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 A B S T R A C T

Quantum Machine Learning (QML) combines principles of quantum computing with traditional Machine 
Learning (ML) to explore computational advantages in data processing and model efficiency. With the 
rise of Noisy Intermediate-Scale Quantum (NISQ) devices, hybrid quantum–classical approaches are gaining 
momentum, especially in domains requiring high precision such as healthcare. In this work, we investigate 
whether hybrid quantum computing can enhance certain aspects of classical ML, specifically in dataset 
balancing and the complexity of the neural network involved in training. To this end, we use the Indian 
Liver Patient Dataset as a case study to determine the presence of liver disease. We present the methodology 
for developing ‘QML-Liver’, a hybrid approach that seamlessly integrates classical and QML techniques. This 
includes data preprocessing, model design, and optimal configuration. Our results demonstrate that ‘QML-Liver’ 
improves key performance metrics, such as accuracy and F1-Score. Additionally, we successfully reduce the 
number of required qubits to just two, making practical deployment more feasible. These findings underscore 
the potential of QML for medical diagnostics, particularly in the NISQ era.
1. Introduction

Quantum Machine Learning (QML) is an emerging field that com-
bines the power of quantum computing with traditional Machine Learn-
ing (ML) techniques, offering new opportunities to tackle challeng-
ing problems in various domains, including medicine, finance, and 
logistics (Biamonte et al., 2017; Schuld et al., 2014). ML has trans-
formed numerous fields by enabling automated pattern recognition 
and decision-making in large datasets. In healthcare, ML models have 
proven to be powerful tools for disease classification, early diagnosis, 
and predictive analytics, with traditional techniques such as neural 
networks, support vector machines, and decision trees being widely 
used for medical diagnostics, including liver disease detection (Azam 
et al., 2020; Mutlu et al., 2022; Nahar and Ara, 2018). However, 
these classical models often face challenges related to data quality, 
computational limitations, and the complexity of medical patterns, 
which can hinder their performance. Unlike classical methods that typ-
ically rely on large, balanced datasets to achieve optimal performance, 
quantum models can exploit phenomena such as superposition and 
entanglement to learn complex patterns with fewer data and without 
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the need for class balancing (Sinno et al., 2025). These properties make 
QML particularly promising for applications where data collection is 
costly or where classes are inherently imbalanced, such as rare disease 
detection or cybersecurity problems.

Numerous studies have explored the application of QML in health-
care, addressing tasks such as medical image analysis (Houssein et al., 
2022; Wei et al., 2023), disease detection (Dutt et al., 2020), and 
large-scale clinical data classification (Dasari et al., 2023). In this 
domain, supervised learning models, particularly those focused on clas-
sification, have shown promising results in medical diagnostics (Ma-
heshwari et al., 2023). Techniques such as quantum preprocessing, 
error reduction, and hybrid quantum–classical neural networks have 
contributed to the development of more efficient models for analyz-
ing clinical data (Aishwarya et al., 2020; Cong et al., 2019; Moradi 
et al., 2022; Sierra-Sosa et al., 2021). Despite its potential, quantum 
computing faces several limitations, including the restricted availabil-
ity of qubits in current hardware and the susceptibility of quantum 
systems to noise and errors due to decoherence, while converting clas-
sical data into quantum representations remains a significant technical 
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challenge (Preskill, 2018; Ranga et al., 2024). These constraints have 
motivated the development of hybrid quantum–classical approaches, 
providing practical solutions within the current Noisy Intermediate-
Scale Quantum (NISQ) era. Although scalability and hardware limi-
tations remain challenges for large-scale clinical deployment, recent 
advances, including hybrid architectures, error mitigation, and efficient 
quantum preprocessing, have already enabled meaningful applications 
of QML to clinical datasets. Overcoming remaining hardware and al-
gorithmic bottlenecks will further enhance the deployment of QML 
systems at clinical scale (Devadas and Sowmya, 2025).

Advancements in medical science are fueling interest in emerging 
technologies like quantum computing to enhance disease diagnosis and 
treatment, particularly for high-risk organ systems. The liver, located 
in the upper right part of the abdominal cavity, is the largest organ in 
the body and the largest gland, second only to the skin. It represents 
approximately 4% of body weight (Mutlu et al., 2022). Wedge-shaped, 
it is essential for digestion and the elimination of toxins, performing 
over 500 vital functions necessary for human survival (Gupta et al., 
2022). Liver conditions, ranging from hepatitis (often caused by viral 
infections like hepatitis A, B, C, D and E) and cirrhosis to non-alcoholic 
fatty liver disease, liver tumors, and liver cancer, represent a significant 
global health issue, claiming approximately 2 million lives world-
wide (Dritsas and Trigka, 2023). According to the Global Burden of 
Disease project, in 2010 alone, one million people died from cirrhosis, 
while many more were diagnosed with liver cancer (Nigatu et al., 
2023). Factors such as excessive alcohol consumption, viral infections, 
obesity, diabetes, and autoimmune conditions can severely impair liver 
function (Kumar and Rani, 2024).

Early detection of liver diseases is therefore crucial to improve pa-
tient prognosis and reduce mortality rates. Traditional diagnostic meth-
ods, such as blood tests, biopsies, and medical imaging, can be invasive, 
costly, and prone to human error, which has driven the growing adop-
tion of artificial intelligence (AI) in healthcare. AI enables automation 
in diagnostics and optimization of medical decision-making.

This work presents the design and optimization of a hybrid quan-
tum deep learning model for liver disease classification. Our model 
integrates both classical and quantum layers, leveraging quantum com-
puting advantages while maintaining an efficient architecture.

The main contributions of this study are:

• Design of a resource-efficient hybrid model featuring a two qubits 
quantum layer, optimized for deployment on NISQ-era quantum 
hardware.

• Application of the model to the Indian Liver Patient Dataset 
(ILPD), a widely-used benchmark dataset for liver disease clas-
sification.

• Extensive comparison with both classical and quantum approach-
es, showing competitive results while minimizing quantum re-
source usage.

• Full release of code and model parameters to promote trans-
parency and enable reproducibility for future research.

The remainder of the paper is structured as follows. Section 2 
discuss QML and its challenges and opportunities.  Section 3, reviews 
classical and quantum classification methods for liver diseases, with a 
focus on state-of-the-art approaches that use the ILPD. Section 4 details 
the development of our hybrid quantum model, ‘QML-Liver’, including 
the preprocessing steps, model structure, configuration, and training 
techniques employed. Section 5 presents experimental results and com-
pares our model against leading classical and quantum approaches. 
Finally, Section 6, discusses the general conclusions of this research and 
outlines future directions.
2 
2. Quantum machine learning

Quantum computing is distinguished by its ability to process in-
formation using the rules of quantum mechanics, enabling the tack-
ling of problems in new and potentially revolutionary ways (Mermin, 
2007; Nielsen and Chuang, 2010; Ying, 2010). However, we are cur-
rently in the NISQ era, characterized by the use of quantum devices 
with a limited number of qubits and considerable noise. Despite these 
constraints, these systems provide valuable opportunities to explore 
quantum algorithms that, for specific tasks, may outperform classical 
methods.

QML sits at the intersection of classical ML and quantum computing, 
aiming to exploit quantum properties to develop models with improved 
learning capabilities (Biamonte et al., 2017; Tychola et al., 2023; 
Ganguly, 2021). There are four approaches that combine quantum 
computing and ML (Ranga et al., 2024):

• Classical-Classical (CC): Classical algorithms with classical
datasets.

• Quantum-Classical (QC): Classical algorithms processing quantum 
datasets.

• Classical-Quantum (CQ): Classical datasets processed on quantum 
hardware.

• Quantum-Quantum (QQ): Quantum algorithms with quantum 
datasets.

Although QML is still in its early stages and faces considerable 
challenges, it holds great promise for solving complex problems more 
efficiently (Dunjko and Briegel, 2018; Perelshtein et al., 2022). If we 
focus on the exclusively quantum case (QQ), we can say that, currently, 
it has several limitations:

• Limitations in the number of qubits: Current devices have few 
qubits (on the order of hundreds), making it difficult to imple-
ment complex quantum neural networks.

• Noise and errors in quantum systems: Decoherence and other 
noise sources affect the stability and reliability of calculations.

• Encoding classical data into quantum states: Efficiently convert-
ing classical information into data that quantum systems can 
process is a challenge in itself.

• Difficulties in training quantum models: Optimizing parameters 
in quantum neural networks requires the development of more 
robust and efficient algorithms.

These constraints originate in the intrinsic physical and architec-
tural features of NISQ hardware. In particular, the lack of fault-tolerant 
error correction mechanisms and the exponential overhead of char-
acterization methods such as full quantum state tomography severely 
limit both the reliability and scalability of QQ implementations (Keçeci, 
2025). Gate errors, qubit decoherence, and crosstalk introduce complex 
noise dynamics that accumulate in deep circuits, degrading model fi-
delity. Furthermore, the probabilistic nature of quantum measurements 
makes it harder to obtain precise feedback during training, forcing 
repeated evaluations and indirect estimation methods to guide the 
optimization of quantum neural networks (Beer et al., 2020).

Beyond the architectural limitations of NISQ hardware, scalability 
is particularly critical for QML models applied to healthcare, where 
datasets are often high-dimensional, heterogeneous, and privacy-
sensitive (Rasool et al., 2023). Real-world clinical tasks, including 
molecular simulation, medical precision, radiotherapy, and drug devel-
opment, require models capable of generalizing across diverse patient 
populations (Ullah and Garcia-Zapirain, 2024). Techniques such as 
quantum transfer learning, federated quantum models, and distributed 
quantum computing architectures have shown promise in extending 
QML capabilities to larger datasets without compromising privacy or 
interpretability (Acar and Yılmaz, 2021; Chen and Yoo, 2021; Kawase, 
2024). These strategies are especially relevant in precision medicine 
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and diagnostic imaging, where scalability is not only a technical 
requirement but also a clinical imperative. As quantum hardware 
matures, integrating scalable QML pipelines into healthcare workflows 
will be essential to unlock their full potential.

Complementing these scalability-oriented strategies, several algo-
rithmic approaches have been proposed to enhance QML performance 
on healthcare data. Among these, quantum kernel methods (QKM), 
variational quantum circuits (VQCs), and hybrid quantum–classical 
models have emerged as particularly promising. Each approach offers 
distinct advantages and is better suited to specific problem settings, 
depending on factors such as dataset size, model complexity, and 
hardware limitations.

QKMs exploit quantum computers to map classical data into high-
dimensional Hilbert spaces, enabling efficient separation through lin-
ear classifiers (Havlíček et al., 2019; Schuld and Killoran, 2019). By 
computing the kernel matrix via quantum circuits, QKMs can reveal 
subtle patterns in data that often remain hidden to classical kernel 
methods (Raubitzek and Mallinger, 2023). However, despite their ef-
fectiveness on small datasets, their scalability is hindered by the com-
putational overhead of quantum kernel evaluation on current hard-
ware (Tscharke et al., 2024; Wang et al., 2021).

VQCs, in contrast, are hybrid algorithms that function as quantum 
counterparts to classical neural networks, particularly multilayer per-
ceptrons (Cerezo et al., 2021; Griol-Barres et al., 2021). They consist of 
parameterized quantum circuits whose parameters are optimized using 
classical techniques. Although VQCs can effectively perform classifica-
tion tasks (Raubitzek and Mallinger, 2023), they often face challenges 
with high-dimensional data due to the expressiveness limits of shallow 
quantum circuits (Qi et al., 2024).

Given the trade-offs of these approaches, we adopt a hybrid quan-
tum–classical neural network (QNN) architecture for the task of liver 
disease classification. Hybrid QNNs align well with current NISQ de-
vices, and offer a practical compromise between expressivity and hard-
ware feasibility. They have shown competitive performance in super-
vised learning tasks (Combarro and Gonzalez-Castillo, 2023; Skolik 
et al., 2022), and their adaptability makes them promising tools for 
biomedical data analysis.

Our hybrid model combines classical neural layers with a quantum 
layer, leveraging the strengths of both paradigms. The hybrid setup 
helps address these limitations by offloading part of the learning to 
classical layers, reducing quantum circuit depth while still harnessing 
quantum processing. This is especially advantageous given the charac-
teristics of our dataset, which contains 10 features and 583 samples 
(see Section 4.1), small enough to benefit from quantum components, 
but also requiring a robust classical backbone for generalization.

3. Review of classical and quantum classification of liver diseases

In this section, we will examine the state-of-the-art using the ILPD 
database and both approaches: classical ML and QML (from 2017 to 
2024). The literature review was conducted using the snowballing 
methodology, starting from key references and expanding the search 
iteratively based on the citations and references of relevant works.

3.1. Classical machine learning approaches

Several studies have employed the ILPD dataset with various clas-
sical ML algorithms to predict liver disease outcomes. Table  1 summa-
rizes the review of classical methods conducted from 2017 to 2024, 
highlighting the best-performing models based on accuracy and recall. 
The table also includes other reported metrics such as precision and 
F1-Score.

One of the early works, by Sontakke et al. (2017), employed tech-
niques like over-sampling and under-sampling to address class imbal-
ance in the dataset. The best model, in terms of accuracy and recall, was 
the Back Propagation Neural Network (BP). In comparison, the Support 
3 
Vector Machine (SVM) model also achieved competitive results. The 
author does not provide the F1-Score and recall metrics directly, but 
instead reports sensitivity, which is equivalent to recall. The F1-Score 
has been calculated as the harmonic mean of precision and sensitivity 
(recall), as can be seen in Table  1.

In a subsequent study, Nahar and Ara (2018) explored a range of 
decision tree-based algorithms, including Random Forest (RF), Random 
Tree, Decision Stump, Hoeffding Tree, and others. They performed a 
10-fold cross-validation on the dataset. The best model, in terms of 
accuracy and recall, was the Decision Stump (with a single level). The 
second-best model in terms of accuracy and recall was the Hoeffding 
Tree (with a tree size of one), as can be observed in Table  1.

In 2020, Sokoliuk et al. (2020) applied several classification algo-
rithms, including Decision Tree (DT), RF, SVM, Multi-Layer Perceptron 
(MLP), Naïve Bayes (NB), and others, to analyze the ILPD dataset. This 
author does not mention the precision and F1-Score metrics, so they 
will not be included in this review. The author provides results for both 
balanced and unbalanced datasets. They used GridSearchCV to find the 
optimal parameters for each Scikit-learn algorithm and preprocessed 
the data in the most suitable way for each explored algorithm. The best 
model for the balanced dataset, in terms of accuracy and recall, was K-
Nearest Neighbors (KNN). The second-best model was MLP. Using an 
unbalanced dataset, their best models were, in terms of accuracy, the 
GradientBoosting model, and in terms of recall, the GaussianNB model, 
as can be seen in Table  1.

That same year, Azam et al. (2020) explored the use of RF, Per-
ceptron, DT, KNN, and SVM for classification. They applied feature 
selection techniques and reported results both with and without feature 
selection. With feature selection (WFS), the highest performance was 
achieved using KNN. The second-best model in terms of accuracy 
and recall was the RF model. Without feature selection (WOFS), the 
best-performing model was SVM, while KNN also yielded competitive 
results (see Table  1). Gajendran and Varadharajan (2020) experimented 
with a Mathematical Approach on Multilayer Feedforward Neural Net-
works with Backpropagation (MAMFFN). They reported accuracy re-
sults both before and after applying feature selection, achieving the 
highest accuracy with feature selection, as can be observed in Table 
1.

In 2021, Kumar and Thakur (2021) proposed a method called 
Variable-Neighbor Weighted Fuzzy K Nearest Neighbor Approach (V-
NWFKNN), based on existing NWKNN and Fuzzy-NWKNN methods. 
They used normalization and standardization. For the majority of in-
stances, they used undersampling by eliminating of Tomek link pairs 
and redundant pairs (TL_RUS). Without using TL_RUS, their method 
achieved moderate success. When TL_RUS was applied, the perfor-
mance improved significantly (see Table  1). Geetha and Arunachalam 
(2021), also in 2021, evaluated two ML techniques: Logistic Regression 
(LR) and SVM. The SVM achieved the highest performance, while LR 
also performed well. The F1-Score has been calculated as the harmonic 
mean of precision and sensitivity, as can be seen in Table  1.

In 2022, Gupta et al. (2022) also conducted research on liver disease 
prediction by employing various ML algorithms, including LR, RF, 
Gradient Boosting, Light GB, and others. Among the studied algorithms, 
RF achieved the best results, followed closely by Light GB (see Table 
1). Mutlu et al. (2022) investigated various ML techniques, such as 
KNN, LR, SVM, and NB, and proposed a CNN model with four lay-
ers consisting of 68, 70, 70, and 2 neurons, respectively. They also 
incorporated Principal Component Analysis (PCA) and SMOTE tech-
niques to optimize model performance on the ILPD dataset. With these 
enhancements, Mutlu et al. (2022)’s CNN model achieved the highest 
performance among the studied models, as summarized in Table  1.

In 2023, Dritsas and Trigka (2023) applied various ML algorithms to 
the ILPD dataset, including NB, AdaBoostM1, Voting, KNN, and others. 
They applied SMOTE to balance the dataset and evaluated with 10-
fold cross-validation. The best-performing model was the Voting model, 
which combined RF and AdaBoostM1 classifiers. The second-best model 
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Table 1
Summary of studies using the ILPD dataset with classical ML algorithms for liver disease prediction. The table 
highlights the two best-performing models from each study based on accuracy and recall, including their reported 
precision and F1-Score when available. An asterisk (*) in the F1-Score column indicates that the metric was 
computed rather than explicitly reported by the authors. Likewise, ‘No’ in the ‘Balancing’ column signifies that 
it was not specified whether data balancing techniques were applied. A dash (–) denotes that the corresponding 
metric was not reported.
 Author Model Balancing Accuracy Precision Recall F1-Score 
 Sontakke et al. (2017) SVM Yes 71 64 72 68*  
 BP Yes 73 66 73 69*  
 Nahar and Ara (2018) Decision Stump No* 71 50 71 59  
 HoeffdingTree No* 70 63 70 62  
 
Sokoliuk et al. (2020)

GradientBoosting No 72 – 40 –  
 GaussianNB No 55 – 95 –  
 KNN Yes 74 – 97 –  
 MLP Yes 63 – 92 –  
 
Azam et al. (2020)

KNN_WFS No* 74 72 74 72  
 RF_WFS No* 73 74 73 73  
 SVM_WOFS No* 71 80 71 60  
 KNN_WOFS No* 66 64 66 65  
 Gajendran and Varadharajan (2020) MAMFFN_WOFS Yes 72 – – –  
 MAMFFN_WFS Yes 75 – – –  
 Kumar and Thakur (2021) V-NWFKNN (No TL_RUS) No 78 90 82 86  
 V-NWFKNN (TL_RUS) Yes 88 95 90 93  
 Geetha and Arunachalam (2021) LR No* 73 79 88 83*  
 SVM No* 75 77 79 78*  
 Gupta et al. (2022) RF Yes 63 64 63 63  
 Light GB Yes 63 63 62 63  
 Mutlu et al. (2022) CNN Yes 72 74 75 75  
 Dritsas and Trigka (2023) Voting Yes 80 80 80 80  
 AdaBoostM1 Yes 80 80 80 80  
 Nigatu et al. (2023) ANN No* 87 – – –  
 SGD No* 81 – – –  
 Elsayed et al. (2024) SVM No* 71 71 71 83  
 ZeroR No* 71 71 71 83  
 Raj et al. (2024) RF No* 72 – – –  
 KNN No* 81 – – –  
 
Kumar and Rani (2024)

RF_WOOP Yes 80 79 82 81  
 SVM_WOOP Yes 68 63 88 73  
 RF_AFOP Yes 81 78 86 82  
 SVM_AFOP Yes 81 79 89 82  
 Alyasin and Ata (2024) Stacking Yes 90 90 90 90  
 ET Yes 88 92 82 87  
was AdaBoostM1 with an RF classifier, as can be observed in Table  1. 
Similarly, Nigatu et al. (2023) implemented RF, DT, Stochastic Gradient 
Descent (SGD), ANN, and others. They applied hyperparameter tuning 
with GridSearchCV. They only reported the accuracy metric, with ANN 
achieving the highest accuracy, followed by the SGD model (see Table 
1).

In 2024, Elsayed et al. (2024) employed several ML algorithms, 
including NB, SVM, ZeroR, and Voting Feature Intervals. Their classifi-
cation algorithms were implemented using the WEKA tool and 10-fold 
cross-validation. They reported that both the SVM and ZeroR algo-
rithms achieved the same accuracy, precision, recall, and F1-Score. Raj 
et al. (2024), also in 2024, applied LR, KNN, DT, SVM, and RF. They 
only reported the accuracy metric, with RF achieving the highest accu-
racy, followed closely by the KNN model (see Table  1). Kumar and Rani 
(2024) explored the use of AdaBoost, XGBoost, SVM, and RF for clas-
sification. Their best-performing model using optimization (AFOP) was 
RF, followed by SVM. Without hyperparameter optimization (WOOP), 
their two best models were RF and SVM, as can be observed in Table  1. 
Lastly, Alyasin and Ata (2024) proposed five ML models: RF, XGB, DT, 
ExtraTrees, and Stacking. Their stacking model, which used RF, DT, 
XGB, and ExtraTrees as fundamental classifiers, achieved the highest 
performance. The second-best model was ExtraTrees (see Table  1).

Training classical systems with imbalanced datasets poses a signifi-
cant challenge, as it can lead to biased models and reduced predictive 
4 
performance. In the following, we examine how QML performs with 
this imbalanced dataset.

3.2. Quantum machine learning approaches

In recent years, several studies have explored the use of QML 
techniques with the ILPD dataset to predict liver disease outcomes. 
Table  2 provides a summary of quantum methods analyzed between 
2023 and 2024, emphasizing the models with the highest accuracy and 
recall. Additionally, the table presents other reported metrics, including 
precision, F1-Score, number of qubits and quantum delay.

In 2023, Raubitzek and Mallinger (2023) explored the applicability 
of QML for classification tasks, utilizing two quantum classifiers: VQC 
and the Quantum Kernel Estimator (QKE). Their results demonstrate 
that both the VQC and QKE outperform basic ML algorithms, such 
as advanced linear regression models (Ridge and Lasso), achieving an 
accuracy of 74.4% (see Table  2). However, they conclude that while 
QML algorithms show potential in achieving competitive performance 
on certain datasets, they do not consistently outperform classical ML 
algorithms.

In 2024, Raubitzek et al. (2024) further advanced the field by 
employing QKE once again. By leveraging the diverse structures of Lie 
groups, the authors developed novel quantum-inspired feature maps 
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Table 2
Comparison of the two best models per study in terms of recall and accuracy for QML. Metrics marked with * indicate that ‘EfficientSU2’ is used, but the specific 
configuration is not provided. We assume the minimum delay setting. The symbol ‘–’ denotes that the corresponding metric was not reported, while ‘N/A’ indicates 
that the concept is not applicable in the given context.
 Author Model Balancing No Qubits Delay Accuracy Precision Recall F1-Score 
 Raubitzek and Mallinger (2023) VQC No 10 11* 74 – – –  
 QKE No 10 11* 74 – – –  
 Raubitzek et al. (2024) Catboost No N/A N/A 73 65 63 64  
 Qz No N/A N/A 72 65 65 65  
 Safriandono et al. (2024) XGB_QFE Tomek Yes 10 40 81 77 90 83  
 LR_QFE No 10 40 74 75 99 85  
 Bhaskaran and Prasanna (2024) QKNN(K = 5) No 10 23 69 – – –  
 QKNN(K = 3) No 10 23 67 – – –  
that offer a more flexible and potentially powerful method for encoding 
and compressing classical data into quantum states. In particular, they 
employ the EfficientSU2 ansatz, it consists of alternating layers of 
single-qubit SU(2) gates and CNOT entanglement gates. The SU(2) 
group includes 2 × 2 unitary matrices with a determinant of one, 
such as Pauli rotation gates (Alami et al., 2025). They provide a 
comprehensive theoretical foundation for this approach, followed by a 
methodology that integrates these feature maps into quantum-inspired 
kernel classifiers. Their experiments consider kernel matrices based on 
Lie groups within the framework of a Support Vector Machine classifier. 
For the ILPD dataset, their best-performing model, CatBoost, achieved 
an accuracy of 73.14%, a precision of 64.78%, a recall of 62.79%, and 
an F1-Score of 63.49%. The second-best result was obtained using the 
Qz model, which achieved an accuracy of 72%, a precision of 64.51%, a 
recall of 64.70%, and an F1-Score of 64.60% (see Table  2). It is impor-
tant to note that this study is based on a mathematical simulation and 
does not use actual qubits. The approach emulates quantum behavior 
through classical computations, simulating quantum-inspired methods 
rather than implementing them on quantum hardware.

In the same year, Safriandono et al. (2024) aimed to improve the 
accuracy of liver disease classification using Quantum Feature Engi-
neering (QFE) combined with the Synthetic Minority Over-Sampling 
Technique and Tomek Links (SMOTE-Tomek) for data balancing. They 
employed LR, SVM, RF, and XGB, finding that the combination of QFE 
with SMOTE-Tomek, using the XGB model, achieved an accuracy of 
81%, a precision of 77%, a recall of 90%, and an F1-Score of 83%. The 
second-best result was obtained using an imbalanced dataset with QFE 
in an LR model, achieving an accuracy of 74%, a precision of 75%, a 
recall of 99%, and an F1-Score of 85%, a summary of these metrics 
can be found in Table  2. The last study we reviewed is by Bhaskaran 
and Prasanna (2024), whose objective was to conduct a comprehensive 
accuracy analysis of classical and quantum-enhanced KNN algorithms 
using the Canberra distance metric across various datasets. Their ex-
periment compared classical k-nearest neighbors (KNN) with 𝐾 = 3
and 𝐾 = 5 against quantum-enhanced KNN (QKNN) with 𝐾 = 3 and 
𝐾 = 5 across five different datasets. For the ILPD dataset, their proposed 
QKNN (𝐾 = 5) model, using the Canberra distance, achieved the high-
est accuracy of 72.64%. The second-best accuracy was obtained with 
QKNN (𝐾 = 3), reaching 66.66% (see Table  2). Table  2 summarizes 
the best-performing QML models from the reviewed studies, based on 
recall an accuracy. The table includes key performance metrics such as 
accuracy, precision, recall, and F1-Score. Note that some models do not 
report certain metrics, which are left blank.

As shown in Table  2, existing QML models applied to the ILPD 
dataset require a large number of qubits or have considerable circuit 
depth, which may limit their practicality on NISQ-era hardware. These 
constraints underscore the need for more efficient and balanced hybrid 
approaches like the proposed model ‘QML-Liver’, which can deliver 
competitive performance while minimizing quantum resource usage 
(see Section 5).
5 
4. Developed quantum approach (QML-Liver)

In this section, we outline the dataset used, the methodology used 
to develop our QML model, ‘QML-Liver’.

In Fig.  1, we detail the complete methodology for developing the 
hybrid neural network. Specifically, we outline the data preprocessing 
steps, the selected interfaces, and the construction of the hybrid model, 
which is based on the optimization of both classical and quantum 
hyperparameters of the quantum layer. After that, we describe the dif-
ferent model configurations designed to optimize performance. Finally, 
the model is evaluated using several metrics.

4.1. Indian liver patient dataset

In this work, we have used the Indian Liver Patient Dataset (ILPD), 
one of the most widely used databases for liver disease detection, avail-
able in the UCI Machine Learning Repository.1 This dataset contains 
583 records of patients from the northeast of Andhra Pradesh, India, 
presented by Ramana et al. (2012). Among them, 416 are diagnosed 
with liver disease and 167 are not. Each patient is described by 10 
numerical variables, including age, gender, and biochemical markers 
such as Total Bilirubin (TB), Direct Bilirubin (DB), Total Proteins (TP), 
Albumin (ALB), Albumin and Globulin Ratio (A/G Ratio), Alamine 
Aminotransferase (SGPT), Aspartate Aminotransferase (SGOT), and Al-
kaline Phosphatase (Alkphos). These variables are represented using 
integer, floating-point values and categorical values.

Additionally, the dataset includes a categorical variable called ‘Se-
lector’, which provides ground truth information by indicating whether 
the patient has liver disease or not, based on expert labeling.

4.2. Data preprocessing

Data preprocessing is a crucial step to ensure that ML models can 
handle the dataset effectively, especially in the case of medical data like 
the Indian Liver Patient Dataset, which contains categorical variables, 
missing values, and scale differences between its attributes. Fig.  2 
shows a diagram of the main preprocessing steps carried out on the 
database.

Preprocessing steps are described in detail below.

1. Dummy Encoding. The dataset includes a categorical gender 
variable with values ‘Female’ and ‘Male’. To facilitate analysis 
and make the data compatible with ML algorithms, these cate-
gories were encoded as binary values: ‘0’ for Female and ‘1’ for 
Male.

1 https://archive.ics.uci.edu/dataset/225/ilpd+indian+liver+patient+
dataset

https://archive.ics.uci.edu/dataset/225/ilpd+indian+liver+patient+dataset
https://archive.ics.uci.edu/dataset/225/ilpd+indian+liver+patient+dataset
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Fig. 1. Diagram of this work project, illustrating the stages from left to right for training a neural network for classification using the ILPD dataset.
Fig. 2. Steps followed in preprocessing techniques for the ILPD dataset.
2. Imputation of Missing Values. Only 4 out of 583 values in the 
A/G Ratio column were missing, which were imputed using the 
mean (0.947), a value very close to the median (0.93) and con-
sistent with the near-symmetric distribution of the feature. Given 
the minimal proportion of missingness and the concentration 
of most values between 0.70 and 1.10 (25th–75th percentile), 
mean imputation was considered appropriate, as it preserves the 
central tendency without introducing significant bias (Feature-
engine, 2025; Joel et al., 2024). In the biomedical context, this 
approach also maintains the original scale and interpretability 
of the biochemical marker, ensuring that subsequent analyses 
and predictive model outputs remain clinically meaningful and 
robust (Williams, 2025).

3. Re-coding the Target Variable. The target variable, named 
‘Selector’, was originally encoded with values ‘2’ (representing 
‘healthy’) and ‘1’ (representing ‘sick’). To improve the interpre-
tation and consistency of the results, this column was re-coded 
to binary values, where ‘0’ represents ‘healthy’ and ‘1’ represents 
‘sick’. This change simplifies the analysis of prediction results 
in terms of liver disease probability, makes the interpretation of 
model performance metrics easier, and is also necessary for the 
correct visualization of the confusion matrix, which expects a 
binary variable.

4. Split and Deduplicate. We randomly selected an equal number 
of positive and negative cases for the test set. However, after 
conducting multiple evaluation runs, we observed that certain 
records were consistently misclassified across all 10 executions 
(see Appendix). This pattern suggested that these records could 
introduce ambiguity or inconsistencies in the evaluation process. 
To ensure a more reliable assessment of model performance, 
we decided to remove these cases from the test set and any 
duplicated rows (13 rows). The final datasets consist of 432 
training cases (307 positive and 125 negative) and 146 test cases 
(80 positive and 66 negative).

5. Data Standardization. The numerical attributes of the dataset 
exhibit different scales, which could affect the performance of 
certain algorithms sensitive to scale. To prevent this, all at-
tributes were standardized to have a mean of 0 and a standard 
deviation of 1 using the StandardScaler from the scikit-
learn library. Importantly, the scaler was fitted only on the 
6 
training set (𝑋train) to compute the mean and standard de-
viation, and then applied to transform both the training and 
test sets. During the cross-validation procedure, the scaler was 
fitted exclusively on the training folds and then applied to the 
corresponding validation folds. After model selection, it was 
finally fitted on the complete training set and applied to both the 
training and test sets. Standardization ensures that the variables 
have a balanced influence on the model, preventing features 
with broader ranges from dominating the analysis.

6. SMOTE. Given that the dataset is unbalanced, we applied the 
SMOTE technique from the imbalanced-learn library to 
generate synthetic instances for the minority class, which is the 
healthy class. SMOTE was applied only to the training set after 
standardization, ensuring that the test set remained untouched 
and unbiased. This resulted in a balanced dataset with 832 
instances. The impact of applying SMOTE was analyzed, and the 
results of these tests can be observed in Table  7.

4.3. Proposed quantum machine learning model

The proposed model is developed within a computational frame-
work that integrates several key tools for quantum and classical ML. 
PennyLane2 provides essential tools for implementing hybrid quantum–
classical models, while TensorFlow3 and Keras4 enable the construction 
and training of neural networks. Finally, Jupyter Notebook5 serves as 
an interactive development environment, seamlessly integrating these 
resources.

After preprocessing, the dataset is divided into two sets: training 
and validation (75%) and test (25%) to evaluate new inference cases. 
To assess the performance of the ML models, we focused on Accuracy 
and Recall, as these are the most relevant metrics in the context of 
liver disease diagnosis. Accuracy provides an overall assessment of the 
classification task by measuring the proportion of correctly predicted 
cases. However, given the potential consequences of misdiagnosing 

2 https://pennylane.ai/
3 https://www.tensorflow.org/
4 https://keras.io/about/
5 https://jupyter-notebook.readthedocs.io/en/latest/

https://pennylane.ai/
https://www.tensorflow.org/
https://keras.io/about/
https://jupyter-notebook.readthedocs.io/en/latest/


L.M. Donaire et al. Engineering Applications of Artiϧcial Intelligence 164 (2026) 113240 
Table 3
Hyperparameter configurations evaluated using GridSearchCV.
 Hyperparameter Value 1 Value 2 Value 3 Value 4 Value 5 
 Optimizer Adam RMSprop – – –  
 Hidden Layers 1 2 3 4 –  
 Dropout rate 0 0.2 0.3 0.4 –  
 Hidden Neurons 32 64 128 256 512  
 Loss Function Binary Crossentropy Binary Focal Crossentropy – – –  
Table 4
Explored hyperparameter configurations (neurons, activation function, and kernel initializer) for optimizing the network 
using GridSearchCV.
 Hyperparameter Value 1 Value 2 Value 3 Value 4 
 Neurons for Layer 1 64 128 256 512  
 Neurons for Layer 2 32 64 128 256  
 Activation Function for Layers 1 and 2 ReLU tanh – –  
 Kernel_initializer for Layers 1 and 2 GlorotUniform HeNormal – –  
a patient, Recall is particularly critical, as it quantifies the ability 
to correctly identify individuals with liver disease, minimizing false 
negatives. Since missing a sick patient can have severe implications, 
Recall takes priority in our evaluation (Gupta et al., 2021).

Moreover, the model architecture for ‘QML-Liver’ is defined as 
follows. A hybrid quantum–classical approach is employed, where clas-
sical layers extract relevant features and quantum layers leverage the 
unique properties of quantum computation to capture complex patterns 
in the data.

4.3.1. Hyperparameters tuning
Deep learning is a highly effective ML approach, partly due to the 

large number of hyperparameters, such as the number of hidden layers 
and nodes, that can be tuned to enhance model performance (Jiang 
and Chuhan, 2022). Hyperparameter tuning aims to find the optimal 
combination of these values to produce the best predictive model, but 
the high dimensionality of the search space often poses a significant 
computational challenge (Shen, 2018).

Grid search is a parameter tuning technique that systematically 
constructs and evaluates a model for each possible combination of 
algorithm parameters defined within a grid (Ranjan et al., 2019). In 
this study, we use GridSearchCV, implemented in Python via the scikit-
learn library, to identify optimal hyperparameters, complementing it 
with manual adjustments for further optimization. GridSearchCV ex-
haustively searches over a predefined set of hyperparameter values by 
evaluating model performance with cross-validation. The procedure of 
GridSearchCV can be summarized as follows:

Algorithm 1 GridSearchCV procedure
Require: Parameter grid  , estimator 𝑓 , number of folds 𝐾, evaluation 

metric 
1: for each configuration 𝑝 ∈  do 
2: Initialize average score 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒 ← 0
3: for each fold 𝑖 = 1,… , 𝐾 do 
4: Split dataset into training set 𝐷(𝑖)

train and validation set 𝐷
(𝑖)
val

5: Train estimator 𝑓 with configuration 𝑝 on 𝐷(𝑖)
train

6: Evaluate 𝑓 on 𝐷(𝑖)
val using  and obtain score 𝑠𝑖

7: 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒 ← 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒 + 𝑠𝑖
8: end for
9: Compute mean performance: 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒 ← 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒∕𝐾
10: Store result pair (𝑝, 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒)
11: end for
12: Select best configuration 𝑝̂ = argmax𝑝 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒
13: return  Best hyperparameter configuration 𝑝̂

We conducted multiple GridSearchCV runs, each time assigning a 
specific set of values to the hyperparameters. To define the search 
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ranges, we adopted an empirical approach based on preliminary ex-
periments, manual exploration, and an assessment of computational 
resources and time constraints. In each GridSearchCV execution, we 
randomly selected a subset of values from the predefined ranges for 
each hyperparameter (see Tables  3 and 4), considering the maximum 
number of configurations that could be evaluated within a reasonable 
timeframe. This approach allowed us to efficiently explore the hyper-
parameter space while avoiding computationally prohibitive searches. 
We have chosen RMSprop (Root Mean Square Propagation) and Adam
(Adaptive Moment Estimation) as optimizers, both of which are com-
monly used in deep learning. RMSprop adjusts the learning rate by 
dividing the gradient by a moving average of its squared values, helping 
to stabilize training (GeeksforGeeks, 2025). Its update rule is (PyTorch, 
2025): 
𝑠𝑡 = 𝛽𝑠𝑡−1 + (1 − 𝛽)𝑔2𝑡 , 𝜃𝑡 = 𝜃𝑡−1 − 𝜂

𝑔𝑡
√

𝑠𝑡 + 𝜖
(1)

where 𝜃𝑡 is the parameter at step 𝑡, 𝑔𝑡 = ∇𝜃(𝜃𝑡−1) is the gradient of the 
loss, 𝑠𝑡 is the exponentially weighted moving average of the squared 
gradients, 𝜂 is the learning rate, 𝛽 is the decay factor of the moving 
average (typically 0.9), and 𝜖 is a small constant to prevent division by 
zero (typically 10−8).

Adam combines momentum and adaptive learning rate adjustment 
by using moving averages of the first and second moments of the 
gradients (Kingma and Ba, 2017). Its update rule is:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡, 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 , 𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
,

𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
, 𝜃𝑡 = 𝜃𝑡−1 − 𝜂

𝑚̂𝑡
√

𝑣̂𝑡 + 𝜖
(2)

where 𝑚𝑡 is the first moment (mean) of the gradients, 𝑣𝑡 is the second 
moment (mean of squared gradients), 𝑚̂𝑡 and 𝑣̂𝑡 are bias-corrected 
estimates of 𝑚𝑡 and 𝑣𝑡, 𝛽1 and 𝛽2 are decay rates for the moving averages 
(typically 0.9 and 0.999), and 𝜃𝑡, 𝑔𝑡, 𝜂, and 𝜖 are as defined above.

Regarding the number of hidden layers, we evaluated configurations 
ranging from 1 to 4 layers, as increasing the depth further was com-
putationally impractical. Additionally, we tested five different values 
for the number of neurons in these layers to explore their impact on 
model performance. We also incorporated dropout, a regularization 
technique where neurons are randomly dropped during training. This 
helps reduce computational cost and mitigates overfitting by preventing 
co-adaptation of neurons (Srivastava et al., 2014). The dropout rate 
was tested with multiple values to assess its effectiveness. Finally, 
we evaluated two loss functions: Binary Crossentropy and Binary Fo-
cal Crossentropy. Binary Crossentropy (BCE) measures the dissimilarity 
between predicted probabilities and true labels in binary classifica-
tion, penalizing incorrect predictions with high confidence (Mao et al., 
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2023). It is defined as: 

BCE(𝑦, 𝑦̂) = − 1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)
]

(3)

where 𝑁 is the total number of samples in the dataset, 𝑦𝑖 ∈ {0, 1} is the 
true label of the 𝑖th sample, and 𝑦̂𝑖 ∈ [0, 1] is the predicted probability 
for the positive class of the 𝑖th sample.

Binary Focal Crossentropy is a variant of BCE that reduces the in-
fluence of well-classified samples and emphasizes harder ones, making 
it useful for imbalanced datasets (Lin et al., 2017). Its formulation is: 

BFCE(𝑦, 𝑦̂) = − 1
𝑁

𝑁
∑

𝑖=1

[

𝛼(1− 𝑦̂𝑖)𝛾𝑦𝑖 log(𝑦̂𝑖) + (1− 𝛼)𝑦̂𝛾𝑖 (1− 𝑦𝑖) log(1− 𝑦̂𝑖)
]

(4)

where 𝛼 ∈ [0, 1] balances the relative importance of positive and 
negative classes, 𝛾 ≥ 0 is the focusing parameter that reduces the weight 
of well-classified examples, and 𝑦𝑖, 𝑦̂𝑖 and 𝑁 are as defined above.

The GridSearchCV suggested that the best parameters were: Adam 
optimizer, one hidden layer, a dropout rate of 0.3, 32 hidden neurons, 
and the Binary Focal Crossentropy loss function, achieving an accu-
racy of 73%. However, while GridSearchCV suggested using a single 
hidden layer, further experiments demonstrated that adding a second 
hidden layer improved the model’s capacity to learn more complex 
representations, resulting to a 5% increase in accuracy. It is important 
to mention that in this study we also explored architectures with more 
layers. However, since the performance metrics only improved slightly 
(around 2% in accuracy), we decided to adopt a single architecture 
with two hidden layers, each followed by a dropout layer. Therefore, 
we continued our investigation with two hidden layers, the Adam 
optimizer, the same dropout rate, and the Binary Focal Crossentropy 
loss function.

Next, we tested different numbers of hidden neurons per layer and 
experimented with different kernel initializers (see Table  4).

The choice of kernel initializer plays a crucial role in the training 
stability and convergence speed of neural networks. In this study, we 
explored two well-established initialization techniques: GlorotUniform
and HeNormal. The GlorotUniform initializer, also known as Xavier
initialization, aims to maintain a stable variance of activations across 
layers, making it particularly suitable for activation functions like
‘tanh’ (Glorot and Bengio, 2010). On the other hand, the HeNormal 
initializer or MSRA initialization is optimized for ReLU functions by 
scaling the weight distribution based on the number of input neurons, 
helping to prevent vanishing or exploding gradients (He et al., 2015).

GridSearchCV recommended using ReLU functions in both layers, 
with 64 neurons in the first layer and 128 in the second. Addition-
ally, it suggested using GlorotUniform initialization for the first layer 
and HeNormal for the second. However, after several tests, we chose 
256 neurons for the first layer and 128 for the second using the 
GlorotUniform initializer in both layers.

Quantum Layer
Now that the classical part of the hybrid network has been op-

timized, it is time to focus on the quantum layer. The position of 
the quantum layer within the architecture was manually tested at 
different locations. Additionally, experiments were conducted using 2, 
3, 4, 5, and 10 qubits. However, due to performance considerations 
(with accuracy decreasing by 4% and recall by 8%) and the limited 
availability of qubits, two qubits was ultimately selected for the final 
implementation.

The proposed quantum layer is implemented as a QNode using Keras
and operates on a small number of qubits. We define this QNode using
default.qubit, the default qubit-based simulator in PennyLane, and 
leverage operations from the templates module. For our experiments, 
we use n_layers = 4, and define the device as dev = qml.de-
vice("default.qubit", wires=n_qubits, seed=42)

Quantum circuits are typically composed of three main blocks:
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1. Data encoding (Encoding/Feature Map): In this stage, classical 
data are mapped to the initial state of the quantum register, 
which increases the dimensionality of the Hilbert space and 
facilitates the representation of complex relationships among 
features (Lloyd et al., 2020; Lee and Banerjee, 2023). Common 
encoding methods include Pauli rotations, amplitude prepara-
tion, or angle encoding. In our model, qml.AngleEmbedding
is used to encode all classical features into 𝑛_𝑞𝑢𝑏𝑖𝑡𝑠 qubits. After 
preliminary tests with different rotation options (RX, RY, RZ), 
we observed that RX provided greater stability during training 
and better parameter convergence.

    # Angle embedding
    qml.AngleEmbedding(inputs, wires=range(n_qubits))
    

2. Trainable layers and entanglement: The next block corresponds 
to the construction of trainable quantum layers along with 
the entanglement of the gates they include. Following the em-
bedding, qml.BasicEntanglerLayers  (Xanadu Quantum 
Technologies Inc., 2025) are applied, which consist of single-
parameter rotations on each qubit (default RX) followed by a 
closed chain of CNOT gates connecting all qubits in a ring. The 
number of layers 𝐿 is determined by the first dimension of the 
trainable weight tensor of shape (𝐿, 𝑛_qubits). In our case, 4 
layers with RX rotations are used.

    # Trainable layers
    weight_shapes = {"weights": (n_layers, n_qubits)}
    qml.BasicEntanglerLayers(weights, wires=range(n_qubits))
    

This component enables the circuit to capture complex non-
linear patterns in the data, making it particularly effective for 
detecting intricate medical features and improving sensitivity to 
minority classes in imbalanced datasets (Devadas and Sowmya, 
2025; Kwon et al., 2025; Bai and Hu, 2024).

3. Measurement and readout: Finally, the circuit measures the ex-
pectation value of the Pauli-Z operator on each qubit, converting 
quantum states into classical values usable for evaluation or 
classification.

    # Measurement
    return [qml.expval(qml.PauliZ(w)) for w in range(n_qubits)]
    

This design ensures a minimal quantum resource requirement, mak-
ing it well-suited for NISQ-era applications. Therefore, the proposed 
sequential model ultimately consists of the following layers:

• Input layer with one neuron for each feature of the dataset.
• First dense layer with 256 neurons and ReLU activation with a 
weight initializer GlorotUniform to improve gradient flow.

• Dropout layer with a rate of 0.3 to help prevent overfitting.
• Second dense layer with 128 neurons, ReLU activation with a 
weight initializer GlorotUniform.

• Dropout layer with a rate of 0.3.
• Third dense layer with two neurons.
• Quantum layer with only two qubits.
• Output layer with one neuron and Sigmoid activation for binary 
classification.

The choice of a simple model is motivated by the need for efficient 
execution on near-term quantum devices, where circuit depth and qubit 
count are constrained. By keeping the quantum component minimal, 
the model remains practical for NISQ quantum hardware era while 
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Fig. 3. Structure of the hybrid ‘QML-Liver’ model, illustrating classical layers with activation functions, dropout layer, and the quantum layer.
Table 5
Evaluated parameter settings for the proposed model, including learning rate, batch size, epochs, 
and loss-related factors.
 Parameter Value 1 Value 2 Value 3 Value 4 
 Learning Rate 0.0001 0.001 0.01 –  
 Batch Size 16 32 64 –  
 Epochs 20 50 100 –  
 Gamma (𝛾) 0.5 1.0 2.0 –  
 Alpha (𝛼) 0.25 0.3 0.5 0.75  
 Smoothing Factor 0.3 0.4 0.5 0.7  
Fig. 4. Layer-by-layer architecture of the hybrid ‘QML-Liver’ model, as ob-
tained from the Keras model.summary() representation.

still allowing for an exploration of potential quantum advantages. The 
structure of the hybrid quantum–classical model is illustrated in Fig.  3.

In addition, Fig.  4 shows the architecture of the model as obtained 
from the Keras model.summary() function, providing a layer-by-
layer representation of the hybrid network.

Class Weight Initialization Additionally, class weight initialization 
has been applied to prevent extreme weight variations that could 
negatively impact model training. First, the original class weights are 
computed using the compute_class_weight function with the 
‘balanced’ option, ensuring proper weighting for imbalanced classes. 
Then, a smoothing factor 𝛼 is defined to adjust the calculated weights. 
Finally, the smoothing formula is applied to the computed weights: 
adjusted_weight𝑖 = 1 + 𝛼 × (weight𝑖 − 1) (5)

 where:

• adjusted_weight𝑖 is the adjusted weight for class 𝑖, which will be 
used during training to compensate for class imbalance.
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• weight𝑖 is the original class weight for class 𝑖, computed by 
the compute_class_weight function to account for the class 
distribution.

• 𝛼 is the smoothing factor which controls how much the class 
weights are adjusted. A higher value of 𝛼 increases the effect of 
the smoothing on the class weights.

Training Parameters The workflow to train the model was as 
follows: first, hyperparameter combinations were evaluated using Strat-
ified Cross-Validation with 5 folds to identify the best configuration. 
Next, the model was retrained with the selected hyperparameters, 
again using 5-fold cross-validation, to assess generalization perfor-
mance across folds. Finally, the model was trained on the entire training 
dataset with the best hyperparameters, and its performance was eval-
uated on the held-out test set to report the final metrics presented in 
Section 5.

To configure the model, it was necessary to configure the number of 
epochs, batch size, and learning rate. Additionally, Early Stopping was 
applied to monitor the validation loss (val_loss), with a patience 
of 10 epochs, meaning training would stop if no improvement was 
observed. We continued with the Adam optimizer, and the loss func-
tion selected was Binary Focal Crossentropy. In this loss function, the 
parameters gamma (𝛾) and alpha (𝛼) were also configured to balance 
the influence of different classes. 𝛼 is a weighting factor for class 1, 
while the weight for class 0 is 1 − 𝛼. 𝛾 is a focusing parameter that 
adjusts the focal factor (Lin et al., 2017).

We performed an extensive exploration of hyperparameter combi-
nations to optimize the model’s performance (see Table  5). The tested 
configurations varied across key aspects, including learning rate, batch 
size, number of epochs, class weight smoothing factors, and loss func-
tion parameters such as 𝛼 and 𝛾. A total of 1296 unique combinations 
were evaluated, resulting from the Cartesian product of the selected 
values, i.e., 3 × 3 × 3 × 3 × 4 × 4 = 1296, chosen based on preliminary 
experiments and prior experience.

The impact of these combinations on key performance metrics, such 
as accuracy and recall, was analyzed in detail to optimize the model’s 
performance.

In Figs.  5, 6, and 7, we compare Test Accuracy and Test Recall 
across different hyperparameter combinations. Each point in the plots 
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Fig. 5. Test Accuracy vs. Test Recall for different Learning Rate (LR) and 
Batch Size (BS) configurations. Each point represents a model, where the color 
encodes the LR and the size reflects the BS. The optimal trade-off between 
accuracy and recall is observed at LR = 0.001 and BS = 32.

represents a model with a specific configuration, where the color 
encodes one hyperparameter and the size reflects another. Our goal is 
to identify the optimal balance between accuracy and recall.

In Fig.  5, we compare Test Accuracy and Test Recall for various 
combinations of Learning Rate (LR) and Batch Size (BS). Each point 
represents a model with a specific configuration, where the color 
indicates the LR and the size reflects the BS. It can be observed that 
models with an LR of 0.001 (orange color) tend to cluster towards 
the right side of the plot, indicating higher accuracy values. The Batch 
Size of 32 appears more frequently in this region, while Batch Sizes 
of 16 and 64 are more scattered across the plot. This combination 
reflects a model that performs well in both correctly identifying positive 
instances (recall) and overall classification accuracy.

In Fig.  6, we compare Test Accuracy and Test Recall for various 
combinations of Epochs (EP) and Smooth Factor for the class weight 
initialization (SF). Each point represents a model with a specific con-
figuration, where the color indicates the SF and the size reflects the 
EP. It can be observed that models with a Smooth Factor of 0.7 (light 
red color) tend to cluster towards the right side of the plot, indicating 
higher accuracy values. Similarly, models with an EP of 100 appear 
more frequently in this region, while other values of EP and SF are 
more scattered across the plot.

In Fig.  7, we compare Test Accuracy and Test Recall for various 
combinations of Gamma (𝛾) and Alpha (𝛼) for the class weight initial-
ization. Each point represents a model with a specific configuration, 
where the color indicates the 𝛾 and the size reflects the 𝛼. It can be 
observed that models with a 𝛾 of 1.0 (orange color) tend to cluster 
towards the right side of the plot, indicating higher accuracy values. 
The 𝛼 of 0.3 is not the farthest to the right, but it appears most 
frequently in this region, while other values of 𝛾 and 𝛼 are more 
scattered across the plot.

Based on the results of these experiments, the configurations that 
achieved the best performance were selected for the final model (see 
Table  6).

The architecture of the proposed model, its training procedure, 
and both the original and preprocessed datasets are publicly available 
at https://github.com/LauraMDonaire/QML-Liver.

5. Results and discussion

In this section, we present the comparative analysis of our proposed 
method against the state-of-the-art models, both classical and quantum. 
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Fig. 6. Test Accuracy vs. Test Recall for different Epochs (EP) and Smooth 
Factor (SF) values used in class weight initialization. Each point represents a 
model, where the color encodes the SF and the size reflects the EP. The best 
accuracy-recall balance is found at EP = 100 and SF = 0.7.

Fig. 7. Test Accuracy vs. Test Recall for different Gamma (𝛾) and Alpha (𝛼) 
values in the loss function. Each point represents a model, where the color 
encodes 𝛾 and the size reflects 𝛼. The optimal accuracy-recall trade-off is 
observed at 𝛾 = 1.0 and 𝛼 = 0.3.

We will evaluate the performance of our approach across various 
metrics and compare it with existing models to highlight its strengths 
and limitations

In Table  1, it can be seen that the Stacking model from Alyasin and 
Ata (2024) is the most competitive classical model, as it combines RF, 
DT, XGB, and ExtraTrees classifiers, using the latter as a meta-classifier. 
While our approach does not outperform this model in most evaluated 
metrics, it achieves a higher recall. Additionally, the Stacking model 
incurs a significantly higher computational cost, as it integrates multi-
ple high-cost classifiers, making it considerably more resource-intensive 
than our method.

Regarding the quantum approaches (see Table  2), the two best 
methods were those from Safriandono et al. (2024): the XGB_QFE 
Tomek model, which employs QFE and the Tomek-Link technique to 
remove hard-to-classify instances and improve dataset balance, and the 
LR_QFE model. Our goal is to analyze which parameters our proposal 
improves upon compared to the state-of-the-art. The results of this 
analysis are shown in Table  7.

To evaluate the performance of our proposed model, Fig.  8 presents 
the confusion matrix. The results indicate that our model correctly 
classifies 48 instances of the negative class and 75 of the positive 

https://github.com/LauraMDonaire/QML-Liver
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Table 6
Summary of the proposed final model’s parameters.
 Variable Value  
 Optimizer Adam  
 Learning Rate 0.001  
 Loss Function Binary Focal Crossentropy (gamma = 1.0, alpha = 0.3) 
 Activation Function - Layer 1 and 2 ReLU  
 Dropout Rate 0.3  
 Batch Size 32  
 Epochs 100  
 Class Weight Initialization Smooth factor = 0.7  
 Input Layer Neurons Number of features (input dataset size)  
 First Dense Layer Neurons 256  
 Second Dense Layer Neurons 128  
 Third Dense Layer Neurons 2  
 Quantum Layer 2 qubits  
 Output Layer Neurons 1  
 Early Stopping Monitors ‘val_loss’ with patience of 10 epochs  
 Cross-Validation Stratified K-Fold (5 folds)  
Fig. 8. Confusion matrix of the proposed model, illustrating the number of 
correctly and incorrectly classified instances for both classes being ‘0’ for 
healthy patients and ‘1’ for patients with liver diseases.

class, with 18 and 5 misclassifications, respectively. From a medical 
diagnostics perspective, this outcome is favorable, as minimizing false 
negatives (5) is critical to avoid missing sick patients. Although false 
positives (18) may lead to additional testing for healthy individuals, 
they are generally considered less harmful than overlooking a true case. 
Therefore, the distribution of errors suggests that our model prioritizes 
sensitivity in detecting positive cases, which is a desirable quality in 
medical diagnostics.

The discriminative performance of the proposed model was further 
evaluated using the Receiver Operating Characteristic (ROC) curve. 
Fig.  9 shows the ROC curve, with the area under the curve (AUC) 
indicating the model’s overall ability to distinguish between healthy 
and diseased patients. In our case, the model achieved an AUC of 91%, 
demonstrating strong discriminative performance. Higher AUC values 
reflect better separation between the two classes.

In terms of accuracy, our model QML-Liver achieves 84%, surpass-
ing the XGB_QFE Tomek model (81%) and the LR_QFE model (74%), 
and outperforming previous quantum proposals such as VQC (74%) and 
QKNN (69%). Regarding precision, our model attains 81%, compared 
to 77% for the XGB_QFE Tomek and 75% for LR_QFE. In recall, QML-
Liver reaches 94%, slightly below the LR_QFE model (99%) but higher 
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Fig. 9. ROC curve of the proposed model, showing the trade-off between 
true positive rate and false positive rate. The AUC indicates the model’s 
discriminative ability.

than the rest of the alternatives. Additionally, our approach achieves 
an F1-Score of 87%, surpassing all models.

We also explored two alternative versions of QML-Liver to evaluate 
the impact of qubit count and data balancing. The 10-qubit version 
did not improve performance, achieving 80% accuracy and reducing 
the F1-Score to 73%, which indicates that simply increasing quantum 
resources does not necessarily translate into better results. The ‘QML-
Liver + SMOTE’ version, improved precision to 85% and specificity 
to 83%, thereby reducing false positives. However, recall decreased 
substantially to 76%, limiting its ability to identify the positive class, 
and overall accuracy dropped to 79%. During cross-validation, this 
configuration also showed higher variance, suggesting a tendency to 
overfit to the synthetic data (Specificity: Std = 0.2254). This highlights 
the inherent trade-offs of balancing: while SMOTE can reduce false 
positives, it may introduce bias and reduce the model’s ability to gener-
alize. From a clinical perspective in liver disease detection, high recall 
is generally prioritized over high precision, because minimizing false 
negatives-patients who are sick but not detected-is critical for patient 
safety. Therefore, although SMOTE improves precision, the significant 
drop in recall indicates that this approach could be counterproductive 
in a real-world clinical setting, as it could increase the risk of missing 
true positive cases.

A key advantage of our model is its efficiency: it requires only 
two qubits and has a delay of 20, whereas the competing quantum 
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Table 7
Comparison of our model with state-of-the-art quantum approaches in terms of the number of qubits and delay, dataset balancing, accuracy (Acc), precision (Pr), 
recall (Rec), F1-Score (F1), specificity (Spe), and ROC AUC after training on the entire training set (RAC).
 Author Model No Qubits Delay Balancing Acc Pr Rec F1 Spec RAC 
 Raubitzek and Mallinger (2023) VQC 10 11* No 74 – – – – –  
 Raubitzek et al. (2024) Catboost N/A N/A No 73 65 63 64 – –  
 Safriandono et al. (2024) XGB_QFE Tomek 10 40 Yes 81 77 90 83 72 –  
 LR_QFE 10 40 No 74 75 99 85 99 –  
 Bhaskaran and Prasanna (2024) QKNN(K = 5) 10 23 No 69 – – – – –  
 
Our proposals

QML-Liver 2 20 No 84 81 94 87 73 91  
 QML-Liver 10 48 No 80 79 86 73 73 90  
 QML-Liver + SMOTE 2 20 Yes 79 85 76 80 83 89  
Table 8
For reproducibility reasons, we present the deleted records from the original dataset, which were removed from the test set due 
to consistent misclassification across 10 executions. These cases exhibited ambiguous patterns that could negatively impact model 
evaluation.
 Age Gender TB DB Alkphos Sgpt Sgot TP ALB A/G Selector 
 18 0 1.8 0.7 178 35 36 6.8 3.6 1.10 1  
 17 0 0.9 0.2 224 36 45 6.9 4.2 1.55 1  
 24 0 1.0 0.2 189 52 31 8.0 4.8 1.50 1  
 60 0 2.2 1.0 271 45 52 6.1 2.9 0.90 0  
 60 0 0.8 0.2 215 24 17 6.3 3.0 0.90 0  
 38 1 2.6 1.2 410 59 57 5.6 3.0 0.80 0  
 35 0 2.0 1.1 226 33 135 6.0 2.7 0.80 0  
 11 0 0.7 0.1 592 26 29 7.1 4.2 1.40 0  
 65 0 0.7 0.2 265 30 28 5.2 1.8 0.52 0  
 36 0 5.3 2.3 145 32 92 5.1 2.6 1.00 0  
 48 0 0.7 0.2 208 15 30 4.6 2.1 0.80 0  
 65 0 1.4 0.6 260 28 24 5.2 2.2 0.70 0  
 62 0 0.6 0.1 160 42 110 4.9 2.6 1.10 0  
 65 0 0.8 0.2 201 18 22 5.4 2.9 1.10 0  
 17 1 0.7 0.2 145 18 36 7.2 3.9 1.18 0  
 62 0 0.7 0.2 162 12 17 8.2 3.2 0.60 0  
 65 0 1.9 0.8 170 36 43 3.8 1.4 0.58 0  
 23 1 2.3 0.8 509 28 44 6.9 2.9 0.70 0  
models employ ten qubits with higher delays (up to 40). This makes 
our approach the only viable quantum solution under current NISQ 
hardware constraints.

As shown in Table  7, our proposed model, ‘QML-Liver’, demon-
strates competitive and consistent performance against state-of-the-art 
quantum baselines.

6. Conclusion and future work

Liver disease represents a serious global health issue, underscor-
ing the need for accurate and efficient diagnostic solutions-an area 
where QML shows great promise in improving disease detection. In 
this study, we developed a novel methodology for constructing a hy-
brid classifier for liver disease detection, integrating both classical 
and QML techniques. We began by building on these insights, we 
introduced ‘QML-Liver’, a sequential hybrid quantum model that seam-
lessly combined classical and quantum layers to enhance classification 
performance.

To ensure data quality, we implemented robust preprocessing tech-
niques, including dummy encoding, data splitting and data standard-
ization. After optimizing the model architecture, ‘QML-Liver’ demon-
strated competitive performance, achieving 84% accuracy, 81% pre-
cision, 94% recall, 87% F1-Score, 73% Specificity and ROC AUC of 
91%. A comparative analysis against state-of-the-art quantum models 
revealed that our approach not only matched or surpassed existing 
methods in key performance metrics but also significantly improved 
computational efficiency by reducing the number of qubits to just 
two making it a more practical solution within the constraints of 
NISQ devices. Besides the efficiency in quantum resource usage, the 
advantage of the hybrid approach lies in the ability of the quantum 
layer to enrich data representation. By encoding classical features into 
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a higher-dimensional Hilbert space and leveraging quantum entangle-
ment, the model can capture non-linear correlations that are difficult to 
learn with classical dense layers alone. This additional expressiveness 
helps the model find a better trade-off between precision and recall, 
especially when dealing with imbalanced classes. In practice, purely 
quantum models still face noise and qubit limitations, while purely 
classical networks often need to grow much deeper and more complex 
to reach similar performance. The hybrid design strikes a balance 
by combining the stability and generalization of classical layers with 
the richer representational capacity offered by quantum processing. 
These findings highlighted the potential of ‘QML-Liver’ for medical di-
agnostics, particularly in resource-constrained quantum environments. 
Moreover, they underscore its promise as a scalable and clinically 
relevant tool for decision support in liver disease detection.

Finally, to contextualize our approach, we conducted a comprehen-
sive review of state-of-the-art classical and quantum models applied to 
the ILPD, evaluating their strengths and limitations.

As future work, we planned to explore alternative quantum encod-
ing strategies and embedding techniques. Additionally, we intended 
to incorporate advanced quantum algorithms to further enhance the 
model’s efficiency and real-world applicability.
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