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ARTICLE INFO ABSTRACT

Keywords: Unlike mammals, zebrafish (Danio rerio) are able to regenerate their hearts after injury, making them an excellent

chm ] model organism for studying the molecular mechanisms underlying heart regeneration. Epicardium, the outer-

Epicardium most layer of the heart, is an essential player in this process. Injury-induced epicardium activation, characterized

Conditional allele . . . . . . R .

Heart regeneration by the expression of embryonic epicardial marker genes including tcf21, supports cardiac regeneration by

Cardiomyocyte dedifferentiation providing various cell types and.releefsmg para.crmej signals that Promo.te. the restoration of dam.aged tissue.
However, the molecular mechanisms involved in this process are insufficiently understood. In this study, we
describe a conditional tcf217°% allele and use it to investigate the role of Tcf21 in heart regeneration. By
employing 4-hydroxytamoxifen inducible CreER'? recombinase, we eliminated tcf21 expression in adult fish. Our
findings indicate that loss of this transcription factor reduces the presence of dedifferentiated cardiomyocytes in
the injury area and impairs heart regeneration. This work provides new insights into the molecular basis of the
epicardial response to heart injury and its role in guiding heart regeneration.

1. Introduction

Cardiovascular diseases remain the leading cause of death world-
wide, with coronary heart disease that often leads to myocardial
infarction being the most prevalent form (Jayaraj et al., 2018; Martin
et al., 2024). Adult mammals have limited capacity to replace damaged
cardiomyocytes, leaving the injured heart unable to recover full func-
tionality (Bergmann et al., 2009; Broughton et al., 2018). In contrast,
zebrafish (Danio rerio) possess the remarkable ability to regenerate their
hearts throughout their lives (Poss et al., 2002). Following the initial
response to the injury (Gonzalez-Rosa et al., 2011; Lodrini and Gou-
mans, 2021; Sun et al.,, 2002), zebrafish cardiomyocytes undergo
dedifferentiation and proliferate, generating new myocardium to repair
the damaged tissue (Jopling et al., 2010; Kikuchi et al., 2010).

Studies have highlighted the importance of the epicardium, the
outermost layer of the heart, in supporting heart regeneration (reviewed
in (Cao and Poss, 2018; Quijada et al., 2020; Simoes and Riley, 2018)).
Initial pan-epicardial activation, characterized by the upregulation of
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embryonic epicardium marker genes like thx18, wt1b, and aldhla2, and
proliferation, becomes localized to the injury area by 7 days post-injury
(Kikuchi et al., 2011b; Kikuchi et al., 2011a; Lepilina et al., 2006;
Schnabel et al., 2011; van Wijk et al., 2012). During regeneration, the
epicardium secretes various signaling molecules and provides diverse
cell types supporting extracellular matrix (ECM) remodeling, car-
diomyocyte proliferation, and neovascularization of the damaged area
(Allanki et al., 2021; Fang et al., 2013; Gonzalez-Rosa et al., 2011;
Lepilina et al., 2006; Sanchez-Iranzo et al., 2018; Wang et al., 2013,
2015).

Tcf21 (transcription factor 21, also known as Pod-1, Capsulin, or
Epicardin) plays an essential role in heart development and epicardium
formation (Tandon et al., 2013). Its loss leads to neonatal lethality in
mice (Braitsch et al., 2012; Lu et al., 2000; Quaggin et al., 1999), while
zebrafish larvae display severe defects in craniofacial muscle formation
and cardiac chamber morphogenesis that eventually lead to death
(Boezio et al., 2023; Burg et al., 2016; Nagelberg et al., 2015). This
transcription factor is expressed in the majority of the epicardial cells
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and regulates the differentiation of epicardium-derived cells (EPDCs)
into cardiac fibroblasts and smooth muscle cells (Acharya et al., 2012;
Braitsch et al., 2012; Lu et al., 1998; Weinberger et al., 2020). Tcf21
expression persists in the dormant epicardium and resting fibroblasts in
the adult heart (Braitsch et al., 2013; Kanisicak et al., 2016; Kikuchi
et al., 2011a; Lepilina et al., 2006; Weinberger et al., 2024). However,
the role of Tcf21 in heart regeneration remains unexplored, primarily
because of the challenge of conditionally inactivating tcf21 in adult
zebrafish.

Recent advances in genome editing enabled the engineering of
conditional mutants, allowing to study gene function in adult fish
(Kalvaityte and Balciunas, 2022). In this study, we generated a condi-
tional (floxed) tcf21 allele to investigate the role of Tcf21 in heart
regeneration. Using globally expressed 4-hydroxytamoxifen (4-HT)
inducible CreER™ recombinase, we disrupted tcf21 expression in adult
fish and found that the loss of Tcf21 impairs heart regeneration. The
analysis of organ-wide transcriptome following the injury indicated
higher expression of sarcomere-related genes and downregulation of
several chemokines. Further investigation uncovered compromised
dedifferentiation of cardiomyocytes in the injury area, highlighting the
role of epicardial Tcf21 in creating a permissive environment for heart
regeneration.
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2. Results and discussion

2.1. tcf21° allele can be conditionally disrupted during zebrafish
development

To study the role of tcf21 in heart regeneration, we generated a
conditional tcf21 floxed allele by flanking the first exon with two
directly oriented loxP sites. We previously reported the tcf21‘p” 4 allele,
which has a loxP site integrated into the 5° UTR (Burg et al., 2018).
Following the same methodology, we engineered the second loxP site
into the intron (Fig. 1A; Fig. S1A and B). A single F1 fish with precise
integration of both loxP sites was selected to establish a stable transgenic
tcf21"™8 (¢cf21°%) zebrafish line (Fig. S1C and D). Genotyping offspring
of the heterozygous tcf21°% fish incross confirmed that homozygous
tcf21710%/f0% fish were viable and indistinguishable from their wild-type
counterparts (Fig. S1E and F).

To validate the engineered allele, we crossed homozygous and het-
erozygous tcf21ﬁ°" fish and injected single-cell-stage embryos with Cre
recombinase mRNA (Balciuniene et al.,, 2013; Burg et al., 2018)
(Fig. 1B). After successful recombination, a 790 bp DNA fragment
encoding the DNA-binding domain is expected to be excised, resulting in
tcf21 knock-out (tcf21%). Around 40 % of Cre-injected embryos dis-
played severe facial malformations at 5 dpf, consistent with the previ-
ously documented loss-of-function phenotype of homozygous tcf21
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Fig. 1. Validation of the tcf217°% allele. A. Diagram of the engineered tcf217°* allele. Triangles mark loxP sites. B. Experimental design. C. 5 dpf larvae stained with

Alcian blue. D. Genotyping of individual larvae displaying mutant or wild-type phenotypes from (C). “wt

” — tcf21*/* control; “F” — tcf2110%/f°X control. E. Exper-

imental timeline of tcf210f°X ybbR:CreER™* embryo treatment with 5 pM 4-HT. F. 5 dpf tcf217°*/f%% (control) and tcf210/f° ybbR:CreER™* larvae treated with 4-
HT from 6 hpf to 3 dpf. G. tcf21 expression in 5 dpf tcf217°*/f% ybbR:CreER™* larvae treated with 4-HT from 6 hpf to 3 dpf (6 hpf) or from 3 dpf to 5 dpf (3 dpf).
Results were normalized to the tcf21 expression in tcf217° larvae, treated with 4-HT from 6 hpf to 3 dpf, and transformed to a logarithmic scale. Data are
represented as mean =+ SD. P value was calculated using one-way ANOVA followed by Tukey’s post-hoc test; ***P < 0.001. Red arrowheads in (C,F) mark defects in
branchial arch formation; scale bar: 200 pm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of

this article.)
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mutants (Fig. 1C) (Burg et al., 2016; Lee et al., 2011; Nagelberg et al.,
2015). Genotyping confirmed that larvae with severe branchial arch
defects were initially homozygous for the tcf21° allele (Fig. 1D).
Meanwhile, heterozygous siblings retained wild-type phenotype, con-
firming that the generated tcf21°% allele can be conditionally disrupted
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using Cre recombinase.

The usage of conditional alleles relies on the efficiency of the Cre-
recombinase-expressing driver line. We assessed the conditional
disruption of the tcf21ﬂ"x gene using 4-HT-inducible epicardium-specific
TgBAC(tcf21:CreER™)pd42 (tcf21:CreER) transgene (Kikuchi et al.,
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Fig. 2. tcf21°* knock-out in adult fish impairs heart regeneration. A. Experimental timeline. “CI” — cryoinjury; “An.” — analysis. B-C. tcf21 expression (B) and tcf21
knock-out at the gDNA level (C) in ventricles of wild-type (WT), untreated (-4HT), and 4-HT-treated (+4HT) tcf217°%/f°% ybbR:CreER™* fish at 0 dpt (n = 3) and 3
dpci (n = 3). D. tcf21 expression in ventricles of 4-HT-treated tcf21°/f°% (CreER™*-) and tcf21°/f°% ubbR:CreER™* (CreER"2*+) fish at 60 dpt (n = 3). Results in
(B-D) were normalized to the wild-type fish samples at 0 dpt; tcf21 expression data in (B,D) was transformed to a logarithmic scale. Data are shown as mean + SD. E-
F. Bright-field images (E) and AFOG-stained heart sections (F) of adult fish hearts. Black boxes in (F) mark the areas shown in zoomed images. G. Aldhla2 staining of
heart sections. White dashed lines indicate wound border, yellow boxes mark the areas shown in zoomed images, yellow arrowheads point to Aldhla2-expressing
epicardial cells, and grey arrowheads point to Aldhla2-expressing endocardial cells. H. Representative sections of the AFOG-stained hearts from each category with
zoomed images of the marked area. I. Diagram showing the distribution of regenerative phenotypes from (H). P value in (B-D) was calculated using the pairwise
Wilcoxon rank-sum test with Bonferroni correction; in (I) using Fisher’s Exact Test; *P < 0.05, **P < 0.01, ***P < 0.001. Scale bars: 200 pm in (E-H); 50 pm in (F-H)
zoomed images. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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2011a), which was used to conditionally knock out shha®* allele (Tg
(shha:Zwitch)vcc8Gt) in zebrafish larvae and adults (Sugimoto et al.,
2017). We treated tcf21°%/f%X 1cf21:CreER embryos from 6 to 72 hpf
with different concentrations of 4-HT ranging from 5 to 15 pM and
analyzed the phenotype of the larvae at 5 dpf by Alcian blue staining.
Unexpectedly, none of the larvae displayed phenotypes consistent with
complete loss of function (Fig. S2A). To rule out the possibility of poor
activity of 4-HT (Felker et al., 2016), we used ubiquitously expressed Tg
(-3.5ubb:loxP-EGFP-loxP-mCherry)cz1701 (ubi:Switch) reporter line
(Mosimann et al., 2011), and confirmed that 5 pM 4-HT treatment from
6 to 72 hpf activates the recombinase, changing the fluorescent signal
from green to red in tcf21+ cells (Fig. S2B and C). Therefore, we
concluded that the tcf21:CreER transgene does not achieve complete
conditional knock-out of the tcf21° allele and is unsuitable for further
analysis.

A recently described ubiquitous Tg(ubbR:CreERTZ “in2  (ubb®:
CreER™*) transgenic line (Bakinaité et al., 2024) displays high
recombination efficiency throughout development and adulthood; thus,
we tested its ability to knock out the tcf217°% allele. We treated
tef210/f0% ybbR:CreER™* embryos from 6 to 72 hpf with 5 pM 4-HT
and observed loss-of-function phenotype and nearly complete loss of
tcf21 expression in 5 dpf larvae (logs(tcf21) = —6.01 + 0.63 (1.7 + 0.8
%), P = 0.0008) (Fig. 1E-G; Fig. S2D and E). Similar results were ob-
tained by treating larvae from 3 to 5 dpf (loga(tcf21) = —5.05 + 0.70
(3.3 £ 0.2 %), P = 0.00043), confirming the effective disruption of the
tcf21°* allele during development (Fig. 1E-G; Fig. S2F).

2.2. Conditional tcf21 knock-out in adult fish leads to impaired heart
regeneration

Although several conditional zebrafish mutants have been created
using various methodologies, only a handful have been applied in adult
fish (Angom et al., 2023; Grajevskaja et al., 2018; Ogawa et al., 2021;
Rajan et al., 2024; Sugimoto et al., 2017; Wang et al., 2024). After
successful inactivation of the tcf21ﬁ°x allele at later developmental
stages using ubbR:CreER™* transgene, we assessed recombination effi-
ciency in adult fish. 3 to 12-month-old tcf210/0% yppR:CreER™* fish
were immersed into 5 pM 4-HT solution three times for 24 h, allowing
them to recover for 24 h at normal husbandry conditions between each
treatment. After the third treatment, fish were allowed to recover for a
week (Fig. 2A). We collected ventricles for RNA and DNA extraction at
0 days post-treatment (dpt) without injury and 3 days post-cryoinjury
(dpci) to assess changes in tcf21 expression during regeneration. We
used untreated wild-type and tcf2170/f%% ybbR.CreER™* fish as controls
and collected their ventricles without injury or at 3 dpci. RT-qPCR
analysis showed nearly three-fold upregulation of tcf21 expression at 3
dpci in untreated fish, while the amount of tcf21 mRNA was significantly
reduced to almost undetectable level in 4-HT-treated tcf21710/f0% yppR:
CreER™* fish ventricles both at 0 dpt (loga(tcf21) = —6.04 + 0.51 (1.6
+ 0.5 %), P = 0.002) and 3 dpci (loga(tcf21) = —5.39 + 0.97 (2.8 + 1.5
%), P = 0.002)(Fig. 2B). Moreover, no difference in tcf21 expression was
detected between uninjured wild-type and uninjured, untreated
tcf21710%/f0x ppR-CreER™* fish, confirming that integrated loxP sites do
not perturb tcf21 expression in the adult fish heart.

We also performed qPCR to determine knock-out efficiency at the
DNA level in tcf21//f0% yppR.CreER™* fish. After 4-HT-induced
recombination, approximately 30-40 % of the full-length tcf21 gene
remained at 0 dpt and 3 dpci (Fig. 2C). As the analysis was performed on
whole ventricle DNA, we hypothesize that recombination was inefficient
in tcf21-non-expressing cells where the tcf21ﬂ0x gene is not accessible to
Cre recombinase due to being packed in heterochromatin. To test if the
expression of tcf21 may recover within the experimental time frame, we
analyzed the level of tcf21 mRNA in 4-HT-treated tcf2105/f0% ypbR:
CreER™2* fish at 60 dpt. We confirmed a significant reduction of tcf21
mRNA (loga(tcf21) = —5.02 £ 0.33 (3.1 £ 0.7 %), P = 0.009), demon-
strating that there is almost no detectable full-length tcf21 mRNA
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capable of producing functional Tcf21. Thus, henceforth, we refer to 4-
HT-treated tcf2170/f% ybbR:CreER™* fish as "Tcf21 OFF", while 4-HT-
treated tcf210/f9% or untreated twcf217°f°%X ybbR:CreER™* fish are
"Tcf21 ON".

Previous studies showed that Tcf21 null embryos in mice exhibit
epicardium blistering from stage E14.5 (Acharya et al., 2012; Braitsch
et al., 2012). Meanwhile, fibroblast-specific inactivation of Tcf21 fUflin
adult mouse hearts did not alter the homeostasis of cardiac fibroblasts,
nor their function in promoting cardiac fibrosis (Johansen et al., 2025).
We compared the phenotypes of Tcf21 ON and Tcf21 OFF fish hearts at
60 dpt and found no significant differences (Fig. 2E and F). We next
sought to investigate if loss of Tcf21 would affect heart regeneration. We
treated tcf21710/f0% and tcf210/f0% ypbR:CreER™* fish with 4-HT and
performed cryoinjury at O dpt, as previously described (Fig. 2A). Hearts
were collected at 7 and 60 dpci, sectioned and analyzed. Epicardial cells
were present in the injury area of both Tcf21 ON and Tcf21 OFF hearts at
7 dpci, as indicated by immunostaining for Aldhla2 (Fig. 2G) (Kikuchi
etal., 2011b; Wang et al., 2011). Myocardial regeneration of hearts at 60
dpci was scored blindly from AFOG-stained histological sections by an
independent expert as completely regenerated, partially regenerated,
and impaired (Fig. 2H and I; Fig. S3). Strikingly, over half of injured
Tcf21 OFF ventricles (9 out of 17) displayed partially or fully blocked
regeneration of the myocardial wall with an increased amount of
collagen and fibrin present in the injury area (P = 0.0395). In contrast,
consistent with previous observations, almost all control Tcf21 ON fish
(12 out of 13) regenerated a contiguous myocardium wall during that
time (Chablais et al., 2011; Gonzalez-Rosa et al., 2011). The increased
amount of connective tissue and the lack of newly formed myocardium
that covers the injury area allows us to conclude that the loss of Tcf21
impairs heart regeneration.

2.3. Whole-ventricle RNA-seq analysis suggests a role for Tcf21 in
promoting cardiomyocyte dedifferentiation

Following heart injury, dormant epicardium cells are activated to
divide and cover the area of trauma. The organ-wide response peaks at 3
dpi and becomes restricted to the injury site by 7 dpi (Gonzdlez-Rosa
et al., 2011; Kikuchi et al., 2011a; Kikuchi et al., 2011b; Lepilina et al.,
2006; Schnabel et al., 2011; Wang et al., 2013). To analyze the early
regenerative changes in gene expression, we performed bulk RNA-seq on
whole ventricle mRNA of Tcf21 ON and Tcf21 OFF fish without injury
(D0), 3 dpci (C3), and 3 days post-sham (dps) injury (S3) (Fig. 3A).
Principal-component analysis (PCA) showed little gene expression
variability between uninjured hearts, which became more distinct at 3
dpci and 3 dps (PC1, 47 %) (Fig. 3B). The analysis of differentially
expressed genes (DEGs) (Pagj < 0.05) between different conditions
indicated 1011 unique genes that were differentially expressed in Tcf21
OFF hearts following the cryoinjury (Fig. 3C). Out of those, several genes
with roles in cell adhesion, including col28alb, ctnna2, thbsib, and
podxl, also associated with the epithelial identity of the epicardium,
were upregulated (Gebauer et al., 2016; Shen et al., 2018; Vite et al.,
2015; Weinberger et al., 2020; Xia et al., 2022). Interestingly, the
expression of embryonic epicardium marker genes known to be upre-
gulated following the injury, such as aldhla2, wtla, and wt1b, was un-
affected by the loss of Tef21 (Fig. S4). Although we observed a minor but
statistically significant increase in thx18 expression in Tcf21 OFF hearts
at 0 dpt, expression of thx18 was induced to comparable levels in both
Tcf21 OFF and control hearts following injury.

A total of 1175 DEGs (P,qj < 0.05) were found at 3 dpci by comparing
gene expression in Tcf21 ON versus Tcf21 OFF hearts, of which 375
genes were downregulated and 800 — upregulated (Fig. 3D). Among
downregulated genes, there were several chemokine ligands, such as
ccl34a.4, ccl34b.4, cxcll1.6, cxclll.1, ccl36.1; meanwhile, upregulated
genes were related to actin cytoskeleton, such as tcap and cavin4b, which
localize to Z-disc and are involved in T-tubule organization (Ben-Yair
et al., 2019; Housley et al., 2016; Miinch et al., 2017; Zhang et al., 2009;
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Fig. 3. Whole ventricle RNA-seq indicates a potential Tcf21 role in promoting cardiomyocyte dedifferentiation during heart regeneration. A. Experimental design. 4-
HT-treated (Tcf21 OFF) and untreated (Tcf21 ON) tcf210%°X ybbR:CreER™2* fish were used to collect ventricles for bulk RNA-seq at 0 dpt (DO), 3 dpci (C3), and 3
dps (S3). B. PCA of transcriptome samples. C. Venn diagram depicting the overlap of DEGs across conditions. D. Volcano plot representing DEGs at 3 dpci in Tcf21
ON and Tcf21 OFF hearts. E. Enriched biological processes GO terms of significantly downregulated and upregulated genes at 3 dpci. F. Expression of genes from
selected GO terms during regeneration in Tcf21 ON and Tcf21 OFF hearts.

203



M. Kalvaitytée-Repecke et al.

Zhou et al., 2020). Gene enrichment analysis indicated that down-
regulated genes were associated with “chemotaxis” (q-value = 0.006),
“chemokine-mediated signaling pathway” (g-value = 0.04), and other
related biological processes. Meanwhile, upregulated genes were asso-
ciated with sarcomere-related GO terms, such as “actin cytoskeleton
organization” (q-value = 0.003), “skeletal muscle fiber development”
(g-value = 0.02), and “heart contraction” (q-value = 0.02) (Fig. 3E). We
selected several GO terms and analyzed the expression dynamics of
assigned genes during the regeneration. Our analysis revealed that in
Tcf21 OFF hearts, expression of these genes mainly remained unaf-
fected, while in control hearts, the changes were significant (Fig. 3F).
These results indicate that Tcf21 function in epicardial cells contributes
to suppressing actin cytoskeleton organization and cardiac muscle fiber

Developmental Biology 530 (2026) 199-209
2.4. Loss of Tcf21 inhibits cardiomyocyte protrusion into the injured area

Heart regeneration occurs through cardiomyocyte (CM) dedifferen-
tiation and proliferation, with some studies suggesting displacement or
active migration into the injury area from the border zone (Beisaw et al.,
2020; Ben-Yair et al., 2019; Constanty et al., 2025; Gemberling et al.,
2015; Itou et al., 2012; Jopling et al., 2010; Kikuchi et al., 2010; Mar-
in-Juez et al., 2019; Morikawa et al., 2015; Wang et al., 2011; Wu et al.,
2016). RNA-seq results indicated that in Tcf21 OFF hearts, sarcomere
disassembly and CM dedifferentiation are compromised, potentially
hindering muscle restoration. We assessed CM dedifferentiation by im-
munostaining for the embryonic form of cardiac myosin heavy chain
(embCMHC) at 7 dpci. embCMHC is normally absent in adult myocar-

dium but is re-expressed in border zone CMs after injury. This reac-
tivation is thought to remodel sarcomere organization and enhance the
cellular plasticity required for cardiomyocyte proliferation, migration,
and morphogenesis (Ben-Yair et al., 2019; Pfefferli and Jazwinska,
2017; Sallin et al., 2015). We observed fewer dedifferentiated CMs in the

development while activating the expression of various chemokines
involved in chemotaxis during heart regeneration.
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injury area in Tcf21 OFF hearts compared to the control (P = 0.0056)
(Fig. 4A and B). Interestingly, while the embCMHC signal was present in
both conditions, the number (P 0.0022) and length (P
5.055986e-40) of CM protrusions into the injured area were signifi-
cantly reduced in Tcf21 OFF hearts (Fig. 4C and D). Notably, prolifer-
ation of border zone CMs showed no significant difference between
Tcf21 ON and Tcf21 OFF hearts at 3 or 7 dpci (Fig. 4E-G; Fig. S5). This
data indicates that epicardial Tcf21 facilitates heart regeneration by
promoting the repopulation of the injury area with dedifferentiated
CMs, without affecting their proliferation.

In conclusion, the tcf21°% allele provides opportunities to investi-
gate gene function in adult fish. Our findings underscore the important
role of Tcf21 in heart regeneration, highlighting the significance of
epicardium-myocardium crosstalk. The reduced number of dediffer-
entiated cardiomyocytes in the injury area may result from changes in
EPDCs or other cell types, ECM composition, or paracrine signaling, all
vital for a regenerative environment (Wang et al., 2013). Supporting
this, a recent study reported fewer macrophages in ch21ﬁ/ MCM 2 dult
mouse hearts following myocardial infarction compared to controls
(Johansen et al., 2025). In zebrafish, macrophage-driven ECM remod-
eling has been shown to facilitate cardiomyocyte protrusion into the
injury area and macrophage function was required for successful heart
regeneration (Constanty et al., 2025; Wei et al., 2023). Together, these
findings suggest that the reduced number of dedifferentiated car-
diomyocytes observed in our study may also reflect disrupted
epicardial-macrophage communication, with detrimental consequences
for tissue restoration. Further experiments, such as single-cell/spatial
transcriptomics or lineage tracing, could clarify how Tcf21 influences
the interaction between different cardiac cells during regeneration. This
work provides new insights into the molecular basis of cardiac repair
and opens new avenues for understanding how transcriptional regula-
tors orchestrate regenerative processes in complex tissues.

3. Materials and methods
3.1. Zebrafish maintenance

Wild-type and transgenic zebrafish (Danio rerio) were used in
accordance with Temple University Institutional Animal Care and Use
Committee (IACUC) guidelines under the approval from protocol
numbers ACUP 4354, ACUP 4709, and/or in accordance with an
approved license of the State Food and Veterinary Service (Lithuania),
No. G2-231. Male and female breeders aged 3-18 months were used to
generate fish for all experiments. Transgenic zebrafish lines used in this
study: tcf21P144 (Burg et al., 2018), tcf21"™8 (this study), TgBAC(tcf21:
DsRed2)pd37 (Kikuchi et al., 2011a), TgBAC(tcf21:CreER™)pd42
(Kikuchi et al.,, 2011a), Tg(-3.5ubb:loxP-EGFP-loxP-mCherry)cz1701
(Mosimann et al., 2011), Tg(ubbR:CreERTZ*)van (Bakuinaité et al.,
2024). Embryos and larvae were anesthetized with 4 mg/ml MS-222
(Sigma-Aldrich, E10521) dissolved in ddH20 and diluted in egg water
for handling when necessary.

3.2. Generation of conditional tcf217°% allele

Integration of the second loxP site into the first intron of the
tcf21%144 allele and identification of the tcf2171%% (tcf21"M8) allele was
performed as previously described (Burg et al., 2018). Briefly, nCas9n
mRNA was synthesized from linearized pT3TS-nCas9n (Jao et al., 2013)
using the T3 mMESSAGE mMACHINE™ in vitro transcription kit (Invi-
trogen, AM1348). Transcribed mRNA was purified using the RNeasy
MinElute kit (Qiagen, 74204), diluted to 150 ng/pL in Nuclease-Free
Water, and 2 pL aliquots were stored at —80 °C. sgRNA was prepared
using the cloning-free PCR method, diluted to approximately 60 ng/pL,
and 8 pL aliquots were stored at —80 °C. Aliquots of sgRNA and nCas9n
mRNA were mixed, and 3 nL of the mix were injected into the yolks of
single-cell stage embryos obtained from a cross between tpli44
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heterozygote and homozygote, followed by injection of 1 nL of 50 ng/pL
loxP HDR oligonucleotide as described previously (Burg et al., 2016,
2018). Initial testing of loxP integration was performed by PCR on pools
of 10-20 injected embryos with multiple combinations of flanking and
loxP-specific primers. Siblings of successfully injected embryos were
raised to adulthood and screened for germline transmission by either
out- or in-crossing fish and screening 3 pools of 20 embryos by nested
PCR as previously described (Burg et al., 2018). Adult F1 fish were
genotyped by tail clip. tcf21 locus was amplified, and the integration of
the full-length loxP site was confirmed by Sanger sequencing. Single F1
fish with precise integration of the second loxP site into loxP-containing
chromosome was used as a founder of the tcf21°% (1cf21""1%) fish line.
Sequences of HDR oligonucleotide and primers used in this study are
listed in Table S1.

3.3. Cre-mediated excision of tcf21° dllele

Cre mRNA was in vitro transcribed using an Xbal-linearized pT3TS-
Cre (pDB638) template (Balciuniene et al., 2013) and T3 mMESSAGE
mMACHINE™ in vitro transcription kit (Invitrogen, AM1348). Tran-
scribed mRNA was purified using RNeasy MinElute Kit (Qiagen, 74204)
and diluted to 40 ng/pL in RNase-free water. 2 pL aliquots were stored at
—80 °C. Homozygous and heterozygous tcf21ﬂ°x fish were crossed, and
single-cell-stage embryos were injected with 25 pg of Cre mRNA as
previously described (Balciuniene and Balciunas, 2013; Burg et al.,
2018). Embryos were analyzed by Alcian blue staining at 5 dpf.

3.4. Alcian blue staining

Embryos were treated with 0.003 % PTU (Acros Organics,
207250250) dissolved in DMSO at 12-24 hpf, and the medium was
replaced daily until the larvae reached 5 dpf. At 5 dpf, larvae were
euthanized by MS-222 (Sigma-Aldrich, E10521) overdose and trans-
ferred to a 1.5 mL tube. The specimens were washed twice with 0.1 %
Tween 20 in PBS (PBST). Then, larvae were fixed with 4 % PFA for 4 h at
room temperature (RT) on the rocking shaker. Fixative was removed,
and the larvae were washed 4 times for 30 min with 0.1 % PBST. Larvae
were incubated in Alcian blue solution (7.5 mg of Alcian Blue dissolved
in 10 mL of acetic acid and 40 mL of ethanol) overnight at RT on the
rocking shaker and rehydrated through a graded series of alcohols (100
%, 80 %, 60 %, 40 %, and 20 % of ethanol in 0.1 % PBST) to 0.1 % PBST
by 1-h incubation in each solution on the rocking shaker at RT. Finally,
larvae were washed twice with 0.1 % PBST and mounted in methyl-
cellulose for imaging using a stereo microscope ZEISS Stemi 305
(ZEISS). After imaging, individual larvae were placed in a PCR tube,
washed with PBS, and lysed for genotyping. Primers flanking 5° UTR
loxP site (tcf21_5inter_F2 and tcf21-R5) were used to identify tcf21ﬁ‘”‘/
tcf217" alleles. Thx5a-specific primers were used for DNA control. Se-
quences of primers are listed in Table S1.

3.5. 4-HT treatment

5 mM 4-HT stock was prepared by dissolving 25 mg of (Z)-4-
Hydroxytamoxifen (Sigma-Aldrich, H7904) in 12.9 mL of 96 % ethanol
by vortexing for 15 min, aliquoted and stored at —80 °C as previously
described (Felker et al., 2016). Before handling, the aliquot was heated
for 10 min at 65 °C (Felker et al., 2016). For embryo treatment, up to 60
embryos per petri dish were placed in egg water with 4-HT added to a
final concentration of 5 pM at 6 hpf and kept until 3 dpf unless stated
otherwise. For treatment of adult fish, individual fish were placed in
100 mL of 5 pM 4-HT solution three times for 24 h in the dark, allowing
them to recover for 24 h at normal husbandry conditions between each
treatment. After the third treatment, fish were allowed to recover for a
week before further procedures.
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3.6. Cryoinjury

Zebrafish of 4-12 months of age were used for cryoinjury as
described previously (Chablais et al., 2011; Gonzalez-Rosa et al., 2011).
Briefly, adult fish were anesthetized by immersion into 0.2 mg/mL
MS-222 (Sigma-Aldrich, E10521) and immobilized with the ventral side
upwards in a foam holder mounted on a petri dish. The pericardial sac
was opened by a small incision to expose the heart. The apex of the
ventricle was touched with a liquid-nitrogen-cooled cryoprobe until the
probe was fully thawed. After that, the fish were transferred to a larger
container with system water for recovery. Exposing the ventricle
without injury was performed for sham controls. Cryoinjured and sham
control hearts were harvested at indicated time points after
cryoinjury/sham.

3.7. RT-gPCR

RNA was extracted from 25 5 dpf larvae or one adult ventricle per
sample using TRI Reagent (Sigma-Aldrich, T9424) and treated with
DNase I (Thermo Scientific, 89836) according to the manufacturers’
recommendations. The concentration of RNA was evaluated using a
NanoDrop 2000 spectrophotometer (Thermo Scientific). 2 pg of RNA
extracted from 5 dpf larvae or 300-400 ng of RNA extracted from adult
ventricle was used for cDNA synthesis using Maxima H Minus cDNA
Synthesis Master Mix (Thermo Scientific, M1662) following manufac-
turer’s recommendations. RT-qPCR was performed using 10 ng of cDNA,
0.15 pM of forward and reverse primers, and Maxima SYBR Green qPCR
Master Mix (2x) without ROX passive dye (Thermo Scientific, K0253).
RT-qPCR was performed on Rotor-Gene Q (QIAGEN); cycling conditions
were as follows: 2 min at 50 °C, 10 min at 95 °C, followed by 40 cycles of
15sat95°C, 30 s at 60 °C, and 30 s at 72 °C. Relative expression of tcf21
was determined using the 27248Ct method (Livak and Schmittgen, 2001)
using eeflalll (efla) as a housekeeping gene control. Sequences of
primers are listed in Table S1.

3.8. gPCR

gDNA was extracted from the lower phenol-chloroform phase and
interphase remaining after RNA extraction using TRI Reagent (Sigma-
Aldrich, T9424) according to the manufacturers’ recommendations.
qPCR on gDNA was performed using 10 ng of template, 0.15 pM of
forward and reverse primers, and Maxima SYBR Green qPCR Master Mix
(2x) without ROX passive dye (Thermo Scientific, K0253) on Rotor-Gene
Q (QIAGEN) under the same conditions as described above. Fold change
of the tcf21 gene was determined using the 222 method (Livak and
Schmittgen, 2001). The thyroglobulin precursor (TG) gene was used as a
reference locus (Kalvaityte et al., 2024; D. Wang et al., 2007). Sequences
of primers are listed in Table S1.

3.9. AFOG staining

Adult zebrafish hearts were harvested, fixed with 4 % PFA for 2 h at
RT on a nutator, cryopreserved in 30 % sucrose, embedded into OCT
Embedding Matrix (CellPath), and stored at —80 °C as described before
(Gonzalez-Rosa and Mercader, 2012). Hearts were sectioned into 10 pm
sections using Cryotome (Thermo Scientific) and stored at —20 °C.
AFOG (Acid Fuchsin-Orange G) staining was performed using an A.F.O.
G. kit (BioGnost, AFOG-K-100) according to the manufacturer’s in-
structions. Imaging of AFOG-stained sections was performed using a
Leica DM5500 B microscope with an HC PLAN APO 20x/0.70 objective.
60 dpci heart sections exhibiting the largest injury area from each heart
were evaluated by an independent expert and scored blindly as
completely regenerated, partially regenerated, and not regenerated.
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3.10. Immunostaining

Adult zebrafish hearts were harvested, fixed with 4 % PFA for 2 h at
RT on a nutator, cryopreserved in 30 % sucrose, embedded into OCT
Embedding Matrix (CellPath), and stored at —80 °C before sectioning
(Gonzalez-Rosa and Mercader, 2012). 8-10 pm sections were used for
immunostaining as described before (Beisaw et al., 2020). Briefly, slides
were incubated in sodium citrate buffer (10 mM Tri-sodium citrate, 0.05
% Tween-20, pH 6) at 95 °C for 45 min, washed twice in 0.1 % Triton
X-100 in PBS (PBSTr), twice in dH50, and permeabilized in 3 % H205 in
methanol for 1 h at RT. Then, sections were washed twice in dH20, twice
in PBSTr, and incubated in blocking solution (1x PBS, 2 % FBS, 0.2 %
Triton X-100, 1 % DMSO) for 2 h at RT. Primary antibodies were incu-
bated overnight at 4 °C, followed by three washes with PBSTr. Slides
were incubated with secondary antibodies for 2 h at RT, washed three
times with PBSTr, and mounted in a Mowiol mounting medium. Primary
antibodies used in this study: anti-Aldhla2 (GeneTex, GTX124302) at
1:500, anti-a-Actinin/ACTN1 (abcam, ab210557) at 1:200, embCMHC
(DSHB, N2.261) at 5 pg/ml, anti-PCNA (Sigma-Aldrich, P8825) at
1:3000, and anti-MEF2A + MEF2C (abcam, ab197070) at 1:200. Alexa
Fluor 488 (Invitrogen, A11001) and Alexa Fluor 594 (Invitrogen,
A11012) secondary antibodies were used at 1:500. Imaging of immu-
nostained sections was performed using a Leica TCS SP8 confocal
scanning microscope with an HC PL APO 20x/0,75 CS2 objective. All
measurements were done in at least three nonconsecutive sections
exhibiting the largest injury area from each heart using ImageJ (v1.54f)
(Schindelin et al., 2012).

3.11. RNA-seq and data analysis

Adult tcf210%/f0X ybbR:CreER™*, tcf21:DsRed2 fish were treated
with 4-HT as described above. 2-3 ventricles per sample were collected
at 0 dpt, 3 dpci, or 3 dps and used to extract RNA using TRI reagent
(Sigma-Aldrich, T9424) according to the manufacturer’s recommenda-
tions. Untreated adult tcf210f0X  ybbR:CreER™*, tcf21:DsRed2 fish
ventricles, collected at day 0, 3 dpci, or 3 dps, were used as a control.
Extracted RNA was treated with DNase I (Thermo Scientific, 89836).
mRNA purification, library preparation, and sequencing were carried
out following standard Illumina protocols by Novogene Co., Ltd.
(Cambridge, UK). Briefly, mRNA was purified using poly-T oligo-
attached magnetic beads and fragmented. The first strand cDNA was
synthesized using random hexamer primers, followed by the second
strand cDNA synthesis. The library was quantified with Qubit and real-
time PCR, and size distribution was detected with a bioanalyzer.
Quantified libraries were pooled and sequenced on an Illumina NovaSeq
6000 S4 platform.

Raw reads were quality trimmed using TrimGalore (v. 0.6.6)
(Krueger et al., 2023) and mapped to the zebrafish reference genome
(GRCz11) using HISAT2 aligner (v2.1.0) (Kim et al., 2019). Reads were
summarized on protein-coding gene level using StringTie (v2.1.1)
(Pertea et al., 2016). Differential gene expression analysis was per-
formed using the DESeq2 package (v1.38.3) (Love et al., 2014). Prin-
cipal component analysis (PCA) was performed on VST-transformed
data in R (v4.2.2) using DESeq2 (v1.38.3). Normalized counts were used
to calculate the Z-score and draw a heatmap using ComplexHeatmap
(v2.14.0). Gene ontology (GO) enrichment analysis of differentially
expressed genes with an adjusted p-value below 0.05 was done using the
DAVID database (v2024q4) (Huang et al., 2009; Sherman et al., 2022).

3.12. Statistical analysis

All statistical analysis was performed with R software (v4.2.2). The
Shapiro-Wilk test was used to check for the normality of the data.
Comparative statistics between two sample groups were performed
using the unpaired t-test for parametric data or the Wilcoxon rank-sum
test for nonparametric data. The distribution of regeneration phenotype
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at 60 dpci was evaluated by Fisher’s Exact Test. Comparative statistics
between more than two sample groups were performed using one-way
ANOVA followed by Tukey’s post-hoc test for parametric data or the
pairwise Wilcoxon rank-sum test with Bonferroni correction for
nonparametric data.
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