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Abstract

Metastasis is the leading cause of cancer deaths. To develop strategies for intercepting
metastatic progression, a better understanding of how tumor cells adapt to vastly different organ
contexts is needed. To investigate this question, a single-cell transcriptomic atlas of primary
tumor and diverse metastatic samples (liver, omentum, peritoneum, stomach wall, lymph node,
and diaphragm) from a patient with pancreatic ductal adenocarcinoma who underwent rapid
autopsy was generated. Using unsupervised archetype analysis, both shared and site-specific
gene programs were identified, including lipid metabolism and gastrointestinal programs
prevalent in peritoneal and stomach wall lesions, respectively. We developed PICASSO as a
probabilistic approach for inferring clonal phylogeny from single-cell and matched whole-exome
sequencing data. Comparison of PICASSO-generated clonal structure with phenotypic
signatures revealed that pancreatic cancer cells adapted to local environments with minimal
contribution from clonal genotype. Our results suggest a paradigm whereby strong
environmental effects are imposed on highly plastic cancer cells during metastatic
dissemination.

Significance

Single-cell transcriptional profiling of primary tumor and metastases from rapid autopsy samples
of an individual with pancreatic cancer, combined with probabilistic clonal inference by
PICASSO, reveals substantial transcriptomic plasticity in metastatic cells.
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Introduction

Metastasis is a systemic disease responsible for the majority of cancer-related deaths(1), yet
our understanding of how tumor cells disseminate and thrive in distant tissues remains limited.
To metastasize, cancer cells must overcome many hurdles, including the need to escape from
the tissue of origin, migrate, evade immune surveillance and invade distant tissue(2). The
microenvironments of different organs each pose additional adaptive challenges for cancer cell
colonization. For some tumor types, selection may act on intratumor genetic heterogeneity to
shape these adaptive processes(3), whereas for others, genomic studies have uncovered few
recurrent mutations associated with specific metastatic behaviors or organotropism(4). More
recently, epigenetic plasticity has emerged as a hallmark of cancer, which confers the ability to
reinvent cellular phenotypes and drive phenotypic heterogeneity in the service of adaptation(5).
How this plasticity manifests at the molecular level, the extent to which it shapes tumor
progression(6), and its relevance to treatment(7) are major open questions.

Pancreatic ductal adenocarcinoma (PDAC) exhibits particularly low heterogeneity in driver
mutations, which tend to be shared across primary and metastatic sites(8), underscoring the
need to identify alternate adaptive mechanisms. Advanced tumors are not commonly resected
and metastases are rarely biopsied sequentially, making it difficult to reconstruct tumor
progression and providing scant metastatic data in some organs. Rapid autopsy offers a critical
opportunity for systematically investigating shared and organ-specific metastatic programs in
multiple lesions derived from a single germline(9). The ability to collect multiple independent
metastases from a single organ also provides an unparalleled approximation of a controlled
biological replicate in human cancer. Such post-mortem sampling, coupled with genotyping and
lineage reconstruction, recently provided insights into modes of evolution and metastatic
seeding in PDAC(10).

To gain insights into the molecular mechanisms of adaptation in this patient-centric view,
however, requires a combination of clonal lineage information and deep phenotypic profiling.
Single-cell gene expression data provides rich phenotypic information at the cellular level, but it
is problematic for clonal and phylogenetic reconstruction, whereas simultaneously sequencing
single-cell DNA can provide genotype information but does not scale sufficiently. Typical
phenotypic analyses are also not designed to find adaptive gene programs. Computational
approaches are thus needed to overcome these challenges, and to enable the comparison of
clonal lineage and molecular phenotypes in a single cancer across multiple lesions and organs.

We collected two primary and nine metastatic tumors from a patient with PDAC who underwent
a rapid autopsy, and subjected the samples to single-nucleus RNA sequencing (shRNA-seq),
recovering the transcriptomes of over 45,000 cancer epithelial cells. Using archetypal analysis,
we identified adaptive gene programs that are missed by standard clustering. To investigate the
evolutionary dynamics of metastatic PDAC, we developed IntegrateCNV, an approach to
robustly infer copy number alterations (CNAs) from snRNA-seq and matching bulk whole exome
sequencing (WES) data, and PICASSO, a method to identify cell clones and generate clonal
phylogenies using potentially noisy single-cell CNA profiles. We find evidence of strong
adaptation to local organ microenvironment, including metabolic rewiring of peritoneal lesions—
a very common but little-studied site of metastasis in PDAC—as well as multiple different
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shared epithelial-mesenchymal transition programs. Our work identifies plasticity as the major
force in PDAC metastatic adaptation, and provides approaches for deep phenotypic and
phylogenetic analysis from single-cell expression data.

Materials and Methods

Biospecimen collection

Patient information

Warm autopsy samples were collected from a 35-year-old female patient with informed consent
to the Last Wish Program and approval of the patient’'s family. Written informed consent was
obtained from all patients whose tissues were used. The study was conducted in accordance
with the recognized ethical guidelines Declaration of Helsinki and Belmont Report, and
approved by the Institutional Review Board at Memorial Sloan Kettering Cancer Center (IRB
protocol 15-021).

The patient was diagnosed with metastatic PDAC, exhibiting macroscopic lesions in the
pancreas and liver (detected by computed tomography scan) and upregulated CA19-9 tumor
biomarker. The patient was treated with standard mFOLFIRINOX therapy and tumors showed
clinical response for approximately 6 months before they stopped responding, at which point
MFOLFIRINOX was halted and a dose of Gemcitabine + nab-Paclitaxel was given, but no
further response was observed. The patient survived for just over 9 months from diagnosis,
which is expected in a metastatic PDAC patient treated with standard chemotherapy.

Both primary and metastatic tumors were readily detectable. The primary tumor appeared as a
white-gray mass, while liver metastases were white-yellow with extensive necrosis. Multiple
peritoneal and omental metastases, along with a single gastric metastasis, were palpable and
appeared as white nodules. Prominent diaphragm metastases resembling an “omental cake”
were also identified.

Biospecimen collection

Samples were obtained using standard autopsy techniques, specifically the Rokitansky method.
Following the removal of all organs from the body, more than 50 samples were collected from
macroscopically identifiable tumors in both primary and metastatic sites. Autopsies were

initiated within two hours of death, and biospecimens were collected within an hour. Multiple
lesions collected from the same organ were clearly separate anatomically. The exception is
primary tumor, for which two adjacent sections were processed as Pancreas A and B samples
(see below for sectioning information) for single-nucleus RNA sequencing. Tumors larger than 1
cm in size were trimmed to 1-cm squares, then divided in half. One half was used to generate a
formalin-fixed paraffin-embedded block for detailed histological analysis. The other half was cut
into 5-7 mm pieces, placed in cryotubes, rapidly frozen in liquid nitrogen, and stored at -80°C.

For particularly large primary tumors, samples were obtained after slicing. The position of each
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sampling site within the organ was meticulously documented during the autopsy. Approximately

10 normal tissue samples were taken alongside the tumors.

For whole exome sequencing, a portion of each flash-frozen sample was used to create an
optimal cutting temperature (OCT) block. H&E staining of frozen OCT sections was performed
to identify tumor regions and confirm inclusion of sufficient tumor tissue before macrodissection
to extract DNA for bulk WES, typically from 5-10 sections. H&E staining was performed by the
MSKCC Pathology Core Facility.

For snRNA-seq, a different portion of the frozen tissue was sectioned and tumor tissue inclusion
was confirmed using the frozen H&E slide before proceeding with single-nucleus suspension
and sequencing library preparation.

Experimental Methods

Whole exome sequencing

For bulk whole exome sequencing, genomic DNA was extracted from each tissue sample using
QlAamp DNA Mini Kits (Qiagen; RRID:SCR_008539). Sequencing was carried out on an
lllumina HiSeq 4000 (RRID:SCR_016386) or NovaSeq 6000 (RRID:SCR_016387) platform, by
the MSKCC Integrated Genomics Operation Core with a target coverage of 250x for all
samples.

Single-nucleus RNA-seq

Generation of nucleus suspensions

Single-nucleus suspensions were generated following the Frozen tissue dissociation for single-
nucleus RNA-seq protocol([Citation error]). This protocol is optimized for the capture of epithelial
cells. Specifically, frozen rapid autopsy specimens were cut into approximately 2-mm? pieces
using a disposable scalpel (Technocut, 10148-882) and transferred to 1 ml of freshly prepared
ice-cold lysis solution (250 mM sucrose, 50 mM citric acid, 0.01% DEPC). Next, the entire lysis
solution with specimens was transferred to a Dounce homogenizer (Sigma, D8938-1SET).
Tissue grinding was performed by gently moving a large-clearance pestle (Tube A) up and
down 10 to 15 times, followed by a small clearance pestle 10 times (Tube B). After grinding, the
homogeneous suspension of minced tissue was strained through a 35-um snap cap strainer
(Fisher Scientific, 352235) and kept on ice for 1 min. Filtered nucleus suspension was
transferred into a 2-ml tube and spun at 4 °C in a swinging bucket centrifuge at 500 g for 5 min.
The supernatant was discarded, leaving ~20 pl above the nucleus pellet. Next, the pellet was
resuspended in 1 ml ice-cold 1 ml nucleus wash buffer (250 mM sucrose, 50 mM citric acid, 1%
(w/v) BSA, 20 mM DTT and 0.2 U pI* RNase inhibitor (Ambion Inc.; RRID:SCR_008406,
AM2682), in DEPC-treated water (Ambion Inc., AM9915G). The tube was centrifuged in a
swinging bucket at 500 g for 5 min at 4 °C and the supernatant was aspirated without disrupting
the now-smaller pellet. The pellet was then resuspended in 0.5 ml nucleus resuspension buffer
(3X SCC (Invitrogen, AM9770), 20 mM DTT, 1% (w/v) BSA, and 0.2 U pl* RNase inhibitor
(Ambion Inc., AM2682), in DEPC-treated water (Ambion Inc., AM9915G)) and passed through a
35-um snap cap strainer. Nuclei were quantified by staining 10 pl of nucleus suspension with
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0.2 pl of 100 ug mI™* DAPI and 10 pl of 0.4% Trypan Blue, and carefully inspected for quality and
separation under bright field and fluorescence microscopes. The entire procedure took
approximately 1 hr to complete and generated 10°—10 single nuclei per 1 ml.

Single-nucleus enrichment

Prior to snRNA-seq, single nuclei were purified by fluorescence-activated cell sorting (FACS) to
remove debris and clumps following our protocol([Citation error]). In a typical scenario, a 50-pl
aliquot of the nucleus suspension was added to 250 pl nucleus resuspension buffer and used
as an unstained reference sample for FACS, and the remaining suspension (~900-950 pl) was
stained with 10 pl of 100 ug mi™ DAPI. Nucleus sorting was performed on a BD FACS Aria Il
Cell Sorter (RRID:SCR_018934) instrument equipped with a 100-um nozzle. Sorting was
conducted at 5,000-10,000 events/second, by selecting events based on DAPI signal and
particle size. The sorted nuclei were transferred to 1.5-ml Protein LoBind tube (Eppendorf) and
centrifuged in a swinging bucket at 600 g for 5 min at 4 °C. The nucleus pellet was resuspended
in 100 pl of supernatant and manually counted under bright field microscope after mixing 10 pl
of nucleus suspension with 10 pl of 0.4% Trypan Blue. The suspension concentration was
adjusted to obtain ~2000 nuclei/pl before proceeding with the v3 chemistry kit on the Chromium
instrument (10x Genomics; RRID:SCR_023672).

All samples were split and processed by the sorting protocol above or without it (unsorted). Both
unsorted and sorted samples were submitted for snRNA-seq preparation to ensure no
systematic biases were experimentally generated.

snRNA-seq library preparation

Single-nucleus RNA library preparation was performed following the Chromium Single Cell 3'
Reagent Kits User Guide, v3.1 Chemistry (10x Genomics), as in our protocol([Citation error]).
Library sequencing was performed on lllumina NovaSeq 6000 instruments using a paired-end 2
x 150-bp configuration.

Algorithmic development

IntegrateCNV for copy number inference

Copy number inference from scRNA-seq data assumes that changes in gene expression reflect
underlying changes in gene dosage. However, epigenetic factors also affect expression and
obscure the link between expression and copy nhumber. Furthermore, scRNA-seq data is noisy
and sparse, leading to noise in the inferred copy number profiles. To mitigate noise and
sparsity, we restrict single-cell copy number inference to regions that are known, with high
confidence, to harbor CNAs based on bulk WES data, thereby greatly reducing false positive
calls. Sparsity is also mitigated by aggregating expression across genes for greater robustness
within these regions.

We developed IntegrateCNV to infer per-cell copy number variation from single-cell or single-
nucleus RNA-seq paired with sample-matched bulk WES data. IntegrateCNV first identifies
regions likely to harbor CNAs in WES data, then calculates the likelihood of each of these
genomic regions being altered in each single-cell. IntegrateCNV accepts as input (i) a cell x
gene count matrix of scRNA-seq data and "normal” or "tumor" annotation for each cell, and (ii)
paired copy number profiles from bulk WES data in matching samples. Using this information,
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the algorithm determines (i) a set of chromosomal regions that are copy-neutral across all
samples, and (ii) a set of chromosomal regions of sufficient size that are altered in at least one
sample. Finally, integrateCNV outputs (iii) a cell x region matrix containing the likelihood of that
cell being copy number neutral in that region for each (cell, region) pair.

IntegrateCNV algorithm

The integrateCNV algorithm performs a two-tailed hypothesis test to determine whether each
(cell, region) pair has expression levels that differ significantly from the expression levels in
known normal cells. The null distribution of expression in each region is Gaussian, with
expression mean and variance taken from matching regions in a set of reference normal cells.
The algorithm performs the following steps:

1. Identify chromosomal regions that are copy nhumber neutral across all samples as a
normalization factor.

2. Identify chromosomal regions that are copy number altered in at least one sample based
on bulk WES data.

Aggregate expression across genes within each altered region.

Normalize and log-transform the per-region expression.

o > w

Determine the null distribution based on annotated non-tumor cells.
6. Perform a hypothesis test to indicate the presence or absence of an alteration.

IntegrateCNV allows us to better normalize single-cell expression data against neutral regions
without removing the biological signal inherent in library size.

Determining neutral and altered regions

The first input to integrateCNV is a set of copy number profiles derived from bulk DNA
seqguencing. For each sample, we use FACETS (RRID:SCR_026264)(11) to identify the total
copy number in each region. CNAs are centered around 0 so that a neutral region is
represented by the copy number ‘0’. The CNA profiles are saved as BED files, containing, for
each region, information about the chromosome, start position, end position, and copy number.
BED files from all samples are processed to find intersecting genomic regions using the
multi_intersect function from pybedtools (RRID:SCR_021018). The resulting intersections
capture the chromosomal regions and CNAs in each sample. Neutral regions are then identified
as those with no CNA in any sample. We denote the set of neutral regions by A°.

Candidate altered regions are first identified as those in which at least one sample contains an
alteration. Of the candidate regions, only those containing sufficient genes (>20 by default) are
retained for downstream analysis so as to provide sufficient coverage to reliably recover copy
numbers without being unduly influenced by the potential outlier effects of few genes. This set of
altered regions, A?%", is used as the set of regions within which we will infer CNAs.

Processing count data

We denote the scRNA-seq cell x gene count matrix by X, where X ; represents the expression
of gene g for cell ¢ = 1,---,n. Using the set of candidate regions (A**), we aggregate counts
over genes within a given region, indexed by r, to determine a cell x region matrix, U.
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Uc,r = Z Xc,g

9geGr
where g € G, are the genes which physically overlap with the genomic region indexed by r.

The counts from regions A° that are found to be neutral in all samples are used as a pseudo
‘spike-in’ control in order to normalize count data without removing the biological signal of total
library size, which can correlate with copy number burden. The total counts from genes across
all neutral regions are summed for each cell, ¢, and the sum is denoted by library size

normalization factor, [..
=) ) e

reA®  geG,

The cell x region matrix, U, is then divided by the library size normalization factor and the log of
the resulting normalized expression is computed to give data matrix, V.

1
Ver =log I Uy

Inferring CNAs and extracting integer copy number calls

The log-normalized expression matrix, restricted to normal cells, now defines a null Gaussian
distribution on expression levels in unaltered cells for each region. For each cell and region, the
z-score is computed using this null distribution, and is used to define copy number altered
regions.

Finally, a two-tailed hypothesis test is performed for each (cell, region) pair to determine
whether the cell has expression values significantly higher or significantly lower than expected
in a diploid cell. A p-value threshold (default 0.05) is used to determine the critical values for
two-tailed hypothesis testing. All regions above or below the upper or lower critical values,
respectively, are called as alterations. We note that because deleted regions have a small
dynamic range (0, 1 or 2), there is less power to detect them and thus the procedure results in
many false negatives for deleted regions. For all called alterations, we use the copy number
from the corresponding bulk WES sample to insert an integer copy number. This denoising
procedure ensures that, for a region to be denoted as altered in a cell, it must be supported by
evidence from both snRNA-seq and sample-level bulk DNA data. The final output matrix is an
integer copy number profile for each single cell, and can be used for downstream phylogenetic
analysis of clonal relationships.

Comparison of CNA inference methods

To benchmark integrateCNV against existing approaches that infer CNAs from scRNA-seq data,
we first determined single-cell copy number z-score profiles, which are computed without any
prior knowledge of which sample (or bulk WES data) each cell belongs to. We then aggregated
cells within samples to compare against the ‘ground truth’ bulk WES copy number profile.

For each sample, we ran inferCNV (RRID:SCR_021140)(12) and CopyKat
(RRID:SCR_024512)(13), which return per-region and per-gene CNA scores, respectively, for
each cell in the sample. We also ran Numbat(14) both with and without bulk copy number
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profiles per sample as input to the algorithm. Numbat performed best with bulk profiles provided,
and thus these single-cell copy number profiles were used for comparisons. For integrateCNV,
we computed the z score for each altered region harboring an alteration in each cell. The z-
scores are computed per-cell in a sample-agnostic manner, so that no sample-identifying
information is provided to integrateCNV. We then computed the average score across all cells in
the sample to determine a pseudo-bulk CNA score for each method. Since all methods return
continuous valued predictions of alterations rather than discrete copy number calls, we
computed the correlation between the bulk DNA CNA call and the pseudo-bulked inferred CNA
score.

Identifying recurrent CNAs

We use the four gamete test(15) to identify potential violations of the infinite sites assumption
that may be due to recurrent alterations. The four gamete test considers mutation states at pairs
of sites. We binarize CNAs, representing diploid sites as 0 and aneuploid sites as 1. For any two
sites in a sequence, there are four possible combinations of mutation states - (1,1), (1,0), (0,1)
and (0,0). If all four combinations are observed in a population, this violates the infinite sites
model (which assumes that each mutation only occurs once).

For each pair of regions for which single-cell copy number profiles were computed by
IntegrateCNV, we identify all pairs of mutation states which are observed in our inferred CNA
profiles. To account for noise in the copy number inference, we consider only pairs which are
represented in at least 100 cells. If all four mutation state pairs are observed, we denote that
region pair as violating the infinite sites assumption, likely due to recurrent CNAs.

Phylogenetic inference from single-cell CNA calls

Most efforts to reconstruct tumor phylogenies rely on single-nucleotide variants (SNVs) derived
from DNA sequencing data. A few approaches specifically address CNA phylogenies(16,17),
but they are designed for copy number profiles derived from deconvolved bulk DNA sequencing
or single-cell DNA sequencing. These methods typically assume that input copy number profiles
are reliable and accurately specified for contiguous genomic regions, and most do not scale to
large numbers of cells. These assumptions do not hold when considering CNA profiles derived
from scRNA-seq experiments, as inferred copy number profiles are very noisy and dataset sizes
are significantly larger. Researchers thus often resort to distance-based agglomerative
clustering methods such as neighbor joining to reconstruct cell hierarchies.

To overcome these challenges, we developed PICASSO (phylogenetic inference from copy
number alterations in single-cell sequencing observations), to infer cellular clones and their
phylogenetic relationships from CNA calls derived from single-cell expression data. The
PICASSO algorithm assumes that observed single-cell copy number profiles are noisy
measurements of true clonal profiles, such that cells in the same clone share similar CNA
patterns. Phylogenetic relationships are unobserved and result from (potentially recurrent) gain
and loss of copy number variants from an original parent clone. PICASSO thus aims to group
single cells based on membership to inferred clones, and determine the evolutionary
relationships between these clones.

As input, PICASSO accepts a character matrix of cells by regions, with each entry consisting of
an integer CNA state for the corresponding region and cell. Using this information, the algorithm
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generates (i) assignments of cells to clones and (ii) a phylogeny describing the relationship
between clones.

PICASSO algorithm

PICASSO is a tree-recursive algorithm whereby each iteration considers the cells currently
assigned to a leaf node of the phylogenetic tree and determines whether to split that leaf into
further branches. It comprises the following steps:

1. Encode integer copy numbers into ternary profiles. If the maximum absolute copy
number (relative to diploid) is j, copy number k is encoded as a vector of length j with k
leading 1s so that similar copy number profiles are similar in the encoded space. In
practice, we cap the maximum copy number at j = 2, distinguishing only between
amplified and highly amplified copy numbers. Similarly, negative copy number —k is
encoded as a vector of length j with k leading —1s. This allows us to represent the
cumulative nature of CNAs, whereby moderate gains or losses may precede more
severe alterations, and also account for small mistakes when inferring CNA magnitude.

2. Construct an initial phylogeny comprising a single leaf node containing all cells in the
dataset.

3. For each leaf node, split the node into two clones based on shared CNAs using
expectation—maximization (EM). Cells are partitioned such that (i) CNAs are allowed to
recur independently in distinct clones, and (ii) cells are grouped based on global CNA
profile, mitigating the outsize effect of noisy or incorrect calls in a few genomic regions.

More explicitly, for each non-terminal leaf in the phylogeny:

a. If sufficient evidence exists to split cells, assign cells to one of two subclones
using EM. These subclones are the new children of the original leaf node.

b. If insufficient evidence exists to split cells, designate this leaf as a terminal node.
c. Repeat until all leaf nodes are terminal nodes.

4. Cell groupings identified from this iterative process constitute clone assignments, and
relationships between groups constitute the phylogenetic relationships between clones.
The tree is re-rooted so that the clone with fewest CNAs is most ancestral, reflecting the
fact that CNA burden generally increases during evolutionary progression.

5. As optional post-processing, we may collapse small subclones containing too few cells
to draw meaningful statistical conclusions.

Encoding the character matrix
We denote the cell x region matrix of integer CNAs by B, where B.,. represents the inferred

copy number of cell ¢ = 1---n in region r in A%2°*, and A%°* denotes the set of altered regions.
To facilitate further analysis, we transform matrix B into a matrix M using the following encoding
scheme:

1. Determine the maximum absolute value.

10
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For each column (region) r in B, determine the maximum absolute value, p,,
representing the highest CNA observed in that region. In practice, we cap this value at
copy number +2 (two copies more than expected in a diploid cell), as we may not trust or
be able to reliably distinguish between very large copy numbers.

2. Encode copy number values.

For each cell ¢ and region r, encode the copy number k = B.,into p, columns in M
according to this scheme:

a. If k = 0, the encoding is [1,1,...,1,0,0,...,0] with k ones followed by p, — k
ZEeros.

b. If k <0, the encoding is [-1,-1,...,-1,0,0,...,0] with |k| negative ones
followed by p, — |k| zeros.

3. Construct the matrix M.

Replace each column r in B with p, columns in M according to the above encoding
scheme, resulting in a ternary matrix where each original region is expanded into
multiple columns representing CNA magnitude and direction.

This transformation allows us to enforce similar copy number profiles between CNAs of similar
values. The dimension of the resulting matrix M isn X ¥ c 20+ Py .

Top-down phylogeny construction

We use an expectation—maximization approach to construct a top-down phylogenetic tree
based on shared patterns of copy nhumber breakpoints. The phylogeny is initialized with a single
clone containing all the cells in the data set. At each iteration, the depth of the existing tree may
be increased by one as each leaf clone may be split into two further subclones if there is
sufficient evidence of differences between them. Sufficient evidence of differences between
potential subclones exists when the copy number patterns observed cannot be reasonably
explained by a single population. Using the Bayesian information criterion (BIC), we only create
a new branch in the evolutionary tree when the data strongly suggests that two distinct copy
number clone populations exist. Alternatively, any given clone may remain intact as a terminal
clone.

Mixture model for clustering CNA clones

The input to PICASSO is the copy number profile of distinct genomic regions that are likely to
harbor CNAs. We therefore assume that CNA occurrences at each genomic region are
independent, which allows us to consider each profile as a draw from a multivariate categorical
mixture model. We can use an EM algorithm to cluster each existing leaf into two subclones,
mimicking the evolutionary process that distinguishes clones by the accumulation of copy
number differences.

For each subclone, we learn a probabilistic profile over CNAs, allowing us to capture several
essential features. The learned probability associated with the categorical distribution for a given
CNA can be less than 1, permitting CNAs to only be present in a subset of cells in an inferred
subclone. Further, the subclonal structure can be disentangled by subclone splitting in
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subsequent iterations. Additionally, the probabilistic profile allows us to model the high degree of
false positives and false negatives in inferred CNA data by tolerating small probabilities of a
clone missing or containing a specific alteration. Finally, there may be a positive probability of a
particular alteration occurring at the same position in both clones, allowing for the independent
recurrence of copy number changes in multiple clonal lineages, which has been observed
extensively in previous CNA of cancer data(18).

The EM algorithm is a widely used iterative method to find maximum likelihood estimates of
parameters in probabilistic models, particularly for clustering problems. PICASSO uses an EM
algorithm for clustering categorical data with states {-1,0,1}, which represent different CNAs in
cells.

The observed copy number profiles, M = {M;, M,, ..., M,,}, contain the encoded CNAs for each
cell, c=1--n, across regions. Each M, = [m.,m,, .., ms] iS a vector of d categorical
observations for cell c¢. Each observation m.; can take one of three states: -1, O, or 1,
representing different CNAs.

We assume there are two clusters representing an evolutionary split between subclones, and
each cluster k is characterized by a set of parameters 6, = {my, ¢,}, where m;, parametrizes
the prior probability of cluster k and ¢, the probability distribution over the states for each
observation in cluster k.

Expectation maximization algorithm

The EM algorithm iterates between the expectation (E) and maximization (M) steps until
convergence. The goal is to assign each cell to one of the subclones in a way that maximizes
the likelihood of the observed data.

We let ¢, € R3*4 represent the parameters of the categorical distribution for component
k € {1,2}, and m; represent the mixture proportions. We also define the latent variable z., which
indicates the membership of the c-th observation to one of the two components, where z. €
{1,2}. The responsibility y., = E[z.] is the expectation of z;,.

The complete data log-likelihood is:

2

n d
log pM.Z|m¢)= > > za(ogmc + ) 10g $m,,))
c=1 k=1 j=1
The E-step updates the prediction of which subclone each cell belongs to based on the
likelihood of the observed data under the current model. We calculate the posterior probabilities,
Yek, @lso known as responsibilities, which represent the probability that each cell ¢ belongs to
each cluster, k.

The M-step uses the assignment probabilities calculated in the E-step to update the model
parameters. Specifically, we adjust the subclone priors m;, and the categorical distribution
parameters ¢, € R3¢ to maximize the expected log-likelihood of the observed data, weighted
by the assignment probabilities. The categorical distribution parameters ¢, € R3*¢ for clone k
represents the probability of observing each (copy number state, encoded region) pair. This
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step ensures that the parameters better reflect the observed data given the current cluster
assignments.

By iteratively updating the assignment probabilities in the E-step and the model parameters in
the M-step, the EM algorithm gradually converges to a set of parameters that maximize the
likelihood of the data. This iterative process allows the algorithm to find the most probable
clustering of the cells based on shared CNA patterns.

Initialization. We begin by randomly initializing the subclone assignments, y., of each cell so
that cells are distributed randomly between clones. In order to mitigate the effect of local minima
when performing this iterative optimization, we perform five random restarts and select the
model which has the highest likelihood amongst the five trials.

E-step. To determine the optimal assignment of cells to sub-clones, we compute the posterior
probabilities (responsibilities) that each cell M. belongs to sub-clone k:
Tk H?:l Pr(mej)
<3z a )
Zl=1 | Hj:l ¢l(mC])

Yek

where ¢, (m,;) is the probability of observing m;in cluster k.

M-step. To update the probabilistic sub-clone profiles, we update the parameters m;, and ¢,to
maximize the expected log-likelihood:
n
1
(_ —
Ty n Z Yk
c=1

n

3%y YekS(mgjz
¢k(z)(_c1n]1dck(c1)
c=1 Z]‘=1 Yck

where z is a copy number state (-1,0,1) being updated and &(a, b) is the Kronecker delta
function, which is 1 if a = b and 0 otherwise.

Termination of subclone splitting

We implement two methods to determine whether a clone should be split further. The first (and
preferred) option compares the Bayesian information criterion (BIC) score of a model with one
clone to that of a model with two clones, and terminates the splitting process if the BIC score
does not improve with two clones. Specifically, we calculate

BIC = =2 In(L) + k xXIn(n)

where L is the maximum likelihood, k is the number of parameters in the model, and n is the
number of cells. When splitting a clone into two subclones, the model gains additional
parameters (new probabilistic profiles and mixing proportions), which incurs a penalty term in
the BIC calculation. Only when the improvement in likelihood outweighs this complexity penalty
do we proceed with the split. This approach rigorously controls model complexity by requiring
substantial evidence that observed variations reflect genuine biological differences rather than
stochastic noise.

In cases with limited cell numbers, the statistical power needed for BIC to detect meaningful
biological differences may be insufficient. The cell assignment confidence approach provides a
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complementary criterion that can identify biologically relevant subpopulations even when BIC
would prematurely terminate splitting, making it particularly valuable for datasets with fewer cells
or more subtle clonal differences.

The second method relies on cell assignment confidence. Using the responsibilities matrix from
the EM algorithm, we check the proportion of confidently assigned cells. Specifically, if a cell's
responsibility value exceeds a user-defined threshold (e.g., 0.75), it is considered confidently
assigned. If the proportion of confidently assigned cells falls below a user-defined threshold
(typically 0.6—0.8), the splitting process is terminated. This ensures further subdivisions are only
made when cells show clear membership patterns, avoiding overfitting to noisy data.

Post-processing subclones

Inference from scRNA-seq data produces inherently noisy copy number profiles due to technical
limitations in the sequencing process. These profiles may contain artifacts and false signals that
can lead to the detection of spurious subclones. To ensure the reliability of our phylogenetic
analysis, we implement a post-processing step that retains only those clones with sufficient
statistical support and biological plausibility, filtering out clusters that likely arise from technical
noise rather than true clonal evolution.

In order to mitigate the occurrence of clones derived from noise in the copy number inference
process, we require clones to (i) be composed of more than 75 cells and (ii) contain at least one
CNA at high frequency. We selected a conservative threshold of 75 cells as a minimum clone
size in order to ensure that clones are likely to represent true biological subpopulations rather
than technical artifacts arising from the copy number inference process.

For a given clone, we define high frequency CNAs as alterations present in at least 80% of the
cells in that clone. The requirement for at least one high-frequency CNA provides additional
confidence that the identified clone represents a genuine biological subpopulation with shared
genomic alterations.

Clones that do not satisfy these conditions are removed from the phylogenetic analysis, since
we do not have sufficient confidence to draw conclusions about the cells they contain.

PICASSO benchmarking

To evaluate PICASSO's phylogenetic reconstruction accuracy, we simulated a series of ground
truth CNA trees. EXxisting single-cell phylogenetic algorithms are not well suited to constructing
clone trees from noisy, large scale datasets. For example, CNETML(17), a maximum likelihood
algorithm for deriving phylogenies from copy number profiles, only scales to the low hundreds of
cells. We thus compared our ability to recover phylogenetic relationships in these simulations
with an agglomerative tree-building algorithm, neighbor joining.

Simulation experiments

We start by generating random binary trees that form the backbone of our CNA simulations,
providing a structure on which we can model evolutionary relationships. Each leaf in the tree
represents a copy number clone, and branches depict the divergence of clonal lineages over
time. Next, we annotate these trees with regions and alterations using a Dirichlet distribution to
generate probability vectors for region selection. This distribution allows us to model the relative
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likelihood of alterations occurring across different genomic regions and capture the biological
reality that some regions are more susceptible to CNAs than others.

Each branch is assigned specific alterations (values of -2, -1, +1, or +2) based on a predefined
probability distribution [0.5, 0.3, 0.2] that determines only how many alterations will occur per
branch (with 0.5 probability of 1 alteration, 0.3 probability of 2 alterations, and 0.2 probability of
3 alterations), reflecting the accumulation of genetic changes as cells evolve. The actual
alterations themselves are randomly selected from the set [-2, -1, +1, +2] with equal probability.

To capture the cumulative effect of these alterations, we calculate the aggregated alterations for
each leaf node by tracing the path from the root to the leaf. This gives us a comprehensive copy
number profile for each clone, accounting for all the genetic changes that occurred along its
lineage. Cells are then attached to the leaves of the tree, with the number of cells per clone
partially determined by the distribution of clone sizes observed in the data. Specifically, we
leverage real-world PDAC data, using half the actual observed clone sizes to balance
computational efficiency with biological fidelity while preserving the relative proportions of clonal
populations seen in patient samples.

In order to simulate realistic copy number profiles inferred from single-cell data, it is essential to
introduce realistic noise, including extensive false positives and false negatives:

1. False positives: Add noise to neutral regions. Simulate false-positive inferred CNAs
by randomly selecting a proportion of neutral (no copy number change) regions within
the cell profiles and applying random alterations. We perform these simulations across
four false positive rate parameter regimes: the false positive rate (0.01, 0.1, 0.2, or 0.3)
directly determines the proportion of neutral regions altered—for example, at a rate of
0.1, 10% of neutral regions receive artificial alterations. The magnitude of these
alterations follows a distribution derived from observed alterations to ensure realistic
noise patterns.

2. False negatives: Zero-out existing alterations. Simulate false negatives or loss of
signal by zeroing out existing alterations in the cell profiles randomly. The false negative
rate directly determines the probability of removing each existing alteration—for
example, at a rate of 0.2, each real alteration has a 20% chance of being removed. This
stochastic process simulates scenarios where genuine copy number changes go
undetected.

3. Perturb existing alterations. Simulate CNAs whose presence is correctly inferred, but
whose magnitude is not, by slightly increasing or decreasing copy number values. We
introduce magnitude perturbations with a probability of 0.1 per alteration, randomly
adjusting values by +1 or —1 while preserving the direction (gain or loss). This simulates
measurement uncertainty in copy number estimation from sequencing data. These
perturbations create a consistent baseline of noise across all experimental conditions,
independent of the varying false positive and false negative rates being tested, better
reflecting the technical challenges in precise CNA quantification.

We conduct simulation experiments with three replicates across multiple parameter
configurations. Each simulation maintains 60 leaves and 110 regions, dimensions comparable
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to the PDAC tree inferred by PICASSO. By systematically varying false positive and false
negative rates (0.01, 0.1, 0.2, and 0.3), we comprehensively evaluate the robustness of both
neighbor joining and PICASSO methods under increasingly challenging conditions of data
quality.

Metric for evaluating PICASSO

We evaluated PICASSO and neighbor joining phylogenies using the triplets-correct metric(19),
which assesses the tree's ability to reconstruct correct phylogenetic relationships between
triplets of cells. For each simulated tree, we sample 10,000 triplets (a, b, ¢). For each triplet, the
ground truth tree induces a phylogenetic ordering on the cells. For example, for triplet (a, b, ¢),
the ground truth phylogenetic relationship of these cells may be ((a, b), ¢), indicating that cells a
and b share a more recent common ancestor than a and ¢ or b and c. In an inferred tree, the
triplet is scored as "correct" if the phylogenetic relationship between these cells is accurately
recovered.

Since the simulated tree defines leaves as "clones” (groups of cells that cannot be distinguished
from each other by CNA profile), some triplets will have no clear phylogenetic relationship; they
are siblings in a clone. Unlike PICASSO, neighbor joining computes a fully resolved cell tree.
Therefore, when computing the proportion of triplet relationships that are correctly determined,
we only consider triplets with clearly defined phylogenetic relationships. By counting the
proportion of correctly inferred triplets, the triplets correct metric provides a quantitative measure
of the tree's accuracy, helping to identify discrepancies and assess the overall quality of the
inferred phylogenetic tree.

PICASSO runtime and memory comparison

Given the large size of scRNA-seq datasets, runtime complexity is a significant concern. The
neighbor-joining algorithm, commonly used in phylogenetic analysis, has a theoretical runtime
complexity of O(n®), where n is the number of cells, although some implementations of neighbor
joining use heuristics to improve performance in practice(20).

We evaluated run times on simulated datasets with 20,000 cells. Given the large size of the
datasets, we used a heuristic implementation of neighbor joining, rapidNJ. We measured the
runtimes for both neighbor joining and PICASSO on each dataset across all replicates and
found that PICASSO is significantly faster and less memory intensive than neighbor joining.

PICASSO robustness testing

To evaluate the robustness and reproducibility of PICASSO, we ran the method five times on
the full PDAC dataset of approximately 40,000 single cells and assessed the consistency of the
resulting phylogenetic reconstructions. Pairwise comparisons of the clone assignments across
runs were quantified using normalized mutual information (NMI) and adjusted Rand index (ARI),
widely used metrics for comparing the similarity between two clustering assignments.

NMI measures the mutual information shared between two clustering assignments, normalized
to a 0-1 scale:
MI(U,V)
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where MI(U,V)is the mutual information between clustering assignments U and V, and H(U)
and H(V) are their respective entropies. An NMI score of 1 indicates perfect agreement
between clusterings, while 0 indicates completely independent clusterings. The NMI scores we
observed were consistently high, averaging around 0.85, indicating strong agreement in the
overall clustering structure across runs.

ARI measures the similarity between two clustering assignments by counting pairs of elements
that are either assigned to the same cluster or different clusters in both assignments, adjusted
for chance:

RI — E(RI)

ARL = xR — E(RD)

where RI is the raw Rand Index, E(RI) is the expected raw Rl and max(RI) represents the
theoretical maximum value the Rand Index could achieve for the given clustering problem. The
raw Rand Index is defined as:

TP + TN

Rl = b TN + FP + FN

where TP is the number of pairs that are in the same cluster in both clusterings, TN is the
number of pairs in different clusters in both clusterings, FP is the number of pairs that are in the
same cluster in the first clustering but in different clusters in the second and FN is the number of
pairs that are in different clusters in the first clustering but in the same cluster in the second.

ARI ranges from -1 to 1, with 1 indicating perfect agreement, O indicating random cluster
assignments, and negative values indicating worse-than-random agreement. The observed ARI,
which is sensitive to both the number and composition of clusters, averaged around 0.6,
reflecting a reasonable level of stability given the complexity of the dataset and the stochastic
nature of the method.

To further assess consistency at the phylogenetic level, we computed the proportion of triplets
(evolutionary relationship between three cells) recovered in each run that matched those
identified in a separate run designated as the ground truth. High concordance of triplets across
runs demonstrates that PICASSO reliably reconstructs phylogenetic relationships despite
inherent variability in clustering.

To further assess the robustness of PICASSO, we conducted a downsampling analysis by
randomly subsampling the dataset to 75%, 80%, 85% and 90% of the original dataset. For each
downsampled dataset, we ran PICASSO and measured the proportion of triplets in the
reconstructed phylogenies that matched the triplets identified in the full dataset, which served as
the reference. Across all levels of downsampling, the proportion of correctly recovered triplets
remained high, demonstrating the method's robustness.

Computational analysis

Digital histopathology

Whole slide imaging data were obtained with the assistance of the Molecular Cytology Core
Facility at Memorial Sloan Kettering Cancer Center. H&E-stained slides were scanned using a
PANNORAMIC scanner (3DHistech, Budapest, Hungary) equipped with a 20x/0.8 NA objective.
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The resulting data were analyzed using QuPath (version 0.5.1; RRID:SCR_018257)
(https://qupath.github.io/).

Adipose and fibrous tissues were annotated by a pathologist using QuPath. Following
annotation, the Pixel Classification tool in QuPath was applied with default settings to quantify
the areas of adipose and fibrous tissues.

For cell type evaluation, QuPath's Cell Detection tool was used to identify and analyze tumor,
stromal and immune cells. Regions containing these three cell types were annotated, and only
tumor-cell-containing areas were included in the analysis. A cell classifier was trained using the
Object Classification tool in QuPath with default settings, based on pathologist annotations.
Features such as nuclear circularity and eccentricity were calculated to characterize the
detected cells. The classifications were validated by the annotating pathologist to ensure
accuracy.

WES data analysis

WES data preprocessing

Initial processing began with adapter trimming of FASTQ files using cutadapt (v1.9.1;
RRID:SCR_011841) to remove standard lllumina 5' and 3' adapter sequences. The trimmed
reads were then mapped to the b37 reference genome from the Broad GATK resource bundle
using BWA-MEM (v0.7.12; RRID:SCR_010910). Post-alignment processing included sorting of
SAM files and addition of read group tags using PICARD tools (v1.124; RRID:SCR_006525).
The read group information includes sample identifiers, sequencing library identifiers, and
lllumina platform information. The sorted BAM files were then processed with PICARD
MarkDuplicates to identify PCR duplicates (https://github.com/soccin/BIC-variants_pipeline).

Copy number alteration calling

Copy-number alterations in solid tumors were computed from tumor and matched normal tissue
WES data using default settings in the FACETS (Fraction and Allele-Specific Copy Number
Estimates from Tumour Sequencing) (v0.6.2) algorithm (https://github.com/mskcc/facets-
suite)(11). FACETS provides allele-specific copy number estimates at the level of both gene
and chromosome arm.

Single-nucleotide variant calling

We used the standardized lllumina (HiSeq) Exome Variant Detection Pipeline to detect variants
in the output of preprocessed WES data. Following duplicate marking, BAM files are processed
according to GATK (v3.4-0; RRID:SCR_001876) best practices version 3 for tumor—normal
pairs. This includes local realignment using ABRA (v2.17; SCR_003277) with default
parameters, followed by base quality score recalibration using BaseQRecalibrator with known
variants from the Broad GATK B37 resource bundle, including dbSNP (v138;
RRID:SCR_002338).

Somatic variant calling is performed using muTect (v1.1.7; RRID:SCR_000559) with default
parameters for SNV detection, while somatic indels are identified using GATK HaplotypeCaller

with subsequent custom post-processing. A final "fill-out" step computes the complete read
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depth information at each variant position across all samples using the realigned BAMs. This
step applies quality filters requiring mapping quality = 20 and base quality = 0, with no filtering
for proper read pairing.

All analyses were performed using a standardized computational environment managed through
Singularity (v2.6.0). The complete pipeline source code, including all post-processing scripts, is
available at:

e https://github.com/soccin/BIC-variants pipeline
e https://github.com/soccin/Variant-PostProcess

Additional software versions used in the pipeline include Perl (v5.22.0; RRID:SCR_018313),
Samtools (v1.2; RRID:SCR_002105), VCF2MAF (v1.6.21; RRID:SCR_027063), and VEP
(v102; RRID:SCR_007931).

SNV and CNA visualization

To visualize the SNV and CNA status of key cancer genes, as well as tumor mutation burden,
we used CoMut(21).

snRNA-seq data pre-processing
After quality controls (see next section), shRNA-seq generated a total of 73,142 high-quality
transcriptomes from 11 samples (Supplementary Table 1).

Alignment of sequencing reads

All scRNA-seq samples were pre-processed as follows: FASTQ files from the rapid autopsy
samples were processed with the SEQC (v.0.2.4) pipeline(22)(https://github.com/dpeerlab/seqc)
using the hg38 human genome reference, default parameters and platform set to 10x Genomics
v3 3’ scRNA-seq kit. The SEQC (v.0.2.4) pipeline performs read demultiplexing, alignment and
uniqgue molecular identifier (UMI) and cell barcode correction, producing a preliminary count
matrix of cells by unique transcripts. By default, the pipeline will remove putative empty droplets
and poor-quality cells based on (1) the total number of transcripts per cell (cell library size); (2)
the average number of reads per molecule (cell coverage); (3) mitochondrial RNA content; and
(4) the ratio of the number of unique genes to library size (cell library complexity).

Nuclear transcriptomes from human rapid autopsy samples are expected to have lower RNA
content and quality than regular single-cell assays(23). To obtain a more comprehensive
representation of cancer phenotypes we included both FACS and non-sorted samples (see
Single-nucleus RNA-seq section), however, non-sorted samples carry a greater degree of low
quality nuclei. Therefore, due to the intrinsic lower RNA content and sample quality of flash-
frozen snRNA-seq derived transcriptomes, we performed further quality control steps as
described in the following sections.

snRNA-seq data quality control

Ambient RNA removal
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During nucleus extraction from flash-frozen tissue, cell-free ambient RNA is liberated into the
dissociation solution and becomes encapsulated with nuclei during library construction. Ambient
RNA contamination can create undesired technical artifacts in single cell data, such as ectopic
gene expression and the obscuring of real biological differences between distinct cell population
transcriptomes.

To address this issue, we corrected for ambient RNA expression using CellBender
(v.0.1.0)(24)(https://aithub.com/broadinstitute/CellBender). CellBender is an unsupervised
Bayesian model that requires no prior knowledge of cell-type-specific gene expression profiles
to identify ambient RNA counts. The approach is based on the principle that ambient RNA
contamination will have a relatively uniform distribution across all cells, whereas cell-specific
RNA will display more variable expression patterns. The procedure for removing ambient RNA
using CellBlender involved the following steps with default parameters:

Quality control: Rapid autopsy snRNA-seq samples (particularly non-sorted samples) have
more low-quality droplets with debris and ambient RNA than regular scRNA-seq samples(23).
To increase the signal-to-noise ratio between ambient RNA and real RNA counts, we first
performed a lenient QC by removing nuclei with more than 5% mitochondrial genes, and fewer
than 127 genes or fewer than 255 reads, and by removing genes present in fewer than 10 cells.
The estimated cell number of each batch was inferred with SEQC(22). We applied CellBender
(RRID:SCR_025990) to this initial lenient-filtered snRNA-seq data as follows.

Estimation of ambient RNA levels: CellBender estimated levels of ambient RNA for each
gene across all nuclei by assessing the distribution of expression levels for each gene and
identifying genes with a uniform distribution as candidates for ambient RNA contamination.

Subtraction of ambient RNA: Next, CellBender subtracted the estimated ambient RNA
contamination from the expression level of each gene in every droplet. This process generated
a corrected gene expression matrix with non-transformed integer counts.

Evaluation of ambient RNA correction: We selected 5,000 highly variable genes using the
variance-stabilizing transformation method(25). To normalize the data, we scaled each cell to
10,000 reads and applied a log,(X+1) transformation. Dimensionality reduction was performed
using principal component analysis (PCA) and the top 50 components were utilized for
downstream analysis. We constructed a k-nearest neighbor (kNN) graph using k = 30 and
applied PhenoGraph (RRID:SCR_016919)(26) to identify distinct coarse cell clusters. Cell-type-
specific markers were used post-hoc to evaluate ambient RNA correction. CellBender
successfully retained cell-type-specific markers in corresponding clusters, while removing
unexpected RNA counts, particularly genes from acinar cells that appeared in other cell types.

Filtering low-quality nuclear transcriptomes

Proceeding with the CellBender-corrected count matrix, cells with a low number of detected
genes, a low total UMI count (sequencing depth) and a high fraction of mitochondrial counts
were designated low-quality cells, as they can represent dying cells with broken
membranes(27). Previous snRNA-seq protocols have also reported that ribosomes can remain
attached to the nuclear membrane during nucleus isolation(28); therefore, data were further
assessed for library size, total gene counts, mitochondrial and ribosomal RNA content.

20

920z Asenuer z| uo 3senb Aq ypd /L | L-GZ-UBD/0LLGLLE/LL L L-GC-NVD'ZLYS-8000/8S L L0 }/10p/pd-ajoe/saiiaoueo/B10°s|euinofioee)/:dpy wouy papeojumoq


https://paperpile.com/c/V7SFau/DC0KB
https://github.com/broadinstitute/CellBender
https://paperpile.com/c/V7SFau/REZS6
https://paperpile.com/c/V7SFau/xpffp
https://paperpile.com/c/V7SFau/Hm0Ta
https://paperpile.com/c/V7SFau/TiNao
https://paperpile.com/c/V7SFau/RWuJW
https://paperpile.com/c/V7SFau/gDowR

774
775

776
777
778
779
780
781
782

783
784
785
786
787
788
789
790
791
792
793
794

795
796
797
798
799
800
801

802
803
804
805
806
807

808
809
810
811

812
813

Library size and gene count thresholds: We removed cells with fewer than 500 RNA counts
and fewer than 200 genes.

Mitochondrial and ribosomal RNA content thresholds: Since our droplets contained nuclear
transcriptomes, we reasoned that mitochondrial and ribosomal RNA should be greatly reduced
in high-quality transcriptomes. Hence, we checked for cells with high mitochondrial and
ribosomal content. Cells with higher levels of mitochondrial and ribosomal genes primarily
belonged to non-sorted samples, suggesting that these droplets contained higher levels of
debris, as expected. After manual assessment, we removed droplets with more than 1% of
mitochondrial RNA and/or more than 10% ribosomal RNA fractions.

Doublet detection

Multiplets (droplets containing more than a single nucleus), predominantly doublets, are an
undesired byproduct of library production that create artifactual transcriptomes and confound
real biological signal. Homotypic doublets encapsulate two nuclei from the same cell type, and
heterotypic doublets capture two different cell types, leading to cell-type mislabeling(27). Given
the challenging task of differentiating single transcriptomes from doublets, using more than one
detection approach and comparing results can increase the accuracy of doublet detection(29).
We used DoubletDetection(https://zenodo.org/record/2678042) and Scrublet(30), two of the top-
performing doublet detection algorithms(31), and further inspected identified doublets to confirm
larger library size compared to singlets, as well as expression of conflicting gene markers. For
each sample independently, we visually compared putative doublet and singlet total count
distributions together, and their clustering distribution in UMAP projections.

DoubletDetection: DoubletDetection is a machine-learning algorithm for identifying doublets in
SCRNA-seq
data(https://zenodo.org/record/2678042)(https://github.com/JonathanShor/DoubletDetection). It
generates synthetic doublets, clusters them together with the original data using
PhenoGraph(26), and assigns a score and p-value for clusters with enriched synthetic doublets
using a hypergeometric test. We used DoubletDetection separately in each sample raw snRNA-
seq count matrix with default parameters.

Scrublet: Scrublet (RRID:SCR_018098)(30)(https://github.com/swolock/scrublet) simulates
doublets from the observed data and uses a kNN classifier to calculate a continuous
doublet_score (between 0 and 1) for each transcriptome. The score is automatically thresholded
to generate predicted_doublets, a boolean array that is True for predicted doublets and False
otherwise. We used Scrublet independently for each sample's raw snRNA-seq count matrix with
default parameters.

We found the results from both methods to be complementary and removed cells identified as
doublets by either method. Transcriptomes passing library size, mitochondrial, ribosomal and
doublet detection criteria were retained and the data matrices concatenated into a single matrix
(73,142 cells and 22,318 genes) for downstream analysis.

snRNA-seq data analysis

Feature selection, normalization, and variance stabilization
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Following quality control, we selected 5,000 highly variable genes (HVGSs) using 'seurat_v3' in
scanpy (v.1.9.8; RRID:SCR_018139)(32)(https://github.com/scverse/scanpy), which computes a
normalized variance for each gene on the raw counts(25). Other parameters were set as
default. To normalize the data we scaled each cell to 10,000 reads. The normalized counts were
then log-transformed (base 2).

Dimensionality reduction and visualization

PCA of the log-normalized matrix was performed using the ARPACK solver on the selected
HVGs. We retained the first 50 principal components (PCs), which explained 33.5% of the
variation in the data, and constructed a kNN graph using k = 30. To visualize the data, UMAP
was applied to the PCA-reduced data and a minimum distance of 0.1.

Since non-cancer cells from different libraries were well integrated, we did not perform any
batch correction on our data. Differences between samples from different anatomical locations
were regarded as biologically driven.

Gene signature scores

To generate all gene signature scores in our study, we used the Scanpy score _genes
function(33), which calculates the mean expression of genes of interest subtracted by the mean
expression of a random expression-matched set of reference genes. To control for gene set
sizes, we selected the random reference set to be the same size as the gene set of interest.
Other parameters were set to default.

Cell-type annotation

Cancer cell-type annotation: To annotate cell types, we first sought to discern cancer cells
from non-cancer cells. The tumors harbor a truncal KRAS®*?Y mutation, detected both by MSK-
IMPACT(34) and WES mutation calling; therefore, we used two independent but complementary
KRAS signatures from the literature to generate a KRAS_signaling score per cell:

KRAS_PDAC(35): This signature of 36 genes is based on differential expression between
epithelial cells in wild-type KRAS and KRAS-knockout mouse tumors. We used the human
orthologs provided in the signature.

KRAS_addiction(36): This signature was generated by comparing human lung and pancreatic
cancer lines that require KRAS to maintain viability with those lines that do not; all lines
harbored KRAS mutations and were treated with short hairpin RNAs to deplete KRAS. The
resulting signature is specific to KRAS-dependent cells, and is associated with a well-
differentiated epithelial phenotype also observed in primary tumors.

We scored these signatures separately, and although high-scoring cells for the two signatures
did not overlap fully, both robustly identified the same clusters; thus, we used the union of
KRAS_ PDAC and KRAS_addiction to generate the KRAS_signaling signature for cancer cell
annotation. Positive clusters were confirmed by CNA profiles inferred from the scRNA-seq data
using inferCNV(12), as described in the following section.

Non-cancer cell-type annotation: To label non-cancer cells, we clustered all cells using
PhenoGraph(26) with default parameters on the previously obtained PCs, and used literature-
curated canonical cell-type-specific markers (Supplementary Table 2) to annotate the clusters.
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For clusters related to smooth muscle cells, MUC1/MUCG6 epithelial cells, and adipocytes, no
initial cell-type identity could be discerned. We therefore ranked the genes underlying each
cluster using the Scanpy function scanpy.tl.rank _genes_groups with the sparse matrix and
default parameters. Reference clusters were set to ‘rest’ as well as adjacent clusters with known
cell-type identity for increased granularity. Genes among the top 20 ranked genes were used to
identify the cell identity of those clusters.

Inferring copy number alterations from snRNA-seq data

To infer chromosomal CNAs in tumor cells, we ran inferCNV
(v1.10.0)(12)(https://github.com/broadinstitute/inferCNV) and COpyKAT
(v1.1.0)(13)(https://github.com/navinlabcode/copykat) using the Python API of these algorithms
implemented in the infercnvpy package (v0.1.0). We ran both packages using default parameter
settings, and used non-cancer cell types as the diploid reference. InferCNV was run with a
window size of 100 genes and a step size of 1, to balance the detection of focal and broad CNA
events.

Phylogenetic inference in rapid autopsy data

We used ductal and acinar cells as reference normal cells for IntegrateCNV. The algorithm
returned a matrix containing copy numbers for 43,949 cells in 116 genetic regions. We only took
the subset of cells annotated as tumor, and expanded this matrix to a ternary matrix, as
described above, resulting in 177 features. We then removed features that are highly similar
across all cells by filtering out features that are modal with frequency 99% or higher, reasoning
that small variations in copy number (frequencies below 1%) are likely noise, leaving a final
input matrix containing 101 features.

We applied PICASSO to this input data and required that each cell have an UMI count greater
than 750 and that each clone contains at least 75 cells, generating 66 clones. As a final filtering
step to remove noisy clones data from the phylogeny, we required each clone to have at least
one CNA at a prevalence greater than 80% to be considered valid. We reason that clones
without highly prevalent CNAs are not likely to be well-supported and may represent ‘noise’
clones with cellular CNA profiles that are inconsistent with more well-defined clones. Removing
four such noisy clones left a total of 62 clones (95-1,613 cells per clone, median = 618 cells)
containing 40,994 cells in the phylogeny.

We defined a primary clone as containing at least 50% of cells from the primary tumor, yielding
four primary clones in the data. As a proxy for the metastatic behavior of each primary clone, we
calculated the proportion of non-primary cells within each clone, with higher values indicating
greater dissemination.

AC5 clone assignment

To confirm that primary cells expressing the archetype cluster 5 (AC5) program were strongly
associated with advanced clones, we focused on the two advanced AC5 clones with the most
primary cells (clones | and J, bearing 7 and 9 cells, respectively). We compared the CNA
profiles of these cells to the clone profiles (CNA change probabilities at each site) of their
assigned clones as well as the clone profiles of a representative clone (clone 1-1-0-1-1-0) with a
majority of primary cells.
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We also computed the log-likelihoods of the primary cells CNA profiles in these clones,
compared them with those of all other cells in the clone, and found that they exhibited median
levels of clone confidence compared to the other (primarily stomach and liver) cells in the
clones.

Pairwise diffusion distances of pancreas primary archetype 5 cells

To quantitatively evaluate the similarity of pancreas primary AC5 cells with metastatic cells
versus other pancreas primary cells we compared the pairwise diffusion distances from all
primary ACS5 cells to all metastatic AC5 cells and to all other primary cells separately. We used
the ‘scipy.spatial.distance.cdist’ (RRID:SCR_008058) function with the metric = euclidean on
the diffusion map coordinates. This computes the distance between each pair of the two
collections of inputs.

Archetype analysis

We used archetype analysis to identify optimal phenotypes (representing adaptive processes)
among cancer cell transcriptomes, which may be shared or specific to one or more tumor sites.
Archetype analysis identifies the vertices of a convex polytope—an approximation of a convex
hull that encapsulates the data in phenotypic space(37), which in our case is diffusion space.
Archetypes often correspond to the extremes of single diffusion components, which are
commonly used to approximate the major axes of variation within the phenotypic manifold. As
m, the number of diffusion components as computed in the section “diffusion components”
below, corresponds to the dimensionality of the data, we selected the number of archetypes we
wished to identify as m + 1. To understand the gene programs that cancer cells use to adapt to
different metastatic sites, which likely pose unique challenges and stresses, we computed
archetypes in each tissue independently as described below.

Archetype analysis per tumor site

First, we partitioned the data by tumor site (pancreas primary, liver, omentum, peritoneum,
diaphragm, stomach, lymph node). Each site was normalized independently by scaling each cell
to 10,000 reads and applying a log,(X+1) transformation.

The selection of the number of HVGs is crucial for capturing meaningful biological variability
while minimizing technical noise. Too few HVGs (<500) risks losing important biological
variation, while too many HVGs (>5,000) increases noise without adding significant biological
variation. In general, our study and others with large data sets (>50,000 cells) and diverse cell
types select around 5,000 HVGs. For medium size datasets (5,000-50,000 cells) and less cell-
type diversity, 2,000-3,000 HGVs are recommended. To perform archetype analysis per site,
which includes only cancer cells from the same organ (470-23,950 cancer cells per organ,
median 4,031), we computed 2,000 HVGs using the 'seurat_v3'(25) method in scanpy.

We computed 50 PCs using the svd_solver = 'arpack’ on the HVGs on each dataset. Sites
included PDAC primary (3,479 cells, 40% variance explained by PCA), liver (4,031 cells, 36%
variance), peritoneum (23,950 cells, 36% variance), lymph node (470 cells, 44% variance),
stomach (4,075 cells, 35% variance), diaphragm (6,137 cells, 37% variance) and omentum
(3,305 cells, 34% variance). We then computed the kNN graph with k = 30 neighbors on the PC
space representation (X_pca). We chose 30 neighbors to balance between adding noise (<20
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neighbors) and losing biological variation (>50 neighbors) in the medium size datasets we
analyzed.

To visualize each site separately, we computed UMAP (min_dist = 0.1) and FDL with default
parameters on the kNN graph. We then clustered each dataset using Leiden clustering in
scanpy with default parameters and further assessed cell quality and cancer cell purity in each
cluster. We detected some outlier clusters with low library size in lymph node (n = 12 cells) and
stomach (n = 226 cells) and non-cancer cell contamination in liver (n = 85 cells) data partitions.
Given the objective of archetype analysis in detecting extreme data points in the
multidimensional space, we removed those cells from each data partition and from the entire
dataset.

Diffusion components: Given the presence of different cell-state densities in the data, we
used an adaptive anisotropic kernel(38), which adjusts the local bandwidth (sigma) based on
local density, to compute diffusion maps. This can give more flexibility in regions with different
densities, improving resolution in sparse areas and reducing over-smoothing in dense areas,
compared to the fixed anisotropic Gaussian kernel with a predefined scale (sigma) in scanpy,
which is more appropriate for relatively uniform cell-state density datasets.

With the adaptive anisotropic kernel, we computed 10 diffusion components (DCs) on the PC
projections of the data and calculated their corresponding eigenvalues and the diffusion
operator. We used the eigenvalue knee point to determine the number of DCs for each site:
pancreas 5 archetypes, liver 6 archetypes, lymph node 5 archetypes, peritoneum 5 archetypes,
omentum 6 archetypes, stomach 4 archetypes, diaphragm 5 archetypes. Archetypes were
calculated on the DCs using the Python implementation of the PCHA algorithm with delta = 0.
Archetypes were identified independently 10 times to assess robustness, and the nearest real
cell to each archetype was identified using Euclidean distance in diffusion space.

Archetype neighborhoods: We next sought to annotate each archetype based on gene
expression. Since each archetype is identified as a single cell, we enhance statistical power by
defining archetypal neighborhoods, consisting of each archetype’s most similar cells in diffusion
map space. The neighborhoods are defined such that they include enough cells to enhance the
robustness of inference, while maintaining the archetypal phenotype and distinction between
archetypes. Importantly, different metastatic sites have different numbers of cancer cells,
archetypes and the density of cells in the phenotype space varies. To account for all these
differences, for a given archetype A in a given tissue, we calculate the diffusion distance (D) to
its nearest archetype and define the neighborhood for A as the set of cells which are within a
fraction of D. This ensures no overlap between the archetypal neighborhoods, thereby
maintaining their distinctions. Parameters used for each site are: PDAC primary DC fraction
distance = 1/3 (91-1,571 cells per neighborhood); liver DC fraction distance = 1/3 (63—696
cells); peritoneum DC fraction distance = 1/4 (311-1,098 cells); lymph node DC fraction
distance = 1/2 (36-112 cells); stomach DC fraction distance = 1/3 (315-997 cells); diaphragm
DC fraction distance = 1/3 (160-2,037 cells); and omentum DC fraction distance = 1/3 (43-417
cells). To visualize archetype neighborhoods, we colored the selected neighborhood cells on the
FDL projections.
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Differential gene expression: For each tumor site, DEGs were calculated for each archetype
neighborhood versus all other neighborhoods from the same site, using raw counts. Genes
expressed in fewer than 5% of cells in each group were filtered out to reduce noise. Differential
expression was performed using diffxpy (https://github.com/theislab/diffxpy) with a Wald test,
considering DEGs with log, fold change > 0.05 and g-value < 0.01.

Robustness analysis of archetype neighbors

We tested the robustness of our archetype analysis and archetype neighborhood selection by
downsampling library size to various extents for each organ separately. For this, we
downsampled counts from each tumor site raw counts data using ‘sc.pp.downsample_counts’.
We set the count_per_cell parameter to be 10% or 20% of the original library size, resulting in a
randomly downsampled dataset. For each site and downsampling level, we repeated the
analysis 20 times with a different random seed for subsampling.

We repeated the entire archetype analysis process using the same parameters as described
above in the subsampled data sets. We then compared the selected archetype neighborhoods
using the Jaccard metric, which measures the similarity between two sets of elements by
guantifying how many elements (archetype neighbor cells) the sets have in common relative to
their total unique elements.

To assess the robustness to higher synthetic dropout rates (10% and 20%), we computed
Jaccard similarity among the archetypal neighborhood across different iterations. We observed
a high similarity of > 0.75 indicating that the selected archetype neighborhoods are robust.

Cell-density estimation

To evaluate if archetype neighborhoods were driven by the cell-state density distribution in the
high-dimensional space, we estimated the cell-state density of each tumor site partitioned data
using Mellon(39)(https://github.com/settylab/Mellon) with default parameters. Mellon is a non-
parametric cell-state density estimator based on a nearest-neighbors-distance distribution. It
estimates cell-state densities from high-dimensional representations of single-cell data using a
Gaussian process. We preprocessed and calculated cell-state densities for each tumor site
separately following the basic tutorial
(https://github.com/settylab/Mellon/blob/main/notebooks/basic _tutorial.ipynb).

Integrated archetype clusters

To capture possible shared processes, we subsetted the data to include all cells labeled with an
archetype, and all genes that were included in any DEGs associated with any archetype in any
organ. All 14,826 archetype cells and 15,017 genes were combined into a single matrix which
we median-count normalized, log-transformed counts. PCA (56 PCs, 20% variation explained)
was followed by kNN graph construction (k = 30 neighbors), Leiden clustering (resolution = 1),
PAGA(40), and UMAP visualization (min_dist = 0.1, init_pos = PAGA). The resulting leiden
clusters aggregate together archetypes calculated from the different sites, hence we defined the
leiden clusters as “integrated archetype clusters”. We reasoned that each integrated archetype
cluster could capture specific biological processes shared between different sites (e.g. cell
cycle, EMT) or unigque to a given site (e.g. lipid metabolism). To identify the underlying biological
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processes specific to each integrated archetype cluster we then calculated DEGs for each
cluster and identified gene modules as described below.

Level 1: Differentially upregulated genes. Differential expression using diffxpy
(https://github.com/theislab/diffxpy) (Wald test, DEGs with log, fold change > 1 and g-value <
0.05) was calculated for each integrated archetype versus all other archetypes.

Level 2: Gene modules. Cancer cells are able to express a variety of gene expression
programs that may resemble distinct modular processes in a physiological setting. To
disentangle these gene expression programs we used Hotspot(41l). Hotspot identifies
informative genes based on gene-gene autocorrelation in local neighborhoods in the phenotypic
manifold, using a kNN graph which we generated with weighted_graph = false, n_neighbors =
30, and FDR < 0.05. Gene modules were computed on these informative genes: Informative
genes from Hotspot modules were ranked by local correlation z-score. Then pre-ranked gene
set enrichment analysis (GSEA)(42,43) was performed using GSEApy (RRID:SCR_025803)(44)
(https://github.com/zgfang/GSEApyY) against selected GSEApy supported gene set libaries
(https://maayanlab.cloud/Enrichr/#libraries) and expert-curated gene sets:

GSEApy libraries: GO_Biological Process 2021, MSigDB_Hallmark 2020, Reactome_ 2016,
KEGG 2021 Human, GO_Cellular_Component_2021, GO_Molecular_Function_2021,
WikiPathways 2019 Human, and Azimuth_Cell_Types 2021.

Expert-curated gene sets: Azimuth_Pancreas_Cells
(https://azimuth.hubmapconsortium.org/references/human_pancreas/), PDAC_Subtypes
(classical and basal), PDAC_Signatures, Pancreas_Development, Cancer_Metaprograms,
Cell_Cycle, KRAS signaling. References and manually-curated gene sets are listed in
Supplementary Table 10.

The pancreas development gene set (Reference and genes in Supplementary Table 10) was
generated by calculating DEGs (using MAST (RRID:SCR_016340)(45) with default parameters)
between emergent endodermal pancreas (clusters marked by PRX1) and other emerging
endodermal organs. Then we mapped the gene orthologs between mouse and human
genomes.

Level 3: Archetype genes. DEGs and genes with modules whose mean expression is highest
in a given archetype were used to characterize the archetype. This level of annotation ensures
that genes are specifically upregulated in the archetype over other archetypes. Level 3 genes in
each archetype were manually inspected to confirm GSEA results and to increase the
granularity of the archetype descriptions. Archetypes with low normalized enrichment scores
(NES) from GSEA were further inspected and labeled according to level 3 genes.

CZ CELLXGENE Discover (RRID:SCR_024894)(46) was used to annotate archetype 5. Gene
expression of archetype cluster 5 genes was evaluated in CZ CELLXGENE. Higher average
expression was observed in intestinal, stomach, and gallbladder tissues. Specifically, epithelial
cell types were then evaluated for expression of AC5 genes.
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Intestine: endocrine cell, columnar/cuboidal epithelial cell, secretory cell, enterocyte, epithelial
cell, mesothelial cell, glandular epithelial cell, goblet cell, absorptive cell, brush cell, intestinal
crypt stem cell of colon, intestinal epithelial cell, intestinal enteroendocrine cell.

Stomach: enterocyte, epithelial cell, ciliated epithelial cell, columnar/cuboidal epithelial cell,
glandular epithelial cell, secretory cell, enteroendocrine cell, endocrine cell, peptic cell, mucous
cell of stomach, parietal cell, glandular cell of esophagus, epithelial cell of esophagus, intestinal
epithelial cell, brush cell, type G enteroendocrine cell, mucus secreting cell, goblet cell, intestine
goblet cell.

Gallbladder: epithelial cell, secretory cell, goblet cell.
Pancreas: pancreatic ductal cell, epithelial cell of pancreas.

To annotate AC2 at a more granular level, we also used the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (RRID:SCR_012773)(47). Specifically, we used the KEGG Mapper
Search Tool (https://www.genome.jp/kega/mapper/search.html), which searches various KEGG
objects, including genes, KOs, EC numbers, metabolites and drugs, against KEGG pathway
maps and other network entities. Then the top matching KEGG objects found were used to
explore and annotate the biology of AC2 modules:

Fatty acid and cholesterol biosynthesis: Metabolic Pathways (hsa01100) and Fatty Acid
Metabolism (hsa01212).

Oxidative stress and detoxification: Metabolic Pathways (hsa01100), Ferroptosis
(hsa04216), Glutathione metabolism (hsa480) and Chemical carcinogenesis - reactive oxygen
species (hsa05208).

Archetype cluster annotation

Archetype cluster annotation was performed by first considering normalized enrichment scores
(NES) and the specific archetype genes deemed significant by GSEA. The NES genes were
used as an initial general guide. Higher priority was then given to the specific gene modules and
genes to annotate clusters in a granular and specific manner. CZ CELLXGENE Discover(46)
was used to annotate archetype cluster 5 since only the PDAC Adhesive gene program(48) was
significantly enriched.

Comparison with Leiden clustering

To compare archetype clusters and Leiden clusters we first clustered the cancer data using
‘sc.tl.leiden’ with default parameters. Then the same level 1 and 2 steps employed for
archetypes were used to annotate gene programs associated with Leiden clusters. We
compared the archetype and Leiden clusters’ DEGs using Jaccard Similarity.

Archetype analysis and annotation of RA19_21 peritoneum metastases

Two PDAC peritoneum metastases were harvested from the rapid autopsy RA19 21 and
snRNA-seq data were collected following the same protocol described in snRNA-seq data pre-
processing, scRNA-seq data analysis, and archetype analysis sections above for RA19 10.
Data preprocessing and quality control were also performed using the same workflow. The
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same archetype analysis and gene program annotation workflows were performed for these
peritoneal metastatic samples to evaluate expression of the lipid metabolism and oxidative
stress programs found in AC2. No integration of archetype clusters was required since only
peritoneal metastases were analyzed.

Entropy of archetype distributions

We sought to determine whether each clone exhibits a greater diversity of archetypes than
expected by chance, which would indicate phenotypic plasticity across the phylogeny. For each
clone, we computed the Shannon entropy of the observed archetype distribution as a measure
of phenotypic diversity. Shannon entropy, H, is calculated as:

H=—logY", p;log (),

where p; is the proportion of cells within the clone assigned to archetype i and k = 18 is the
number of unique archetypes. This entropy metric allows us to quantify the spread of archetype
diversity within clones, with higher entropy values indicating more even and diverse distributions
of archetypes.

Null model comparisons

To contextualize the observed entropy and evaluate whether the diversity observed within
clones is greater than expected by chance, we compared our results to several null models.
Each null model simulates archetype distributions under different assumptions, providing a
range of baselines. In order of decreasing expected diversity, they are:

1. Random assignment. Archetypes are assigned to cells randomly across all clones, with
probabilities matching the global frequencies of each archetype. This model retains the
overall prevalence of each archetype, but removes any structure associated with clone
or site, simulating a scenario in which cells randomly adopt a phenotype without any
constraints.

2. Site-constrained random shuffle. Archetypes are assigned to cells randomly within
sites, preserving each site's archetype frequency distribution. This model retains the
overall presence of each archetype and its prevalence within each site, but removes any
structure associated with clones.

3. High site—archetype concordance assignment. Archetypes are assigned to cells to
minimize the dispersion of archetypes across sites. We carry out greedy assignment of
archetype labels to cells within sites in a way that retains the global archetype frequency,
but not the per-site frequencies. This model shows the expected diversity if cells were
insufficiently plastic to adopt the same phenotype in multiple distinct sites.

4. Site entropy within clones. We compute the entropy of site distribution within each
clone, ignoring archetype labels, to model the simplistic scenario in which the site drives
all phenotypic variation.

PLASTRO quantifies clone plasticity

The entropy of archetypes within clones provides information about the number of phenotypes a
clone can adopt. However, to measure lineage plasticity—which we define as the cells' inherent
capability to flexibly transition between various lineage states or phenotypes—we must examine
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cellular phenotypes in the context of their phylogenetic relationships. This approach allows us to
assess the extent to which cells or cell groups adopt distinct phenotypes compared to their
evolutionary ancestors.

We leveraged two complementary data modalities to develop metrics for measuring lineage
plasticity: PICASSO, which enables reconstruction of phylogenetic relationships, and archetype
analysis, which characterizes the breadth of phenotypes present in the cells. Existing methods
for measuring plasticity have key limitations, including the need to discretize continuous cell
states, dependence on fully resolved cell phylogenies, and sensitivity to neighborhood size
hyperparameters. Our integrated approach specifically addresses these concerns.

Yang and colleagues(19) defined three metrics for quantifying cellular plasticity.
scEffectivePlasticity applies the Fitch—Hartigan algorithm to calculate a normalized parsimony
score based on discrete Leiden cluster transitions across a phylogenetic tree, while
scPlasticityAllelic provides a tree-agnostic alternative by measuring the proportion of cells
belonging to Leiden clusters that are not their closest genetic relatives (determined by edit
distance). Both of these approaches rely on discretizing phenotypes into Leiden clusters, which
makes them sensitive to clustering resolution and is poorly suited for continuously varying
phenotypes, where small changes near cluster boundaries can be misclassified as plasticity.
scPlasticityL2 addresses this limitation by using continuous phenotypic measurements,
calculating the Euclidean distance in scVI latent space between cells and their tree-defined
neighbors. However, both scEffectivePlasticity and scPlasticityL2 require a fully described tree
topology and are thus highly dependent on the accuracy of tree inference, while scPlasticityL2
and scPlasticityAllelic further depend on a user-defined neighborhood size—a single predefined
value that is difficult to choose optimally across datasets with varying sequencing depth,
sampling density, and degrees of phenotypic change.

Schiffman and colleagues(49) introduce phylogenetic correlations to quantify how cellular
measurements are distributed across a phylogenetic tree using Moran's | (a measure of spatial
autocorrelation) and its bivariate generalization. This approach measures correlation patterns
directly across the phylogeny, facilitating analysis of both continuous expression patterns and
discrete cell states within their evolutionary context. The method transforms pairwise
phylogenetic distances into a weighted matrix, using carefully selected weighting functions. The
choice of weighting function is critical as phylogenetic correlations depend significantly on the
structure of the normalized weight matrix, and the function selected by the authors only includes
cells that are each other’s nearest phylogenetic neighbor. This choice of weighting function may
not be suitable for larger scale datasets on the order of tens of thousands of cells.

To address these concerns, we developed PLASTRO, a metric for quantifying plasticity from
jointly profiled lineage and scRNA-seq information, without relying on the inference of complete
and exact tree topologies, fixed neighbourhood size hyper-parameters or discretization of cell
phenotypes. PLASTRO accepts two distance matrices as input: (i) lineage distance, which
reflects how similar clones are to each other in evolutionary space, and (ii) phenotypic distance,
which reflects how similar clones are to each other functionally. Given these matrices, we can
define a lineage neighbourhood and a phenotypic neighbourhood of radius r clones for each
clone. Each clone’s neighbourhoods comprise its r closest cells in lineage and phenotype
space, respectively. The key idea behind this approach is that there will be substantial
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agreement between the lineage neighbourhood and the phenotypic neighbourhood in non-
plastic clones; thus, overlap in these neighbourhoods will be high on average. In contrast, highly
plastic clones will exhibit phenotypes distinct from other clones in their lineage, and their
neighbourhoods will overlap very little on average.

Computation of PLASTRO score

PLASTRO accepts a lineage distance matrix and a phenotypic distance matrix as input. Given
these matrices, we can define, for each cell, a lineage neighbourhood and a phenotypic
neighbourhood of radius r cells. The choice of radius clearly has a strong effect on the degree of
overlap between phylogenetic and phenotypic neighborhoods. At very small radii, even non-
plastic cells may exhibit low overlap by random chance. Conversely, at very large radii, plastic
cells will exhibit strong overlap as well, given that each neighbourhood contains nearly all the
cells in the dataset. In addition, different radii provide varying signals that help differentiate
plastic and non-plastic cells depending on the parameters of the dataset. To circumvent this
issue and avoid reliance on neighbourhood size as a parameter of our approach, we measure
neighbourhood overlap at varying scales and combine the signal present at each scale.

PLASTRO consists of four main steps:

1. Compute the lineage and phenotypic distance matrices.

2. For each cell, rank all other cells in terms of the distance from that cell in both (a) lineage
space and (b) phenotypic space.

3. For a given cell at overlap radius r, compute the overlap in their r closest cells as defined
by phenotypic distance and by lineage distance. This is the number of cells that lie in
both the phenotypic neighbourhood of size r and the lineage radius of size r.

4. Aggregate signal across radii by computing the area under the overlap versus radius
graph.

Phenotypic distance matrix

We calculate the pairwise phenotypic distances between clones using Bray—Curtis dissimilarity,
a metric that captures differences in relative abundances and is commonly used in ecological
and compositional analyses. Bray—Curtis is particularly suited to compositional data as it
accounts for the proportional structure of the data, measuring dissimilarity on a scale from 0
(identical composition) to 1 (completely dissimilar).

The archetype composition for clone A is denoted by a € R* where k is the number of
archetypes and satisfies

k

2. 9

i=1
0< a; <1.
The Bray—Curtis distance between two clones A and B is then given by

k
_ 2i=1 lai=by
= 2=

Yic1 laitby

D(4,B)
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The Bray—Curtis distance ranges from 0 to 1, where 0 indicates that the two samples have
identical compositions and 1 that the two samples have completely disjoint compositions (no
shared components).

Phylogenetic (lineage distance) matrix
We use the phylogeny inferred by PICASSO to construct a pairwise distance matrix between
clones; the distance between two clones is given by the number of edges separating them in the

phylogeny.

Overlap computation

Given a lineage distance matrix D; and a phenotypic distance matrix Dp constructed on a set of
cells, X, we compute the overlap for the cell of interest ¢ at radius r as follows. We denote the
distance in lineage space between cell ¢ and its r*nearest neighbour as D, (c,r). Similarly,
Dp(c,7) is the distance in phenotypic space between cell ¢ and its " nearest neighbour.

We define the lineage neighbourhood of cell ¢ at radius r as:

Ny (c,r) = {x €X|Dy(c,x) < D,(C,1)}
and the phenotypic neighbourhood of cell ¢ at radius r as:

Np(c,r) = {x € X|Dp(c,x) < Dp(C,7)}

The overlap for cell ¢ at radius r is then defined as the Jaccard similarity of its phenotypic
neighbourhood and its lineage neighbourhood:

Ny(cr)NNp(cr)
r

Overlap(c,r) =

Plastic cells will have lower agreement between lineage and phenotypic neighbourhoods,
particularly at lower radii, and thus a lower overlap at that radius on average, compared to less
plastic cells.

Aggregating signal across radii

To avoid hard-coding a radius which may have a strong effect on the measured plasticity, we
aggregate signals across radii by considering overlap size as a function of radius, which is an
increasing function bounded by the line y = x. We compute plasticity as the difference between
the area under the line y = x and the area under the overlap-radius curve.

For more plastic clones, the number of cells in the overlap is lower for smaller radii since the
phenotypic neighborhood is highly distinct from the phylogenetic neighborhood, and grows to
include all cells as the neighborhood size grows, resulting in a higher plasticity score. For less
plastic cells, the overlap proportion is expected to be higher overall, and the overlap-radius
curve more closely resembles the y = x line and thus yields a lower plasticity score.

Application of PLASTRO to PDAC clones

We apply PLASTRO to compute the plasticity of each clone in our data. The lineage distance
matrix is computed based on the topology of the phylogenetic tree, where clones A and B have
a phylogenetic distance D; (4, B) = n if there are n branches on the shortest tree path between
them. The phenotypic distance was computed as described above using the Bray—Curtis
dissimilarity between archetype composition of clones.
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Calculation of global plasticity

We used PLASTRO to calculate plasticity at the clonal level, but to assess global plasticity
across the entire biological system, we turned to the Mantel test (50), which assesses the
correlation between two distance matrices (the phylogenetic and phenotypic compositional
distance matrices). The Mantel test is a non-parametric test for assessing matrix correlations
and is well-suited for evaluating the phylogenetic signal in data without assuming a specific
model of evolution. Mathematically, the Mantel test statistic is computed as

1 (4;;-4) (B;j—B)

m = — th
(n-1) JZk_z (Ak,l—fi)\lzk,z (Br,1—B)

where A,B € R™™ are the distance matrices being compared, and A, B are their respective
means. The statistic ranges from —1 to +1, with +1 indicating a perfect positive correlation (as
distances in one matrix increase, distances in the other matrix increase proportionally).

A significant positive correlation between the compositional and phylogenetic distance matrices
would indicate that clones with closer evolutionary relationships also have more similar
compositions. A value of —1 represents a perfect negative correlation (increasing distances in
one matrix correspond to decreasing distances in the other, reflecting a complete inverse
relationship). A Mantel test statistic near 0 indicates no correlation between the two matrices,
such that distances in one matrix do not predict distances in the other, implying that
compositional differences are more likely to be driven by factors other than shared ancestry. We
used Spearman correlation to measure the association between matrices and performed 1000
permutations to test the significance of the observed correlation.

Data and software availability

The snRNA-seq data generated in this study are publicly available in the Human Tumor Atlas
Network (HTAN)(51) Data Portal(52) at

https://data.humantumoratlas.org/publications/hta8 2025 biorxiv alejandro-jim%C3%A9nez-
S%C3%Alnchez.

The WES data (BAM files) generated in this study are publicly available through the European
Genome-Phenome Archive (EGA) as part of the EGAD00001011109 dataset (Multi-region
sequencing of PDAC patients)y and can be accessed at https:/ega-
archive.org/datasets/EGAD00001011109. The names of the samples used in this study,
snRNA-seq HTAN IDs, and the WES EGA IDs are listed in Supplementary Table 11. Each
WES EGA ID relates to two or more snRNA-seq HTAN IDs because different experimental
protocols were applied during the nuclei extraction prior to the snRNA-seq encapsulation
process (see Methods).

The data analyzed in figure 4c and supplementary tables 7 and 8 in this study were obtained
from CZ CELLXGENE Discover database(46) at

https://cellxgene.cziscience.com/gene-expression.

The IntegrateCNV algorithm along with documentation, notebooks and tutorials is available at
dpeerlab/integrateCNV.

33

920z Asenuer z| uo 3senb Aq ypd /L | L-GZ-UBD/0LLGLLE/LL L L-GC-NVD'ZLYS-8000/8S L L0 }/10p/pd-ajoe/saiiaoueo/B10°s|euinofioee)/:dpy wouy papeojumoq


https://paperpile.com/c/V7SFau/I16pd
https://paperpile.com/c/V7SFau/BJOa
https://paperpile.com/c/V7SFau/sxkU
https://data.humantumoratlas.org/publications/hta8_2025_biorxiv_alejandro-jim%C3%A9nez-s%C3%A1nchez
https://data.humantumoratlas.org/publications/hta8_2025_biorxiv_alejandro-jim%C3%A9nez-s%C3%A1nchez
https://ega-archive.org/datasets/EGAD00001011109
https://ega-archive.org/datasets/EGAD00001011109
https://paperpile.com/c/V7SFau/lff3
https://cellxgene.cziscience.com/gene-expression
https://github.com/dpeerlab/integrateCNV

1287
1288
1289

1290
1291

1292

1293

1294

1295
1296
1297
1298
1299
1300

1301
1302
1303
1304
1305
1306
1307

1308
1309
1310
1311
1312
1313
1314

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326

The PICASSO algorithm, as well as documentation and tutorials for inferring CNA phylogenies
and visualizing transcriptional and phenotypic information alongside the tree, is available at
https://github.com/dpeerlab/picasso.

Code for computing the PLASTRO metric, as well as documentation and tutorials, is available at
https://github.com/dpeerlab/PLASTRO.

All other raw data are available upon request from the corresponding authors.

Results

A patient-specific atlas of PDAC metastasis

Using rapid autopsy specimens from a single patient with PDAC and optimized specimen
dissociation and snRNA-seq protocols, we constructed a comprehensive atlas spanning primary
and metastatic sites, enabling the study of how cancer evolves and adapts across diverse tissue
environments. We integrated snRNA-seq and matched WES data from each specimen to
uncover both clonal architecture and adaptive transcriptional programs driving metastatic
progression.

The patient was diagnosed at age 35 with PDAC and extensive synchronous liver metastases,
as evidenced by computed tomography, which was used in addition to CA19-9 tumor marker
levels to follow disease status over the 9 months that the patient survived (Fig. 1a,b). Despite
initial robust response to standard-of-care modified FOLFIRINOX (5-fluorouracil, leucovorin,
irinotecan, and oxaliplatin), the rapid emergence of refractory disease, unresponsive to second-
line gemcitabine + nab-paclitaxel, highlighted the cancer's remarkable adaptive capacity within
months of treatment.

We collected 11 tumor specimens representing diverse tissue microenvironments, including the
pancreas and six distal organs, by rapid autopsy. The sampling included, where possible,
anatomically separate lesions from the same organ (the best approximation of biological
replicates in human cancer): two peritoneal and three liver metastatic samples, in addition to
two regions of the primary tumor (Fig. 1c). These 11 samples, collected from 7 distinct organ
sites, exhibit diverse cell-type compositions and tissue morphologies (Supplementary Fig. la—

C).

We recovered 73,142 high-quality snRNA-seq profiles from all samples (Supplementary Fig.
1d—f and Supplementary Table 1), organized into 39 clusters by PhenoGraph(26), which we
annotated based on known marker genes (Supplementary Fig. 1b,c, Supplementary Table 2
and Methods). To distinguish cancer cells from non-cancer, we identified cells with high KRAS
signaling(35),(36) and detected clusters with accumulated CNAs using inferCNV(12)
(Supplementary Fig. 2a,b and Methods). We evaluated the expression of genes associated
with ductal cells, PDAC, mesenchymal, and EMT gene programs to distinguish normal ductal
cells from primary PDAC cells (Supplementary Fig. 2c). In total, we recovered 45,134 cancer
epithelial nuclei across all lesions, bearing multiple cancer-related mutations (Fig. 1d and
Supplementary Fig. 2d,e). From the bulk WES, we identified the expected common PDAC
alterations such as KRAS and TP53 missense mutations; copy number deletions of CDKN2A,
SMAD4, DCC; and copy number amplifications of MYC, MCL1, and CCNE1 (Supplementary
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Fig. 2e). In addition, CNA bulk analysis (Methods) showed both PDAC primary tumor samples
and metastatic samples harbor broad copy number alterations widespread across the genome
(Supplementary Fig. 2f). Together, these analyses underscore that the genomic landscape of
this PDAC patient recapitulates the known alterations and genomic features of metastatic
PDAC.

PICASSO resolves single-cell phylogenies

The availability of both primary and metastatic cells from the same patient provides a unique
opportunity to study how cancer cells evolve and adapt to different tissue environments. To
dissect the relative roles of genetic mutations and epigenetic plasticity in metastatic adaptation,
it is essential to reconstruct the evolutionary history of cancer cells and compare their genotypic
and phenotypic characteristics within a shared phylogenetic framework. However, current
approaches face significant limitations.

Bulk whole exome sequencing offers a coarse view of phylogenetic relationships across lesions;
however, it lacks single-cell resolution and cannot link genetic mutations to cellular phenotypes.
Combined DNA-RNA single-cell assays(53,54) are limited by cost and throughput—published
studies consist of too few cells (typically <1000)(53-55) to capture the full phenotypic
heterogeneity typically observed within lesions(56). Although copy number inference from
single-nucleus or single-cell RNA-seq (scRNA-seq) data(12,13) can inform clonal relationships,
current methods are extremely noisy and strongly impacted by confounding factors such as the
influence of tumor cell state and its related gene expression patterns(57-59). In addition, many
phylogenetic algorithms assume that mutations occur only once (“perfect phylogeny”), whereas
in cancer, CNAs are highly recurrent(60—62). For example, over 50% of CNA regions violate the
perfection assumption in our data, complicating traditional phylogenetic approaches
(Supplementary Fig. 3a and Methods). Finally, classic algorithms for phylogenetic analysis
assume evolutionary characters are reliable, whereas CNAs called from single-cell expression
data are uncertain and noisy. Uncovering genotype—phenotype relationships and the role of
epigenetic plasticity during cancer progression thus requires new approaches that can (1)
reliably infer CNAs from scRNA-seq data, and (2) construct a robust phylogeny of cancer
clones, taking into account noise, uncertainty and possible CNA recurrence, as well as the large
scale of single-cell data.

To address these challenges, we instigated a two-step approach. First, we developed
IntegrateCNV, a statistical framework that leverages matched bulk WES and snRNA-seq
profiles to infer CNAs at single-cell resolution (Supplementary Fig. 3b and Methods). Unlike
existing methods that infer CNAs genome-wide from scRNA-seq alone(13,63,64), IntegrateCNV
uses bulk WES data to identify regions harboring CNAs before performing targeted inference
from scRNA-seq data for individual cells in these candidate regions. This focused strategy
increases signal-to-noise by limiting analysis to regions with strong evidence of copy number
variation. Specifically, for each cell and candidate region, it determines whether an alteration is
likely to be present based on gene expression relative to a copy-neutral reference
(Supplementary Fig. 3b and Methods). IntegrateCNV achieves higher or equal correlation with
sample-level CNAs derived from bulk WES data compared to widely used tools such as
inferCNV(12), CopyKat(13), and Numbat(14) (Supplementary Fig. 3c), even when bulk copy
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number calls are provided to Numbat to guide inference. As IntegrateCNV only calls CNAs for a
confident subset of the genome, it is significantly faster than CopyKat and Numbat, requiring
only hours to run on a standard laptop compared to multiple days on high-performance
computing clusters.

While IntegrateCNV improves CNA detection accuracy, the profiles it generates still contain
many errors (Supplementary Fig. 3c), especially false negatives. Unfortunately, even
phylogenetic reconstruction methods that allow errors in the character matrix typically assume
them to be minimal. Moreover, the few algorithms that infer phylogenies from single-cell CNA
profiles are designed for small-scale single-cell DNA sequencing experiments and assume
error-free input(16,17). To overcome these challenges and construct robust phylogenies, we
developed PICASSO (Phylogenetic Inference from Copy number Alterations in Single-cell
Sequencing Observations), a maximume-likelihood method tailored to large-scale, noisy CNA
profiles (Fig. 2a, Supplementary Fig. 3d and Methods). PICASSO employs a tree-recursive
algorithm that starts with a single leaf node containing all cells, then iteratively decides whether
to split each leaf into two subclones. Each decision to split is based on maximizing shared
information in consensus CNA patterns, corrected for noise and missing values, using
expectation—maximization. When there is insufficient evidence for further splitting, a leaf is
marked terminal. The output of PICASSO is a probabilistic assignment of cells to clones, and a
likelihood-optimized final tree describing clonal phylogenetic relationships and associated
uncertainties. This top-down recursive approach only reconstructs major evolutionary
relationships with good evidential support, and is substantially more robust to noisy data than
standard bottom-up approaches.

We validated performance using simulated data, which demonstrated that PICASSO produces
more parsimonious phylogenies and outperforms agglomerative clustering in both speed and
accuracy under varying levels of noise (Supplementary Fig. 4a,b). By providing a probabilistic
assignment of cells to clones and a likelihood-optimized tree describing clonal relationships and
uncertainties, PICASSO is thus an effective tool for dissecting the relationship between
genotype and phenotype during cancer progression.

Evolutionary reconstruction of metastatic PDAC

We applied IntegrateCNV to cancer cells in our metastatic PDAC dataset and used PICASSO
on the resulting 45,134 single-cell copy number profiles in this large-scale dataset (Fig. 2b and
Methods). Based on CNA calls in 116 candidate regions, PICASSO resolved 62 clones with a
clear phylogenetic structure following noise removal. The resulting phylogeny is highly stable;
despite the probabilistic nature of the algorithm, most evolutionary relationships are conserved
across repeated runs (Supplementary Fig. 4c). Furthermore, bootstrapping analysis reveals
that the tree structure remains stable even when removing a fraction of cells for each region
(Supplementary Fig. 4d).

We used the inferred phylogeny to investigate patterns of metastasis, first asking which clones
in the primary tumor spread, and why. We identified four primary clones, defined as containing
at least 50% of cells from the primary tumor—two that metastasized, and two that did not (Fig.
2b). A subset of tumor cells from liver metastases were found to be closely related to the
metastasizing clones from the primary tumor. Notably, liver-dominant clones are the most
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closely related metastatic clones to those found in the primary tumor, suggesting that the liver
was the initial site of metastasis in this patient, consistent with the observation that PDAC
typically spreads to the liver first(65) (Fig. 2b,c). We also observed that peritoneal samples,
unlike other organ sites, were composed of several clones that appear to be unique or nearly
unique to that site (Fig. 2b). This pattern could be due to several reasons, including better
sampling (peritoneum has many more cells than other sites; Supplementary Fig. 2d) or limited
inter-metastatic seeding due to the large physical distance separating peritoneal lesions from
other metastases (Fig. 1c).

Analysis of the metastasizing primary clones revealed distinct genomic and transcriptional
features associated with metastatic potential. Metastatic clones from the primary had many
more CNAs than their non-metastatic counterparts. Notably, amplification of the oncogenic
KRAS®?V locus is a hallmark of nearly all metastatic clones. We recently showed that
oncogenic KRAS enhances plasticity during PDAC premalignancy, partly by remodeling the
communication between cancer cells and their environment(66). Our findings suggest that
oncogenic KRAS continues to drive plasticity in advanced disease, and that its amplification
provides an additional boost that promotes metastatic competence.

In addition to genetic alterations, our dataset provides a rare opportunity to examine the
transcriptional states of metastasizing clones. Mapping known PDAC tumor phenotypes
revealed that most primary tumor cells from metastatic clones display a mesenchymal
phenotype, indicating an epithelial-to-mesenchymal transition (EMT), which has been strongly
associated with metastasis(67) (Fig. 2d,e and Methods). In contrast, non-metastatic clones are
enriched for epithelial phenotypes, suggesting that metastatic clones are already
transcriptionally poised for dissemination while in the primary tumor. The observation of
mesenchymal phenotypes in cells from non-metastatic clones signifies that EMT alone is
insufficient for successful metastasis. This level of resolution is uniquely enabled by our
approach, as it allows us to connect transcriptional phenotypes to phylogenetic patterns.

The phylogenetic tree provides insights into metastatic seeding and spread. While some clones
map to a dominant metastatic site, most are found in multiple organs, suggesting that metastatic
clones can adapt to diverse tissue environments. Conversely, each metastatic site contains
cells from multiple clones, some separated by large phylogenetic distances (Fig. 2b), implying
that metastatic sites were seeded by multiple clones in independent events. This and similar
findings in other contexts(68,69) support the idea that once tumor cells establish themselves at
distal sites, they remodel the local microenvironment to create a favorable "soil" for further
seeding by the primary tumor or other metastases(70).

Archetype analysis identifies metastatic gene programs

The observation that most clones metastasized to multiple organs raises the question of how
tumor cells adapt to these distinct environments. While metastatic cells must overcome
universal hurdles such as migration and extravasation to establish at distal locations, each
organ presents unique challenges requiring site-specific adaptations for successful colonization
and growth. We reasoned that these adaptations should manifest as highly optimized
transcriptional phenotypes, and that examining multiple metastatic sites from the same primary
tumor would make it possible to uncover both shared and organ-specific mechanisms.
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To systematically identify these adaptive programs, we applied archetype analysis(71,72),
which identifies boundary phenotypes known to represent optimized tasks, using a two-tiered
approach (Supplementary Fig. 5a,b and Methods). Our strategy was to first analyze each
organ separately, identifying four to six archetypes per tissue in a highly robust manner
(Supplementary Figs. 5¢ and 6a). Archetype neighborhoods did not associate with cell-state
density (Supplementary Fig. 5c), suggesting that archetype neighborhoods may represent
both major cancer cell state phenotypes (high-density) and rare (low-density) cancer phenotype
states(39). Next, to find archetypes and programs that are potentially shared across organs, we
integrated all 14,513 archetype-labeled cells (32% of all cancer cells) into a single matrix and
applied graph-based clustering, yielding 19 archetype clusters (Fig. 3a and Methods). Finally,
each archetype cluster was annotated using differentially expressed genes (DEGs) and
Hotspot(41) analysis (Fig. 3b and Methods).

Our analysis generated well-defined archetype clusters, including some that are unique to one
organ and others that appear in multiple organs (Fig. 3b,c, Supplementary Fig. 6b and
Supplementary Tables 3-5). For example, cells in archetype clusters 3, 9, 14 and 18 are only
found in primary PDAC; cluster 13 (unfolded protein response: HSP90AA1l, HSPH1, HSPD1,
DNAJAL1) is unique to the liver; and cluster 8 (development: PBX1, HES1, PDGFB and wound
healing: FOS, JUNB, NR4Al, ANGPTL4) is specific to omentum. Additionally, cluster 5
(gastrointestinal: MUC13, FABP1, FCGBP) is found mostly in the stomach wall and cluster 2
(lipid metabolism: HMGCS1, SQLE, FDPS) is mainly in the peritoneum.

In contrast, we found that archetypes related to core cellular processes, such as cell cycle,
migration, EMT, and cell-environment interactions, such as extracellular matrix (ECM)
interactions and inflammation, are typically shared across multiple organs (Fig. 3b,c). To gain
insight into biological functions that broadly contribute to metastatic capacity, we focused on
archetype clusters 1, 4 and 16, which are present in multiple organs that together comprise all
seven organ sites (Fig. 3c). These three clusters express mesenchymal genes and transcription
factors related to EMT programs associated with metastatic spread(73) (Fig. 3d). However,
further analysis revealed that these apparently similar EMT states are distinguished by distinct
gene and regulatory programs (Supplementary Tables 4 and 5).

Cluster 1 is enriched for programs associated with cytokine and chemokine secretion as well as
TNF-o/NF-kB and IL-17 signaling, suggesting inflammatory activation. Cluster 16 is enriched for
focal adhesion and ECM interactions. ECM remodeling is required for cancer cell growth and
can recruit immune cells(74), suggesting a potential role in establishing the metastatic niche. In
contrast, cluster 4 is enriched for glucagon signaling, a common liver-expressed pathway(75)
that may reflect the influence of the liver microenvironment on cluster 4 cells, most of which
originate in this organ (Fig. 3c). We found that cluster 4 has the highest expression of MYC,
MYC target ODC1, and CA9, which can be regulated by MYC under hypoxic conditions(76), as
well as genes downstream of MYC signaling (Fig. 3d), and is most enriched for MYC-
expressing cells (Supplementary Fig. 6c,d). PDAC patient data and mouse models have linked
MYC hyperactivation to more aggressive metastatic disease(77) and chemoresistance(78).
Moreover, both MYC and EMT pathways are enriched in metastases compared to primary
tumors in PDAC patients(77,79). Further distinguishing these states, archetype cluster 1
expresses inflammatory genes, while cluster 16 expresses HLA-I antigen processing genes
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(Fig. 3d). Together, these findings reveal three distinct EMT phenotypes: archetypes 1 and 16
have a mesenchymal profile associated with inflammatory response, while archetype 4 has an
EMT program that co-occurs with MYC signaling.

Unlike archetype analysis, traditional clustering approaches are not designed to identify gene
programs optimized for specific biological tasks. Rather, they aim to define groups of cells that
have more similar average expression than cells in other clusters. Direct comparison of these
approaches in our dataset reveals substantial differences in cell groupings, DEGs between
groups, and biological annotations (Supplementary Fig. 6e—g). While clustering detects broad
processes such as EMT, proliferation, and stress (Supplementary Table 6), more specific
adaptations to metastatic sites, such as lipid metabolism and gastrointestinal gene programs,
are only identified by archetypes (Supplementary Table 4). The ability to identify adaptive
programs in archetype analysis stems from the focus on boundary states that represent
specialized cellular functions, rather than average behaviors captured by clustering. The
combination of comprehensive sampling across metastatic sites and archetype-based analysis
thus provides a powerful framework for discovering key metastatic phenotypes.

Stomach wall metastases express gastrointestinal gene programs

While liver metastasis in PDAC is well-studied, metastasis to the stomach wall is rare and poorly
characterized, despite often leading to severe gastrointestinal complications including pain,
ascites, bowel obstruction and other morbidity. Our analysis revealed evidence of organ-specific
adaptation: tumor cells from the stomach wall are enriched in archetype cluster 5 (AC5), and the
vast majority of AC5 cells originate from this site (Figs. 3b,c and 4a). Hotspot analysis identified
three distinct gene modules expressed by AC5 cells that correspond to intestinal, stomach, and
gallbladder epithelial cells based on healthy human single-cell reference data(46) (Fig. 4b).
These gene modules are minimally expressed in normal pancreatic tissue, indicating that while
these metastatic cells are of pancreatic origin, they have acquired transcriptional programs
resembling other gastrointestinal epithelia (Fig. 4c and Supplementary Tables 7 and 8).

Archetype cluster 5 genes reflect diverse functions of the gastrointestinal tract, including
digestion, nutrient absorption, protective barrier maintenance, and bile production (a gallbladder
function), which are distinct from physiological pancreatic capabilities. Although the pancreas is
a gastrointestinal tissue, it is considered an accessory organ whose primary function is to
secrete digestive enzymes and bicarbonate to neutralize stomach acid. We found AC5
gastrointestinal genes related to cell adhesion and structural integrity (CDH17, RHPN2, CLDN7,
MYO1A, MYO7B), mucus production and protection (MUC17, MUC13, MUC5B, FCGBP,
GCNT3), metabolism and transport (HSD17B2, FABP1, SLC22A18, GDA), and epithelial cell
differentiation (PLACS8). As expected, AC5 genes are specific to the archetype cells and
minimally expressed in non-archetype cells in the tissues present in AC5 (Supplementary Fig.
6h). Our analysis thus demonstrates that PDAC metastatic cells acquire extensive new
gastrointestinal features in the stomach, likely as an adaptation or response to its unique
signaling milieu.

Interestingly, a small group of cells from the primary tumor also predominantly express the AC5
gene program. Mapping archetype clusters to the primary tumor revealed that AC5 cells
correspond to a classical-mucin phenotype (Fig. 2e and Supplementary Fig. 7a), which has

39

920z Asenuer z| uo 3senb Aq ypd /L | L-GZ-UBD/0LLGLLE/LL L L-GC-NVD'ZLYS-8000/8S L L0 }/10p/pd-ajoe/saiiaoueo/B10°s|euinofioee)/:dpy wouy papeojumoq


https://paperpile.com/c/V7SFau/lff3

1538
1539
1540
1541
1542
1543
1544
1545

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

been observed in human primary PDAC tumors, as well as primary lung, colorectal, gastric(80),
liver, and head and neck cancers(81). Consistent with this phenotype, AC5 cells in primary
tumor express high levels of mucin (MUC13, MUC5AC, MUC5B), mucin production (GCNT3,
TFF1-TFF3), and mucus-producing goblet cell differentiation (CREB3L1) genes, compared to
other primary tumor cells (Supplementary Fig. 7b). We find that the classical-mucin phenotype
is more similar to metastatic states than to other primary phenotypes, as classical-mucin cells
co-embed near metastatic AC5 cells and are separated by shorter diffusion distances, reflecting
greater transcriptional similarity (Supplementary Fig. 7c and Methods).

We examined clonal membership to understand the origins of AC5 classical-mucin cells in the
primary tumor, finding that they belong to advanced clones composed mainly of metastatic liver
and stomach cells (Supplementary Fig. 7d). While it is difficult to conclusively distinguish
between reseeding from stomach metastases and primary spread to the stomach, several
observations favor the reseeding hypothesis. These clones are enriched for more advanced
classical-mucin phenotypes, and not the earlier classical-mucin—HLA-II phenotypes (Fig. 2e
and Supplementary Fig. 7e). Their copy number profiles are more similar to cells that
metastasized to the stomach and express the AC5 phenotype compared to other primary cells
(Supplementary Fig. 7f). To confirm the clone assignments of primary cells expressing ACS5,
we examined the CNA profiles of cells from the two advanced AC5 clones harboring the most
primary cells (clones | and J, Supplementary Fig. 7d) and found that they are more similar to
the profiles of their assigned clones than those of non-metastasizing primary clones
(Supplementary Fig. 7f and Methods). The primary cells in these clones exhibit similar
assignment confidence values as the other cells (primarily stomach and liver) in their assigned
clones (Supplementary Fig. 7f). In addition, these primary cells show higher copy number
burden than other primary cells, reaching levels comparable to metastatic cells
(Supplementary Fig. 7g,h). Thus, although few primary cells express the AC5 program, the
combination of their advanced phenotype, greater similarity to stomach metastatic cells than to
other primary cells, and elevated copy number burden provides evidence consistent with
reseeding from stomach metastases.

Another mucus production program, which includes robust expression of transcription factor
SPDEF and its targets AGR2 and ERNZ2, is highly expressed in precancerous lesions and
classical tumor subtypes(82). We found that these genes are enriched in primary archetype
cluster 14 (AC14), which also expresses high levels of HLA-II molecules, thus fully capturing the
PDAC primary classical-mucin—HLA-II phenotype (Fig. 3b and Supplementary Fig. 7b).
Moreover, the classical-mucin—HLA-II cells belong to the earliest clone in the phylogeny (Fig.
2b,d,e), supporting that this program is indeed related to early PDAC stages, as reported in
mouse models and laser-capture microdissected epithelium from patients with PDAC(82). In a
phase Il first-line chemoimmunotherapy clinical trial in advanced gastroesophageal
adenocarcinoma patients, a gene program containing AC5 genes TFF1 and MUC5AC was the
program most highly expressed by cancer epithelial cells in fast-progressing patients compared
to slow progressors(83). In contrast, expression of AC14 genes (HLA-II programs) by cancer
epithelial cells was significantly higher in slow progressors(83). Our results suggest that PDAC
cells can express at least two different mucin production programs—classical-mucin—HLA-II
captured by AC14, representing earlier-stage primary cells with a less aggressive prognosis,
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and classical-mucin associated with AC5, representing later clones associated with greater
metastatic potential or chemotherapy resistance.

Peritoneal metastases rewire lipid metabolism

Archetype cluster 2 (AC2) consists almost entirely of cells from the peritoneum (Figs. 3b and
5a). The peritoneal cavity is the second most common site of metastasis in pancreatic
cancer(84), but the mechanisms of metastatic initiation, progression, and adaptation remain
poorly understood. Unlike hematogenous metastases to the liver or lungs, which typically
present as discrete nodules or masses, peritoneal dissemination often occurs through trans-
coelomic spread, leading to thin, diffuse layers over the omentum that escape detection(85).
Peritoneal metastases are typically only diagnosed after reaching an advanced, treatment-
refractory state known as peritoneal carcinomatosis, which accelerates cachexia—a syndrome
characterized by malabsorption, significant weight loss, malignant ascites, and bowel
obstruction—and the subsequent rapid decline limits opportunities for investigation.

We found that the two peritoneal metastases from opposite flanks of the patient both contribute
substantially to AC2 (Fig. 5a) and have very similar transcriptomic profiles (median 33% of a
cel’'s kNN graph neighbors are from the other site), including strong upregulation of lipid
metabolism genes compared to other archetype clusters (Supplementary Fig. 8a,
Supplementary Table 3 and Methods). Hotspot identified multiple gene modules, including one
associated with fatty acid and cholesterol biosynthesis and another with oxidative stress and
detoxification (Fig. 5b). Genes uniquely upregulated in AC2 include key players in cholesterol
(TM7SF2) and fatty acid (ME1, IDH1) biosynthesis; aldo-ketoreductases (AKR1B10, AKR1C2,
AKR1C3); prostaglandin regulators (PTGIS, PTGR1); and redox balance genes (GCLM, GCLC,
GPX2, GSR, PIR, SLC7A11, TXNRD1, UGDH) that respond to oxidative stress triggered by
lipid production and accumulation (Fig. 5b and Supplementary Fig. 8b). Genes involved in lipid
droplet turnover (SQSTM1), lipid transport (ABCA10, ABCC3) and adipocyte differentiation
(PLACS) are also differentially upregulated in AC2 cells. As expected, AC2 genes are specific to
the archetype cells and minimally expressed in non-archetype cells in the peritoneum samples
(Supplementary Fig. 6h). Lipid metabolic and oxidative stress genes are not expressed
appreciably in tumor immune or stromal cells, confirming that their detection in cancer cells is
not due to ambient peritoneal RNA (Supplementary Fig. 8b).

The peritoneal cavity is supported by metabolically active adipose tissue that is rich in free fatty
acids and signaling molecules, including adipokines and cytokines(86). Digital pathology of
peritoneal and primary tumor sections revealed a greater fraction of adipose tissue in peritoneal
metastases than in primary samples, which are dominated by fibrotic stroma (Fig. 5c,d).
Moreover, whereas cancer cells in primary PDAC tumors typically occur in multiple distinct
pockets(87), they are interspersed among adipocytes in the peritoneal samples
(Supplementary Fig. 8c). The upregulated genes associated to AC2 constitute many
components of the lipogenic pathway (Supplementary Fig. 8d), by which fatty acids are
synthesized for energy storage and cell membrane biosynthesis, primarily in the liver and
adipose tissue. Thus, in contrast to the catabolic processes and patient-level wasting caused by
cachexia, our observations suggest that metastatic PDAC cells respond to the adipocyte-rich
peritoneal environment by upregulating lipid anabolism and oxidative stress detoxification. A
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lipogenic phenotype has been reported previously in PDAC cell lines(88) as well as preclinical
models and PDAC patients(89), but its robust upregulation has not been previously associated
with peritoneal metastasis.

To determine whether the lipid metabolic phenotype generalizes beyond the two independent
samples in our patient, we obtained two post-mortem peritoneal metastases from a different
patient with PDAC and performed snRNA-seq and similar data analysis (Methods). Importantly,
the second subject was 70 years old, succumbed to metastatic disease within three months of
diagnosis, and did not receive treatment. Despite the markedly different clinical circumstances
in these two cases, we found that fatty acid and cholesterol biosynthesis, as well as cholesterol
metabolism and homeostasis, are the most significantly enriched gene programs in the second
case (Supplementary Fig. 9a and Supplementary Table 9).

Lipid metabolic rewiring is not driven by genotype

We sought to understand whether the highly specialized phenotypes that dominate peritoneal
metastases are due to clonal selection of genetically encoded adaptive traits, or were acquired
by epigenetically plastic cells in response to a novel environment. To help distinguish between
these possibilities, we leveraged the two anatomically separate peritoneal metastases and the
cancer phylogeny.

We hypothesized that if clonal selection—under the clonal evolution model(90)—drove the lipid
anabolism phenotype, distinct clades of AC2 clones would map to each peritoneal site; after
passing through the original selection bottleneck, cells at each site would accumulate unique
sets of alterations over time due to genetic drift. On the other hand, if the lipid anabolism
phenotype was due to plastic cells responding to the lipid-rich peritoneal environment, there
would be no association between clone identity and peritoneal site, and diverse peritoneal
clones could contain cells from opposite flanks of the body. We assessed which lipid anabolism-
enriched clones (defined as >10% of cells with AC2 phenotype) belong to each peritoneal
metastasis in the phylogenetic tree, and found 26 clones spread across all three major clades,
including early branches with fewer CNAs as well as late branches (Fig. 5e and
Supplementary Fig. 9b). Both pure and mixed clones are present in the independent peritoneal
sites. For example, early clones enriched for lipid metabolism are derived from both peritoneum
A (16% to 68%) and B (8% to 40%)) sites, and late clones are derived from a mix of sites as well
(69% to 83% peritoneum A and 8% to 12% peritoneum B). Intermediate clones are pure for
either peritoneum site but still share the same clades, suggesting common ancestors in the
primary tumor (Supplementary Fig. 9b).

The existence of diverse clones enriched for lipid anabolism over several branches of the tree—
some populating both peritoneal sites, some specific to each site but belonging to the same
clade—support the hypothesis that cancer cell plasticity drove the lipid anabolism phenotype
through phenotypic convergence to local environmental pressures.

Transcriptomic plasticity is a hallmark of PDAC metastasis

The plasticity we identified in peritoneal tumors involves multiple clones that express a diversity
of additional archetypes, motivating a more systematic investigation of whether plasticity is a
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general feature of PDAC metastasis. Indeed, while each clone represents a shared genetic
lineage, clones throughout the phylogeny do not appear to be constrained by their lineage and
express a diversity of archetypal phenotypes, corresponding to high per-clone archetype
entropy (Fig. 6a and Methods). This is in line with a lineage tracing study in a PDAC mouse
model, which found that cell cycle and EMT cell states are not correlated with cellular
phylogeny(49). We asked whether the diversity of archetypes that clones exhibit is greater than
expected, which would indicate substantial phenotypic plasticity (Methods). The empirical
distribution of per-clone archetype entropy (mean O = 1.42) is shifted higher than expected
under simulations in which the site is highly predictive of phenotype (I = 0.97), but lower than
expected under random assignment of archetypes to cells ([1 = 2.42, Fig. 6b and Methods).
This suggests that the variety of archetypes present in each clone is not driven by the diversity
of tumor sites within each clone, but rather by the ability of cells to acquire a range of
phenotypes even within a single site.

To quantify plasticity more rigorously at the clonal level, we developed plasticity analysis from
single-cell transcriptional and evolutionary neighborhood overlap (PLASTRO) (Supplementary
Fig. 10 and Methods). PLASTRO compares evolutionary similarity (lineage distance) and
phenotypic similarity (phenotypic distance with respect to archetype composition) between cells,
based on the assumption that low cellular plasticity should result in a strong overlap between
lineage and phenotype. Specifically, for a given clone, it quantifies the degree of discordance
between phenotypic and phylogenetic neighborhoods, while remaining insensitive to
neighborhood size. Interestingly, we found that cells with few CNAs tend to have low PLASTRO
scores, whereas more advanced clones bearing extensive CNAs score high for plasticity (Fig.
6c). Given that CNA burden correlates with metastasis in PDAC and other cancers(4), our
finding that CNA burden is strongly associated with plasticity is consistent with a model whereby
plasticity enables metastasis. To evaluate this effect more quantitatively, we performed a Mantel
test(50), which assesses the correlation between two distance matrices (Methods). We
observed a Mantel test statistic of 0.13 (p < 1 x 1073) for matrices of phenotypic distances
within distinct clones, suggesting that cells are plastic (the statistic ranges between —1 and 1,
with 0 denoting no correlation), as their phenotypes differ significantly from that of their lineage.

Discussion

Rapid autopsy makes it possible to investigate clonal lineage histories and adaptive phenotypes
in a single cancer ecosystem. In our comprehensive analysis of a patient with PDAC who
underwent rapid autopsy, we evaluated the phenotypic landscape that a single cancer can
occupy and developed computational approaches that bridge single-cell transcriptomics with
phylogenetic reconstruction to dissect the relative contributions of clonal evolution and
transcriptomic plasticity to metastatic adaptation. Our analysis reveals that transcriptional
plasticity, rather than genetic evolution and selection, is the dominant force shaping metastatic
phenotypes.

We note that we tested multiple tools for phylogenetic reconstruction from bulk WES data, but
each produced a strikingly different topology. Moreover, a probabilistic approach, CONIPHER,
yielded multiple divergent trees with similar likelihoods. CONIPHER is designed to detect
subclonal structure from bulk data, and consistently revealed extensive clonal mixing within
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each site and reseeding events to the primary tumor—supporting our own observations—but
could not resolve a tree with more than a few branches that are supported across alternative
trees, reinforcing the need for single-cell resolution in this context.

While the patient in this study was diagnosed with metastatic PDAC at an unusually young age
(35 years old), our molecular analyses are highly concordant with previously published datasets
derived from larger and more typical PDAC cohorts (48,81). Specifically, the transcriptional
phenotypes observed in this patient's primary tumor closely match subtype programs identified
in a comprehensive study of 43 treatment-naive and neoadjuvantly treated PDAC specimens
profiled using single-nucleus RNA sequencing and spatial transcriptomics. This molecular
overlap suggests that the cellular programs we identified reflect conserved features of PDAC
biology, rather than patient-specific outliers.

A critical insight from our study is that successful metastatic clones exhibit remarkable
phenotypic diversity, even within the same anatomical site. We demonstrate that genetically
related metastatic clones can colonize multiple organs while manifesting diverse transcriptional
states independent of their anatomical location. Moreover, each organ site harbored multiple
phylogenetically distant clones, suggesting extensive parallel seeding. This evidence points to
non-genetic plasticity as a key mechanism enabling metastatic cells to transition between
different gene programs across metastatic sites, thereby enhancing their adaptability and
survival. This plasticity is notably amplified in clones with higher CNA burden, suggesting that
genomic instability may facilitate transcriptional adaptation—not through specific mutations, but
by creating a permissive state for phenotypic exploration. This observation aligns with recent
findings that chromatin accessibility increases with genomic instability in various cancers,
potentially enabling broader transcriptional responses to environmental cues(91,92).

Our profiling of common but understudied metastatic sites in PDAC revealed distinct organ-
specific adaptation programs, providing new insight into how cancer cells respond to diverse
tissue environments. The acquisition of gastrointestinal programs by stomach wall metastases
demonstrates remarkable cellular plasticity, suggesting that tumor cells can co-opt organ-
specific transcriptional modules to enhance colonization and acquire fitness in new
environments. Similarly, peritoneal metastases upregulate lipid anabolism and oxidative stress
response pathways, suggesting that tumor cells adopt metabolic features of adipocytes and
adapt their redox response to counteract reactive oxygen species generated by metabolic
stress. This is consistent with prior studies showing that lipid metabolism plays a crucial role in
PDAC progression(93) and chemoresistance(94). Both site-specific gene programs suggest that
metastatic cells adapt to their microenvironment, possibly in response to stroma-derived
signaling and environment lipid availability(95). The convergent adaptation of these phenotypes
across multiple independent clones strongly supports the role of microenvironmental pressures
in shaping cellular phenotypes, independent of genetic evolution.

The methodological advances developed for this study—particularly PICASSO for phylogenetic
reconstruction and our approach to archetype analysis—provide a robust framework for similar
investigations across cancer types. However, several critical questions emerge from our
findings. How do specific tissue environments orchestrate the activation of adaptive programs?
Can we target the mechanisms underlying cellular plasticity with therapies? What do genomic
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markers such as RAS amplification contribute, given the importance of plasticity as an emerging
resistance mechanism to RAS therapies? Although we focused on epithelial cells and optimized
their capture over other cell types, the role of stromal cells also remains an open question.
Future studies combining spatial transcriptomics with single-cell lineage tracing could help
address these questions and further illuminate the complex interplay between genetic
inheritance and environmental adaptation in cancer progression.

Our findings emphasize the fundamental roles of cellular plasticity and metabolic adaptation in
enabling the successful colonization of diverse organ sites. They suggest that effective
therapeutic strategies must account for both genetic and non-genetic mechanisms of
adaptation, potentially through approaches that constrain cancer cell plasticity or target site-
specific vulnerabilities. These insights may guide the development of more effective treatments
for metastatic disease, particularly for challenging sites such as peritoneal metastases that
currently lack targeted therapeutic options.
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Figure legends

Figure 1 | Profile of a cancer ecosystem from a single PDAC patient. a, Top, maximal
diameter of primary and liver tumors, based on CT measurements at the indicated time points
from diagnosis (day 0). Blaixedck bar marks the period of mMFOLFIRINOX treatment. Bottom,
levels of CA 19-9 tumor marker in blood, based on indicated measurement days. Baseline at
diagnosis (day 0) is 13,000 U ml-1 and upper physiological limit is 37 U ml-1 (red line). b,
Representative CT scans. Primary and liver metastatic tumors are overdrawn with colored
ellipses. L, left; R, right; A, anterior; P, posterior. ¢, Anatomical location of collected
biospecimens used to generate matched snRNA-seq, WES, and hematoxylin and eosin (H&E)
data. Circle diameter indicates relative tumor size. d, Force-directed layout (FDL) of cancer cell
transcriptomes (45,134 nuclei), colored by sample (Methods). Stomach refers to stomach wall
metastasis.

Figure 2 | PICASSO generates a CNA-derived single-cell phylogeny. a, PICASSO takes
CNA profiles from scRNA-seq data (inferred by IntegrateCNV, for example) as input and
encodes them in a probabilistic manner, then iteratively splits clones into subclones based on
clustering shared patterns by expectation—maximization (Methods). The algorithm proceeds in a
top-down fashion until it reaches terminal leaves, which lack evidence for further splits.
PICASSO output is the probabilistic assignment of cells to subclones and a maximum-
likelihood-optimized tree. b, Phylogenetic relationships between clones (rows) derived from
single-cell CNA profiles, for all cancer cells in the rapid autopsy dataset. Each stacked bar plot
indicates the clone’s site composition (fraction of cells from each metastatic site), and the
heatmap at right shows the modal copy numbers inferred by IntegrateCNV for that clone. The
four clones that are predominantly from primary tumor (stars) are distinguished by whether they
also contain cells in metastatic lesions. ¢, FDL of all cancer cells, colored by sample of origin for
cells from the primary tumor clones (>50% cells from primary tumor) that also contain metastatic
cells. Inset indicates the number of cells from each sample in these two clones. d,e, FDL of
PDAC primary cells showing cancer clones colored by proportion of primary cells within the
clones (d) and PDAC phenotypes (e). Gray cells in d were removed from phylogenetic analysis
due to low transcript counts (Methods).

Figure 3 | Archetype gene programs of primary and metastatic PDAC. a, UMAP of
clustered archetypal cells from primary and metastatic sites, colored by cluster. Gray box
encompasses three distinct archetype clusters related to EMT. b, Archetype gene program
expression in each tumor sample. c, Fraction of cancer cells per archetype cluster, colored by
sample. d, Expression of individual markers in archetypes 1, 3, 4 and 16. Archetype 3
corresponds to classical-squamous cells that are more epithelial, and is included for
comparison. Canonical markers are indicated for epithelium, mesenchymal, and EMT, MYC,
MYC targets and modules downstream of MYC signaling, inflammation, and HLA-I antigen
processing and presentation.

Figure 4 | A gastrointestinal archetype indicates PDAC adaptation to the stomach
environment. a, UMAP embedding (left) and distribution by sample (right) of archetype cluster
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5 cells. b, Hotspot modules in all archetype cluster 5 cells, based on 78 highly variable genes
with significant autocorrelation (FDR < 0.05). Highlighted genes were used to annotate intestine,
stomach and gallbladder modules. ¢, Expression of archetype cluster 5 genes in normal
pancreas and gastrointestinal tissues based on the CZ CELLXGENE Discover database.

Figure 5 | Lipid metabolic rewiring is a prominent feature of peritoneal metastases. a,
UMAP embedding, colored by tissue site (left), and sample distribution and composition (right),
of all archetype 2 cluster cells. b, Archetype 2 Hotspot analysis, highlighting lipid metabolism
and oxidative stress and detoxification modules. ¢, Digital pathology of H&E-stained primary
and peritoneal metastasis tissue, showing expansion of adipose tissue in the peritoneum. d,
Quantification of adipose and fibrotic tissue in sections in (c). e, Cancer clone phylogeny,
indicating AC2-enriched clones (purple triangles), fractional tumor site composition for each
clone (stacked bars) and proportion of cells in each clone assigned to AC2 (outer circle).

Figure 6 | Transcriptomic plasticity is a common feature of metastatic cells. a, PDAC
tumor cell clonal phylogeny (center), showing fraction of cells from each site, fraction of
archetypes, and archetype entropy from inside to outside, for each clone (leaf in the phylogeny).
b, Entropy distributions for three null models and for data in this study (Methods). Bars indicate
the number of clones for each binned entropy value (n = 62 clones for each distribution), curves
represent smooth trends, and dashed vertical lines correspond to mean entropy. Observed
clones have lower archetype entropy than clones with randomly assigned archetypes, but more
than models based on strong archetype bias for metastatic site, indicating high cellular
plasticity. ¢, PDAC tumor cell phylogeny showing copy number profiles of each clone,
PLASTRO score (Methods), and archetype composition. The scatterplot indicates that a higher
CNA burden is associated with higher plasticity. r, Pearson correlation.
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Figure 3
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Figure 5
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