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Abstract

The Riemann hypothesis (RH) says that all zeros of the Riemann zeta function {(s),
s =0 +it, in the strip {s € C : 0 < ¢ < 1} lie on the line ¢ = 1/2. There are many
equivalents of RH in various terms. In this paper, we propose equivalents of RH in terms
of self-approximation, i.e., of the approximation of {(s) by {(s + it), T € R, in the interval
TE [T, T+ U] with T7 < U < T, y = 1273/4033. We show that the RH is equivalent to the
positivity of lower density and (with some exception for the accuracy of approximation) the
density of the set of approximating shifts (s + i7). For the proof, a probabilistic approach
and mean square estimates for {(s) in short intervals are applied.

Keywords: equivalent of the Riemann hypothesis; limit theorem; non-trivial zeros;
Riemann hypothesis; Riemann zeta function; universality; weak convergence of
probability measures; zero-free region

1. Introduction and Results

Denote by P, N, R and C the sets of all prime, positive integer, real and complex
numbers, respectively, and let s = o + it be a complex variable. The Riemann zeta function
{(s) is defined for o > 1 by the Dirichlet series

o 1
C(S) = 21 %/ (1)
m=
or equivalently, by the Euler product
1\ !
(0 =TI(1-5) - @
pe

From (1), it follows that {(s) is an analytic function in the half-plane ¢ > 1. Moreover, {(s)
has the functional equation of the symmetric form

n(s) =n(l-s), 3)

where

1(s) = L(s)m /1 (3),

and I'(s) denotes the Euler gamma function and has meromorphic continuation to the
entire complex plane with the unique simple pole at the point s = 1 with Res;—1{(s) = 1.
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The interest of {(s) was already observed by L. Euler; however, the most outstanding
merits in the investigation of {(s) belongs to B. Riemann. He proved [1] that the functional
Equation (3) continued analytically {(s) and proposed a way to apply {(s) for studying the
distribution of prime numbers, i.e., for the asymptotic formula for

mx) =Y 1 x— oo
p<x
peP

Riemann’s method was based on the location of some zeros of the function {(s).

From (2), it follows easily that {(s) # 0 for ¢ > 1. Equation (3) implies that {(s) =0
for s = —2m, m € N, which are poles of I'(s/2), and {(s) # 0if ¢ < 0, t # 0. The
points s = —2m are called trivial zeros of {(s). Thus, it remains the so-called critical strip
{s € C:0 < ¢ < 1}. Riemann knew that {(s) has infinitely many zeros in the critical strip.
More precisely, he affirmed that, for the number N(T) of zeros p = B + iy of {(s) with
0 < B <1,0<9<T, the asymptotic formula

l—l—l-O(logT), T — oo,

N(T) =5 log 5 =5,

is valid. Riemann was right: The above formula was obtained by H. von Mangoldt in [2].
The zeros of {(s) lying in the critical strip are called non-trivial. However, the most
interesting and important of Riemann'’s conjecture claims that all non-trivial zeros of {(s)
lie on the line o = 1/2. This conjecture is named the Riemann hypothesis (RH). The RH is
one of the seven most important Millenium mathematical problems [3].

Let

A(m) = logp ifm=p", nek,
] o0 otherwise,

and

P(x) =Y A(m).

m<x

The Riemann method for the investigation of 77(x) is based on the following formula:

¢(x)_x_zjj+g(0) 1log(l—xz), x>1, x#p", 4)
P

7(0) 2

where the summation runs over non-trivial zeros of {(s), which was stated in [1] without

proof. It is easily seen that estimations for 1(x) — x lead to bounds for 7t(x) — [5 ljg”u.

general, the Riemann idea was very good; however, for the estimation of ¢(x) — x, a trun-

In

cated version of (4) is needed, and this was carried out independently by J. Hadamard [4]
and C.J. de la Vallée Poussin [5-7]. They proved that there is an absolute constant ¢ > 0

such that {(s) # 0 for
c

17log(|t‘|—i-2)' ®)

Throughout the paper, we will use the notation <y, which is synonymous with O(...),
with the implied constant depending on 6.
From (5), one has

P(x) —x < xexp{—cl(logx)l/z}, c1 >0,
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and the latter bound implies
[ d
m(x) _z/loguu < xexp{—cz(logx)l/z}, c2 > 0. (6)

Here and throughout, we use the notation exp{a} = e”.
The improvement of (6) depends on the extension of the zero-free region for {(s). The
best known result asserts (see, for example, [8-10]) that there exists a constant C > 0 such

that {(s) # 0 for
C

log?’? |t (loglog ¢])1/3”
It is indicated in [10] that the latter result belongs to H.-E. Richert (unpublished). This is the
interesting problem with respect to the estimation of the constant in (7). The last known
results are the following: K. Ford [11] proved (7) with C = 1/57.54 and, for sufficiently
large ¢, with C = 1/49.13. P.P. Nielsen [12] replaced the latter value with C = 1/49.08. The
best result in the field were reported by M.]. Mossinghoff, T.S. Trudgian, and A. Yang [13].
They obtained {(s) # 0 in the region

)

=

1

oc>1-— ,
55.24110g%/° |t| (log log |t])1/3

and, for sufficiently large |¢|,

1

oc>1-— 373 73"
48.1588log”’” |t|(loglog |t|)

These results show how deep is the problem.
Using a truncated formula for ¢(x), it can be obtained (see, for example, [8]) that RH
is equivalent to the estimate

¥(x) — x < xM21log? x. (8)
Let
91 (1)€Y A(m)(logm) ™! = n(x) + Y A(m)(logm) .
m<x m<x
m=pk
k=2
Then,
1 (x) — m(x) < x1/?log x. )

Clearly, from the definitions of ¢(x) and ¢ (x), we have

= [ oo di)
2

Thus, in view of (8),

X
du  _ -2 x 1/2
7= 2/(logu) du—i-@—l-O(x logx).

1) = p(x)(log) "+ [yl
2

This, together with (9), gives

X

d
t(x) — / @ < x1/2 log x, (10)
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and the RH implies (10). It turns out that (10) also implies RH. In consequence, estimate
(10) is an equivalent of the RH. This was obtained by N.H. von Koch in [14].

At the moment, many equivalents of the Riemann hypothesis in various terms are
known (see [15,16]). We focus on equivalents connected to the approximation properties
of {(s) of some class of analytic functions. This property is called the universality of {(s),
and this was reported by S.M. Voronin in [17] (see also [18-21]). Let r € (0,1/4) be a fixed
number. Voronin proved that, for every non-vanishing continuous function g(s) on the disc
|s| < 7 that is analytic in |s| < r and for any & > 0, there is a number T = 7 ¢ € R satisfying
the following:

max
Is|<r

g(s)g(s+i+ir>’ <e.

The latter interesting result has been observed by the mathematical community and stated
in a more general form. Denote by m¢ A the Lebesgue measure of a measurable set A of
real numbers. Let 7 = {s € C: 0 € (1/2,1)}.

Theorem 1 (see [22], Corollary 5.3.6; see also [23-25]). Suppose that K C 9 is a compact set
with a connected complement and g(s) is a non-vanishing continuous function on K and analytic
inside of K. Then, for any € > 0,

T—o0 seK

lim inf ng{*r €[0,T] :sup|g(s) — (s +iT)| < e} > 0.

The inequality of Theorem 1 implies that there are infinitely many 7 such that {(s + i)
approximates a given analytic function g(s).
Theorem 1 is modified in terms of the density of approximating shifts.

Theorem 2 (see [26,27]). Let K and g(s) be as in Theorem 1. Then, the limit

lim ;mg{TG [0,T] :supg(s) — (s +iT)| < e}

T—00 seK
exists and is positive for all but at most countably many e > 0.

In a certain sense, Theorem 2 is stronger than Theorem 1; however, the exceptional set
of values of ¢ is not explicitly defined.

It turned out that the RH is equivalent to self-approximation by shifts {(s + i7). This
was carried out by B. Bagchi in [22,28]. Let X denote the class of compact subsets of the strip
2 with connected complements, and let Hy(K) with K € K be the class of non-vanishing
continuous functions on K that are analytic inside of K.

Theorem 3 (see [22,28]). The RH is equivalent to the statement that, for every K € K and € > 0,

liminf — mg{r €10, T] : sup|l(s) — (s +iT)| < s} > 0.

T—c0 seK
In [24], Theorem 3 has been extended to the region o > 6 with 6 > 1/2.

Theorem 4 (see [24]). The function {(s) # 0 for o > 60,0 > 1/2, if and only if, for any € > 0
and z with § < Rez < 1, and for any 0 < r < min{Rez — 6,1 — Rez},

liminf — mg{‘re [0,T] : max |{(s) —Z(s+1iT)| <s} > 0.

T—oo [s—z|<r
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In [29], Theorem 3 has been stated in terms of density.

Theorem 5. The RH is equivalent to the statement that, for any K € K, the limit

lim ;mg{’r € [0,T] : sup |2(s) — (s + )| < s}

seK

exists and is positive for all but at most countably many e > 0.

Theorems 3 and 5 remain valid for some generalized shifts {(s + ig(7)) with certain
¢(7). In [30], the Gram function ¢; has been applied. Let 9(t) be the increment of the
function n’s/zl"(s /2) along the segment between the points s = 1/2 and s = 1/2 + it.
Since the function 9(t) is increasing for t > 6.2898.. ., the equation

s(t)=(r—1)m, T=0,

has an unique solution f; that is called the Gram function. The theory of the function ¢ is
given in [31-33]. The points t,;,, m € N, have been introduced and studied by J.-P. Gram [34]
for the investigation of imaginary parts of non-trivial zeros of {(s).

Theorem 6 (see [30]). The RH is equivalent to the statement that, for any K € K and € > 0,

liminflmg T€[0,T):supl|l(s) — (s +itr)| <ep >0.
T—o00 T seK

An analogue of Theorem 5 with shifts {(s + it;) is valid as well.

Theorem 7 (see [30]). The RH is equivalent to the statement that, for any K € KC, the limit

lim 1m2{1’ €[0,T] :sup|l(s) — {(s+it)| < s}
T—oo T seK

exists and is positive for all but at most countably many € > 0.

Paper [35] is devoted to discrete versions of Theorems 6 and 7. In this case, the shifts
(s + ity) with Gram points f; are used.

Proofs of Theorems 5-7 utilize the corresponding universality theorems for {(s) and
weakly convergent probability measures in the space of analytic functions.

Universality theorems for {(s) formulated using a notion of density or lower density
are more effective when they are considered in short intervals, i.e., if the length of the
interval is o(T) as T — co. Thus, the density of approximating shifts {(s + iT) is considered
in the interval [T, T + U], with U = o(T) taken as small as possible. For brevity, denote
1 = 1273/4033. The strongest universality result for {(s) in short intervals has been ob-
tained in [36], with U satisfying T7 < U < T. The method of [36] is different from the
classical method of [8], and it is based on a result of J. Bourgain and N. Watt [37] where

T+U )

1 1 .
| g(z“f)
T-U

dt <logT

for U = T""¢, Ve > 0. From this, the constant  is obtained. We believe that the decrease
of 7 is a very difficult problem of analytic number theory. Under RH, it was obtained
in [36] that {(s) is universal for U, satisfying exp{(log T)'~¢} < U < T with every ¢ > 0.
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However, the best lower bound for U, U = (log T)?, in the case of discs K with B depending
on K was given in [38].

The purpose of this paper is to give versions of Theorems 3 and 5 in terms of short
intervals. We will establish the following statements.

Theorem 8. The RH is equivalent to the statement that, for TN < U < T,any K € Kande > 0,

liminflmg{r € [T, T+ U] : sup |2(s) — (s + )| < e} > 0.
T—oo U scK

Theorem 9. The RH is true if and only if, for T < U < T and any K € K, the limit

lim 1mg{T €T, T+ U] :sup|l(s+it)—{(s)| < s}
T—o0 U seK

exists and is positive for all but at most countably many e > 0.

For the proof of Theorems 8 and 9, a probabilistic method based on weakly convergent
probability measures in short intervals in the space of analytic functions will be applied.
We devote Section 2 to this. In the proof of Proposition 1, we omit some details that were
used several times by various authors. The constant 77 comes from [36,37], where it was
involved in the mean square estimates of the Riemann zeta function. We conjecture that 5
can decrease to T¢, Ve > 0. However, this requires of new ideas.

2. Probabilistic Results

The idea of applying statistical methods to the characterisation of the chaotic behaviour
of the Riemann zeta function was formulated by H. Bohr at the beginning of the 20th
century [39]. This was realized in the joint works with B. Jessen on the density for some
sets of values of {(s). Denote by my the Jordan measure on R, and let R be the rectangle
with edges parallel to the axes. Then, in [40], it was proved that, for fixed ¢ > 1, the limit

Th_r)rolo l1113{1? €[0,T] :logl(c+it) € R}

exists. In [41], the latter theorem with some modifications was extended to the half-plane
o > 1/2. The Bohr—Jessen results were developed in the papers of B. Jessen and A. Wintner,
V. Borchsenius and B. Jessen, and A. Selberg.

Later, in the middle of the 20th century, the theory of the weak convergence of proba-
bility measures was formulated and developed. The created theory created the conditions
for formulating Bohr—Jessen-type theorems in terms of the weak convergence of probability
measures. For a topological space 2, let B(2") stand for its o-field. On (27, B(:2")), define
probability measures P and Py, n € N. By definition, P, converges weakly to P as n — oo,
or, shortly, P, n_%) P, if, for any real bounded continuous function u on 2,

/udPn — /udP.
n—oo
Z v

Using weak convergence, the above-mentioned Bohr-Jessen theorem can be restated in
the following form: on (C, B(C)), there is a probability measure P, such that, for o > 1/2,
the measure 1

fmg{t €[0,T]:f(c+it) e A}, A€ B(C),

converges weakly to P, as T — oo (see, for example, [24,42] and a survey paper [43]).
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B. Bagchi made a significant impact on probabilistic function theory in his thesis [22].
He introduced and obtained limit theorems on weakly convergent probability measures
in the space of analytic functions, and he applied them for the proof of the universality of
various zeta functions, including {(s). Developments of the Bagchi method were continued
in [24,25].

Recall that 7 = {s € C: ¢ € (1/2,1)}. Define the space #(Z) of analytic func-
tions on Z equipped with the topology of uniform convergence on compact sets. For
A € B(H(2)), set the following;:

Pru(A) = %mg{’f € [T, T+U]: (s +it) € A}.

The weak convergence of the measure Pr; as T — co is the main ingredient for the proof
of Theorems 8 and 9.
Introduce the set
Q=][{seC:|s|=1},
pelP

i.e., ) is the infinite Cartesian product of unit circles. On (), the operation of pairwise
multiplication and product topology can be defined. This makes () a compact Abelian topo-
logical group and ensures the existence of the probability Haar measure mg on (Q, B(Q)).
Hence, we have the probability space (Q), B(Q)), mg). Let w = (w(p) : p € P) denote
the elements of (). Now, on the space (), B(Q2), mg ), define the #(2)-valued random

element {(s, w) by
-1
g(s,w):n<1_w(p)) _

S
peP p

This infinite Euler product, for almost all w € (), converges uniformly on compact sets of
the strip &, and it defines the /7 (Z)-valued random element ([23], Theorem 5.1.7). Let P;
stand for the distribution of {(s, w), i.e.,

P;(A) =mg{w e Q:{(s,w) € A}, A€ B(H(2)).

Suppose that T} = T1(T) — ccas T — oo and, for T; < U < T, the mean square estimate

T+U
/ C(o+it)2dt <o U (11)
T-U

holds uniformly in U for 1/2 < ¢ < 0y < 1 with some oy.

Proposition 1. Suppose that T; < U < T satisfies (11). Then, Pr TL> P;.
—00
Proof. We apply standard arguments. First, using the Fourier transform method leads to
the relation
P, = m (12)
ru T—o0 o
where, for A € B(Q)),

PR, (A) = %mg{’f e[T,T+U: (p_iT ‘pe IP’) € A}.

Further, introduce the absolutely convergent Dirichlet series

2wy (m)
Cn(s)mX::1 5 neN
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with ] .
m
wy(m) = exp{—(n) }, 0> 5

and consider the probability measure

Prin(A) = %mg{‘r €T, T+U]: Lnls+i7) € A}, A€ B(#(2)).

Using the mapping v, : QO — J#(2) given by

w (m)wy (m)

vp(w) = il s wm)= ][ wl(p), meN,
m= pllm

pl‘*'lfm

we have that
on(p7" 1 p € P) = Guls + i),
Therefore, Pr 1, = P%uv,jl, where P%uvgl (A) = P%u(v,le), with A € B(#(2)). With

this remark, the continuity of v, and (12) implies the relation

w def _
PT,U,n — Pn = mﬁun 1. (13)
T—o0

It remains to pass from Pr;, to Pr . For this, the bound (11) plays a crucial role. For
Cn(s), the following integral representation

0-+ioco
1 1z

Cn(s) = 7o / (s+2)xn(z)dz, xu(z) = af(é)n , (14)

f—ioco
is valid [23]. We will prove that, for every compact set K C 2,

1 T+Uu

lim limsup — / sup |0y (s +it) — {(s +it)|dT = 0. (15)

ne o U sek

Let K C Z be a fixed compact set. Then, K lies in some strip 1/2+26 <o <1-4,6 > 0.
Take 8 =1/2+4 6 and 6y = 1/2 + 5 — 0. Then, the integrand in (14), in the strip 6; < Rez < 6,
only has simple poles at the points z = 0 (a pole of I'(s/#)) and z = 1 — s (a pole of (s + z)).
Therefore, the representation (14), residue theorem, and the well-known estimates

L(o+it) < Y2 logt, >t

and
[(o+it) < exp{—cl|t|}, |t| > to,
lead, forall s € K, to

01+ic0

0) 06 = 5 [ Gl 2mn(z) dz + xa(1-5)

91 —ioco

Hence, the above estimates for the functions {(s) and I'(s) yield
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T+U
5T suplgu(s +it) — (s +im)|dr
T seK
log> T T+U ) 1/2
<k J (5, f‘g(§+5+iu+ir)‘dr> sup
—long T seK
T+u T+u
+4 [ sup\Kn(l—s—iT)|dT—|—n"5exp{—clog2T}% [ |x]¥2dr
T sekK T
d:efAl-l-Az-i-Ag,.

k(30— s+ iu) | du .

Here and throughout, c is a positive constant that is not always the same. Clearly,

T+U T+U+|u|

L / (Lo tiuvic e L / o(tissic 2dT<<1+|u\
u 2 Suo. 2
T T—U—|ul
in view of (11) if U + |u| < T; otherwise, it is
2(U+[ul) 5
1 1 .
<<E / g 5—0—5—1—11' dt <g 1+ |ul.
—2(U+]ul)
Thus,
log? T
Al <k / (14 |u)V/2n1/ 2= exp{—c|t — u|} du <x n~°. (17)
—log? T
Similarly,
T+U
Ay <gnt™® / exp{—c|t|} dt <x n= 2tV 2 exp{—cT},
T
and

Az <x n T2 exp{—clog® T}.

This, combined with (16) and (17), implies (15).
Let d be the metric in the space 7 (Z) that induces the topology of uniform conver-
gence on compact sets, i.e., for g1, ¢ € H#(2),

sup;c, |81(s) — 82(5)|
1+supeg, [81(5) — g2(s)|

d(g1,8) =) 2"
1=1

where {K; : | € N} C Z is a sequence of embedded compact set such that 2 = 181 K, and
any compact set K C 2 is in some K;. Now, (15) shows that

T+U
lim Tim sup — / d(Zn(s +iT),0(s + iT)) dT = 0. (18)
=0 T 0 u T

We observe that the probability measure P, in (13) is independent on U, and it is the
same as in the case of the measures
def

P (A)% = %mg{l‘ € [0,T] : Cu(s +i7) € A}
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and

Pr(A) d:ef%mg{”r €[0,T]: {(s+it) € A}, AeBH#(D)),

are discussed in [22,23]. Therefore, by Theorem 5.1.8 of [23], we have the asymptotic relation
P, —— P;.
n—oo
This, combined with (13), (18), and Theorem 4.2 of [44] via the standard method, proves
Proposition 1. [

We also need certain information on the measure P;. More precisely, we need the
explicit form of the support of I, i.e., a closed minimal set Sp, C J#(2) satisfying
P (S pé) = 1. Observe that ¢ € Sp, if and only if, for every neighbourhood G of g, the
inequality P;(G) > 0 holds.

Lemma 1 (see [23], Lemma 6.5.5). Theset S = {g € S (2):g(s) #0on 2,0r g(s) =0} is
the support of Py.

Lemma 2. Suppose that T < U < T and 1/2 < o < 1is fixed. Then, uniformly in U,

T+U
/ C(0 +it) 2 dt <, U.
7

Here, the implied constant depends on ¢ but is independent on U.

Proof. The lemma is proved in [36]; see Lemmas 1 and 2. [

Lemma 3. Suppose that the RH is true, and exp{(log T)' =} < U < T with arbitrary fixed
6>0.Let K€ Kand f(s) € Hy(K). Then, for any € > 0,

liminflmg{r € [T, T+ U] :supl|l(s+it)— f(s)| < e} > 0. (19)
T—o0 U scK

Moreover, the lower limit can be replaced by the limit for all but at most countably many € > 0.

Proof. Inequality (19) has been obtained in [36], Theorem 4. For the proof of the second
assertion of the lemma, we use a result from [45]. Suppose that

2C1
— — - K <1 -
2+10g10gT\0\1 5, 6>0,

and exp{(log T)>~2°} < U < T for T > Ty. Then, the RH implies

: (IOg T)Z—Z(T}

1 T+U
JR— / 2 — N —
T/ e+ inP - 10) < e - L

with c; = ¢3(c;) > 0. Therefore, in the interval exp{(log T)' ="} < U < T with v > 0,
Proposition 1 is applicable. Thus, we have

P Y P 2
T,UT_)—oo>g (20)
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Consider P;(Ge) with the set

Ge = Gep = {g € A (7) :sup|f(s) - g(s)| < 8}-

seK

The boundary 9d§; of the set G, lies in the set

{g € H(2) :sup |f(s) —g(s)| = s}-

seK

Therefore, the intersection of the boundaries 0§, and 9G;, is empty for positive &1 # ¢.
Moreover, 9§ is a closed set; therefore, 0G. € B(#(Z)). Hence, it follows that P; (9G,) # 0
for at most countably many & > 0. Actually, for every k € N\ {1}, there are at most k — 1
values of ¢ > 0 such that Pg(agg) > 1/k. Moreover,

[eo)

{e>0:P;(0Ge) #0} C | {s : P;(9Ge) > Ilc}
k=2
This shows that {¢ > 0: P;(dG¢) # 0)} is at most a countable set.

Now, we deal with the continuity sets A of the measure I, i.e., Pg(aA) = 0. By the
above remark, we have that G, is a continuity set of PC for all but at most countably many
£ > 0. In view of (20) and the equivalent of weak convergence in terms of continuity sets,
we find

]151;10 PT,U(gs) = PC(gs) (21)

for all but at most countably many & > 0.

It remains to prove that P;(Ge) > 0. If f(s) € S, then, in virtue of Lemma 1, P;(G;) > 0
because G, is a neighbourhood of an element of the support of the measure P;. For example,
we may take a polynomial p(s) and consider the set G/, ,. Then,

Pg(ge/Z,p) > 0. (22)

Moreover, using the Mergelyan theorem [46,47], we may choose the polynomial p(s) satisfying

€
sup [f(s) —p(s)] < 3
seK
Then, it is easily seen that G./», C G . Thus, by (22), we have Pg(gglf) > 0. This, in
addition to (21) and the definition of Pr; and G,, completes the proof. [

3. Proof of Theorems 8 and 9

Proof of Theorem 8. Necessity. If the RH holds, then {(s) # 0 and it is analytic in 2.
Hence, for every K € KC, {(s) is continuous and non-vanishing on K, and it is analytic inside
K. In other words, {(s) € Hy(K). Thus, by the first statement of Lemma 3, for any K € K
and e > 0,

liminflmg{r €T, T+ U] :sup|f(s) —C(s+iT)| < s} > 0. (23)
T—o0 u seK

Sufficiency. Suppose, on the contrary, that (23) holds. However, the RH is not true.
Then, {(s) has zeros in Z; thus, {(s) ¢ S. Therefore, by Lemma 1, {(s) is not an element
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of the support of the measure P;. Consequently, there is an open neighbourhood G of {(s)
satisfying P;(G) = 0. Therefore, there are K € K and & > 0 such that, for the set

seK

ke = {g € A(7) :sup|{(s) —g(s)] < 8},

the equality
Pr(Gk,e) =0 (24)

holds. Lemma 2 and Proposition 1 imply that, for every U, T" < U < T,
P Y P 25
ru P (25)

Similarly to the case of Lemma 3, we deduce that Gk . is a continuity set of the measure P;
for all but at most countably many & > 0. Hence, using continuity sets, we find, in virtue of
(25), that

Lim Pru(9x.e) = Pr(Gke)

for all but at most countably many & > 0. This and (24) show that
lim Pr;(Gk,s) =0
T—oo

for all but at most countably many 0 < ¢ < e. Therefore, there exists § > 0 satisfying

lim 1mg{T €T, T+ U] :supl|l(s+it) —{(s)] < (5} =0,
T‘)OOU scK

which contradicts inequality (23). This contradiction implies the RH. The theorem is proved. [J

Proof of Theorem 9. Necessity. Suppose that RH holds. Then, as in the proof of Theorem 8,
we have {(s) € Hyo(K) forall K € K, and by the second statement of Lemma 3, the limit

lim 1m2{re [T, T+ U] :sup|(s+it) — {(s)] <s} (26)
T—oo U seK
exists and is positive for all but at most countably many & > 0.

Sufficiency. Suppose that the limit (26) exists and is positive for all but at most countably
many & > 0. However, the RH is not true. Then, as in the proof of Theorem 8, we find that
then there is € > 0 such that

liminflmg{*r € [T, T+ U :supl|l(s+it) —{(s)| < (5} =0
T—o0 U scK

for all but at most countably many 0 < § < ¢, and this contradicts the positivity of (26). The
contradiction proves that the RH is true. The theorem is proved. [

4. Conclusions

In this paper, we show that the Riemann hypothesis on non-trivial zeros of the Riemann
zeta function is equivalent to the self-approximation of {(s) by shifts {(s + iT) in short
intervals [T, T + U] with T1273/4033 < 1] < T. This is closely connected to the universality
of (s) in short intervals. The constant 1273/4033 was introduced in [37] and applied
in [36]. The results of this paper extend the known ones for U = T (Theorems 3 and 5). The
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proof applies the probabilistic approach. Future research will aim at decreasing the lower
bound of U. We expect that it can be reduced until T%, Ve > 0.
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