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Abstract

The Riemann hypothesis (RH) says that all zeros of the Riemann zeta function ζ(s),
s = σ + it, in the strip {s ∈ C : 0 < σ < 1} lie on the line σ = 1/2. There are many
equivalents of RH in various terms. In this paper, we propose equivalents of RH in terms
of self-approximation, i.e., of the approximation of ζ(s) by ζ(s + iτ), τ ∈ R, in the interval
τ ∈ [T, T + U] with Tη ⩽ U ⩽ T, η = 1273/4033. We show that the RH is equivalent to the
positivity of lower density and (with some exception for the accuracy of approximation) the
density of the set of approximating shifts ζ(s + iτ). For the proof, a probabilistic approach
and mean square estimates for ζ(s) in short intervals are applied.

Keywords: equivalent of the Riemann hypothesis; limit theorem; non-trivial zeros;
Riemann hypothesis; Riemann zeta function; universality; weak convergence of
probability measures; zero-free region

1. Introduction and Results
Denote by P, N, R and C the sets of all prime, positive integer, real and complex

numbers, respectively, and let s = σ + it be a complex variable. The Riemann zeta function
ζ(s) is defined for σ > 1 by the Dirichlet series

ζ(s) =
∞

∑
m=1

1
ms , (1)

or equivalently, by the Euler product

ζ(s) = ∏
p∈P

(
1 − 1

ps

)−1
. (2)

From (1), it follows that ζ(s) is an analytic function in the half-plane σ > 1. Moreover, ζ(s)
has the functional equation of the symmetric form

η(s) = η(1 − s), (3)

where
η(s) = ζ(s)π−s/2Γ

( s
2

)
,

and Γ(s) denotes the Euler gamma function and has meromorphic continuation to the
entire complex plane with the unique simple pole at the point s = 1 with Ress=1ζ(s) = 1.
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The interest of ζ(s) was already observed by L. Euler; however, the most outstanding
merits in the investigation of ζ(s) belongs to B. Riemann. He proved [1] that the functional
Equation (3) continued analytically ζ(s) and proposed a way to apply ζ(s) for studying the
distribution of prime numbers, i.e., for the asymptotic formula for

π(x) = ∑
p⩽x
p∈P

1, x → ∞.

Riemann’s method was based on the location of some zeros of the function ζ(s).
From (2), it follows easily that ζ(s) ̸= 0 for σ > 1. Equation (3) implies that ζ(s) = 0

for s = −2m, m ∈ N, which are poles of Γ(s/2), and ζ(s) ̸= 0 if σ ⩽ 0, t ̸= 0. The
points s = −2m are called trivial zeros of ζ(s). Thus, it remains the so-called critical strip
{s ∈ C : 0 < σ < 1}. Riemann knew that ζ(s) has infinitely many zeros in the critical strip.
More precisely, he affirmed that, for the number N(T) of zeros ρ = β + iγ of ζ(s) with
0 < β < 1, 0 ⩽ γ ⩽ T, the asymptotic formula

N(T) =
T

2π
log

T
2π

− T
2π

+ O(log T), T → ∞,

is valid. Riemann was right: The above formula was obtained by H. von Mangoldt in [2].
The zeros of ζ(s) lying in the critical strip are called non-trivial. However, the most
interesting and important of Riemann’s conjecture claims that all non-trivial zeros of ζ(s)
lie on the line σ = 1/2. This conjecture is named the Riemann hypothesis (RH). The RH is
one of the seven most important Millenium mathematical problems [3].

Let

Λ(m) =

{
log p if m = pn, n ∈ P,
0 otherwise,

and
ψ(x) = ∑

m⩽x
Λ(m).

The Riemann method for the investigation of π(x) is based on the following formula:

ψ(x) = x − ∑
ρ

xρ

ρ
+

ζ ′(0)
ζ(0)

− 1
2

log(1 − x2), x > 1, x ̸= pm, (4)

where the summation runs over non-trivial zeros of ζ(s), which was stated in [1] without
proof. It is easily seen that estimations for ψ(x)− x lead to bounds for π(x)−

∫ x
2

du
log u . In

general, the Riemann idea was very good; however, for the estimation of ψ(x)− x, a trun-
cated version of (4) is needed, and this was carried out independently by J. Hadamard [4]
and C.J. de la Vallée Poussin [5–7]. They proved that there is an absolute constant c > 0
such that ζ(s) ̸= 0 for

σ ⩾ 1 − c
log(|t|+ 2)

. (5)

Throughout the paper, we will use the notation ≪θ , which is synonymous with Oθ(. . . ),
with the implied constant depending on θ.

From (5), one has

ψ(x)− x ≪ x exp
{
−c1(log x)1/2

}
, c1 > 0,
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and the latter bound implies

π(x)−
x∫

2

du
log u

≪ x exp
{
−c2(log x)1/2

}
, c2 > 0. (6)

Here and throughout, we use the notation exp{a} = ea.
The improvement of (6) depends on the extension of the zero-free region for ζ(s). The

best known result asserts (see, for example, [8–10]) that there exists a constant C > 0 such
that ζ(s) ̸= 0 for

σ ⩾ 1 − C
log2/3 |t|(log log |t|)1/3

, t ⩾ 3. (7)

It is indicated in [10] that the latter result belongs to H.-E. Richert (unpublished). This is the
interesting problem with respect to the estimation of the constant in (7). The last known
results are the following: K. Ford [11] proved (7) with C = 1/57.54 and, for sufficiently
large t, with C = 1/49.13. P.P. Nielsen [12] replaced the latter value with C = 1/49.08. The
best result in the field were reported by M.J. Mossinghoff, T.S. Trudgian, and A. Yang [13].
They obtained ζ(s) ̸= 0 in the region

σ ⩾ 1 − 1

55.241 log2/3 |t|(log log |t|)1/3
, t ⩾ 3,

and, for sufficiently large |t|,

σ ⩾ 1 − 1

48.1588 log2/3 |t|(log log |t|)1/3
.

These results show how deep is the problem.
Using a truncated formula for ψ(x), it can be obtained (see, for example, [8]) that RH

is equivalent to the estimate
ψ(x)− x ≪ x1/2 log2 x. (8)

Let
ψ1(x) def

= ∑
m⩽x

Λ(m)(log m)−1 = π(x) + ∑
m⩽x
m=pk

k⩾2

Λ(m)(log m)−1.

Then,
ψ1(x)− π(x) ≪ x1/2 log x. (9)

Clearly, from the definitions of ψ(x) and ψ1(x), we have

ψ1(x) =
x∫

2

1
log u

dψ(u).

Thus, in view of (8),

ψ1(x) = ψ(x)(log x)−1 +

x∫
2

ψ(u)
du

u log2 u
=

x∫
2

(log u)−2 du +
x

log x
+ O

(
x1/2 log x

)
.

This, together with (9), gives

π(x)−
x∫

2

du
log u

≪ x1/2 log x, (10)
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and the RH implies (10). It turns out that (10) also implies RH. In consequence, estimate
(10) is an equivalent of the RH. This was obtained by N.H. von Koch in [14].

At the moment, many equivalents of the Riemann hypothesis in various terms are
known (see [15,16]). We focus on equivalents connected to the approximation properties
of ζ(s) of some class of analytic functions. This property is called the universality of ζ(s),
and this was reported by S.M. Voronin in [17] (see also [18–21]). Let r ∈ (0, 1/4) be a fixed
number. Voronin proved that, for every non-vanishing continuous function g(s) on the disc
|s| ⩽ r that is analytic in |s| < r and for any ε > 0, there is a number τ = τε,g ∈ R satisfying
the following:

max
|s|⩽r

∣∣∣∣g(s)− ζ

(
s +

3
4
+ iτ

)∣∣∣∣ < ε.

The latter interesting result has been observed by the mathematical community and stated
in a more general form. Denote by mLA the Lebesgue measure of a measurable set A of
real numbers. Let D = {s ∈ C : σ ∈ (1/2, 1)}.

Theorem 1 (see [22], Corollary 5.3.6; see also [23–25]). Suppose that K ⊂ D is a compact set
with a connected complement and g(s) is a non-vanishing continuous function on K and analytic
inside of K. Then, for any ε > 0,

lim inf
T→∞

1
T
mL

{
τ ∈ [0, T] : sup

s∈K
|g(s)− ζ(s + iτ)| < ε

}
> 0.

The inequality of Theorem 1 implies that there are infinitely many τ such that ζ(s + iτ)
approximates a given analytic function g(s).

Theorem 1 is modified in terms of the density of approximating shifts.

Theorem 2 (see [26,27]). Let K and g(s) be as in Theorem 1. Then, the limit

lim
T→∞

1
T
mL

{
τ ∈ [0, T] : sup

s∈K
|g(s)− ζ(s + iτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.

In a certain sense, Theorem 2 is stronger than Theorem 1; however, the exceptional set
of values of ε is not explicitly defined.

It turned out that the RH is equivalent to self-approximation by shifts ζ(s + iτ). This
was carried out by B. Bagchi in [22,28]. Let K denote the class of compact subsets of the strip
D with connected complements, and let H0(K) with K ∈ K be the class of non-vanishing
continuous functions on K that are analytic inside of K.

Theorem 3 (see [22,28]). The RH is equivalent to the statement that, for every K ∈ K and ε > 0,

lim inf
T→∞

1
T
mL

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + iτ)| < ε

}
> 0.

In [24], Theorem 3 has been extended to the region σ > θ with θ ⩾ 1/2.

Theorem 4 (see [24]). The function ζ(s) ̸= 0 for σ > θ, θ ⩾ 1/2, if and only if, for any ε > 0
and z with θ < Rez < 1, and for any 0 < r < min{Rez − θ, 1 − Rez},

lim inf
T→∞

1
T
mL

{
τ ∈ [0, T] : max

|s−z|⩽r
|ζ(s)− ζ(s + iτ)| < ε

}
> 0.
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In [29], Theorem 3 has been stated in terms of density.

Theorem 5. The RH is equivalent to the statement that, for any K ∈ K, the limit

lim
T→∞

1
T
mL

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + iτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.

Theorems 3 and 5 remain valid for some generalized shifts ζ(s + iφ(τ)) with certain
φ(τ). In [30], the Gram function tτ has been applied. Let ϑ(t) be the increment of the
function π−s/2Γ(s/2) along the segment between the points s = 1/2 and s = 1/2 + it.
Since the function ϑ(t) is increasing for t ⩾ 6.2898 . . . , the equation

ϑ(t) = (τ − 1)π, τ ⩾ 0,

has an unique solution tτ that is called the Gram function. The theory of the function tτ is
given in [31–33]. The points tm, m ∈ N, have been introduced and studied by J.-P. Gram [34]
for the investigation of imaginary parts of non-trivial zeros of ζ(s).

Theorem 6 (see [30]). The RH is equivalent to the statement that, for any K ∈ K and ε > 0,

lim inf
T→∞

1
T
mL

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}
> 0.

An analogue of Theorem 5 with shifts ζ(s + itτ) is valid as well.

Theorem 7 (see [30]). The RH is equivalent to the statement that, for any K ∈ K, the limit

lim
T→∞

1
T
mL

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.

Paper [35] is devoted to discrete versions of Theorems 6 and 7. In this case, the shifts
ζ(s + itk) with Gram points tk are used.

Proofs of Theorems 5–7 utilize the corresponding universality theorems for ζ(s) and
weakly convergent probability measures in the space of analytic functions.

Universality theorems for ζ(s) formulated using a notion of density or lower density
are more effective when they are considered in short intervals, i.e., if the length of the
interval is o(T) as T → ∞. Thus, the density of approximating shifts ζ(s + iτ) is considered
in the interval [T, T + U], with U = o(T) taken as small as possible. For brevity, denote
η = 1273/4033. The strongest universality result for ζ(s) in short intervals has been ob-
tained in [36], with U satisfying Tη ⩽ U ⩽ T. The method of [36] is different from the
classical method of [8], and it is based on a result of J. Bourgain and N. Watt [37] where

1
2U

T+U∫
T−U

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣2 dt ≪ log T

for U = Tη+ε, ∀ε > 0. From this, the constant η is obtained. We believe that the decrease
of η is a very difficult problem of analytic number theory. Under RH, it was obtained
in [36] that ζ(s) is universal for U, satisfying exp{(log T)1−ε} ⩽ U ⩽ T with every ε > 0.
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However, the best lower bound for U, U = (log T)B, in the case of discs K with B depending
on K was given in [38].

The purpose of this paper is to give versions of Theorems 3 and 5 in terms of short
intervals. We will establish the following statements.

Theorem 8. The RH is equivalent to the statement that, for Tη ⩽ U ⩽ T, any K ∈ K and ε > 0,

lim inf
T→∞

1
U
mL

{
τ ∈ [T, T + U] : sup

s∈K
|ζ(s)− ζ(s + iτ)| < ε

}
> 0.

Theorem 9. The RH is true if and only if, for Tη ⩽ U ⩽ T and any K ∈ K, the limit

lim
T→∞

1
U
mL

{
τ ∈ [T, T + U] : sup

s∈K
|ζ(s + iτ)− ζ(s)| < ε

}

exists and is positive for all but at most countably many ε > 0.

For the proof of Theorems 8 and 9, a probabilistic method based on weakly convergent
probability measures in short intervals in the space of analytic functions will be applied.
We devote Section 2 to this. In the proof of Proposition 1, we omit some details that were
used several times by various authors. The constant η comes from [36,37], where it was
involved in the mean square estimates of the Riemann zeta function. We conjecture that η

can decrease to Tε, ∀ε > 0. However, this requires of new ideas.

2. Probabilistic Results
The idea of applying statistical methods to the characterisation of the chaotic behaviour

of the Riemann zeta function was formulated by H. Bohr at the beginning of the 20th
century [39]. This was realized in the joint works with B. Jessen on the density for some
sets of values of ζ(s). Denote by mJ the Jordan measure on R, and let R be the rectangle
with edges parallel to the axes. Then, in [40], it was proved that, for fixed σ > 1, the limit

lim
T→∞

1
T
mJ{t ∈ [0, T] : log ζ(σ + it) ∈ R}

exists. In [41], the latter theorem with some modifications was extended to the half-plane
σ > 1/2. The Bohr–Jessen results were developed in the papers of B. Jessen and A. Wintner,
V. Borchsenius and B. Jessen, and A. Selberg.

Later, in the middle of the 20th century, the theory of the weak convergence of proba-
bility measures was formulated and developed. The created theory created the conditions
for formulating Bohr–Jessen-type theorems in terms of the weak convergence of probability
measures. For a topological space X , let B(X ) stand for its σ-field. On (X ,B(X )), define
probability measures P and Pn, n ∈ N. By definition, Pn converges weakly to P as n → ∞,
or, shortly, Pn

w−−−→
n→∞

P, if, for any real bounded continuous function u on X ,

∫
X

u dPn −−−→
n→∞

∫
X

u dP.

Using weak convergence, the above-mentioned Bohr–Jessen theorem can be restated in
the following form: on (C,B(C)), there is a probability measure Pσ such that, for σ > 1/2,
the measure

1
T
mL{t ∈ [0, T] : ζ(σ + it) ∈ A}, A ∈ B(C),

converges weakly to Pσ as T → ∞ (see, for example, [24,42] and a survey paper [43]).
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B. Bagchi made a significant impact on probabilistic function theory in his thesis [22].
He introduced and obtained limit theorems on weakly convergent probability measures
in the space of analytic functions, and he applied them for the proof of the universality of
various zeta functions, including ζ(s). Developments of the Bagchi method were continued
in [24,25].

Recall that D = {s ∈ C : σ ∈ (1/2, 1)}. Define the space H (D) of analytic func-
tions on D equipped with the topology of uniform convergence on compact sets. For
A ∈ B(H (D)), set the following:

PT,U(A) =
1
U
mL{τ ∈ [T, T + U] : ζ(s + iτ) ∈ A}.

The weak convergence of the measure PT,U as T → ∞ is the main ingredient for the proof
of Theorems 8 and 9.

Introduce the set
Ω = ∏

p∈P
{s ∈ C : |s| = 1},

i.e., Ω is the infinite Cartesian product of unit circles. On Ω, the operation of pairwise
multiplication and product topology can be defined. This makes Ω a compact Abelian topo-
logical group and ensures the existence of the probability Haar measure mH on (Ω,B(Ω).
Hence, we have the probability space (Ω,B(Ω),mH). Let ω = (ω(p) : p ∈ P) denote
the elements of Ω. Now, on the space (Ω,B(Ω),mH), define the H (D)-valued random
element ζ(s, ω) by

ζ(s, ω) = ∏
p∈P

(
1 − ω(p)

ps

)−1

.

This infinite Euler product, for almost all ω ∈ Ω, converges uniformly on compact sets of
the strip D , and it defines the H (D)-valued random element ([23], Theorem 5.1.7). Let Pζ

stand for the distribution of ζ(s, ω), i.e.,

Pζ(A) = mH{ω ∈ Ω : ζ(s, ω) ∈ A}, A ∈ B(H (D)).

Suppose that T1 = T1(T) → ∞ as T → ∞ and, for T1 ⩽ U ⩽ T, the mean square estimate

T+U∫
T−U

|ζ(σ + it)|2 dt ≪σ U (11)

holds uniformly in U for 1/2 < σ ⩽ σ0 < 1 with some σ0.

Proposition 1. Suppose that T1 ⩽ U ⩽ T satisfies (11). Then, PT,U
w−−−→

T→∞
Pζ .

Proof. We apply standard arguments. First, using the Fourier transform method leads to
the relation

PΩ
T,U

w−−−→
T→∞

mH, (12)

where, for A ∈ B(Ω),

PΩ
T,U(A) =

1
U
mL

{
τ ∈ [T, T + U] :

(
p−iτ : p ∈ P

)
∈ A

}
.

Further, introduce the absolutely convergent Dirichlet series

ζn(s)
∞

∑
m=1

wn(m)

ms , n ∈ N,
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with

wn(m) = exp
{
−
(m

n

)θ
}

, θ >
1
2

,

and consider the probability measure

PT,U,n(A) =
1
U
mL{τ ∈ [T, T + U] : ζn(s + iτ) ∈ A}, A ∈ B(H (D)).

Using the mapping vn : Ω → H (D) given by

vn(ω) =
∞

∑
m=1

ω(m)wn(m)

ms , ω(m) = ∏
pl |m

pl+1∤m

ωl(p), m ∈ N,

we have that
vn

(
p−iτ : p ∈ P

)
= ζn(s + iτ),

Therefore, PT,U,n = PΩ
T,Uv−1

n , where PΩ
T,Uv−1

n (A) = PΩ
T,U(v

−1
n A), with A ∈ B(H (D)). With

this remark, the continuity of vn and (12) implies the relation

PT,U,n
w−−−→

T→∞
Pn

def
= mHu−1

n . (13)

It remains to pass from PT,U,n to PT,U . For this, the bound (11) plays a crucial role. For
ζn(s), the following integral representation

ζn(s) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s + z)κn(z)dz, κn(z) =
1
θ

Γ
( z

θ

)
nz, (14)

is valid [23]. We will prove that, for every compact set K ⊂ D ,

lim
n→∞

lim sup
T→∞

1
U

T+U∫
T

sup
s∈K

|ζn(s + iτ)− ζ(s + iτ)|dτ = 0. (15)

Let K ⊂ D be a fixed compact set. Then, K lies in some strip 1/2+ 2δ ⩽ σ ⩽ 1− δ, δ > 0.
Take θ = 1/2 + δ and θ1 = 1/2 + δ − σ. Then, the integrand in (14), in the strip θ1 ⩽ Rez ⩽ θ,
only has simple poles at the points z = 0 (a pole of Γ(s/θ)) and z = 1− s (a pole of ζ(s + z)).
Therefore, the representation (14), residue theorem, and the well-known estimates

ζ(σ + it) ≪ t1/2−σ log t, t ⩾ t0,

and
Γ(σ + it) ≪ exp{−c|t|}, |t| ⩾ t0,

lead, for all s ∈ K, to

ζn(s)− ζ(s) =
1

2πi

θ1+i∞∫
θ1−i∞

ζ(s + z)κn(z)dz + κn(1 − s).

Hence, the above estimates for the functions ζ(s) and Γ(s) yield
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1
U

T+U∫
T

sup
s∈K

|ζn(s + iτ)− ζ(s + iτ)|dτ

≪K

log2 T∫
− log2 T

(
1
U

T+U∫
T

∣∣∣ζ( 1
2 + δ + iu + iτ

)∣∣∣2 dτ

)1/2

sup
s∈K

∣∣∣κn

(
1
2 + δ − s + iu

)∣∣∣du

+ 1
U

T+U∫
T

sup
s∈K

|κn(1 − s − iτ)|dτ + n−δ exp
{
−c log2 T

}
1
U

T+U∫
T

|τ|1/2 dτ

def
= A1 + A2 + A3.

(16)

Here and throughout, c is a positive constant that is not always the same. Clearly,

1
U

T+U∫
T

∣∣∣∣ζ(1
2
+ δ + iu + iτ

)∣∣∣∣2 dτ ⩽
1
U

T+U+|u|∫
T−U−|u|

∣∣∣∣ζ(1
2
+ δ + iτ

)∣∣∣∣2 dτ ≪ 1 + |u|

in view of (11) if U + |u| ⩽ T; otherwise, it is

≪ 1
U

2(U+|u|)∫
−2(U+|u|)

∣∣∣∣ζ(1
2
+ δ + iτ

)∣∣∣∣2 dτ ≪K 1 + |u|.

Thus,

A1 ≪K

log2 T∫
− log2 T

(1 + |u|)1/2n1/2−σ+δ exp{−c|t − u|}du ≪K n−δ. (17)

Similarly,

A2 ≪K n1−σ

T+U∫
T

exp{−c|τ|}dτ ≪K n−2δ+1/2 exp{−cT},

and
A3 ≪K n−δT1/2 exp{−c log2 T}.

This, combined with (16) and (17), implies (15).
Let d be the metric in the space H (D) that induces the topology of uniform conver-

gence on compact sets, i.e., for g1, g2 ∈ H (D),

d(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
,

where {Kl : l ∈ N} ⊂ D is a sequence of embedded compact set such that D =
∞
∪

l=1
Kl , and

any compact set K ⊂ D is in some Kl . Now, (15) shows that

lim
n→∞

lim sup
T→∞

1
U

T+U∫
T

d(ζn(s + iτ), ζ(s + iτ))dτ = 0. (18)

We observe that the probability measure Pn in (13) is independent on U, and it is the
same as in the case of the measures

PT,n(A)
def
= =

1
T
mL{τ ∈ [0, T] : ζn(s + iτ) ∈ A}
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and
PT(A)

def
=

1
T
mL{τ ∈ [0, T] : ζ(s + iτ) ∈ A}, A ∈ B(H (D)),

are discussed in [22,23]. Therefore, by Theorem 5.1.8 of [23], we have the asymptotic relation

Pn
w−−−→

n→∞
Pζ .

This, combined with (13), (18), and Theorem 4.2 of [44] via the standard method, proves
Proposition 1.

We also need certain information on the measure Pζ . More precisely, we need the
explicit form of the support of Pζ , i.e., a closed minimal set SPζ

⊂ H (D) satisfying
Pζ(SPζ

) = 1. Observe that g ∈ SPζ
if and only if, for every neighbourhood G of g, the

inequality Pζ(G) > 0 holds.

Lemma 1 (see [23], Lemma 6.5.5). The set S = {g ∈ H (D) : g(s) ̸= 0 on D , or g(s) ≡ 0} is
the support of Pζ .

Lemma 2. Suppose that Tη ⩽ U ⩽ T and 1/2 < σ ⩽ 1 is fixed. Then, uniformly in U,

T+U∫
T

|ζ(σ + it)|2 dt ≪σ U.

Here, the implied constant depends on σ but is independent on U.

Proof. The lemma is proved in [36]; see Lemmas 1 and 2.

Lemma 3. Suppose that the RH is true, and exp{(log T)1−δ} ⩽ U ⩽ T with arbitrary fixed
δ > 0. Let K ∈ K and f (s) ∈ H0(K). Then, for any ε > 0,

lim inf
T→∞

1
U
mL

{
τ ∈ [T, T + U] : sup

s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0. (19)

Moreover, the lower limit can be replaced by the limit for all but at most countably many ε > 0.

Proof. Inequality (19) has been obtained in [36], Theorem 4. For the proof of the second
assertion of the lemma, we use a result from [45]. Suppose that

1
2
+

2c1

log log T
⩽ σ ⩽ 1 − δ, δ > 0,

and exp{(log T)2−2σ} ⩽ U ⩽ T for T ⩾ T0. Then, the RH implies

1
U

T+U∫
T

|ζ(σ + it)|2 dt − ζ(2σ) ≪δ,σ exp
{
−c2

(log T)2−2σ

log log T

}

with c2 = c2(c1) > 0. Therefore, in the interval exp{(log T)1−γ} ⩽ U ⩽ T with γ > 0,
Proposition 1 is applicable. Thus, we have

PT,U
w−−−→

T→∞
Pζ . (20)
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Consider Pζ(Gε) with the set

Gε = Gε, f =

{
g ∈ H (D) : sup

s∈K
| f (s)− g(s)| < ε

}
.

The boundary ∂Gε of the set Gε lies in the set{
g ∈ H (D) : sup

s∈K
| f (s)− g(s)| = ε

}
.

Therefore, the intersection of the boundaries ∂Gε1 and ∂Gε2 is empty for positive ε1 ̸= ε2.
Moreover, ∂Gε is a closed set; therefore, ∂Gε ∈ B(H (D)). Hence, it follows that Pζ(∂Gε) ̸= 0
for at most countably many ε > 0. Actually, for every k ∈ N \ {1}, there are at most k − 1
values of ε > 0 such that Pζ(∂Gε) > 1/k. Moreover,

{
ε > 0 : Pζ(∂Gε) ̸= 0

}
⊂

∞⋃
k=2

{
ε : Pζ(∂Gε) >

1
k

}
.

This shows that {ε > 0 : Pζ(∂Gε) ̸= 0)} is at most a countable set.
Now, we deal with the continuity sets A of the measure Pζ , i.e., Pζ(∂A) = 0. By the

above remark, we have that Gε is a continuity set of Pζ for all but at most countably many
ε > 0. In view of (20) and the equivalent of weak convergence in terms of continuity sets,
we find

lim
T→∞

PT,U(Gε) = Pζ(Gε) (21)

for all but at most countably many ε > 0.
It remains to prove that Pζ(Gε) > 0. If f (s) ∈ S, then, in virtue of Lemma 1, Pζ(Gε) > 0

because Gε is a neighbourhood of an element of the support of the measure Pζ . For example,
we may take a polynomial p(s) and consider the set Gε/2,p. Then,

Pζ(Gε/2,p) > 0. (22)

Moreover, using the Mergelyan theorem [46,47], we may choose the polynomial p(s) satisfying

sup
s∈K

| f (s)− p(s)| < ε

2
.

Then, it is easily seen that Gε/2,p ⊂ Gε, f . Thus, by (22), we have Pζ(Gε, f ) > 0. This, in
addition to (21) and the definition of PT,U and Gε, completes the proof.

3. Proof of Theorems 8 and 9
Proof of Theorem 8. Necessity. If the RH holds, then ζ(s) ̸= 0 and it is analytic in D .
Hence, for every K ∈ K, ζ(s) is continuous and non-vanishing on K, and it is analytic inside
K. In other words, ζ(s) ∈ H0(K). Thus, by the first statement of Lemma 3, for any K ∈ K
and ε > 0,

lim inf
T→∞

1
U
mL

{
τ ∈ [T, T + U] : sup

s∈K
|ζ(s)− ζ(s + iτ)| < ε

}
> 0. (23)

Sufficiency. Suppose, on the contrary, that (23) holds. However, the RH is not true.
Then, ζ(s) has zeros in D ; thus, ζ(s) ̸∈ S. Therefore, by Lemma 1, ζ(s) is not an element
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of the support of the measure Pζ . Consequently, there is an open neighbourhood G of ζ(s)
satisfying Pζ(G) = 0. Therefore, there are K ∈ K and ε > 0 such that, for the set

GK,ε =

{
g ∈ H (D) : sup

s∈K
|ζ(s)− g(s)| < ε

}
,

the equality
Pζ(GK,ε) = 0 (24)

holds. Lemma 2 and Proposition 1 imply that, for every U, Tη ⩽ U ⩽ T,

PT,U
w−−−→

T→∞
Pζ . (25)

Similarly to the case of Lemma 3, we deduce that GK,ε is a continuity set of the measure Pζ

for all but at most countably many ε > 0. Hence, using continuity sets, we find, in virtue of
(25), that

lim
T→∞

PT,U(GK,ε) = Pζ(GK,ε)

for all but at most countably many ε > 0. This and (24) show that

lim
T→∞

PT,U(GK,δ) = 0

for all but at most countably many 0 < δ ⩽ ε. Therefore, there exists δ > 0 satisfying

lim
T→∞

1
U
mL

{
τ ∈ [T, T + U] : sup

s∈K
|ζ(s + iτ)− ζ(s)| < δ

}
= 0,

which contradicts inequality (23). This contradiction implies the RH. The theorem is proved.

Proof of Theorem 9. Necessity. Suppose that RH holds. Then, as in the proof of Theorem 8,
we have ζ(s) ∈ H0(K) for all K ∈ K, and by the second statement of Lemma 3, the limit

lim
T→∞

1
U
mL

{
τ ∈ [T, T + U] : sup

s∈K
|ζ(s + iτ)− ζ(s)| < ε

}
(26)

exists and is positive for all but at most countably many ε > 0.
Sufficiency. Suppose that the limit (26) exists and is positive for all but at most countably

many ε > 0. However, the RH is not true. Then, as in the proof of Theorem 8, we find that
then there is ε > 0 such that

lim inf
T→∞

1
U
mL

{
τ ∈ [T, T + U] : sup

s∈K
|ζ(s + iτ)− ζ(s)| < δ

}
= 0

for all but at most countably many 0 < δ ⩽ ε, and this contradicts the positivity of (26). The
contradiction proves that the RH is true. The theorem is proved.

4. Conclusions
In this paper, we show that the Riemann hypothesis on non-trivial zeros of the Riemann

zeta function is equivalent to the self-approximation of ζ(s) by shifts ζ(s + iτ) in short
intervals [T, T + U] with T1273/4033 ⩽ U ⩽ T. This is closely connected to the universality
of ζ(s) in short intervals. The constant 1273/4033 was introduced in [37] and applied
in [36]. The results of this paper extend the known ones for U = T (Theorems 3 and 5). The
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proof applies the probabilistic approach. Future research will aim at decreasing the lower
bound of U. We expect that it can be reduced until Tε, ∀ε > 0.
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8. Ivič, A. The Riemann Zeta-Function; John Wiley & Sons: New York, NY, USA, 1985.
9. Karatsuba, A.A.; Nathanson, M.B. Basic Analytic Number Theory; Springer: Berlin/Heidelberg, Germany, 1993.
10. Walfisz, A. Weylsche Exponentialsummen in der Neueren Zahlentheorie; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1963.
11. Ford, K. Zero-free regions for the Riemann zeta function. In Number Theory for the Millennium II; Berndt, B., Ed.; A K Peters, Ltd.:

Natick, MA, USA, 2002; pp. 25–56.
12. Nielsen, P.P. Trigonometric inequalities and the Riemann zeta-function. arXiv 2022, arXiv:2210.14130. [math.NT]. [CrossRef]
13. Mossinghoff, M.J.; Trudgian, T.S.; Yang, A. Explicit zero-free regions for the Riemann zeta-function. Res. Number Theory 2024,

10, 11. [CrossRef]
14. von Koch, N.H. Sur la distribution des nombres premiers. Acta Math. 1901, 24, 159–182. [CrossRef]
15. Broughan, K. Equivalents of the Riemann Hypothesis. Vol. 1; Encyclopedia Math. Appl., 164; Cambridge University Press: Cambridge,

UK, 2017.
16. Broughan, K. Equivalents of the Riemann Hypothesis. Vol. 2; Encyclopedia Math. Appl., 165; Cambridge University Press: Cambridge,

UK, 2017.
17. Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [CrossRef]
18. Voronin, S.M. A theorem on the distribution of values of the Riemann zeta-function. Sov. Math. Dokl. 1975, 16, 410.
19. Voronin, S.M. Analytic Properties of Arithmetic Objects. Ph.D. Thesis, V.A. Steklov Mathematical Institute, Moscow, Russia, 1977.
20. Voronin, S.M. Selected Works: Mathematics; Karatsuba, A.A., Ed.; Moscow State Technical University Press: Moscow, Russia, 2006.
21. Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany; New York, NY, USA, 1992.
22. Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series.

Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981.
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29. Laurinčikas, A. Remarks on the connection of the Riemann hypothesis to self-approximation. Computation 2024, 12, 164. [CrossRef]

https://www.claymath.org/millennium-problems/
http://doi.org/10.48550/arXiv.2210.14130
http://dx.doi.org/10.1007/s40993-023-00498-y
http://dx.doi.org/10.1007/BF02403071
http://dx.doi.org/10.1070/IM1975v009n03ABEH001485
http://dx.doi.org/10.1134/S0001434614110352
http://dx.doi.org/10.71352/ac.39.311
http://dx.doi.org/10.1007/BF01903937
http://dx.doi.org/10.3390/computation12080164


Symmetry 2025, 17, 2075 14 of 14
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