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Quantum Machine Learning (QML) combines principles of quantum computing with traditional Machine
Learning (ML) to explore computational advantages in data processing and model efficiency. With the
rise of Noisy Intermediate-Scale Quantum (NISQ) devices, hybrid quantum-—classical approaches are gaining
momentum, especially in domains requiring high precision such as healthcare. In this work, we investigate
whether hybrid quantum computing can enhance certain aspects of classical ML, specifically in dataset
balancing and the complexity of the neural network involved in training. To this end, we use the Indian
Liver Patient Dataset as a case study to determine the presence of liver disease. We present the methodology
for developing ‘QML-Liver’, a hybrid approach that seamlessly integrates classical and QML techniques. This
includes data preprocessing, model design, and optimal configuration. Our results demonstrate that ‘QML-Liver’
improves key performance metrics, such as accuracy and F1-Score. Additionally, we successfully reduce the
number of required qubits to just two, making practical deployment more feasible. These findings underscore
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the potential of QML for medical diagnostics, particularly in the NISQ era.

1. Introduction

Quantum Machine Learning (QML) is an emerging field that com-
bines the power of quantum computing with traditional Machine Learn-
ing (ML) techniques, offering new opportunities to tackle challeng-
ing problems in various domains, including medicine, finance, and
logistics (Biamonte et al., 2017; Schuld et al., 2014). ML has trans-
formed numerous fields by enabling automated pattern recognition
and decision-making in large datasets. In healthcare, ML models have
proven to be powerful tools for disease classification, early diagnosis,
and predictive analytics, with traditional techniques such as neural
networks, support vector machines, and decision trees being widely
used for medical diagnostics, including liver disease detection (Azam
et al., 2020; Mutlu et al., 2022; Nahar and Ara, 2018). However,
these classical models often face challenges related to data quality,
computational limitations, and the complexity of medical patterns,
which can hinder their performance. Unlike classical methods that typ-
ically rely on large, balanced datasets to achieve optimal performance,
quantum models can exploit phenomena such as superposition and
entanglement to learn complex patterns with fewer data and without
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the need for class balancing (Sinno et al., 2025). These properties make
QML particularly promising for applications where data collection is
costly or where classes are inherently imbalanced, such as rare disease
detection or cybersecurity problems.

Numerous studies have explored the application of QML in health-
care, addressing tasks such as medical image analysis (Houssein et al.,
2022; Wei et al., 2023), disease detection (Dutt et al., 2020), and
large-scale clinical data classification (Dasari et al., 2023). In this
domain, supervised learning models, particularly those focused on clas-
sification, have shown promising results in medical diagnostics (Ma-
heshwari et al., 2023). Techniques such as quantum preprocessing,
error reduction, and hybrid quantum-—classical neural networks have
contributed to the development of more efficient models for analyz-
ing clinical data (Aishwarya et al., 2020; Cong et al., 2019; Moradi
et al., 2022; Sierra-Sosa et al., 2021). Despite its potential, quantum
computing faces several limitations, including the restricted availabil-
ity of qubits in current hardware and the susceptibility of quantum
systems to noise and errors due to decoherence, while converting clas-
sical data into quantum representations remains a significant technical

E-mail addresses: laura.donaire@ual.es (L.M. Donaire), gloriaortega@ual.es (G. Ortega), francisco.orts@ual.es (F. Orts), gmartin@ual.es (E.M. Garzén),

ernestas.filatovas@mif.vu.lt (E. Filatovas).

https://doi.org/10.1016/j.engappai.2025.113240

Received 12 May 2025; Received in revised form 22 September 2025; Accepted 16 November 2025

Available online 22 November 2025

0952-1976/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).


https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://orcid.org/0009-0004-6610-2795
https://orcid.org/0000-0002-6563-2717
https://orcid.org/0000-0002-4312-3671
https://orcid.org/0000-0002-0568-5470
https://orcid.org/0000-0002-9329-6431
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
https://github.com/LauraMDonaire/QML-Liver
mailto:laura.donaire@ual.es
mailto:gloriaortega@ual.es
mailto:francisco.orts@ual.es
mailto:gmartin@ual.es
mailto:ernestas.filatovas@mif.vu.lt
https://doi.org/10.1016/j.engappai.2025.113240
https://doi.org/10.1016/j.engappai.2025.113240
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2025.113240&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

L.M. Donaire et al.

challenge (Preskill, 2018; Ranga et al., 2024). These constraints have
motivated the development of hybrid quantum-classical approaches,
providing practical solutions within the current Noisy Intermediate-
Scale Quantum (NISQ) era. Although scalability and hardware limi-
tations remain challenges for large-scale clinical deployment, recent
advances, including hybrid architectures, error mitigation, and efficient
quantum preprocessing, have already enabled meaningful applications
of QML to clinical datasets. Overcoming remaining hardware and al-
gorithmic bottlenecks will further enhance the deployment of QML
systems at clinical scale (Devadas and Sowmya, 2025).

Advancements in medical science are fueling interest in emerging
technologies like quantum computing to enhance disease diagnosis and
treatment, particularly for high-risk organ systems. The liver, located
in the upper right part of the abdominal cavity, is the largest organ in
the body and the largest gland, second only to the skin. It represents
approximately 4% of body weight (Mutlu et al., 2022). Wedge-shaped,
it is essential for digestion and the elimination of toxins, performing
over 500 vital functions necessary for human survival (Gupta et al.,
2022). Liver conditions, ranging from hepatitis (often caused by viral
infections like hepatitis A, B, C, D and E) and cirrhosis to non-alcoholic
fatty liver disease, liver tumors, and liver cancer, represent a significant
global health issue, claiming approximately 2 million lives world-
wide (Dritsas and Trigka, 2023). According to the Global Burden of
Disease project, in 2010 alone, one million people died from cirrhosis,
while many more were diagnosed with liver cancer (Nigatu et al.,
2023). Factors such as excessive alcohol consumption, viral infections,
obesity, diabetes, and autoimmune conditions can severely impair liver
function (Kumar and Rani, 2024).

Early detection of liver diseases is therefore crucial to improve pa-
tient prognosis and reduce mortality rates. Traditional diagnostic meth-
ods, such as blood tests, biopsies, and medical imaging, can be invasive,
costly, and prone to human error, which has driven the growing adop-
tion of artificial intelligence (AI) in healthcare. Al enables automation
in diagnostics and optimization of medical decision-making.

This work presents the design and optimization of a hybrid quan-
tum deep learning model for liver disease classification. Our model
integrates both classical and quantum layers, leveraging quantum com-
puting advantages while maintaining an efficient architecture.

The main contributions of this study are:

Design of a resource-efficient hybrid model featuring a two qubits
quantum layer, optimized for deployment on NISQ-era quantum
hardware.

Application of the model to the Indian Liver Patient Dataset
(ILPD), a widely-used benchmark dataset for liver disease clas-
sification.

Extensive comparison with both classical and quantum approach-
es, showing competitive results while minimizing quantum re-

source usage.
Full release of code and model parameters to promote trans-
parency and enable reproducibility for future research.

The remainder of the paper is structured as follows. Section 2
discuss QML and its challenges and opportunities. Section 3, reviews
classical and quantum classification methods for liver diseases, with a
focus on state-of-the-art approaches that use the ILPD. Section 4 details
the development of our hybrid quantum model, ‘QML-Liver’, including
the preprocessing steps, model structure, configuration, and training
techniques employed. Section 5 presents experimental results and com-
pares our model against leading classical and quantum approaches.
Finally, Section 6, discusses the general conclusions of this research and
outlines future directions.
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2. Quantum machine learning

Quantum computing is distinguished by its ability to process in-
formation using the rules of quantum mechanics, enabling the tack-
ling of problems in new and potentially revolutionary ways (Mermin,
2007; Nielsen and Chuang, 2010; Ying, 2010). However, we are cur-
rently in the NISQ era, characterized by the use of quantum devices
with a limited number of qubits and considerable noise. Despite these
constraints, these systems provide valuable opportunities to explore
quantum algorithms that, for specific tasks, may outperform classical
methods.

QML sits at the intersection of classical ML and quantum computing,
aiming to exploit quantum properties to develop models with improved
learning capabilities (Biamonte et al., 2017; Tychola et al., 2023;
Ganguly, 2021). There are four approaches that combine quantum
computing and ML (Ranga et al., 2024):

+ Classical-Classical (CC): Classical algorithms with classical
datasets.

* Quantum-Classical (QC): Classical algorithms processing quantum
datasets.

» Classical-Quantum (CQ): Classical datasets processed on quantum
hardware.

* Quantum-Quantum (QQ): Quantum algorithms with quantum
datasets.

Although QML is still in its early stages and faces considerable
challenges, it holds great promise for solving complex problems more
efficiently (Dunjko and Briegel, 2018; Perelshtein et al., 2022). If we
focus on the exclusively quantum case (QQ), we can say that, currently,
it has several limitations:

+ Limitations in the number of qubits: Current devices have few
qubits (on the order of hundreds), making it difficult to imple-
ment complex quantum neural networks.

Noise and errors in quantum systems: Decoherence and other
noise sources affect the stability and reliability of calculations.
Encoding classical data into quantum states: Efficiently convert-
ing classical information into data that quantum systems can
process is a challenge in itself.

Difficulties in training quantum models: Optimizing parameters
in quantum neural networks requires the development of more
robust and efficient algorithms.

These constraints originate in the intrinsic physical and architec-
tural features of NISQ hardware. In particular, the lack of fault-tolerant
error correction mechanisms and the exponential overhead of char-
acterization methods such as full quantum state tomography severely
limit both the reliability and scalability of QQ implementations (Kececi,
2025). Gate errors, qubit decoherence, and crosstalk introduce complex
noise dynamics that accumulate in deep circuits, degrading model fi-
delity. Furthermore, the probabilistic nature of quantum measurements
makes it harder to obtain precise feedback during training, forcing
repeated evaluations and indirect estimation methods to guide the
optimization of quantum neural networks (Beer et al., 2020).

Beyond the architectural limitations of NISQ hardware, scalability
is particularly critical for QML models applied to healthcare, where
datasets are often high-dimensional, heterogeneous, and privacy-
sensitive (Rasool et al.,, 2023). Real-world clinical tasks, including
molecular simulation, medical precision, radiotherapy, and drug devel-
opment, require models capable of generalizing across diverse patient
populations (Ullah and Garcia-Zapirain, 2024). Techniques such as
quantum transfer learning, federated quantum models, and distributed
quantum computing architectures have shown promise in extending
QML capabilities to larger datasets without compromising privacy or
interpretability (Acar and Yilmaz, 2021; Chen and Yoo, 2021; Kawase,
2024). These strategies are especially relevant in precision medicine
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and diagnostic imaging, where scalability is not only a technical
requirement but also a clinical imperative. As quantum hardware
matures, integrating scalable QML pipelines into healthcare workflows
will be essential to unlock their full potential.

Complementing these scalability-oriented strategies, several algo-
rithmic approaches have been proposed to enhance QML performance
on healthcare data. Among these, quantum kernel methods (QKM),
variational quantum circuits (VQCs), and hybrid quantum-classical
models have emerged as particularly promising. Each approach offers
distinct advantages and is better suited to specific problem settings,
depending on factors such as dataset size, model complexity, and
hardware limitations.

QKMs exploit quantum computers to map classical data into high-
dimensional Hilbert spaces, enabling efficient separation through lin-
ear classifiers (Havlicek et al., 2019; Schuld and Killoran, 2019). By
computing the kernel matrix via quantum circuits, QKMs can reveal
subtle patterns in data that often remain hidden to classical kernel
methods (Raubitzek and Mallinger, 2023). However, despite their ef-
fectiveness on small datasets, their scalability is hindered by the com-
putational overhead of quantum kernel evaluation on current hard-
ware (Tscharke et al., 2024; Wang et al., 2021).

VQCs, in contrast, are hybrid algorithms that function as quantum
counterparts to classical neural networks, particularly multilayer per-
ceptrons (Cerezo et al., 2021; Griol-Barres et al., 2021). They consist of
parameterized quantum circuits whose parameters are optimized using
classical techniques. Although VQCs can effectively perform classifica-
tion tasks (Raubitzek and Mallinger, 2023), they often face challenges
with high-dimensional data due to the expressiveness limits of shallow
quantum circuits (Qi et al., 2024).

Given the trade-offs of these approaches, we adopt a hybrid quan-
tum-—classical neural network (QNN) architecture for the task of liver
disease classification. Hybrid QNNs align well with current NISQ de-
vices, and offer a practical compromise between expressivity and hard-
ware feasibility. They have shown competitive performance in super-
vised learning tasks (Combarro and Gonzalez-Castillo, 2023; Skolik
et al., 2022), and their adaptability makes them promising tools for
biomedical data analysis.

Our hybrid model combines classical neural layers with a quantum
layer, leveraging the strengths of both paradigms. The hybrid setup
helps address these limitations by offloading part of the learning to
classical layers, reducing quantum circuit depth while still harnessing
quantum processing. This is especially advantageous given the charac-
teristics of our dataset, which contains 10 features and 583 samples
(see Section 4.1), small enough to benefit from quantum components,
but also requiring a robust classical backbone for generalization.

3. Review of classical and quantum classification of liver diseases

In this section, we will examine the state-of-the-art using the ILPD
database and both approaches: classical ML and QML (from 2017 to
2024). The literature review was conducted using the snowballing
methodology, starting from key references and expanding the search
iteratively based on the citations and references of relevant works.

3.1. Classical machine learning approaches

Several studies have employed the ILPD dataset with various clas-
sical ML algorithms to predict liver disease outcomes. Table 1 summa-
rizes the review of classical methods conducted from 2017 to 2024,
highlighting the best-performing models based on accuracy and recall.
The table also includes other reported metrics such as precision and
F1-Score.

One of the early works, by Sontakke et al. (2017), employed tech-
niques like over-sampling and under-sampling to address class imbal-
ance in the dataset. The best model, in terms of accuracy and recall, was
the Back Propagation Neural Network (BP). In comparison, the Support
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Vector Machine (SVM) model also achieved competitive results. The
author does not provide the F1-Score and recall metrics directly, but
instead reports sensitivity, which is equivalent to recall. The F1-Score
has been calculated as the harmonic mean of precision and sensitivity
(recall), as can be seen in Table 1.

In a subsequent study, Nahar and Ara (2018) explored a range of
decision tree-based algorithms, including Random Forest (RF), Random
Tree, Decision Stump, Hoeffding Tree, and others. They performed a
10-fold cross-validation on the dataset. The best model, in terms of
accuracy and recall, was the Decision Stump (with a single level). The
second-best model in terms of accuracy and recall was the Hoeffding
Tree (with a tree size of one), as can be observed in Table 1.

In 2020, Sokoliuk et al. (2020) applied several classification algo-
rithms, including Decision Tree (DT), RF, SVM, Multi-Layer Perceptron
(MLP), Naive Bayes (NB), and others, to analyze the ILPD dataset. This
author does not mention the precision and F1-Score metrics, so they
will not be included in this review. The author provides results for both
balanced and unbalanced datasets. They used GridSearchCV to find the
optimal parameters for each Scikit-learn algorithm and preprocessed
the data in the most suitable way for each explored algorithm. The best
model for the balanced dataset, in terms of accuracy and recall, was K-
Nearest Neighbors (KNN). The second-best model was MLP. Using an
unbalanced dataset, their best models were, in terms of accuracy, the
GradientBoosting model, and in terms of recall, the GaussianNB model,
as can be seen in Table 1.

That same year, Azam et al. (2020) explored the use of RF, Per-
ceptron, DT, KNN, and SVM for classification. They applied feature
selection techniques and reported results both with and without feature
selection. With feature selection (WES), the highest performance was
achieved using KNN. The second-best model in terms of accuracy
and recall was the RF model. Without feature selection (WOFS), the
best-performing model was SVM, while KNN also yielded competitive
results (see Table 1). Gajendran and Varadharajan (2020) experimented
with a Mathematical Approach on Multilayer Feedforward Neural Net-
works with Backpropagation (MAMFFN). They reported accuracy re-
sults both before and after applying feature selection, achieving the
highest accuracy with feature selection, as can be observed in Table
1.

In 2021, Kumar and Thakur (2021) proposed a method called
Variable-Neighbor Weighted Fuzzy K Nearest Neighbor Approach (V-
NWFKNN), based on existing NWKNN and Fuzzy-NWKNN methods.
They used normalization and standardization. For the majority of in-
stances, they used undersampling by eliminating of Tomek link pairs
and redundant pairs (TL_RUS). Without using TL_RUS, their method
achieved moderate success. When TL_RUS was applied, the perfor-
mance improved significantly (see Table 1). Geetha and Arunachalam
(2021), also in 2021, evaluated two ML techniques: Logistic Regression
(LR) and SVM. The SVM achieved the highest performance, while LR
also performed well. The F1-Score has been calculated as the harmonic
mean of precision and sensitivity, as can be seen in Table 1.

In 2022, Gupta et al. (2022) also conducted research on liver disease
prediction by employing various ML algorithms, including LR, RF,
Gradient Boosting, Light GB, and others. Among the studied algorithms,
RF achieved the best results, followed closely by Light GB (see Table
1). Mutlu et al. (2022) investigated various ML techniques, such as
KNN, LR, SVM, and NB, and proposed a CNN model with four lay-
ers consisting of 68, 70, 70, and 2 neurons, respectively. They also
incorporated Principal Component Analysis (PCA) and SMOTE tech-
niques to optimize model performance on the ILPD dataset. With these
enhancements, Mutlu et al. (2022)’s CNN model achieved the highest
performance among the studied models, as summarized in Table 1.

In 2023, Dritsas and Trigka (2023) applied various ML algorithms to
the ILPD dataset, including NB, AdaBoostM1, Voting, KNN, and others.
They applied SMOTE to balance the dataset and evaluated with 10-
fold cross-validation. The best-performing model was the Voting model,
which combined RF and AdaBoostM!1 classifiers. The second-best model
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Table 1
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Summary of studies using the ILPD dataset with classical ML algorithms for liver disease prediction. The table
highlights the two best-performing models from each study based on accuracy and recall, including their reported
precision and F1-Score when available. An asterisk (*) in the F1-Score column indicates that the metric was
computed rather than explicitly reported by the authors. Likewise, ‘No’ in the ‘Balancing’ column signifies that
it was not specified whether data balancing techniques were applied. A dash (-) denotes that the corresponding

metric was not reported.

Author Model Balancing Accuracy Precision Recall F1-Score
SVM Yes 71 64 72 68*
Sontakke et al. (2017) BP Yes 73 66 73 69
Decision Stump No* 71 50 71 59
Nahar and Ara (201
thar and Ara (2018) HoeffdingTree No* 70 63 70 62
GradientBoosting No 72 - 40 -
. GaussianNB No 55 - 95 -
Sokoliuk et al. (2020) KNN Yes 74 _ 97 _
MLP Yes 63 - 92 -
KNN_WFS No* 74 72 74 72
RF_WEFS No* 73 74 73 73
Azam et al. (2020) SVM_WOFS No* 71 80 71 60
KNN_WOFS No* 66 64 66 65
. . MAMFFN_WOFS Yes 72 - - -
Gajendran and Varadharajan (2020) MAMFFN_WES Yes 75 _ _ _
V-NWFKNN (No TL_RUS) No 78 90 82 86
Kumar and Thakur (2021) V-NWFKNN (TL RUS) Yes 88 95 90 93
LR No* 73 79 88 83*
tha and Arunachala 2021
Geetha and Arunachalam (2021) SVM No* 75 77 79 g
RF Yes 63 64 63 63
1. (2022
Gupta et al. (2022) Light GB Yes 63 63 62 63
Mutlu et al. (2022) CNN Yes 72 74 75 75
. . Voting Yes 80 80 80 80
Dritsas and Trigka (2023) AdaBoostM1 Yes 80 80 80 80
. ANN No* 87 - - -
Nigatu et al. (2023) SGD No* 81 B _ B
SVM No* 71 71 71 83
Elsayed et al. (2024) ZeroR No* 71 71 71 83
. RF No* 72 - - -
Raj et al. (2024) KNN No* 81 _ _ _
RF_WOOP Yes 80 79 82 81
. SVM_WOOP Yes 68 63 88 73
Kumar and Rani (2024) RE_ AFOP Yes 81 78 %6 82
SVM_AFOP Yes 81 79 89 82
. Stacking Yes 90 90 90 90
Alyasin and Ata (2024) ET Yes 88 . 82 87

was AdaBoostM1 with an RF classifier, as can be observed in Table 1.
Similarly, Nigatu et al. (2023) implemented RF, DT, Stochastic Gradient
Descent (SGD), ANN, and others. They applied hyperparameter tuning
with GridSearchCV. They only reported the accuracy metric, with ANN
achieving the highest accuracy, followed by the SGD model (see Table
1).

In 2024, Elsayed et al. (2024) employed several ML algorithms,
including NB, SVM, ZeroR, and Voting Feature Intervals. Their classifi-
cation algorithms were implemented using the WEKA tool and 10-fold
cross-validation. They reported that both the SVM and ZeroR algo-
rithms achieved the same accuracy, precision, recall, and F1-Score. Raj
et al. (2024), also in 2024, applied LR, KNN, DT, SVM, and RF. They
only reported the accuracy metric, with RF achieving the highest accu-
racy, followed closely by the KNN model (see Table 1). Kumar and Rani
(2024) explored the use of AdaBoost, XGBoost, SVM, and RF for clas-
sification. Their best-performing model using optimization (AFOP) was
RF, followed by SVM. Without hyperparameter optimization (WOOP),
their two best models were RF and SVM, as can be observed in Table 1.
Lastly, Alyasin and Ata (2024) proposed five ML models: RF, XGB, DT,
ExtraTrees, and Stacking. Their stacking model, which used RF, DT,
XGB, and ExtraTrees as fundamental classifiers, achieved the highest
performance. The second-best model was ExtraTrees (see Table 1).

Training classical systems with imbalanced datasets poses a signifi-
cant challenge, as it can lead to biased models and reduced predictive

performance. In the following, we examine how QML performs with
this imbalanced dataset.

3.2. Quantum machine learning approaches

In recent years, several studies have explored the use of QML
techniques with the ILPD dataset to predict liver disease outcomes.
Table 2 provides a summary of quantum methods analyzed between
2023 and 2024, emphasizing the models with the highest accuracy and
recall. Additionally, the table presents other reported metrics, including
precision, F1-Score, number of qubits and quantum delay.

In 2023, Raubitzek and Mallinger (2023) explored the applicability
of QML for classification tasks, utilizing two quantum classifiers: VQC
and the Quantum Kernel Estimator (QKE). Their results demonstrate
that both the VQC and QKE outperform basic ML algorithms, such
as advanced linear regression models (Ridge and Lasso), achieving an
accuracy of 74.4% (see Table 2). However, they conclude that while
QML algorithms show potential in achieving competitive performance
on certain datasets, they do not consistently outperform classical ML
algorithms.

In 2024, Raubitzek et al. (2024) further advanced the field by
employing QKE once again. By leveraging the diverse structures of Lie
groups, the authors developed novel quantum-inspired feature maps
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Table 2
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Comparison of the two best models per study in terms of recall and accuracy for QML. Metrics marked with * indicate that ‘EfficientSU2’ is used, but the specific
configuration is not provided. We assume the minimum delay setting. The symbol ‘-’ denotes that the corresponding metric was not reported, while ‘N/A’ indicates

that the concept is not applicable in the given context.

Author Model Balancing N° Qubits Delay Accuracy Precision Recall F1-Score
Raubitzek and Mallinger (2023) ggg EZ 12 ﬂj ;Z : : :
Raubitzek et al. (2024) gaztboost EZ E;: E;: ;2 2::: 2: gg
Safriandono et al. (2024) fs_%gg}z Tomelk ;is 18 ig 3411 ;; 22 Z:;
Bhaskaran and Prasanna (2024) giggg z 2; EZ 18 zg Z: : : :

that offer a more flexible and potentially powerful method for encoding
and compressing classical data into quantum states. In particular, they
employ the EfficientSU2 ansatz, it consists of alternating layers of
single-qubit SU(2) gates and CNOT entanglement gates. The SU(2)
group includes 2 x 2 unitary matrices with a determinant of one,
such as Pauli rotation gates (Alami et al., 2025). They provide a
comprehensive theoretical foundation for this approach, followed by a
methodology that integrates these feature maps into quantum-inspired
kernel classifiers. Their experiments consider kernel matrices based on
Lie groups within the framework of a Support Vector Machine classifier.
For the ILPD dataset, their best-performing model, CatBoost, achieved
an accuracy of 73.14%, a precision of 64.78%, a recall of 62.79%, and
an F1-Score of 63.49%. The second-best result was obtained using the
Qz model, which achieved an accuracy of 72%, a precision of 64.51%, a
recall of 64.70%, and an F1-Score of 64.60% (see Table 2). It is impor-
tant to note that this study is based on a mathematical simulation and
does not use actual qubits. The approach emulates quantum behavior
through classical computations, simulating quantum-inspired methods
rather than implementing them on quantum hardware.

In the same year, Safriandono et al. (2024) aimed to improve the
accuracy of liver disease classification using Quantum Feature Engi-
neering (QFE) combined with the Synthetic Minority Over-Sampling
Technique and Tomek Links (SMOTE-Tomek) for data balancing. They
employed LR, SVM, RF, and XGB, finding that the combination of QFE
with SMOTE-Tomek, using the XGB model, achieved an accuracy of
81%, a precision of 77%, a recall of 90%, and an F1-Score of 83%. The
second-best result was obtained using an imbalanced dataset with QFE
in an LR model, achieving an accuracy of 74%, a precision of 75%, a
recall of 99%, and an F1-Score of 85%, a summary of these metrics
can be found in Table 2. The last study we reviewed is by Bhaskaran
and Prasanna (2024), whose objective was to conduct a comprehensive
accuracy analysis of classical and quantum-enhanced KNN algorithms
using the Canberra distance metric across various datasets. Their ex-
periment compared classical k-nearest neighbors (KNN) with K = 3
and K = 5 against quantum-enhanced KNN (QKNN) with K = 3 and
K =5 across five different datasets. For the ILPD dataset, their proposed
QKNN (K = 5) model, using the Canberra distance, achieved the high-
est accuracy of 72.64%. The second-best accuracy was obtained with
QKNN (K = 3), reaching 66.66% (see Table 2). Table 2 summarizes
the best-performing QML models from the reviewed studies, based on
recall an accuracy. The table includes key performance metrics such as
accuracy, precision, recall, and F1-Score. Note that some models do not
report certain metrics, which are left blank.

As shown in Table 2, existing QML models applied to the ILPD
dataset require a large number of qubits or have considerable circuit
depth, which may limit their practicality on NISQ-era hardware. These
constraints underscore the need for more efficient and balanced hybrid
approaches like the proposed model ‘QML-Liver’, which can deliver
competitive performance while minimizing quantum resource usage
(see Section 5).

4. Developed quantum approach (QML-Liver)

In this section, we outline the dataset used, the methodology used
to develop our QML model, ‘QML-Liver’.

In Fig. 1, we detail the complete methodology for developing the
hybrid neural network. Specifically, we outline the data preprocessing
steps, the selected interfaces, and the construction of the hybrid model,
which is based on the optimization of both classical and quantum
hyperparameters of the quantum layer. After that, we describe the dif-
ferent model configurations designed to optimize performance. Finally,
the model is evaluated using several metrics.

4.1. Indian liver patient dataset

In this work, we have used the Indian Liver Patient Dataset (ILPD),
one of the most widely used databases for liver disease detection, avail-
able in the UCI Machine Learning Repository.! This dataset contains
583 records of patients from the northeast of Andhra Pradesh, India,
presented by Ramana et al. (2012). Among them, 416 are diagnosed
with liver disease and 167 are not. Each patient is described by 10
numerical variables, including age, gender, and biochemical markers
such as Total Bilirubin (TB), Direct Bilirubin (DB), Total Proteins (TP),
Albumin (ALB), Albumin and Globulin Ratio (A/G Ratio), Alamine
Aminotransferase (SGPT), Aspartate Aminotransferase (SGOT), and Al-
kaline Phosphatase (Alkphos). These variables are represented using
integer, floating-point values and categorical values.

Additionally, the dataset includes a categorical variable called ‘Se-
lector’, which provides ground truth information by indicating whether
the patient has liver disease or not, based on expert labeling.

4.2. Data preprocessing

Data preprocessing is a crucial step to ensure that ML models can
handle the dataset effectively, especially in the case of medical data like
the Indian Liver Patient Dataset, which contains categorical variables,
missing values, and scale differences between its attributes. Fig. 2
shows a diagram of the main preprocessing steps carried out on the
database.

Preprocessing steps are described in detail below.

1. Dummy Encoding. The dataset includes a categorical gender
variable with values ‘Female’ and ‘Male’. To facilitate analysis
and make the data compatible with ML algorithms, these cate-
gories were encoded as binary values: ‘O’ for Female and ‘1’ for
Male.

1 https://archive.ics.uci.edu/dataset/225/ilpd+indian-+liver+patient+
dataset
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Fig. 1. Diagram of this work project, illustrating the stages from left to right for training a neural network for classification using the ILPD dataset.
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Fig. 2. Steps followed in preprocessing techniques for the ILPD dataset.

2. Imputation of Missing Values. Only 4 out of 583 values in the
A/G Ratio column were missing, which were imputed using the
mean (0.947), a value very close to the median (0.93) and con-
sistent with the near-symmetric distribution of the feature. Given
the minimal proportion of missingness and the concentration
of most values between 0.70 and 1.10 (25th-75th percentile),
mean imputation was considered appropriate, as it preserves the
central tendency without introducing significant bias (Feature-
engine, 2025; Joel et al., 2024). In the biomedical context, this
approach also maintains the original scale and interpretability
of the biochemical marker, ensuring that subsequent analyses
and predictive model outputs remain clinically meaningful and
robust (Williams, 2025).

3. Re-coding the Target Variable. The target variable, named
‘Selector’, was originally encoded with values ‘2’ (representing
‘healthy’) and ‘1’ (representing ‘sick’). To improve the interpre-
tation and consistency of the results, this column was re-coded
to binary values, where ‘0’ represents ‘healthy’ and ‘1’ represents
‘sick’. This change simplifies the analysis of prediction results
in terms of liver disease probability, makes the interpretation of
model performance metrics easier, and is also necessary for the
correct visualization of the confusion matrix, which expects a
binary variable.

4. Split and Deduplicate. We randomly selected an equal number
of positive and negative cases for the test set. However, after
conducting multiple evaluation runs, we observed that certain
records were consistently misclassified across all 10 executions
(see Appendix). This pattern suggested that these records could
introduce ambiguity or inconsistencies in the evaluation process.
To ensure a more reliable assessment of model performance,
we decided to remove these cases from the test set and any
duplicated rows (13 rows). The final datasets consist of 432
training cases (307 positive and 125 negative) and 146 test cases
(80 positive and 66 negative).

5. Data Standardization. The numerical attributes of the dataset
exhibit different scales, which could affect the performance of
certain algorithms sensitive to scale. To prevent this, all at-
tributes were standardized to have a mean of 0 and a standard
deviation of 1 using the StandardScaler from the scikit-
learn library. Importantly, the scaler was fitted only on the

training set (Xiq;,) to compute the mean and standard de-
viation, and then applied to transform both the training and
test sets. During the cross-validation procedure, the scaler was
fitted exclusively on the training folds and then applied to the
corresponding validation folds. After model selection, it was
finally fitted on the complete training set and applied to both the
training and test sets. Standardization ensures that the variables
have a balanced influence on the model, preventing features
with broader ranges from dominating the analysis.

6. SMOTE. Given that the dataset is unbalanced, we applied the
SMOTE technique from the imbalanced-learn library to
generate synthetic instances for the minority class, which is the
healthy class. SMOTE was applied only to the training set after
standardization, ensuring that the test set remained untouched
and unbiased. This resulted in a balanced dataset with 832
instances. The impact of applying SMOTE was analyzed, and the
results of these tests can be observed in Table 7.

4.3. Proposed quantum machine learning model

The proposed model is developed within a computational frame-
work that integrates several key tools for quantum and classical ML.
PennyLane? provides essential tools for implementing hybrid quantum—
classical models, while TensorFlow® and Keras* enable the construction
and training of neural networks. Finally, Jupyter Notebook® serves as
an interactive development environment, seamlessly integrating these
resources.

After preprocessing, the dataset is divided into two sets: training
and validation (75%) and test (25%) to evaluate new inference cases.
To assess the performance of the ML models, we focused on Accuracy
and Recall, as these are the most relevant metrics in the context of
liver disease diagnosis. Accuracy provides an overall assessment of the
classification task by measuring the proportion of correctly predicted
cases. However, given the potential consequences of misdiagnosing

https://pennylane.ai/
https://www.tensorflow.org/
https://keras.io/about/
https://jupyter-notebook.readthedocs.io/en/latest/
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Table 3

Hyperparameter configurations evaluated using GridSearchCV.
Hyperparameter Value 1 Value 2 Value 3 Value 4 Value 5
Optimizer Adam RMSprop - - -
Hidden Layers 1 2 3 4 -
Dropout rate 0 0.2 0.3 0.4 -
Hidden Neurons 32 64 128 256 512

Loss Function Binary Crossentropy

Binary Focal Crossentropy - - -

Table 4

Explored hyperparameter configurations (neurons, activation function, and kernel initializer) for optimizing the network

using GridSearchCV.

Hyperparameter Value 1 Value 2 Value 3 Value 4
Neurons for Layer 1 64 128 256 512
Neurons for Layer 2 32 64 128 256
Activation Function for Layers 1 and 2 ReLU tanh - -
Kernel_initializer for Layers 1 and 2 GlorotUniform HeNormal - -

a patient, Recall is particularly critical, as it quantifies the ability
to correctly identify individuals with liver disease, minimizing false
negatives. Since missing a sick patient can have severe implications,
Recall takes priority in our evaluation (Gupta et al., 2021).

Moreover, the model architecture for ‘QML-Liver’ is defined as
follows. A hybrid quantum-classical approach is employed, where clas-
sical layers extract relevant features and quantum layers leverage the
unique properties of quantum computation to capture complex patterns
in the data.

4.3.1. Hyperparameters tuning

Deep learning is a highly effective ML approach, partly due to the
large number of hyperparameters, such as the number of hidden layers
and nodes, that can be tuned to enhance model performance (Jiang
and Chuhan, 2022). Hyperparameter tuning aims to find the optimal
combination of these values to produce the best predictive model, but
the high dimensionality of the search space often poses a significant
computational challenge (Shen, 2018).

Grid search is a parameter tuning technique that systematically
constructs and evaluates a model for each possible combination of
algorithm parameters defined within a grid (Ranjan et al., 2019). In
this study, we use GridSearchCV, implemented in Python via the scikit-
learn library, to identify optimal hyperparameters, complementing it
with manual adjustments for further optimization. GridSearchCV ex-
haustively searches over a predefined set of hyperparameter values by
evaluating model performance with cross-validation. The procedure of
GridSearchCV can be summarized as follows:

Algorithm 1 GridSearchCV procedure

Require: Parameter grid P, estimator f, number of folds K, evaluation
metric M
1: for each configuration p € P do
Initialize average score avg_score « 0
for each fold i=1,...,K do

Split dataset into training set Dii).
rain

Train estimator f with configuration p on Dﬁ;m

Evaluate f on Di’?il using M and obtain score s;
avg_score < avg_score + S;

end for

Compute mean performance: avg_score « avg_score/K

10:  Store result pair (p, avg_score)

11: end for

12: Select best configuration p = arg max, avg_score

13: return Best hyperparameter configuration p

and validation set D%
val

VN D AN

We conducted multiple GridSearchCV runs, each time assigning a
specific set of values to the hyperparameters. To define the search

ranges, we adopted an empirical approach based on preliminary ex-
periments, manual exploration, and an assessment of computational
resources and time constraints. In each GridSearchCV execution, we
randomly selected a subset of values from the predefined ranges for
each hyperparameter (see Tables 3 and 4), considering the maximum
number of configurations that could be evaluated within a reasonable
timeframe. This approach allowed us to efficiently explore the hyper-
parameter space while avoiding computationally prohibitive searches.
We have chosen RMSprop (Root Mean Square Propagation) and Adam
(Adaptive Moment Estimation) as optimizers, both of which are com-
monly used in deep learning. RMSprop adjusts the learning rate by
dividing the gradient by a moving average of its squared values, helping
to stabilize training (GeeksforGeeks, 2025). Its update rule is (PyTorch,
2025):

s, =Pso +(1 - ﬁ)g,zv 0,=0,, M

8t

—p—=t

\/S_, +e€
where 6, is the parameter at step ¢, g, = V,£(0,_,) is the gradient of the
loss, s, is the exponentially weighted moving average of the squared
gradients, 5 is the learning rate, f is the decay factor of the moving
average (typically 0.9), and ¢ is a small constant to prevent division by
zero (typically 10~8).

Adam combines momentum and adaptive learning rate adjustment
by using moving averages of the first and second moments of the
gradients (Kingma and Ba, 2017). Its update rule is:

m
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where m, is the first moment (mean) of the gradients, v, is the second
moment (mean of squared gradients), i, and o, are bias-corrected
estimates of m, and v,, §, and B, are decay rates for the moving averages
(typically 0.9 and 0.999), and 6,, g;, 1, and ¢ are as defined above.
Regarding the number of hidden layers, we evaluated configurations
ranging from 1 to 4 layers, as increasing the depth further was com-
putationally impractical. Additionally, we tested five different values
for the number of neurons in these layers to explore their impact on
model performance. We also incorporated dropout, a regularization
technique where neurons are randomly dropped during training. This
helps reduce computational cost and mitigates overfitting by preventing
co-adaptation of neurons (Srivastava et al., 2014). The dropout rate
was tested with multiple values to assess its effectiveness. Finally,
we evaluated two loss functions: Binary Crossentropy and Binary Fo-
cal Crossentropy. Binary Crossentropy (BCE) measures the dissimilarity
between predicted probabilities and true labels in binary classifica-
tion, penalizing incorrect predictions with high confidence (Mao et al.,
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2023). It is defined as:
1 N
BCEG:$) = =37 2 logh) + (1 = p log1 - 5 @

where N is the total number of samples in the dataset, y; € {0, 1} is the
true label of the ith sample, and j; € [0, 1] is the predicted probability
for the positive class of the ith sample.

Binary Focal Crossentropy is a variant of BCE that reduces the in-
fluence of well-classified samples and emphasizes harder ones, making
it useful for imbalanced datasets (Lin et al., 2017). Its formulation is:

N

BFCE(y, §) = —% Z [0!(1 =9 ylog() + (1 =)/ (1= yplog(1 =) | (4)
i=1

where « € [0,1] balances the relative importance of positive and

negative classes, y > 0 is the focusing parameter that reduces the weight

of well-classified examples, and y;, §; and N are as defined above.

The GridSearchCV suggested that the best parameters were: Adam
optimizer, one hidden layer, a dropout rate of 0.3, 32 hidden neurons,
and the Binary Focal Crossentropy loss function, achieving an accu-
racy of 73%. However, while GridSearchCV suggested using a single
hidden layer, further experiments demonstrated that adding a second
hidden layer improved the model’s capacity to learn more complex
representations, resulting to a 5% increase in accuracy. It is important
to mention that in this study we also explored architectures with more
layers. However, since the performance metrics only improved slightly
(around 2% in accuracy), we decided to adopt a single architecture
with two hidden layers, each followed by a dropout layer. Therefore,
we continued our investigation with two hidden layers, the Adam
optimizer, the same dropout rate, and the Binary Focal Crossentropy
loss function.

Next, we tested different numbers of hidden neurons per layer and
experimented with different kernel initializers (see Table 4).

The choice of kernel initializer plays a crucial role in the training
stability and convergence speed of neural networks. In this study, we
explored two well-established initialization techniques: GlorotUniform
and HeNormal. The GlorotUniform initializer, also known as Xavier
initialization, aims to maintain a stable variance of activations across
layers, making it particularly suitable for activation functions like
‘tanh’ (Glorot and Bengio, 2010). On the other hand, the HeNormal
initializer or MSRA initialization is optimized for ReLU functions by
scaling the weight distribution based on the number of input neurons,
helping to prevent vanishing or exploding gradients (He et al., 2015).

GridSearchCV recommended using ReLU functions in both layers,
with 64 neurons in the first layer and 128 in the second. Addition-
ally, it suggested using GlorotUniform initialization for the first layer
and HeNormal for the second. However, after several tests, we chose
256 neurons for the first layer and 128 for the second using the
GlorotUniform initializer in both layers.

Quantum Layer

Now that the classical part of the hybrid network has been op-
timized, it is time to focus on the quantum layer. The position of
the quantum layer within the architecture was manually tested at
different locations. Additionally, experiments were conducted using 2,
3, 4, 5, and 10 qubits. However, due to performance considerations
(with accuracy decreasing by 4% and recall by 8%) and the limited
availability of qubits, two qubits was ultimately selected for the final
implementation.

The proposed quantum layer is implemented as a QNode using Keras
and operates on a small number of qubits. We define this QNode using
default.qubit, the default qubit-based simulator in PennyLane, and
leverage operations from the templates module. For our experiments,
we use n_layers = 4, and define the device as dev = gqml.de-
vice('"default.qubit", wires=n_qubits, seed=42)

Quantum circuits are typically composed of three main blocks:
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1. Data encoding (Encoding/Feature Map): In this stage, classical
data are mapped to the initial state of the quantum register,
which increases the dimensionality of the Hilbert space and
facilitates the representation of complex relationships among
features (Lloyd et al., 2020; Lee and Banerjee, 2023). Common
encoding methods include Pauli rotations, amplitude prepara-
tion, or angle encoding. In our model, gml . AngleEmbedding
is used to encode all classical features into n_qubits qubits. After
preliminary tests with different rotation options (RX, RY, RZ),
we observed that RX provided greater stability during training
and better parameter convergence.

# Angle embedding
qml.AngleEmbedding(inputs, wires=range(n_qubits))

2. Trainable layers and entanglement: The next block corresponds
to the construction of trainable quantum layers along with
the entanglement of the gates they include. Following the em-
bedding, qml .BasicEntanglerLayers (Xanadu Quantum
Technologies Inc., 2025) are applied, which consist of single-
parameter rotations on each qubit (default RX) followed by a
closed chain of CNOT gates connecting all qubits in a ring. The
number of layers L is determined by the first dimension of the
trainable weight tensor of shape (L,n_qubits). In our case, 4
layers with RX rotations are used.

# Trainable layers
weight_shapes = {"weights": (n_layers, n_qubits)}
qml.BasicEntanglerLayers(weights, wires=range(n_qubits))

This component enables the circuit to capture complex non-
linear patterns in the data, making it particularly effective for
detecting intricate medical features and improving sensitivity to
minority classes in imbalanced datasets (Devadas and Sowmya,
2025; Kwon et al., 2025; Bai and Hu, 2024).

3. Measurement and readout: Finally, the circuit measures the ex-
pectation value of the Pauli-Z operator on each qubit, converting
quantum states into classical values usable for evaluation or
classification.

# Measurement

return [qml.expval(gml.PauliZ(w)) for w in range(n_qubits)]

This design ensures a minimal quantum resource requirement, mak-
ing it well-suited for NISQ-era applications. Therefore, the proposed
sequential model ultimately consists of the following layers:

Input layer with one neuron for each feature of the dataset.
First dense layer with 256 neurons and ReLU activation with a
weight initializer GlorotUniform to improve gradient flow.
Dropout layer with a rate of 0.3 to help prevent overfitting.
Second dense layer with 128 neurons, ReLU activation with a
weight initializer GlorotUniform.

Dropout layer with a rate of 0.3.

Third dense layer with two neurons.

Quantum layer with only two qubits.

Output layer with one neuron and Sigmoid activation for binary
classification.

The choice of a simple model is motivated by the need for efficient
execution on near-term quantum devices, where circuit depth and qubit
count are constrained. By keeping the quantum component minimal,
the model remains practical for NISQ quantum hardware era while
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Fig. 3. Structure of the hybrid ‘QML-Liver’ model, illustrating classical layers with activation functions, dropout layer, and the quantum layer.

Table 5

Evaluated parameter settings for the proposed model, including learning rate, batch size, epochs,

and loss-related factors.

Parameter Value 1 Value 2 Value 3 Value 4
Learning Rate 0.0001 0.001 0.01 -
Batch Size 16 32 64 -
Epochs 20 50 100 -
Gamma (y) 0.5 1.0 2.0 -
Alpha (a) 0.25 0.3 0.5 0.75
Smoothing Factor 0.3 0.4 0.5 0.7
Model: "sequential” » weight; is the original class weight for class i, computed by
Layer (type) Output Shape Param # the compute_class_weight function to account for the class
distribution.
dense_2 (Dense) (None, 256) 2816 » o is the smoothing factor which controls how much the class
dropout_2 (Dropout) (None, 256) 0 weights are adjusted. A higher value of « increases the effect of
dense 3 (Dense) (None, 128) 32896 the smoothing on the class weights.
dropout 3 (Dropout) (None, 128) 0 Training Parameters The workflow to train the model was as
dense 4 (Dense) (None, 2) 258 fo.llows: first, }%ype.rpara.meter comblna?lons were evaluated using St.rat—
ified Cross-Validation with 5 folds to identify the best configuration.
keras_layer (KeraslLayer) (None, 2) 8 Next, the model was retrained with the selected hyperparameters,
dense 5 (Dense) (None, 1) 3 again using 5-fold cross-validation, to assess generalization perfor-

Total params: 35981 (140.55 KB)
Trainable params: 35981 (140.55 KB)
Non-trainable params: 0 (0.00 Byte)

Fig. 4. Layer-by-layer architecture of the hybrid ‘QML-Liver’ model, as ob-
tained from the Keras model.summary () representation.

still allowing for an exploration of potential quantum advantages. The
structure of the hybrid quantum-—classical model is illustrated in Fig. 3.

In addition, Fig. 4 shows the architecture of the model as obtained
from the Keras model.summary () function, providing a layer-by-
layer representation of the hybrid network.

Class Weight Initialization Additionally, class weight initialization
has been applied to prevent extreme weight variations that could
negatively impact model training. First, the original class weights are
computed using the compute_class_weight function with the
‘balanced’ option, ensuring proper weighting for imbalanced classes.
Then, a smoothing factor « is defined to adjust the calculated weights.
Finally, the smoothing formula is applied to the computed weights:

adjusted_weight; = 1 + a x (weight; — 1) 5)
where:

+ adjusted_weight; is the adjusted weight for class i, which will be
used during training to compensate for class imbalance.

mance across folds. Finally, the model was trained on the entire training
dataset with the best hyperparameters, and its performance was eval-
uated on the held-out test set to report the final metrics presented in
Section 5.

To configure the model, it was necessary to configure the number of
epochs, batch size, and learning rate. Additionally, Early Stopping was
applied to monitor the validation loss (val_loss), with a patience
of 10 epochs, meaning training would stop if no improvement was
observed. We continued with the Adam optimizer, and the loss func-
tion selected was Binary Focal Crossentropy. In this loss function, the
parameters gamma (y) and alpha (a) were also configured to balance
the influence of different classes. « is a weighting factor for class 1,
while the weight for class 0 is 1 — «. y is a focusing parameter that
adjusts the focal factor (Lin et al., 2017).

We performed an extensive exploration of hyperparameter combi-
nations to optimize the model’s performance (see Table 5). The tested
configurations varied across key aspects, including learning rate, batch
size, number of epochs, class weight smoothing factors, and loss func-
tion parameters such as a and y. A total of 1296 unique combinations
were evaluated, resulting from the Cartesian product of the selected
values, i.e., 3 X3 X3 x3 x4 x4 = 1296, chosen based on preliminary
experiments and prior experience.

The impact of these combinations on key performance metrics, such
as accuracy and recall, was analyzed in detail to optimize the model’s
performance.

In Figs. 5, 6, and 7, we compare Test Accuracy and Test Recall
across different hyperparameter combinations. Each point in the plots
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Comparison between Test Accuracy and Test Recall for Different LR and BS

LR and BS
Learning Rate
0.0001
0.001
0.01
Batch Size
16
32
64

Test Recall

0.55 0.60 0.65

Test Accuracy

0.70 0.75 0.80 0.85

Fig. 5. Test Accuracy vs. Test Recall for different Learning Rate (LR) and
Batch Size (BS) configurations. Each point represents a model, where the color
encodes the LR and the size reflects the BS. The optimal trade-off between
accuracy and recall is observed at LR = 0.001 and BS = 32.

represents a model with a specific configuration, where the color
encodes one hyperparameter and the size reflects another. Our goal is
to identify the optimal balance between accuracy and recall.

In Fig. 5, we compare Test Accuracy and Test Recall for various
combinations of Learning Rate (LR) and Batch Size (BS). Each point
represents a model with a specific configuration, where the color
indicates the LR and the size reflects the BS. It can be observed that
models with an LR of 0.001 (orange color) tend to cluster towards
the right side of the plot, indicating higher accuracy values. The Batch
Size of 32 appears more frequently in this region, while Batch Sizes
of 16 and 64 are more scattered across the plot. This combination
reflects a model that performs well in both correctly identifying positive
instances (recall) and overall classification accuracy.

In Fig. 6, we compare Test Accuracy and Test Recall for various
combinations of Epochs (EP) and Smooth Factor for the class weight
initialization (SF). Each point represents a model with a specific con-
figuration, where the color indicates the SF and the size reflects the
EP. It can be observed that models with a Smooth Factor of 0.7 (light
red color) tend to cluster towards the right side of the plot, indicating
higher accuracy values. Similarly, models with an EP of 100 appear
more frequently in this region, while other values of EP and SF are
more scattered across the plot.

In Fig. 7, we compare Test Accuracy and Test Recall for various
combinations of Gamma (y) and Alpha («) for the class weight initial-
ization. Each point represents a model with a specific configuration,
where the color indicates the y and the size reflects the a. It can be
observed that models with a y of 1.0 (orange color) tend to cluster
towards the right side of the plot, indicating higher accuracy values.
The a of 0.3 is not the farthest to the right, but it appears most
frequently in this region, while other values of y and a are more
scattered across the plot.

Based on the results of these experiments, the configurations that
achieved the best performance were selected for the final model (see
Table 6).

The architecture of the proposed model, its training procedure,
and both the original and preprocessed datasets are publicly available
at https://github.com/LauraMDonaire/QML-Liver.

5. Results and discussion

In this section, we present the comparative analysis of our proposed
method against the state-of-the-art models, both classical and quantum.
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Comparison between Test Accuracy and Test Recall for Different SF and EP
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Fig. 6. Test Accuracy vs. Test Recall for different Epochs (EP) and Smooth
Factor (SF) values used in class weight initialization. Each point represents a
model, where the color encodes the SF and the size reflects the EP. The best
accuracy-recall balance is found at EP = 100 and SF = 0.7.

Comparison between Test Accuracy and Test Recall for Different y and a
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Fig. 7. Test Accuracy vs. Test Recall for different Gamma (y) and Alpha (a)
values in the loss function. Each point represents a model, where the color
encodes y and the size reflects a. The optimal accuracy-recall trade-off is
observed at y = 1.0 and « = 0.3.

We will evaluate the performance of our approach across various
metrics and compare it with existing models to highlight its strengths
and limitations

In Table 1, it can be seen that the Stacking model from Alyasin and
Ata (2024) is the most competitive classical model, as it combines RF,
DT, XGB, and ExtraTrees classifiers, using the latter as a meta-classifier.
While our approach does not outperform this model in most evaluated
metrics, it achieves a higher recall. Additionally, the Stacking model
incurs a significantly higher computational cost, as it integrates multi-
ple high-cost classifiers, making it considerably more resource-intensive
than our method.

Regarding the quantum approaches (see Table 2), the two best
methods were those from Safriandono et al. (2024): the XGB_QFE
Tomek model, which employs QFE and the Tomek-Link technique to
remove hard-to-classify instances and improve dataset balance, and the
LR_QFE model. Our goal is to analyze which parameters our proposal
improves upon compared to the state-of-the-art. The results of this
analysis are shown in Table 7.

To evaluate the performance of our proposed model, Fig. 8 presents
the confusion matrix. The results indicate that our model correctly
classifies 48 instances of the negative class and 75 of the positive
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Table 6

Summary of the proposed final model’s parameters.
Variable Value
Optimizer Adam
Learning Rate 0.001

Loss Function
Activation Function - Layer 1 and 2

Binary Focal Crossentropy (gamma = 1.0, alpha = 0.3)
ReLU

Dropout Rate 0.3
Batch Size 32
Epochs 100

Class Weight Initialization
Input Layer Neurons

Smooth factor = 0.7
Number of features (input dataset size)

First Dense Layer Neurons 256
Second Dense Layer Neurons 128
Third Dense Layer Neurons 2
Quantum Layer 2 qubits
Output Layer Neurons 1

Early Stopping
Cross-Validation

Monitors ‘val_loss’ with patience of 10 epochs
Stratified K-Fold (5 folds)

Confusion Matrix

70

60

True label

r 30

r 20

r 10

Predicted label

Fig. 8. Confusion matrix of the proposed model, illustrating the number of
correctly and incorrectly classified instances for both classes being ‘0’ for
healthy patients and ‘1’ for patients with liver diseases.

class, with 18 and 5 misclassifications, respectively. From a medical
diagnostics perspective, this outcome is favorable, as minimizing false
negatives (5) is critical to avoid missing sick patients. Although false
positives (18) may lead to additional testing for healthy individuals,
they are generally considered less harmful than overlooking a true case.
Therefore, the distribution of errors suggests that our model prioritizes
sensitivity in detecting positive cases, which is a desirable quality in
medical diagnostics.

The discriminative performance of the proposed model was further
evaluated using the Receiver Operating Characteristic (ROC) curve.
Fig. 9 shows the ROC curve, with the area under the curve (AUC)
indicating the model’s overall ability to distinguish between healthy
and diseased patients. In our case, the model achieved an AUC of 91%,
demonstrating strong discriminative performance. Higher AUC values
reflect better separation between the two classes.

In terms of accuracy, our model QML-Liver achieves 84%, surpass-
ing the XGB_QFE Tomek model (81%) and the LR_QFE model (74%),
and outperforming previous quantum proposals such as VQC (74%) and
QKNN (69%). Regarding precision, our model attains 81%, compared
to 77% for the XGB_QFE Tomek and 75% for LR_QFE. In recall, QML-
Liver reaches 94%, slightly below the LR_QFE model (99%) but higher
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ROC Curve
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Fig. 9. ROC curve of the proposed model, showing the trade-off between

true positive rate and false positive rate. The AUC indicates the model’s
discriminative ability.

than the rest of the alternatives. Additionally, our approach achieves
an F1-Score of 87%, surpassing all models.

We also explored two alternative versions of QML-Liver to evaluate
the impact of qubit count and data balancing. The 10-qubit version
did not improve performance, achieving 80% accuracy and reducing
the F1-Score to 73%, which indicates that simply increasing quantum
resources does not necessarily translate into better results. The ‘QML-
Liver + SMOTE’ version, improved precision to 85% and specificity
to 83%, thereby reducing false positives. However, recall decreased
substantially to 76%, limiting its ability to identify the positive class,
and overall accuracy dropped to 79%. During cross-validation, this
configuration also showed higher variance, suggesting a tendency to
overfit to the synthetic data (Specificity: Std = 0.2254). This highlights
the inherent trade-offs of balancing: while SMOTE can reduce false
positives, it may introduce bias and reduce the model’s ability to gener-
alize. From a clinical perspective in liver disease detection, high recall
is generally prioritized over high precision, because minimizing false
negatives-patients who are sick but not detected-is critical for patient
safety. Therefore, although SMOTE improves precision, the significant
drop in recall indicates that this approach could be counterproductive
in a real-world clinical setting, as it could increase the risk of missing
true positive cases.

A key advantage of our model is its efficiency: it requires only
two qubits and has a delay of 20, whereas the competing quantum
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Comparison of our model with state-of-the-art quantum approaches in terms of the number of qubits and delay, dataset balancing, accuracy (Acc), precision (Pr),
recall (Rec), F1-Score (F1), specificity (Spe), and ROC AUC after training on the entire training set (RAC).

Author Model N2 Qubits Delay Balancing Acc Pr Rec F1 Spec RAC
Raubitzek and Mallinger (2023) VQC 10 11* No 74 - - - - -
Raubitzek et al. (2024) Catboost N/A N/A No 73 65 63 64 - -

. XGB_QFE Tomek 10 40 Yes 81 77 90 83 72 -
Safriandono et al. (2024) LR QFE 10 40 No 74 75 99 85 99 _
Bhaskaran and Prasanna (2024) QKNN(K = 5) 10 23 No 69 - - - - -

QML-Liver 2 20 No 84 81 94 87 73 91
Our proposals QML-Liver 10 48 No 80 79 86 73 73 920
QML-Liver + SMOTE 2 20 Yes 79 85 76 80 83 89

Table 8

For reproducibility reasons, we present the deleted records from the original dataset, which were removed from the test set due
to consistent misclassification across 10 executions. These cases exhibited ambiguous patterns that could negatively impact model

evaluation.
Age Gender TB DB Alkphos Sgpt Sgot TP ALB A/G Selector
18 0 1.8 0.7 178 35 36 6.8 3.6 1.10 1
17 0 0.9 0.2 224 36 45 6.9 4.2 1.55 1
24 0 1.0 0.2 189 52 31 8.0 4.8 1.50 1
60 0 2.2 1.0 271 45 52 6.1 2.9 0.90 0
60 0 0.8 0.2 215 24 17 6.3 3.0 0.90 0
38 1 2.6 1.2 410 59 57 5.6 3.0 0.80 0
35 0 2.0 1.1 226 33 135 6.0 2.7 0.80 0
11 0 0.7 0.1 592 26 29 7.1 4.2 1.40 0
65 0 0.7 0.2 265 30 28 5.2 1.8 0.52 0
36 0 5.3 2.3 145 32 92 5.1 2.6 1.00 0
48 0 0.7 0.2 208 15 30 4.6 2.1 0.80 0
65 0 1.4 0.6 260 28 24 5.2 2.2 0.70 0
62 0 0.6 0.1 160 42 110 4.9 2.6 1.10 0
65 0 0.8 0.2 201 18 22 5.4 2.9 1.10 0
17 1 0.7 0.2 145 18 36 7.2 3.9 1.18 0
62 0 0.7 0.2 162 12 17 8.2 3.2 0.60 0
65 0 1.9 0.8 170 36 43 3.8 1.4 0.58 0
23 1 2.3 0.8 509 28 44 6.9 2.9 0.70 0

models employ ten qubits with higher delays (up to 40). This makes
our approach the only viable quantum solution under current NISQ
hardware constraints.

As shown in Table 7, our proposed model, ‘QML-Liver’, demon-
strates competitive and consistent performance against state-of-the-art
quantum baselines.

6. Conclusion and future work

Liver disease represents a serious global health issue, underscor-
ing the need for accurate and efficient diagnostic solutions-an area
where QML shows great promise in improving disease detection. In
this study, we developed a novel methodology for constructing a hy-
brid classifier for liver disease detection, integrating both classical
and QML techniques. We began by building on these insights, we
introduced ‘QML-Liver’, a sequential hybrid quantum model that seam-
lessly combined classical and quantum layers to enhance classification
performance.

To ensure data quality, we implemented robust preprocessing tech-
niques, including dummy encoding, data splitting and data standard-
ization. After optimizing the model architecture, ‘QML-Liver’ demon-
strated competitive performance, achieving 84% accuracy, 81% pre-
cision, 94% recall, 87% F1-Score, 73% Specificity and ROC AUC of
91%. A comparative analysis against state-of-the-art quantum models
revealed that our approach not only matched or surpassed existing
methods in key performance metrics but also significantly improved
computational efficiency by reducing the number of qubits to just
two making it a more practical solution within the constraints of
NISQ devices. Besides the efficiency in quantum resource usage, the
advantage of the hybrid approach lies in the ability of the quantum
layer to enrich data representation. By encoding classical features into
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a higher-dimensional Hilbert space and leveraging quantum entangle-
ment, the model can capture non-linear correlations that are difficult to
learn with classical dense layers alone. This additional expressiveness
helps the model find a better trade-off between precision and recall,
especially when dealing with imbalanced classes. In practice, purely
quantum models still face noise and qubit limitations, while purely
classical networks often need to grow much deeper and more complex
to reach similar performance. The hybrid design strikes a balance
by combining the stability and generalization of classical layers with
the richer representational capacity offered by quantum processing.
These findings highlighted the potential of ‘QML-Liver’ for medical di-
agnostics, particularly in resource-constrained quantum environments.
Moreover, they underscore its promise as a scalable and clinically
relevant tool for decision support in liver disease detection.

Finally, to contextualize our approach, we conducted a comprehen-
sive review of state-of-the-art classical and quantum models applied to
the ILPD, evaluating their strengths and limitations.

As future work, we planned to explore alternative quantum encod-
ing strategies and embedding techniques. Additionally, we intended
to incorporate advanced quantum algorithms to further enhance the
model’s efficiency and real-world applicability.
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