwise

(15)

because, in (14), the numerator is bounded and the denominator tends to ∞ as N → ∞.
Since the group Ωr is compact, it is the Lévy group. Hence, the convergence of Fourier
transforms implies weak convergence of the corresponding probability measures. Let the
probability measure Qα,h on (Ωr,B(Ωr)) be given by the Fourier transform

fα,h(l1, . . . , lr) =

{
1 if L = 2πv, v ∈ Z,
0 othewrwise.

(16)

Then, by (15), we have QN,M,α,h
w−−−→

N→∞
Qα,h.

Lemma 6. Suppose that the set L(α1, . . . , αr; h1, . . . , hr; π) is linearly independent over Q, and
M → ∞ as N → ∞. Then the relation QN,M,α,h

w−−−→
N→∞

µ holds.

Proof. The lemma is a corollary of Lemma 5. Actually, since the set L(α1, . . . , αr; h1, . . . , hr; π)

is linearly independent over Q, the equality L = 2πv holds if and only if l j = 0 for
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j = 1, . . . , r, and v = 0. Let 0 denote a collection consisting from zeros. Thus, in virtue
of (16), in this case,

fα,h(l1, . . . , lr) =

{
1 if (l1, . . . , lr) = (0, . . . , 0),
0 othewrwise,

and this proves the lemma because the right-hand side of the latter equality corresponds to
the Fourier transform of the Haar measure µ on (Ωr,B(Ωr)).

The next limit lemma concerns ζn(s, α). For A ∈ B(Hr(D)), set

PN,M,n,α,h(A) = WN,M

(
ζn(s + ikh, α) ∈ A

)
.

Lemma 7. Suppose that αj ∈ (0, 1) \ {1/2} and hj > 0, j = 1, . . . , r, are arbitrary numbers, and
M → ∞ as N → ∞. Then on (Hr(D),B(Hr(D))), there exists a probability measure Pn,α,h such
that PN,M,n,α,h

w−−−→
N→∞

Pn,α,h.

Proof. We will apply the principle of preservation of weak convergence under certain
mappings; see 5.1 of [39].

Define

ζn(s, αj, ωj)
∞

∑
m=0

ωj(m)wn(m, α)

(m + αj)s , ωj ∈ Ωj, j = 1, . . . , r

and put
ζn(s, α, ω) = (ζn(s, α1, ω1), . . . , ζn(s, αr, ωr)).

Consider the mapping vn,α : Ωr → Hr(D) given by

vn,α(ω) = ζn(s, α, ω), ω ∈ Ωr.

The series for ζn(s, αj, ωj) are absolutely convergent in any half-plane σ > σ0; therefore, the
mapping vn,α is continuous. Moreover, it follows that

vn,α

((
(m + α1)

−ikh1 : m ∈ N0

)
, . . .

(
(m + αr)

−ikhr : m ∈ N0

))
= ζn(s + ikh, α),

and thus, for A ∈ B(Ωr),

PN,M,n,α,h(A)

= WN,M

(((
(m + α1)

−ikh1 : m ∈ N0

)
, . . .

(
(m + αr)

−ikhr : m ∈ N0

))
∈ v−1

n,α A
)

= QN,M,α,h(v−1
n,α A),

where QN,M,α,h is the measure from Lemma 5, and v−1
n,α A denotes the preimage of the set A.

Since vn,α is continuous, it is (B(Hr(D)),B(Ωr))-measurable [39]. Hence, the limit measure
Qα,h in Lemma 5 defines a new measure Qα,hv−1

n,α in (Hr(D),B(Hr(D))) given by

Qα,hv−1
n,α(A) = Qα,h(v−1

n,α A), A ∈ B(Hr(D)).

These observations, Lemma 5, and Theorem 5.1 of [39] show that PN,M,n,α,h converges
weakly to the measure Qα,hv−1

n,α as N → ∞. Thus, denoting Pn,α,h = Qα,hv−1
n,α, we have

PN,M,nα,h
w−−−→

N→∞
Pn,α,h.
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Lemma 8. Suppose that the set L(α1, . . . , αr; h1, . . . , hr; π) is linearly independent over Q and
M → ∞ as N → ∞. Then, the relation PN,M,n,α,h

w−−−→
N→∞

µv−1
n,α holds.

Proof. We repeat the proof of Lemma 7 using Lemma 6 in place of Lemma 5.

Lemma 7 is a key for the proof of weak convergence for PN,M,α,h in the general case.
Additionally, we need one classical result on convergence in distribution. Let Xn, n ∈ N,
and X be X -valued random elements with distributions Pn and P, respectively. We say that

Xn converges to X as n → ∞ in distribution (Xn
D−−−→

n→∞
X) if and only if Pn

w−−−→
n→∞

P.

Lemma 9 (see [39], Theorem 4.2). Suppose that the metric space (X , d) is separable, X -valued
random elements Xnl and Yn, n, l ∈ N, are defined on the same probability space with a measure ν,
and the relations

Xnl
D−−−→

n→∞
Xl , ∀l ∈ N,

and
Xl

D−−−→
n→∞

X

hold. If, for every δ > 0,
lim
l→∞

lim sup
n→∞

ν{d(Xnl , Yn) ⩾ δ} = 0,

then Yn
D−−−→

n→∞
X.

Theorem 3. Suppose that αj ∈ (0, 1) \ {1/2} and hj > 0, j = 1, . . . , r, are arbitrary, and
max1⩽j⩽r h−1

j (Nhj)
23/70 ⩽ M ⩽ min1⩽j⩽r h−1

j (Nhj)
1/2. Then, on (Hr(D),B(Hr(D))), there

exists a probability measure Pα,h such that PN,M,α,h
w−−−→

N→∞
Pα,h.

Proof. First we will prove that the limit measure Pn,α,h is tight, i.e., that, for every ε > 0,
there is a compact set K ⊂ Hr(D) such that

Pn,α,h(K) > 1 − ε (17)

for all n ∈ N. We observe that it suffices to show the tightness for the marginal measures
of Pn,α,h,

Pn,αj ,hj
(Aj) = Pn,α,h

(
H(D), . . . , H(D)︸ ︷︷ ︸

j−1

, Aj, H(D), . . . , H(D)
)
, Aj ∈ B(H(D)), j = 1, . . . , r.

Actually, if Pn,αj ,hj
are tight, then, for ε > 0, there exists compact sets Kj ⊂ H(D) such that

Pn,αj ,hj
(Kj) > 1 − ε

r

for all n ∈ N. Let K = K1 × · · · × Kr. Then

Pn,α,h(Hr(D) \ K) ⩽
r

∑
j=1

Pn,αj ,hj
(H(D) \ Kj) ⩽ r · ε

r
= ε

for all n ∈ N. Hence, inequality (17) holds. Thus, it is sufficient to consider Pn,α,h with
arbitrary α ∈ (0, 1) \ {1/2} and h > 0.
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Let Km be a compact set of H(D) from the definition of the metric ρ. There exists ε > 0
such that σ ⩾ 1/2 + ε for s = σ + it ∈ Km. Then, by Lemma 3, we have on the hypothesis
for M,

N+M

∑
k=N

|ζ(σ + ikh, α)|2 ≪Km ,α,h M.

Hence,
N+M

∑
k=N

|ζ(σ + ikh, α)| ⩽
(

M
N+M

∑
k=N

|ζ(σ + ikh, α)|2
)1/2

≪Km ,α,h M.

This, together with the Cauchy integral formula, yields

N+M

∑
k=N

sup
s∈Km

|ζ(σ + ikh, α)| ≪Km ,α,h M.

Therefore, in view of (4),

sup
n∈N

lim sup
N→∞

1
M + 1

N+M

∑
k=N

sup
s∈Km

|ζn(s + ikh, α)| ⩽ sup
n∈N

lim sup
N→∞

1
M + 1

N+M

∑
k=N

sup
s∈Km

|ζ(s + ikh, α)|

+ sup
n∈N

lim sup
N→∞

1
M + 1

N+M

∑
k=N

sup
s∈Km

|ζn(s + ikh, α)− ζ(s + ikh, α)| ⩽ CKm ,h,α < ∞. (18)

Suppose that ηN,M,h is a random variable defined on a certain probability space (T,A, ν)

and having the distribution

ν{ηN,M,h = kh} =
1

M + 1
, k = N, N + 1, . . . , N + M.

Introduce the H(D)-valued random element

YN,M,n,α,h = YN,M,n,α,h(s) = ζn(s + iηN,M,n, α),

and denote by Yn,α,h = Yn,α,h(s) the random element having the distribution Pn,α,h. Then
the assertion of Lemma 7 implies

YN,M,n,α,h
D−−−→

N→∞
Yn,α,h. (19)

Since convergence in H(D) is uniform on compact sets, from this, we get

sup
s∈Km

|YN,M,n,α,h(s)|
D−−−→

N→∞
sup
s∈Km

|Yn,α,h(s)|. (20)

Now, we fix ε > 0, and put Vm = 2mCKm ,α,hε−1. Then (19) and (20) give

ν

{
sup
s∈Km

|Yn,α,h(s)| ⩾ Vm

}
= lim

N→∞
ν

{
sup
s∈Km

|YN,M,n,α,h(s)| ⩾ Vm

}

⩽ sup
n∈N

lim sup
N→∞

1
(M + 1)Vm

N+M

∑
k=N

sup
s∈Km

|ζn(s + ikh, α)|

⩽ 2−mε. (21)

Let

K = Kε =

{
f ∈ H(D) : sup

s∈Km

| f (s)| ⩽ Vm, m ∈ N
}

.
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Then K is a uniformly bounded set in H(D), and hence it is compact; by (21),

ν{Yn,α,h ∈ K} = 1 − ν{Yn,α,h ̸∈ K} ⩾ 1 − ε
∞

∑
m=1

2−m = 1 − ε

for all n ∈ N. Hence, by the definition of Yn,α,h,

Pn,α,h(K) ⩾ 1 − ε

for all n ∈ N, i.e., Pn,α,h is tight.

Now, we continue the direct proof of the theorem preserving the notation for
ηN,M,n,α,h. Since the measure Pn,α,h is tight, by the classical Prokhorov theorem (see [39],
Theorem 6.1), it is relatively compact, i.e., every sequence of {Pn,α,h} contains a subse-
quence weakly convergent to a certain probability measure on (Hr(D),B(Hr(D))). Thus,
let {Pnl ,α,h} ⊂ {Pn,α,h} be a subsequence such that PNl ,α,h

w−−→
l→∞

Pα,h with a probability

measure on (Hr(D),B(Hr(D))).
Denoting

Yn,α,h = Yn,α,h(s)

the Hr(D)-valued random element with distribution Pn,α,h, we may rewrite this in the form

Ynl ,α,h
D−−→

l→∞
Pα,h. (22)

Moreover, setting

YN,M,n,α,h = YN,M,n,α,h(s) = ζn(s + iηN,M,α,h, α),

in virtue of Lemma 7, we have

YN,M,n,α,h
D−−−→

N→∞
Yn,α,h. (23)

Introduce one more Hr(D)-valued random element

ZN,M,α,h = ZN,M,α,h(s) = ζ(s + iηN,M,α,h, α)

Then, application of Lemma 4, for ε > 0, yields

lim
l→∞

lim sup
N→∞

ν
{

ρr(ZN,M,α,h, YN,M,nl ,α,h) ⩾ ε
}

= lim
l→∞

lim sup
N→∞

WN,M

(
ρr(ζ(s + ikh, α), ζnl

(s + ikih, α)) ⩾ ε
)

⩽ lim
l→∞

lim sup
N→∞

1
ε(M + 1)

N+M

∑
k=N

ρr(ζ(s + ikh, α), ζnl
(s + ikih, α)) = 0.

Therefore, the latter equality, (22), and (23) show that Lemma 9 is applicable for the random
elements ZN,M,α,h, YN,M,nl ,α,h, and Yα,h, which corresponds to the measure Pα,h. This leads
to the relation

ZN,M,α,h
D−−−→

N→∞
Pα,h,

and the definition of ZN,M,α,h proves the theorem.
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The case of Theorem 3 with the linearly independent over Q set L(α1, . . . , αr; h1, . . . , hr; π)

is simpler, and we have a full answer. On the probability space (Ωr,B(Ωr), µ), define the
Hr(D)-valued random element

ζ(s, ω, α) = (ζ(s, ω1, α1), . . . , ζ(s, ωr, αr)),

where

ζ(s, ωj, αj) =
∞

∑
m=1

ωj(m)

(m + αj)s , j = 1, . . . , r,

and denote by Pζ,α its distribution. Thus,

Pζ,α(A) = µ{ω ∈ Ωr : ζ(s, ω, α) ∈ A}, A ∈ B(Hr(D)).

Theorem 4. Suppose that the set L(α1, . . . , αr; h1, . . . , hr; π) is linearly independent over Q, and
max1⩽j⩽r h−1

j (Nhj)
23/70 ⩽ M ⩽ min1⩽j⩽r h−1

j (Nhj)
1/2. Then PN,M,α,h

w−−−→
N→∞

Pζ,α.

Proof. Denote by Qn,α the limit measure in Lemma 8, i.e., Qn,α = µv−1
n,α. This measure is

independent of M and h. In other words, we have the same situation as considered in [28];
see proofs of Lemma 2.6 and Theorem 2.1. Thus, we have the relation

Qn,α
w−−−→

n→∞
Pζ,α. (24)

Let Yn,α be the Hr(D)-valued random element with distribution Qn,α. Then, by Lemma 8,
the relation

YN,M,n,α,h
D−−−→

N→∞
Yn,α (25)

holds. Moreover, Lemma 4 yields

lim
n→∞

lim sup
N→∞

ν
{

ρr(ZN,M,α,h, YN,M,n,α,h) ⩾ ε
}
= 0 (26)

for every ε > 0. Here, we have used the notations of the proof of Theorem 3. Now, Lemma 9
and (24)–(26) give the assumption of the theorem.

4. Proofs of Universality Theorems
In this section, we will apply Theorems 3 and 4 for the proof of universality. Also, the

Mergelyan theorem on approximation of analytic functions will be useful.

Lemma 10 (see [44–46]). Suppose that K ⊂ C is a compact set with connected complement; u(s)
is a continuous function on K and is analytic inside of K. Then, for any ε > 0, there is a polynomial
qε,u,K(s) such that

sup
s∈K

|u(s)− qε,u,K(s)| < ε.

The proof of Theorem 1 involves the support Sζ,α of the measure Pζ,α. We recall that
Sζ,α is a minimal closed subset of Hr(D) such that Pζ,α(Sζ,α) = 1. The set Sζ,α consists of all
elements u ∈ Hr(D) with a property that Pζ,α(Gu) > 0 for every open neighbourhood Gu

of u.

Lemma 11 (see [28], Lemma 3.1). Suppose that the set L(α1, . . . , αr; h1, . . . , hr : π) is linearly
independent over Q. Then Sζ,α = Hr(D).
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Proof of Theorem 1. By Lemma 10, there exist polynomials q1(s), . . . , qr(s) such that

sup
1⩽j⩽r

sup
s∈Kj

| f j(s)− qj(s)| <
ε

2
. (27)

Introduce the set Gε ⊂ Hr(D) by

Gε =

{
(u1, . . . , ur) ∈ Hr(D) : sup

1⩽j⩽r
sup
s∈Kj

|uj(s)− qj(s)| <
ε

2

}
.

Then, Gε is an open neighbourhood of the set (q1(s), . . . , qr(s)). However, (q1(s), . . . , qr(s))
∈ Hr(D). Thus, in view of Lemma 11, the set Gε is an open neighbourhood of an element
of the support of the measure Pζ,α. Then, by the support property,

Pζ,α(Gε) > 0. (28)

Taking into account inequality (27), we find that, for (u1, . . . , ur) ∈ Gε,

sup
1⩽j⩽r

sup
s∈Kj

|uj(s)− f j(s)| < ε.

Hence, it follows that

Gε ⊂ Ĝε
def
=

{
(u1, . . . , ur) ∈ Hr(D) : sup

1⩽j⩽r
sup
s∈Kj

| f j(s)− uj(s)| < ε

}
.

Therefore, in virtue of (28),
Pζ,α(Ĝε) > 0. (29)

Now, applying Theorem 4 and the equivalent of weak convergence of probability measures
in terms of open sets ([39], Theorem 2.1), by (29) we have

lim inf
N→∞

PN,M,α,h(Ĝε) ⩾ Pζ,α(Ĝε) > 0.

This, and the definitions of Ĝε and PN,M,α,h show that

lim inf
N→∞

WN,M

(
sup

1⩽j⩽r
sup
s∈Kj

|ζ(s + ikhj, αj)− f j(s)| < ε

)
> 0,

i.e., the first assertion of the theorem is proved.
The boundary ∂Ĝε of Ĝε lies in the union of the sets in which, for at least one j,

sup
s∈Kj

|uj(s)− f j(s)| = ε,

and, for the other j,
sup
s∈Kj

|uj(s)− f j(s)| < ε.

Therefore, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for different positive ε1 and ε2. From this remark, it follows
Pζ,α(∂Ĝε) ̸= 0 for at most countably many ε > 0, in other words, the set Ĝε is a continuity

set of the measure Pζ,α (Pζ,α(∂Ĝε) = 0) for all but at most countably many ε > 0. Applying
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Theorem 4 and the equivalent of weak convergence of probability measures in terms of
continuity sets ([39], Theorem 2.1), we determine that the limit

lim
N→∞

PN,M,α,h(Ĝε) = Pζ,α(Ĝε)

exists for all but at most countably many ε > 0. This, (29), and the definitions of PN,M,α,h

and Ĝε prove the second statement of the theorem.

Proof of Theorem 2. Let Pα,h be the limit measure in Theorem 3. Denote by Fα,h the support
of the measure Pα,h. Then Fα,h is a non-empty closed subset of Hr(D). For arbitrary compact
set K1, . . . , Kr of D, and ( f1(s), . . . , fr(s)) ∈ Fα,h, define

Gε =

{
(u1, . . . , ur) ∈ Hr(D) : sup

1⩽j⩽r
sup
s∈Kj

|uj(s)− f j(s)| < ε

}
.

Then Gε is an open neighbourhood of the element ( f1(s), . . . , fr(s)) of the support of the
measure Pα,h. Hence,

Pα,h(Gε) > 0. (30)

Therefore, Theorem 3, and the equivalent of weak convergence of probability measures in
terms of open sets yield

lim inf
N→∞

PN,M,α,h(Gε) ⩾ Pα,h(Gε) > 0,

and this proves the first statement of the theorem.
For the proof of the second statement of the theorem, we repeat arguments used in

the proof of Theorem 1. The set Gε is a continuity set of the measure Pα,h for all but at most
countably many ε > 0. Hence, using Theorem 3 and the equivalent of weak convergence in
terms of continuity sets, we find by (30) that the limit

lim
N→∞

PM,N,α,h(Gε)

exists and is positive for all but at most countably many ε > 0. This proves the second
assertion of the theorem.

5. Conclusions
In the paper, we obtained joint approximation theorems of analytic functions by

discrete shifts (ζ(s + ikh1, α1), . . . , ζ(s + ikhr, αr)), k ∈ N, hj > 0 for j = 1, . . . , r, of Hurwitz
zeta-functions ζ(s, α1), . . . , ζ(s, αr). If the set {(h1 log(m + α1) : m ∈ N0), . . . , (hr log(m +

αr) : m ∈ N0), 2π} is linearly independent over Q, then every tuple ( f1(s), . . . , fr(s)) of
analytic functions on the strip {s ∈ C : 1/2 < σ < 1} is approximated by the above shifts,
and the set of approximating shifts has a positive lower density in the interval [N, N + M]

with max1⩽j⩽r h−1
j (Nhj)

23/70 ⩽ M ⩽ min1⩽j⩽r h−1
j (Nhj)

1/2. This improves Proposition 7,
where the interval of length N was considered. In the general case, the above shifts also
preserve a good approximation property: they approximate a certain closed set of analytic
functions. The used method is based on new mean square estimates for the Hurwitz
zeta-function and multidimensional probabilistic limit theorem in short intervals. Note
that the general case earlier was not considered. A big problem arises in identifying the set
of approximated analytic functions. Also, the bounds for M should be extended.
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33. Laurinčikas, A. Universality of the Hurwitz zeta-function in short intervals. Bol. Soc. Mat. Mex. 2025, 31, 17. [CrossRef]
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