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Abstract 66 

Metastasis is the leading cause of cancer deaths. To develop strategies for intercepting 67 

metastatic progression, a better understanding of how tumor cells adapt to vastly different organ 68 

contexts is needed. To investigate this question, a single-cell transcriptomic atlas of primary 69 

tumor and diverse metastatic samples (liver, omentum, peritoneum, stomach wall, lymph node, 70 

and diaphragm) from a patient with pancreatic ductal adenocarcinoma who underwent rapid 71 

autopsy was generated. Using unsupervised archetype analysis, both shared and site-specific 72 

gene programs were identified, including lipid metabolism and gastrointestinal programs 73 

prevalent in peritoneal and stomach wall lesions, respectively. We developed PICASSO as a 74 

probabilistic approach for inferring clonal phylogeny from single-cell and matched whole-exome 75 

sequencing data. Comparison of PICASSO-generated clonal structure with phenotypic 76 

signatures revealed that pancreatic cancer cells adapted to local environments with minimal 77 

contribution from clonal genotype. Our results suggest a paradigm whereby strong 78 

environmental effects are imposed on highly plastic cancer cells during metastatic 79 

dissemination. 80 

Significance 81 

Single-cell transcriptional profiling of primary tumor and metastases from rapid autopsy samples 82 

of an individual with pancreatic cancer, combined with probabilistic clonal inference by 83 

PICASSO, reveals substantial transcriptomic plasticity in metastatic cells. 84 
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Introduction 85 

Metastasis is a systemic disease responsible for the majority of cancer-related deaths(1), yet 86 

our understanding of how tumor cells disseminate and thrive in distant tissues remains limited. 87 

To metastasize, cancer cells must overcome many hurdles, including the need to escape from 88 

the tissue of origin, migrate, evade immune surveillance and invade distant tissue(2). The 89 

microenvironments of different organs each pose additional adaptive challenges for cancer cell 90 

colonization. For some tumor types, selection may act on intratumor genetic heterogeneity to 91 

shape these adaptive processes(3), whereas for others, genomic studies have uncovered few 92 

recurrent mutations associated with specific metastatic behaviors or organotropism(4). More 93 

recently, epigenetic plasticity has emerged as a hallmark of cancer, which confers the ability to 94 

reinvent cellular phenotypes and drive phenotypic heterogeneity in the service of adaptation(5). 95 

How this plasticity manifests at the molecular level, the extent to which it shapes tumor 96 

progression(6), and its relevance to treatment(7) are major open questions. 97 

Pancreatic ductal adenocarcinoma (PDAC) exhibits particularly low heterogeneity in driver 98 

mutations, which tend to be shared across primary and metastatic sites(8), underscoring the 99 

need to identify alternate adaptive mechanisms. Advanced tumors are not commonly resected 100 

and metastases are rarely biopsied sequentially, making it difficult to reconstruct tumor 101 

progression and providing scant metastatic data in some organs. Rapid autopsy offers a critical 102 

opportunity for systematically investigating shared and organ-specific metastatic programs in 103 

multiple lesions derived from a single germline(9). The ability to collect multiple independent 104 

metastases from a single organ also provides an unparalleled approximation of a controlled 105 

biological replicate in human cancer. Such post-mortem sampling, coupled with genotyping and 106 

lineage reconstruction, recently provided insights into modes of evolution and metastatic 107 

seeding in PDAC(10). 108 

To gain insights into the molecular mechanisms of adaptation in this patient-centric view, 109 

however, requires a combination of clonal lineage information and deep phenotypic profiling. 110 

Single-cell gene expression data provides rich phenotypic information at the cellular level, but it 111 

is problematic for clonal and phylogenetic reconstruction, whereas simultaneously sequencing 112 

single-cell DNA can provide genotype information but does not scale sufficiently. Typical 113 

phenotypic analyses are also not designed to find adaptive gene programs. Computational 114 

approaches are thus needed to overcome these challenges, and to enable the comparison of 115 

clonal lineage and molecular phenotypes in a single cancer across multiple lesions and organs. 116 

We collected two primary and nine metastatic tumors from a patient with PDAC who underwent 117 

a rapid autopsy, and subjected the samples to single-nucleus RNA sequencing (snRNA-seq), 118 

recovering the transcriptomes of over 45,000 cancer epithelial cells. Using archetypal analysis, 119 

we identified adaptive gene programs that are missed by standard clustering. To investigate the 120 

evolutionary dynamics of metastatic PDAC, we developed IntegrateCNV, an approach to 121 

robustly infer copy number alterations (CNAs) from snRNA-seq and matching bulk whole exome 122 

sequencing (WES) data, and PICASSO, a method to identify cell clones and generate clonal 123 

phylogenies using potentially noisy single-cell CNA profiles. We find evidence of strong 124 

adaptation to local organ microenvironment, including metabolic rewiring of peritoneal lesions—125 

a very common but little-studied site of metastasis in PDAC—as well as multiple different 126 
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shared epithelial–mesenchymal transition programs. Our work identifies plasticity as the major 127 

force in PDAC metastatic adaptation, and provides approaches for deep phenotypic and 128 

phylogenetic analysis from single-cell expression data. 129 

Materials and Methods 130 

Biospecimen collection 131 

Patient information 132 

Warm autopsy samples were collected from a 35-year-old female patient with informed consent 133 

to the Last Wish Program and approval of the patient’s family. Written informed consent was 134 

obtained from all patients whose tissues were used. The study was conducted in accordance 135 

with the recognized ethical guidelines Declaration of Helsinki and Belmont Report, and 136 

approved by the Institutional Review Board at Memorial Sloan Kettering Cancer Center (IRB 137 

protocol 15-021). 138 

The patient was diagnosed with metastatic PDAC, exhibiting macroscopic lesions in the 139 

pancreas and liver (detected by computed tomography scan) and upregulated CA19-9 tumor 140 

biomarker. The patient was treated with standard mFOLFIRINOX therapy and tumors showed 141 

clinical response for approximately 6 months before they stopped responding, at which point 142 

mFOLFIRINOX was halted and a dose of Gemcitabine + nab-Paclitaxel was given, but no 143 

further response was observed. The patient survived for just over 9 months from diagnosis, 144 

which is expected in a metastatic PDAC patient treated with standard chemotherapy. 145 

Both primary and metastatic tumors were readily detectable. The primary tumor appeared as a 146 

white-gray mass, while liver metastases were white-yellow with extensive necrosis. Multiple 147 

peritoneal and omental metastases, along with a single gastric metastasis, were palpable and 148 

appeared as white nodules. Prominent diaphragm metastases resembling an “omental cake” 149 

were also identified. 150 

Biospecimen collection 151 

Samples were obtained using standard autopsy techniques, specifically the Rokitansky method. 152 

Following the removal of all organs from the body, more than 50 samples were collected from 153 

macroscopically identifiable tumors in both primary and metastatic sites. Autopsies were 154 

initiated within two hours of death, and biospecimens were collected within an hour. Multiple 155 

lesions collected from the same organ were clearly separate anatomically. The exception is 156 

primary tumor, for which two adjacent sections were processed as Pancreas A and B samples 157 

(see below for sectioning information) for single-nucleus RNA sequencing. Tumors larger than 1 158 

cm in size were trimmed to 1-cm squares, then divided in half. One half was used to generate a 159 

formalin-fixed paraffin-embedded block for detailed histological analysis. The other half was cut 160 

into 5–7 mm pieces, placed in cryotubes, rapidly frozen in liquid nitrogen, and stored at −80°C. 161 

For particularly large primary tumors, samples were obtained after slicing. The position of each 162 
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sampling site within the organ was meticulously documented during the autopsy. Approximately 163 

10 normal tissue samples were taken alongside the tumors. 164 

For whole exome sequencing, a portion of each flash-frozen sample was used to create an 165 

optimal cutting temperature (OCT) block. H&E staining of frozen OCT sections was performed 166 

to identify tumor regions and confirm inclusion of sufficient tumor tissue before macrodissection 167 

to extract DNA for bulk WES, typically from 5–10 sections. H&E staining was performed by the 168 

MSKCC Pathology Core Facility. 169 

For snRNA-seq, a different portion of the frozen tissue was sectioned and tumor tissue inclusion 170 

was confirmed using the frozen H&E slide before proceeding with single-nucleus suspension 171 

and sequencing library preparation. 172 

Experimental Methods 173 

Whole exome sequencing 174 

For bulk whole exome sequencing, genomic DNA was extracted from each tissue sample using 175 

QIAamp DNA Mini Kits (Qiagen; RRID:SCR_008539). Sequencing was carried out on an 176 

Illumina HiSeq 4000 (RRID:SCR_016386) or NovaSeq 6000 (RRID:SCR_016387) platform, by 177 

the MSKCC Integrated Genomics Operation Core with a target coverage of 250x for all 178 

samples. 179 

Single-nucleus RNA-seq 180 

Generation of nucleus suspensions 181 

Single-nucleus suspensions were generated following the Frozen tissue dissociation for single-182 

nucleus RNA-seq protocol([Citation error]). This protocol is optimized for the capture of epithelial 183 

cells. Specifically, frozen rapid autopsy specimens were cut into approximately 2-mm3 pieces 184 

using a disposable scalpel (Technocut, 10148-882) and transferred to 1 ml of freshly prepared 185 

ice-cold lysis solution (250 mM sucrose, 50 mM citric acid, 0.01% DEPC). Next, the entire lysis 186 

solution with specimens was transferred to a Dounce homogenizer (Sigma, D8938-1SET). 187 

Tissue grinding was performed by gently moving a large-clearance pestle (Tube A) up and 188 

down 10 to 15 times, followed by a small clearance pestle 10 times (Tube B). After grinding, the 189 

homogeneous suspension of minced tissue was strained through a 35-µm snap cap strainer 190 

(Fisher Scientific, 352235) and kept on ice for 1 min. Filtered nucleus suspension was 191 

transferred into a 2-ml tube and spun at 4 °C in a swinging bucket centrifuge at 500 g for 5 min. 192 

The supernatant was discarded, leaving ~20 µl above the nucleus pellet. Next, the pellet was 193 

resuspended in 1 ml ice-cold 1 ml nucleus wash buffer (250 mM sucrose, 50 mM citric acid, 1% 194 

(w/v) BSA, 20 mM DTT and 0.2 U µl-1 RNase inhibitor (Ambion Inc.; RRID:SCR_008406, 195 

AM2682), in DEPC-treated water (Ambion Inc., AM9915G). The tube was centrifuged in a 196 

swinging bucket at 500 g for 5 min at 4 °C and the supernatant was aspirated without disrupting 197 

the now-smaller pellet. The pellet was then resuspended in 0.5 ml nucleus resuspension buffer 198 

(3X SCC (Invitrogen, AM9770), 20 mM DTT, 1% (w/v) BSA, and 0.2 U µl-1 RNase inhibitor 199 

(Ambion Inc., AM2682), in DEPC-treated water (Ambion Inc., AM9915G)) and passed through a 200 

35-µm snap cap strainer. Nuclei were quantified by staining 10 µl of nucleus suspension with 201 
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0.2 µl of 100 μg ml-1 DAPI and 10 µl of 0.4% Trypan Blue, and carefully inspected for quality and 202 

separation under bright field and fluorescence microscopes. The entire procedure took 203 

approximately 1 hr to complete and generated 106 –107 single nuclei per 1 ml. 204 

Single-nucleus enrichment 205 

Prior to snRNA-seq, single nuclei were purified by fluorescence-activated cell sorting (FACS) to 206 

remove debris and clumps following our protocol([Citation error]). In a typical scenario, a 50-µl 207 

aliquot of the nucleus suspension was added to 250 µl nucleus resuspension buffer and used 208 

as an unstained reference sample for FACS, and the remaining suspension (~900–950 µl) was 209 

stained with 10 µl of 100 μg ml-1 DAPI. Nucleus sorting was performed on a BD FACS Aria II 210 

Cell Sorter (RRID:SCR_018934) instrument equipped with a 100-µm nozzle. Sorting was 211 

conducted at 5,000–10,000 events/second, by selecting events based on DAPI signal and 212 

particle size. The sorted nuclei were transferred to 1.5-ml Protein LoBind tube (Eppendorf) and 213 

centrifuged in a swinging bucket at 600 g for 5 min at 4 ºC. The nucleus pellet was resuspended 214 

in 100 µl of supernatant and manually counted under bright field microscope after mixing 10 µl 215 

of nucleus suspension with 10 µl of 0.4% Trypan Blue. The suspension concentration was 216 

adjusted to obtain ~2000 nuclei/µl before proceeding with the v3 chemistry kit on the Chromium 217 

instrument (10x Genomics; RRID:SCR_023672). 218 

All samples were split and processed by the sorting protocol above or without it (unsorted). Both 219 

unsorted and sorted samples were submitted for snRNA-seq preparation to ensure no 220 

systematic biases were experimentally generated. 221 

snRNA-seq library preparation 222 

Single-nucleus RNA library preparation was performed following the Chromium Single Cell 3' 223 

Reagent Kits User Guide, v3.1 Chemistry (10x Genomics), as in our protocol([Citation error]). 224 

Library sequencing was performed on Illumina NovaSeq 6000 instruments using a paired-end 2 225 

x 150-bp configuration. 226 

Algorithmic development 227 

IntegrateCNV for copy number inference 228 

Copy number inference from scRNA-seq data assumes that changes in gene expression reflect 229 

underlying changes in gene dosage. However, epigenetic factors also affect expression and 230 

obscure the link between expression and copy number. Furthermore, scRNA-seq data is noisy 231 

and sparse, leading to noise in the inferred copy number profiles. To mitigate noise and 232 

sparsity, we restrict single-cell copy number inference to regions that are known, with high 233 

confidence, to harbor CNAs based on bulk WES data, thereby greatly reducing false positive 234 

calls. Sparsity is also mitigated by aggregating expression across genes for greater robustness 235 

within these regions. 236 

We developed IntegrateCNV to infer per-cell copy number variation from single-cell or single-237 

nucleus RNA-seq paired with sample-matched bulk WES data. IntegrateCNV first identifies 238 

regions likely to harbor CNAs in WES data, then calculates the likelihood of each of these 239 

genomic regions being altered in each single-cell. IntegrateCNV accepts as input (i) a cell × 240 

gene count matrix of scRNA-seq data and "normal" or "tumor" annotation for each cell, and (ii) 241 

paired copy number profiles from bulk WES data in matching samples. Using this information, 242 
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the algorithm determines (i) a set of chromosomal regions that are copy-neutral across all 243 

samples, and (ii) a set of chromosomal regions of sufficient size that are altered in at least one 244 

sample. Finally, integrateCNV outputs (iii) a cell × region matrix containing the likelihood of that 245 

cell being copy number neutral in that region for each (cell, region) pair. 246 

IntegrateCNV algorithm 247 

The integrateCNV algorithm performs a two-tailed hypothesis test to determine whether each 248 

(cell, region) pair has expression levels that differ significantly from the expression levels in 249 

known normal cells. The null distribution of expression in each region is Gaussian, with 250 

expression mean and variance taken from matching regions in a set of reference normal cells. 251 

The algorithm performs the following steps: 252 

1. Identify chromosomal regions that are copy number neutral across all samples as a 253 

normalization factor. 254 

2. Identify chromosomal regions that are copy number altered in at least one sample based 255 

on bulk WES data. 256 

3. Aggregate expression across genes within each altered region. 257 

4. Normalize and log-transform the per-region expression. 258 

5. Determine the null distribution based on annotated non-tumor cells. 259 

6. Perform a hypothesis test to indicate the presence or absence of an alteration. 260 

IntegrateCNV allows us to better normalize single-cell expression data against neutral regions 261 

without removing the biological signal inherent in library size. 262 

Determining neutral and altered regions 263 

The first input to integrateCNV is a set of copy number profiles derived from bulk DNA 264 

sequencing. For each sample, we use FACETS (RRID:SCR_026264)(11) to identify the total 265 

copy number in each region. CNAs are centered around 0 so that a neutral region is 266 

represented by the copy number ‘0’. The CNA profiles are saved as BED files, containing, for 267 

each region, information about the chromosome, start position, end position, and copy number. 268 

BED files from all samples are processed to find intersecting genomic regions using the 269 

multi_intersect function from pybedtools (RRID:SCR_021018). The resulting intersections 270 

capture the chromosomal regions and CNAs in each sample. Neutral regions are then identified 271 

as those with no CNA in any sample. We denote the set of neutral regions by A0. 272 

Candidate altered regions are first identified as those in which at least one sample contains an 273 

alteration. Of the candidate regions, only those containing sufficient genes (>20 by default) are 274 

retained for downstream analysis so as to provide sufficient coverage to reliably recover copy 275 

numbers without being unduly influenced by the potential outlier effects of few genes. This set of 276 

altered regions, A20+, is used as the set of regions within which we will infer CNAs.  277 

Processing count data 278 

We denote the scRNA-seq cell × gene count matrix by 𝑋, where 𝑋𝑐,𝑔 represents the expression 279 

of gene 𝑔 for cell 𝑐 = 1, ⋯ , 𝑛. Using the set of candidate regions (A20+), we aggregate counts 280 

over genes within a given region, indexed by 𝑟, to determine a cell × region matrix, 𝑈. 281 
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𝑈𝑐,𝑟 =  ∑

𝑔∈𝐺𝑟

𝑋𝑐,𝑔  

where 𝑔 ∈ 𝐺𝑟 are the genes which physically overlap with the genomic region indexed by 𝑟. 282 

The counts from regions A0 that are found to be neutral in all samples are used as a pseudo 283 

‘spike-in’ control in order to normalize count data without removing the biological signal of total 284 

library size, which can correlate with copy number burden. The total counts from genes across 285 

all neutral regions are summed for each cell, 𝑐, and the sum is denoted by library size 286 

normalization factor, 𝑙𝑐. 287 

𝑙𝑐 = ∑

𝑟∈𝐴0

∑

𝑔∈𝐺𝑟

𝑋𝑐,𝑔 

The cell × region matrix, 𝑈, is then divided by the library size normalization factor and the 𝑙𝑜𝑔 of 288 

the resulting normalized expression is computed to give data matrix, 𝑉. 289 

 𝑉𝑐,𝑟 = 𝑙𝑜𝑔
1

𝑙𝑐
𝑈𝑐,𝑟 290 

Inferring CNAs and extracting integer copy number calls 291 

The log-normalized expression matrix, restricted to normal cells, now defines a null Gaussian 292 

distribution on expression levels in unaltered cells for each region. For each cell and region, the 293 

𝑧-score is computed using this null distribution, and is used to define copy number altered 294 

regions. 295 

Finally, a two-tailed hypothesis test is performed for each (cell, region) pair to determine 296 

whether the cell has expression values significantly higher or significantly lower than expected 297 

in a diploid cell. A p-value threshold (default 0.05) is used to determine the critical values for 298 

two-tailed hypothesis testing. All regions above or below the upper or lower critical values, 299 

respectively, are called as alterations. We note that because deleted regions have a small 300 

dynamic range (0, 1 or 2), there is less power to detect them and thus the procedure results in 301 

many false negatives for deleted regions. For all called alterations, we use the copy number 302 

from the corresponding bulk WES sample to insert an integer copy number. This denoising 303 

procedure ensures that, for a region to be denoted as altered in a cell, it must be supported by 304 

evidence from both snRNA-seq and sample-level bulk DNA data. The final output matrix is an 305 

integer copy number profile for each single cell, and can be used for downstream phylogenetic 306 

analysis of clonal relationships. 307 

Comparison of CNA inference methods 308 

To benchmark integrateCNV against existing approaches that infer CNAs from scRNA-seq data, 309 

we first determined single-cell copy number z-score profiles, which are computed without any 310 

prior knowledge of which sample (or bulk WES data) each cell belongs to. We then aggregated 311 

cells within samples to compare against the ‘ground truth’ bulk WES copy number profile.  312 

For each sample, we ran inferCNV (RRID:SCR_021140)(12) and CopyKat 313 

(RRID:SCR_024512)(13), which return per-region and per-gene CNA scores, respectively, for 314 

each cell in the sample. We also ran Numbat(14) both with and without bulk copy number 315 
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profiles per sample as input to the algorithm. Numbat performed best with bulk profiles provided, 316 

and thus these single-cell copy number profiles were used for comparisons. For integrateCNV, 317 

we computed the z score for each altered region harboring an alteration in each cell. The z-318 

scores are computed per-cell in a sample-agnostic manner, so that no sample-identifying 319 

information is provided to integrateCNV. We then computed the average score across all cells in 320 

the sample to determine a pseudo-bulk CNA score for each method. Since all methods return 321 

continuous valued predictions of alterations rather than discrete copy number calls, we 322 

computed the correlation between the bulk DNA CNA call and the pseudo-bulked inferred CNA 323 

score. 324 

Identifying recurrent CNAs 325 

We use the four gamete test(15) to identify potential violations of the infinite sites assumption 326 

that may be due to recurrent alterations. The four gamete test considers mutation states at pairs 327 

of sites. We binarize CNAs, representing diploid sites as 0 and aneuploid sites as 1. For any two 328 

sites in a sequence, there are four possible combinations of mutation states - (1,1), (1,0), (0,1) 329 

and (0,0). If all four combinations are observed in a population, this violates the infinite sites 330 

model (which assumes that each mutation only occurs once).  331 

For each pair of regions for which single-cell copy number profiles were computed by 332 

IntegrateCNV, we identify all pairs of mutation states which are observed in our inferred CNA 333 

profiles. To account for noise in the copy number inference, we consider only pairs which are 334 

represented in at least 100 cells. If all four mutation state pairs are observed, we denote that 335 

region pair as violating the infinite sites assumption, likely due to recurrent CNAs.  336 

Phylogenetic inference from single-cell CNA calls 337 

Most efforts to reconstruct tumor phylogenies rely on single-nucleotide variants (SNVs) derived 338 

from DNA sequencing data. A few approaches specifically address CNA phylogenies(16,17), 339 

but they are designed for copy number profiles derived from deconvolved bulk DNA sequencing 340 

or single-cell DNA sequencing. These methods typically assume that input copy number profiles 341 

are reliable and accurately specified for contiguous genomic regions, and most do not scale to 342 

large numbers of cells. These assumptions do not hold when considering CNA profiles derived 343 

from scRNA-seq experiments, as inferred copy number profiles are very noisy and dataset sizes 344 

are significantly larger. Researchers thus often resort to distance-based agglomerative 345 

clustering methods such as neighbor joining to reconstruct cell hierarchies. 346 

To overcome these challenges, we developed PICASSO (phylogenetic inference from copy 347 

number alterations in single-cell sequencing observations), to infer cellular clones and their 348 

phylogenetic relationships from CNA calls derived from single-cell expression data. The 349 

PICASSO algorithm assumes that observed single-cell copy number profiles are noisy 350 

measurements of true clonal profiles, such that cells in the same clone share similar CNA 351 

patterns. Phylogenetic relationships are unobserved and result from (potentially recurrent) gain 352 

and loss of copy number variants from an original parent clone. PICASSO thus aims to group 353 

single cells based on membership to inferred clones, and determine the evolutionary 354 

relationships between these clones.  355 

As input, PICASSO accepts a character matrix of cells by regions, with each entry consisting of 356 

an integer CNA state for the corresponding region and cell. Using this information, the algorithm 357 
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generates (i) assignments of cells to clones and (ii) a phylogeny describing the relationship 358 

between clones. 359 

PICASSO algorithm 360 

PICASSO is a tree-recursive algorithm whereby each iteration considers the cells currently 361 

assigned to a leaf node of the phylogenetic tree and determines whether to split that leaf into 362 

further branches. It comprises the following steps: 363 

1. Encode integer copy numbers into ternary profiles. If the maximum absolute copy 364 

number (relative to diploid) is 𝑗, copy number 𝑘 is encoded as a vector of length 𝑗 with 𝑘 365 

leading 1s so that similar copy number profiles are similar in the encoded space. In 366 

practice, we cap the maximum copy number at 𝑗 = 2, distinguishing only between 367 

amplified and highly amplified copy numbers. Similarly, negative copy number −𝑘 is 368 

encoded as a vector of length 𝑗 with 𝑘 leading –1s. This allows us to represent the 369 

cumulative nature of CNAs, whereby moderate gains or losses may precede more 370 

severe alterations, and also account for small mistakes when inferring CNA magnitude.  371 

2. Construct an initial phylogeny comprising a single leaf node containing all cells in the 372 

dataset. 373 

3. For each leaf node, split the node into two clones based on shared CNAs using 374 

expectation–maximization (EM). Cells are partitioned such that (i) CNAs are allowed to 375 

recur independently in distinct clones, and (ii) cells are grouped based on global CNA 376 

profile, mitigating the outsize effect of noisy or incorrect calls in a few genomic regions.  377 

More explicitly, for each non-terminal leaf in the phylogeny: 378 

a. If sufficient evidence exists to split cells, assign cells to one of two subclones 379 

using EM. These subclones are the new children of the original leaf node.  380 

b. If insufficient evidence exists to split cells, designate this leaf as a terminal node. 381 

c. Repeat until all leaf nodes are terminal nodes. 382 

4. Cell groupings identified from this iterative process constitute clone assignments, and 383 

relationships between groups constitute the phylogenetic relationships between clones. 384 

The tree is re-rooted so that the clone with fewest CNAs is most ancestral, reflecting the 385 

fact that CNA burden generally increases during evolutionary progression. 386 

5. As optional post-processing, we may collapse small subclones containing too few cells 387 

to draw meaningful statistical conclusions. 388 

Encoding the character matrix 389 

We denote the cell × region matrix of integer CNAs by 𝐵, where 𝐵𝑐,𝑟 represents the inferred 390 

copy number of cell 𝑐 = 1 ⋯ 𝑛 in region 𝑟 in 𝐴20+, and 𝐴20+ denotes the set of altered regions. 391 

To facilitate further analysis, we transform matrix 𝐵 into a matrix 𝑀 using the following encoding 392 

scheme: 393 

1. Determine the maximum absolute value. 394 
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For each column (region) 𝑟 in 𝐵, determine the maximum absolute value, 𝑝𝑟, 395 

representing the highest CNA observed in that region. In practice, we cap this value at 396 

copy number +2 (two copies more than expected in a diploid cell), as we may not trust or 397 

be able to reliably distinguish between very large copy numbers. 398 

2. Encode copy number values. 399 

For each cell 𝑐 and region 𝑟, encode the copy number 𝑘 = 𝐵𝑐,𝑟 into 𝑝𝑟  columns in 𝑀 400 

according to this scheme: 401 

a. If 𝑘 ≥  0, the encoding is [1, 1, … , 1, 0, 0, … , 0] with 𝑘 ones followed by 𝑝𝑟 − 𝑘 402 

zeros. 403 

b. If 𝑘 <  0, the encoding is [– 1, – 1, … , – 1, 0, 0, … , 0] with |𝑘| negative ones 404 

followed by 𝑝𝑟 − |𝑘| zeros. 405 

3. Construct the matrix 𝑀. 406 

Replace each column 𝑟 in 𝐵 with 𝑝𝑟 columns in 𝑀 according to the above encoding 407 

scheme, resulting in a ternary matrix where each original region is expanded into 408 

multiple columns representing CNA magnitude and direction. 409 

This transformation allows us to enforce similar copy number profiles between CNAs of similar 410 

values. The dimension of the resulting matrix 𝑀 is 𝑛 × ∑𝑟∈𝐴20+ 𝑝𝑟 . 411 

Top-down phylogeny construction 412 

We use an expectation–maximization approach to construct a top-down phylogenetic tree 413 

based on shared patterns of copy number breakpoints. The phylogeny is initialized with a single 414 

clone containing all the cells in the data set. At each iteration, the depth of the existing tree may 415 

be increased by one as each leaf clone may be split into two further subclones if there is 416 

sufficient evidence of differences between them. Sufficient evidence of differences between 417 

potential subclones exists when the copy number patterns observed cannot be reasonably 418 

explained by a single population. Using the Bayesian information criterion (BIC), we only create 419 

a new branch in the evolutionary tree when the data strongly suggests that two distinct copy 420 

number clone populations exist. Alternatively, any given clone may remain intact as a terminal 421 

clone. 422 

Mixture model for clustering CNA clones 423 

The input to PICASSO is the copy number profile of distinct genomic regions that are likely to 424 

harbor CNAs. We therefore assume that CNA occurrences at each genomic region are 425 

independent, which allows us to consider each profile as a draw from a multivariate categorical 426 

mixture model. We can use an EM algorithm to cluster each existing leaf into two subclones, 427 

mimicking the evolutionary process that distinguishes clones by the accumulation of copy 428 

number differences. 429 

For each subclone, we learn a probabilistic profile over CNAs, allowing us to capture several 430 

essential features. The learned probability associated with the categorical distribution for a given 431 

CNA can be less than 1, permitting CNAs to only be present in a subset of cells in an inferred 432 

subclone. Further, the subclonal structure can be disentangled by subclone splitting in 433 
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subsequent iterations. Additionally, the probabilistic profile allows us to model the high degree of 434 

false positives and false negatives in inferred CNA data by tolerating small probabilities of a 435 

clone missing or containing a specific alteration. Finally, there may be a positive probability of a 436 

particular alteration occurring at the same position in both clones, allowing for the independent 437 

recurrence of copy number changes in multiple clonal lineages, which has been observed 438 

extensively in previous CNA of cancer data(18). 439 

The EM algorithm is a widely used iterative method to find maximum likelihood estimates of 440 

parameters in probabilistic models, particularly for clustering problems. PICASSO uses an EM 441 

algorithm for clustering categorical data with states {– 1,0,1}, which represent different CNAs in 442 

cells. 443 

The observed copy number profiles, 𝑀 =  {𝑀1, 𝑀2, … , 𝑀𝑛}, contain the encoded CNAs for each 444 

cell, 𝑐 = 1 ⋯ 𝑛, across regions. Each 𝑀𝑐 =  [𝑚𝑐1, 𝑚𝑐2, … , 𝑚𝑐𝑑] is a vector of 𝑑 categorical 445 

observations for cell 𝑐. Each observation 𝑚𝑐𝑗 can take one of three states: –1, 0, or 1, 446 

representing different CNAs. 447 

We assume there are two clusters representing an evolutionary split between subclones, and 448 

each cluster 𝑘 is characterized by a set of parameters 𝜃𝑘  =  {𝜋𝑘 , 𝜙𝑘}, where 𝜋𝑘 parametrizes 449 

the prior probability of cluster 𝑘 and 𝜙𝑘 the probability distribution over the states for each 450 

observation in cluster 𝑘. 451 

Expectation maximization algorithm 452 

The EM algorithm iterates between the expectation (E) and maximization (M) steps until 453 

convergence. The goal is to assign each cell to one of the subclones in a way that maximizes 454 

the likelihood of the observed data.  455 

We let 𝜙𝑘 ∈ ℝ3×𝑑 represent the parameters of the categorical distribution for component 456 

𝑘 ∈ {1,2}, and 𝜋𝑘 represent the mixture proportions. We also define the latent variable 𝑧𝑐, which 457 

indicates the membership of the 𝑐-th observation to one of the two components, where 𝑧𝑐 ∈458 

{1,2}. The responsibility 𝛾𝑐𝑘 = 𝔼[𝑧𝑐𝑘] is the expectation of 𝑧𝑖𝑘 .  459 

The complete data log-likelihood is: 460 

𝑙𝑜𝑔  𝑝(𝑀, 𝑍 | 𝜋, 𝜙) =  ∑

𝑛

𝑐=1

∑

2

𝑘=1

𝑧𝑐𝑘 (𝑙𝑜𝑔 𝜋𝑘  + ∑

𝑑

𝑗=1

 𝑙𝑜𝑔 𝜙𝑘,𝑚𝑐𝑗,𝑗)  

The E-step updates the prediction of which subclone each cell belongs to based on the 461 

likelihood of the observed data under the current model. We calculate the posterior probabilities, 462 

𝛾𝑐𝑘, also known as responsibilities, which represent the probability that each cell 𝑐 belongs to 463 

each cluster, 𝑘.  464 

The M-step uses the assignment probabilities calculated in the E-step to update the model 465 

parameters. Specifically, we adjust the subclone priors 𝜋𝑘 and the categorical distribution 466 

parameters 𝜙𝑘 ∈ ℝ3×𝑑 to maximize the expected log-likelihood of the observed data, weighted 467 

by the assignment probabilities. The categorical distribution parameters 𝜙𝑘 ∈ ℝ3×𝑑 for clone 𝑘 468 

represents the probability of observing each (copy number state, encoded region) pair. This 469 
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step ensures that the parameters better reflect the observed data given the current cluster 470 

assignments. 471 

By iteratively updating the assignment probabilities in the E-step and the model parameters in 472 

the M-step, the EM algorithm gradually converges to a set of parameters that maximize the 473 

likelihood of the data. This iterative process allows the algorithm to find the most probable 474 

clustering of the cells based on shared CNA patterns. 475 

Initialization. We begin by randomly initializing the subclone assignments, 𝛾𝑐𝑘 of each cell so 476 

that cells are distributed randomly between clones. In order to mitigate the effect of local minima 477 

when performing this iterative optimization, we perform five random restarts and select the 478 

model which has the highest likelihood amongst the five trials. 479 

E-step. To determine the optimal assignment of cells to sub-clones, we compute the posterior 480 

probabilities (responsibilities) that each cell 𝑀𝑐 belongs to sub-clone 𝑘: 481 

𝛾𝑐𝑘 ←
𝜋𝑘 ∏𝑑

𝑗=1 𝜙𝑘(𝑚𝑐𝑗)

∑2
𝑙=1 𝜋𝑙 ∏𝑑

𝑗=1 𝜙𝑙(𝑚𝑐𝑗)
 , 482 

where 𝜙𝑘(𝑚𝑐𝑗) is the probability of observing 𝑚𝑐𝑗 in cluster 𝑘. 483 

M-step. To update the probabilistic sub-clone profiles, we update the parameters 𝜋𝑘 and 𝜙𝑘to 484 

maximize the expected log-likelihood: 485 

𝜋𝑘  ←  
1

𝑛
 ∑

𝑛

𝑐=1

𝛾𝑐𝑘 

𝜙𝑘(𝑧)  ←
∑𝑛

𝑐=1 ∑𝑑
𝑗=1 𝛾𝑐𝑘𝛿(𝑚𝑐𝑗,𝑧)

∑𝑛
𝑐=1 ∑𝑑

𝑗=1 𝛾𝑐𝑘
 , 486 

where 𝑧 is a copy number state (–1,0,1) being updated and 𝛿(𝑎, 𝑏) is the Kronecker delta 487 

function, which is 1 if 𝑎 = 𝑏 and 0 otherwise. 488 

Termination of subclone splitting 489 

We implement two methods to determine whether a clone should be split further. The first (and 490 

preferred) option compares the Bayesian information criterion (BIC) score of a model with one 491 

clone to that of a model with two clones, and terminates the splitting process if the BIC score 492 

does not improve with two clones. Specifically, we calculate 493 

𝐵𝐼𝐶 =  −2 𝑙𝑛 (𝐿)  +  𝑘 ×𝑙𝑛 (𝑛) 

where 𝐿 is the maximum likelihood, 𝑘 is the number of parameters in the model, and 𝑛 is the 494 

number of cells. When splitting a clone into two subclones, the model gains additional 495 

parameters (new probabilistic profiles and mixing proportions), which incurs a penalty term in 496 

the BIC calculation. Only when the improvement in likelihood outweighs this complexity penalty 497 

do we proceed with the split. This approach rigorously controls model complexity by requiring 498 

substantial evidence that observed variations reflect genuine biological differences rather than 499 

stochastic noise.  500 

In cases with limited cell numbers, the statistical power needed for BIC to detect meaningful 501 

biological differences may be insufficient. The cell assignment confidence approach provides a 502 
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complementary criterion that can identify biologically relevant subpopulations even when BIC 503 

would prematurely terminate splitting, making it particularly valuable for datasets with fewer cells 504 

or more subtle clonal differences.  505 

The second method relies on cell assignment confidence. Using the responsibilities matrix from 506 

the EM algorithm, we check the proportion of confidently assigned cells. Specifically, if a cell's 507 

responsibility value exceeds a user-defined threshold (e.g., 0.75), it is considered confidently 508 

assigned. If the proportion of confidently assigned cells falls below a user-defined threshold 509 

(typically 0.6–0.8), the splitting process is terminated. This ensures further subdivisions are only 510 

made when cells show clear membership patterns, avoiding overfitting to noisy data. 511 

Post-processing subclones 512 

Inference from scRNA-seq data produces inherently noisy copy number profiles due to technical 513 

limitations in the sequencing process. These profiles may contain artifacts and false signals that 514 

can lead to the detection of spurious subclones. To ensure the reliability of our phylogenetic 515 

analysis, we implement a post-processing step that retains only those clones with sufficient 516 

statistical support and biological plausibility, filtering out clusters that likely arise from technical 517 

noise rather than true clonal evolution. 518 

In order to mitigate the occurrence of clones derived from noise in the copy number inference 519 

process, we require clones to (i) be composed of more than 75 cells and (ii) contain at least one 520 

CNA at high frequency. We selected a conservative threshold of 75 cells as a minimum clone 521 

size in order to ensure that clones are likely to represent true biological subpopulations rather 522 

than technical artifacts arising from the copy number inference process.  523 

For a given clone, we define high frequency CNAs as alterations present in at least 80% of the 524 

cells in that clone. The requirement for at least one high-frequency CNA provides additional 525 

confidence that the identified clone represents a genuine biological subpopulation with shared 526 

genomic alterations.  527 

Clones that do not satisfy these conditions are removed from the phylogenetic analysis, since 528 

we do not have sufficient confidence to draw conclusions about the cells they contain. 529 

PICASSO benchmarking 530 

To evaluate PICASSO's phylogenetic reconstruction accuracy, we simulated a series of ground 531 

truth CNA trees. Existing single-cell phylogenetic algorithms are not well suited to constructing 532 

clone trees from noisy, large scale datasets. For example, CNETML(17), a maximum likelihood 533 

algorithm for deriving phylogenies from copy number profiles, only scales to the low hundreds of 534 

cells. We thus compared our ability to recover phylogenetic relationships in these simulations 535 

with an agglomerative tree-building algorithm, neighbor joining. 536 

Simulation experiments  537 

We start by generating random binary trees that form the backbone of our CNA simulations, 538 

providing a structure on which we can model evolutionary relationships. Each leaf in the tree 539 

represents a copy number clone, and branches depict the divergence of clonal lineages over 540 

time. Next, we annotate these trees with regions and alterations using a Dirichlet distribution to 541 

generate probability vectors for region selection. This distribution allows us to model the relative 542 
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likelihood of alterations occurring across different genomic regions and capture the biological 543 

reality that some regions are more susceptible to CNAs than others. 544 

Each branch is assigned specific alterations (values of -2, -1, +1, or +2) based on a predefined 545 

probability distribution [0.5, 0.3, 0.2] that determines only how many alterations will occur per 546 

branch (with 0.5 probability of 1 alteration, 0.3 probability of 2 alterations, and 0.2 probability of 547 

3 alterations), reflecting the accumulation of genetic changes as cells evolve. The actual 548 

alterations themselves are randomly selected from the set [-2, -1, +1, +2] with equal probability. 549 

To capture the cumulative effect of these alterations, we calculate the aggregated alterations for 550 

each leaf node by tracing the path from the root to the leaf. This gives us a comprehensive copy 551 

number profile for each clone, accounting for all the genetic changes that occurred along its 552 

lineage. Cells are then attached to the leaves of the tree, with the number of cells per clone 553 

partially determined by the distribution of clone sizes observed in the data. Specifically, we 554 

leverage real-world PDAC data, using half the actual observed clone sizes to balance 555 

computational efficiency with biological fidelity while preserving the relative proportions of clonal 556 

populations seen in patient samples. 557 

In order to simulate realistic copy number profiles inferred from single-cell data, it is essential to 558 

introduce realistic noise, including extensive false positives and false negatives: 559 

1. False positives: Add noise to neutral regions. Simulate false-positive inferred CNAs 560 

by randomly selecting a proportion of neutral (no copy number change) regions within 561 

the cell profiles and applying random alterations. We perform these simulations across 562 

four false positive rate parameter regimes: the false positive rate (0.01, 0.1, 0.2, or 0.3) 563 

directly determines the proportion of neutral regions altered—for example, at a rate of 564 

0.1, 10% of neutral regions receive artificial alterations. The magnitude of these 565 

alterations follows a distribution derived from observed alterations to ensure realistic 566 

noise patterns. 567 

2. False negatives: Zero-out existing alterations. Simulate false negatives or loss of 568 

signal by zeroing out existing alterations in the cell profiles randomly. The false negative 569 

rate directly determines the probability of removing each existing alteration—for 570 

example, at a rate of 0.2, each real alteration has a 20% chance of being removed. This 571 

stochastic process simulates scenarios where genuine copy number changes go 572 

undetected. 573 

3. Perturb existing alterations. Simulate CNAs whose presence is correctly inferred, but 574 

whose magnitude is not, by slightly increasing or decreasing copy number values. We 575 

introduce magnitude perturbations with a probability of 0.1 per alteration, randomly 576 

adjusting values by +1 or –1 while preserving the direction (gain or loss). This simulates 577 

measurement uncertainty in copy number estimation from sequencing data. These 578 

perturbations create a consistent baseline of noise across all experimental conditions, 579 

independent of the varying false positive and false negative rates being tested, better 580 

reflecting the technical challenges in precise CNA quantification. 581 

We conduct simulation experiments with three replicates across multiple parameter 582 

configurations. Each simulation maintains 60 leaves and 110 regions, dimensions comparable 583 
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to the PDAC tree inferred by PICASSO. By systematically varying false positive and false 584 

negative rates (0.01, 0.1, 0.2, and 0.3), we comprehensively evaluate the robustness of both 585 

neighbor joining and PICASSO methods under increasingly challenging conditions of data 586 

quality. 587 

Metric for evaluating PICASSO 588 

We evaluated PICASSO and neighbor joining phylogenies using the triplets-correct metric(19), 589 

which assesses the tree's ability to reconstruct correct phylogenetic relationships between 590 

triplets of cells. For each simulated tree, we sample 10,000 triplets (𝑎, 𝑏, 𝑐). For each triplet, the 591 

ground truth tree induces a phylogenetic ordering on the cells. For example, for triplet (𝑎, 𝑏, 𝑐), 592 

the ground truth phylogenetic relationship of these cells may be ((𝑎, 𝑏), 𝑐), indicating that cells 𝑎 593 

and 𝑏 share a more recent common ancestor than 𝑎 and 𝑐 or 𝑏 and 𝑐. In an inferred tree, the 594 

triplet is scored as "correct" if the phylogenetic relationship between these cells is accurately 595 

recovered. 596 

Since the simulated tree defines leaves as "clones" (groups of cells that cannot be distinguished 597 

from each other by CNA profile), some triplets will have no clear phylogenetic relationship; they 598 

are siblings in a clone. Unlike PICASSO, neighbor joining computes a fully resolved cell tree. 599 

Therefore, when computing the proportion of triplet relationships that are correctly determined, 600 

we only consider triplets with clearly defined phylogenetic relationships. By counting the 601 

proportion of correctly inferred triplets, the triplets correct metric provides a quantitative measure 602 

of the tree's accuracy, helping to identify discrepancies and assess the overall quality of the 603 

inferred phylogenetic tree. 604 

PICASSO runtime and memory comparison  605 

Given the large size of scRNA-seq datasets, runtime complexity is a significant concern. The 606 

neighbor-joining algorithm, commonly used in phylogenetic analysis, has a theoretical runtime 607 

complexity of O(n3), where n is the number of cells, although some implementations of neighbor 608 

joining use heuristics to improve performance in practice(20).  609 

We evaluated run times on simulated datasets with 20,000 cells. Given the large size of the 610 

datasets, we used a heuristic implementation of neighbor joining, rapidNJ. We measured the 611 

runtimes for both neighbor joining and PICASSO on each dataset across all replicates and 612 

found that PICASSO is significantly faster and less memory intensive than neighbor joining. 613 

PICASSO robustness testing 614 

To evaluate the robustness and reproducibility of PICASSO, we ran the method five times on 615 

the full PDAC dataset of approximately 40,000 single cells and assessed the consistency of the 616 

resulting phylogenetic reconstructions. Pairwise comparisons of the clone assignments across 617 

runs were quantified using normalized mutual information (NMI) and adjusted Rand index (ARI), 618 

widely used metrics for comparing the similarity between two clustering assignments. 619 

NMI measures the mutual information shared between two clustering assignments, normalized 620 

to a 0–1 scale: 621 

𝑁𝑀𝐼(𝑈, 𝑉)  =  2 ×
𝑀𝐼(𝑈, 𝑉)

𝐻(𝑈)  +  𝐻(𝑉)
 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-25-1117/3715170/can-25-1117.pdf by guest on 12 January 2026

https://paperpile.com/c/V7SFau/rlW7L
https://paperpile.com/c/V7SFau/wDIMp


 

17 

where 𝑀𝐼(𝑈, 𝑉) is the mutual information between clustering assignments 𝑈 and 𝑉, and 𝐻(𝑈) 622 

and 𝐻(𝑉) are their respective entropies. An NMI score of 1 indicates perfect agreement 623 

between clusterings, while 0 indicates completely independent clusterings. The NMI scores we 624 

observed were consistently high, averaging around 0.85, indicating strong agreement in the 625 

overall clustering structure across runs.  626 

ARI measures the similarity between two clustering assignments by counting pairs of elements 627 

that are either assigned to the same cluster or different clusters in both assignments, adjusted 628 

for chance:  629 

𝐴𝑅𝐼 =  
𝑅𝐼 −  𝐸(𝑅𝐼)

𝑚𝑎𝑥(𝑅𝐼)  −  𝐸(𝑅𝐼)
 

where 𝑅𝐼 is the raw Rand Index, 𝐸(𝑅𝐼) is the expected raw RI and max(RI) represents the 630 

theoretical maximum value the Rand Index could achieve for the given clustering problem. The 631 

raw Rand Index is defined as: 632 

𝑅𝐼 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

where 𝑇𝑃 is the number of pairs that are in the same cluster in both clusterings, 𝑇𝑁 is the 633 

number of pairs in different clusters in both clusterings, 𝐹𝑃 is the number of pairs that are in the 634 

same cluster in the first clustering but in different clusters in the second and 𝐹𝑁 is the number of 635 

pairs that are in different clusters in the first clustering but in the same cluster in the second. 636 

ARI ranges from –1 to 1, with 1 indicating perfect agreement, 0 indicating random cluster 637 

assignments, and negative values indicating worse-than-random agreement. The observed ARI, 638 

which is sensitive to both the number and composition of clusters, averaged around 0.6, 639 

reflecting a reasonable level of stability given the complexity of the dataset and the stochastic 640 

nature of the method.  641 

To further assess consistency at the phylogenetic level, we computed the proportion of triplets 642 

(evolutionary relationship between three cells) recovered in each run that matched those 643 

identified in a separate run designated as the ground truth. High concordance of triplets across 644 

runs demonstrates that PICASSO reliably reconstructs phylogenetic relationships despite 645 

inherent variability in clustering. 646 

To further assess the robustness of PICASSO, we conducted a downsampling analysis by 647 

randomly subsampling the dataset to 75%, 80%, 85% and 90% of the original dataset. For each 648 

downsampled dataset, we ran PICASSO and measured the proportion of triplets in the 649 

reconstructed phylogenies that matched the triplets identified in the full dataset, which served as 650 

the reference. Across all levels of downsampling, the proportion of correctly recovered triplets 651 

remained high, demonstrating the method's robustness. 652 

Computational analysis 653 

Digital histopathology 654 

Whole slide imaging data were obtained with the assistance of the Molecular Cytology Core 655 

Facility at Memorial Sloan Kettering Cancer Center. H&E-stained slides were scanned using a 656 

PANNORAMIC scanner (3DHistech, Budapest, Hungary) equipped with a 20x/0.8 NA objective. 657 
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The resulting data were analyzed using QuPath (version 0.5.1; RRID:SCR_018257) 658 

(https://qupath.github.io/). 659 

Adipose and fibrous tissues were annotated by a pathologist using QuPath. Following 660 

annotation, the Pixel Classification tool in QuPath was applied with default settings to quantify 661 

the areas of adipose and fibrous tissues. 662 

For cell type evaluation, QuPath's Cell Detection tool was used to identify and analyze tumor, 663 

stromal and immune cells. Regions containing these three cell types were annotated, and only 664 

tumor-cell-containing areas were included in the analysis. A cell classifier was trained using the 665 

Object Classification tool in QuPath with default settings, based on pathologist annotations. 666 

Features such as nuclear circularity and eccentricity were calculated to characterize the 667 

detected cells. The classifications were validated by the annotating pathologist to ensure 668 

accuracy. 669 

WES data analysis 670 

WES data preprocessing 671 

Initial processing began with adapter trimming of FASTQ files using cutadapt (v1.9.1; 672 

RRID:SCR_011841) to remove standard Illumina 5' and 3' adapter sequences. The trimmed 673 

reads were then mapped to the b37 reference genome from the Broad GATK resource bundle 674 

using BWA-MEM (v0.7.12; RRID:SCR_010910). Post-alignment processing included sorting of 675 

SAM files and addition of read group tags using PICARD tools (v1.124; RRID:SCR_006525). 676 

The read group information includes sample identifiers, sequencing library identifiers, and 677 

Illumina platform information. The sorted BAM files were then processed with PICARD 678 

MarkDuplicates to identify PCR duplicates (https://github.com/soccin/BIC-variants_pipeline). 679 

Copy number alteration calling 680 

Copy-number alterations in solid tumors were computed from tumor and matched normal tissue 681 

WES data using default settings in the FACETS (Fraction and Allele-Specific Copy Number 682 

Estimates from Tumour Sequencing) (v0.6.2) algorithm (https://github.com/mskcc/facets-683 

suite)(11). FACETS provides allele-specific copy number estimates at the level of both gene 684 

and chromosome arm. 685 

Single-nucleotide variant calling 686 

We used the standardized Illumina (HiSeq) Exome Variant Detection Pipeline to detect variants 687 

in the output of preprocessed WES data. Following duplicate marking, BAM files are processed 688 

according to GATK (v3.4-0; RRID:SCR_001876) best practices version 3 for tumor–normal 689 

pairs. This includes local realignment using ABRA (v2.17; SCR_003277) with default 690 

parameters, followed by base quality score recalibration using BaseQRecalibrator with known 691 

variants from the Broad GATK B37 resource bundle, including dbSNP (v138; 692 

RRID:SCR_002338). 693 

Somatic variant calling is performed using muTect (v1.1.7; RRID:SCR_000559) with default 694 

parameters for SNV detection, while somatic indels are identified using GATK HaplotypeCaller 695 

with subsequent custom post-processing. A final "fill-out" step computes the complete read 696 
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depth information at each variant position across all samples using the realigned BAMs. This 697 

step applies quality filters requiring mapping quality ≥ 20 and base quality ≥ 0, with no filtering 698 

for proper read pairing. 699 

All analyses were performed using a standardized computational environment managed through 700 

Singularity (v2.6.0). The complete pipeline source code, including all post-processing scripts, is 701 

available at: 702 

● https://github.com/soccin/BIC-variants_pipeline 703 

● https://github.com/soccin/Variant-PostProcess 704 

Additional software versions used in the pipeline include Perl (v5.22.0; RRID:SCR_018313), 705 

Samtools (v1.2; RRID:SCR_002105), VCF2MAF (v1.6.21; RRID:SCR_027063), and VEP 706 

(v102; RRID:SCR_007931). 707 

SNV and CNA visualization 708 

To visualize the SNV and CNA status of key cancer genes, as well as tumor mutation burden, 709 

we used CoMut(21). 710 

snRNA-seq data pre-processing 711 

After quality controls (see next section), snRNA-seq generated a total of 73,142 high-quality 712 

transcriptomes from 11 samples (Supplementary Table 1). 713 

Alignment of sequencing reads 714 

All scRNA-seq samples were pre-processed as follows: FASTQ files from the rapid autopsy 715 

samples were processed with the SEQC (v.0.2.4) pipeline(22)(https://github.com/dpeerlab/seqc) 716 

using the hg38 human genome reference, default parameters and platform set to 10x Genomics 717 

v3 3′ scRNA-seq kit. The SEQC (v.0.2.4) pipeline performs read demultiplexing, alignment and 718 

unique molecular identifier (UMI) and cell barcode correction, producing a preliminary count 719 

matrix of cells by unique transcripts. By default, the pipeline will remove putative empty droplets 720 

and poor-quality cells based on (1) the total number of transcripts per cell (cell library size); (2) 721 

the average number of reads per molecule (cell coverage); (3) mitochondrial RNA content; and 722 

(4) the ratio of the number of unique genes to library size (cell library complexity).  723 

Nuclear transcriptomes from human rapid autopsy samples are expected to have lower RNA 724 

content and quality than regular single-cell assays(23). To obtain a more comprehensive 725 

representation of cancer phenotypes we included both FACS and non-sorted samples (see 726 

Single-nucleus RNA-seq section), however, non-sorted samples carry a greater degree of low 727 

quality nuclei. Therefore, due to the intrinsic lower RNA content and sample quality of flash-728 

frozen snRNA-seq derived transcriptomes, we performed further quality control steps as 729 

described in the following sections. 730 

snRNA-seq data quality control 731 

Ambient RNA removal 732 
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During nucleus extraction from flash-frozen tissue, cell-free ambient RNA is liberated into the 733 

dissociation solution and becomes encapsulated with nuclei during library construction. Ambient 734 

RNA contamination can create undesired technical artifacts in single cell data, such as ectopic 735 

gene expression and the obscuring of real biological differences between distinct cell population 736 

transcriptomes.  737 

To address this issue, we corrected for ambient RNA expression using CellBender 738 

(v.0.1.0)(24)(https://github.com/broadinstitute/CellBender). CellBender is an unsupervised 739 

Bayesian model that requires no prior knowledge of cell-type-specific gene expression profiles 740 

to identify ambient RNA counts. The approach is based on the principle that ambient RNA 741 

contamination will have a relatively uniform distribution across all cells, whereas cell-specific 742 

RNA will display more variable expression patterns. The procedure for removing ambient RNA 743 

using CellBlender involved the following steps with default parameters: 744 

Quality control: Rapid autopsy snRNA-seq samples (particularly non-sorted samples) have 745 

more low-quality droplets with debris and ambient RNA than regular scRNA-seq samples(23). 746 

To increase the signal-to-noise ratio between ambient RNA and real RNA counts, we first 747 

performed a lenient QC by removing nuclei with more than 5% mitochondrial genes, and fewer 748 

than 127 genes or fewer than 255 reads, and by removing genes present in fewer than 10 cells. 749 

The estimated cell number of each batch was inferred with SEQC(22). We applied CellBender 750 

(RRID:SCR_025990) to this initial lenient-filtered snRNA-seq data as follows. 751 

Estimation of ambient RNA levels: CellBender estimated levels of ambient RNA for each 752 

gene across all nuclei by assessing the distribution of expression levels for each gene and 753 

identifying genes with a uniform distribution as candidates for ambient RNA contamination. 754 

Subtraction of ambient RNA: Next, CellBender subtracted the estimated ambient RNA 755 

contamination from the expression level of each gene in every droplet. This process generated 756 

a corrected gene expression matrix with non-transformed integer counts. 757 

Evaluation of ambient RNA correction: We selected 5,000 highly variable genes using the 758 

variance-stabilizing transformation method(25). To normalize the data, we scaled each cell to 759 

10,000 reads and applied a log2(X+1) transformation. Dimensionality reduction was performed 760 

using principal component analysis (PCA) and the top 50 components were utilized for 761 

downstream analysis. We constructed a k-nearest neighbor (kNN) graph using k = 30 and 762 

applied PhenoGraph (RRID:SCR_016919)(26) to identify distinct coarse cell clusters. Cell-type-763 

specific markers were used post-hoc to evaluate ambient RNA correction. CellBender 764 

successfully retained cell-type-specific markers in corresponding clusters, while removing 765 

unexpected RNA counts, particularly genes from acinar cells that appeared in other cell types. 766 

Filtering low-quality nuclear transcriptomes 767 

Proceeding with the CellBender-corrected count matrix, cells with a low number of detected 768 

genes, a low total UMI count (sequencing depth) and a high fraction of mitochondrial counts 769 

were designated low-quality cells, as they can represent dying cells with broken 770 

membranes(27). Previous snRNA-seq protocols have also reported that ribosomes can remain 771 

attached to the nuclear membrane during nucleus isolation(28); therefore, data were further 772 

assessed for library size, total gene counts, mitochondrial and ribosomal RNA content.  773 
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Library size and gene count thresholds: We removed cells with fewer than 500 RNA counts 774 

and fewer than 200 genes. 775 

Mitochondrial and ribosomal RNA content thresholds: Since our droplets contained nuclear 776 

transcriptomes, we reasoned that mitochondrial and ribosomal RNA should be greatly reduced 777 

in high-quality transcriptomes. Hence, we checked for cells with high mitochondrial and 778 

ribosomal content. Cells with higher levels of mitochondrial and ribosomal genes primarily 779 

belonged to non-sorted samples, suggesting that these droplets contained higher levels of 780 

debris, as expected. After manual assessment, we removed droplets with more than 1% of 781 

mitochondrial RNA and/or more than 10% ribosomal RNA fractions. 782 

Doublet detection 783 

Multiplets (droplets containing more than a single nucleus), predominantly doublets, are an 784 

undesired byproduct of library production that create artifactual transcriptomes and confound 785 

real biological signal. Homotypic doublets encapsulate two nuclei from the same cell type, and 786 

heterotypic doublets capture two different cell types, leading to cell-type mislabeling(27). Given 787 

the challenging task of differentiating single transcriptomes from doublets, using more than one 788 

detection approach and comparing results can increase the accuracy of doublet detection(29). 789 

We used DoubletDetection(https://zenodo.org/record/2678042) and Scrublet(30), two of the top-790 

performing doublet detection algorithms(31), and further inspected identified doublets to confirm 791 

larger library size compared to singlets, as well as expression of conflicting gene markers. For 792 

each sample independently, we visually compared putative doublet and singlet total count 793 

distributions together, and their clustering distribution in UMAP projections. 794 

DoubletDetection: DoubletDetection is a machine-learning algorithm for identifying doublets in 795 

scRNA-seq 796 

data(https://zenodo.org/record/2678042)(https://github.com/JonathanShor/DoubletDetection). It 797 

generates synthetic doublets, clusters them together with the original data using 798 

PhenoGraph(26), and assigns a score and p-value for clusters with enriched synthetic doublets 799 

using a hypergeometric test. We used DoubletDetection separately in each sample raw snRNA-800 

seq count matrix with default parameters. 801 

Scrublet: Scrublet (RRID:SCR_018098)(30)(https://github.com/swolock/scrublet) simulates 802 

doublets from the observed data and uses a kNN classifier to calculate a continuous 803 

doublet_score (between 0 and 1) for each transcriptome. The score is automatically thresholded 804 

to generate predicted_doublets, a boolean array that is True for predicted doublets and False 805 

otherwise. We used Scrublet independently for each sample's raw snRNA-seq count matrix with 806 

default parameters. 807 

We found the results from both methods to be complementary and removed cells identified as 808 

doublets by either method. Transcriptomes passing library size, mitochondrial, ribosomal and 809 

doublet detection criteria were retained and the data matrices concatenated into a single matrix 810 

(73,142 cells and 22,318 genes) for downstream analysis. 811 

snRNA-seq data analysis 812 

Feature selection, normalization, and variance stabilization 813 
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Following quality control, we selected 5,000 highly variable genes (HVGs) using 'seurat_v3' in 814 

scanpy (v.1.9.8; RRID:SCR_018139)(32)(https://github.com/scverse/scanpy), which computes a 815 

normalized variance for each gene on the raw counts(25). Other parameters were set as 816 

default. To normalize the data we scaled each cell to 10,000 reads. The normalized counts were 817 

then log-transformed (base 2). 818 

Dimensionality reduction and visualization 819 

PCA of the log-normalized matrix was performed using the ARPACK solver on the selected 820 

HVGs. We retained the first 50 principal components (PCs), which explained 33.5% of the 821 

variation in the data, and constructed a kNN graph using k = 30. To visualize the data, UMAP 822 

was applied to the PCA-reduced data and a minimum distance of 0.1. 823 

Since non-cancer cells from different libraries were well integrated, we did not perform any 824 

batch correction on our data. Differences between samples from different anatomical locations 825 

were regarded as biologically driven. 826 

Gene signature scores 827 

To generate all gene signature scores in our study, we used the Scanpy score_genes 828 

function(33), which calculates the mean expression of genes of interest subtracted by the mean 829 

expression of a random expression-matched set of reference genes. To control for gene set 830 

sizes, we selected the random reference set to be the same size as the gene set of interest. 831 

Other parameters were set to default. 832 

Cell-type annotation 833 

Cancer cell-type annotation: To annotate cell types, we first sought to discern cancer cells 834 

from non-cancer cells. The tumors harbor a truncal KRASG12V mutation, detected both by MSK-835 

IMPACT(34) and WES mutation calling; therefore, we used two independent but complementary 836 

KRAS signatures from the literature to generate a KRAS_signaling score per cell: 837 

KRAS_PDAC(35): This signature of 36 genes is based on differential expression between 838 

epithelial cells in wild-type KRAS and KRAS-knockout mouse tumors. We used the human 839 

orthologs provided in the signature. 840 

KRAS_addiction(36): This signature was generated by comparing human lung and pancreatic 841 

cancer lines that require KRAS to maintain viability with those lines that do not; all lines 842 

harbored KRAS mutations and were treated with short hairpin RNAs to deplete KRAS. The 843 

resulting signature is specific to KRAS-dependent cells, and is associated with a well-844 

differentiated epithelial phenotype also observed in primary tumors. 845 

We scored these signatures separately, and although high-scoring cells for the two signatures 846 

did not overlap fully, both robustly identified the same clusters; thus, we used the union of 847 

KRAS_PDAC and KRAS_addiction to generate the KRAS_signaling signature for cancer cell 848 

annotation. Positive clusters were confirmed by CNA profiles inferred from the scRNA-seq data 849 

using inferCNV(12), as described in the following section. 850 

Non-cancer cell-type annotation: To label non-cancer cells, we clustered all cells using 851 

PhenoGraph(26) with default parameters on the previously obtained PCs, and used literature-852 

curated canonical cell-type-specific markers (Supplementary Table 2) to annotate the clusters. 853 
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For clusters related to smooth muscle cells, MUC1/MUC6 epithelial cells, and adipocytes, no 854 

initial cell-type identity could be discerned. We therefore ranked the genes underlying each 855 

cluster using the Scanpy function scanpy.tl.rank_genes_groups with the sparse matrix and 856 

default parameters. Reference clusters were set to ‘rest’ as well as adjacent clusters with known 857 

cell-type identity for increased granularity. Genes among the top 20 ranked genes were used to 858 

identify the cell identity of those clusters. 859 

Inferring copy number alterations from snRNA-seq data 860 

To infer chromosomal CNAs in tumor cells, we ran inferCNV 861 

(v1.10.0)(12)(https://github.com/broadinstitute/inferCNV) and copyKAT 862 

(v1.1.0)(13)(https://github.com/navinlabcode/copykat) using the Python API of these algorithms 863 

implemented in the infercnvpy package (v0.1.0). We ran both packages using default parameter 864 

settings, and used non-cancer cell types as the diploid reference. InferCNV was run with a 865 

window size of 100 genes and a step size of 1, to balance the detection of focal and broad CNA 866 

events. 867 

Phylogenetic inference in rapid autopsy data 868 

We used ductal and acinar cells as reference normal cells for IntegrateCNV. The algorithm 869 

returned a matrix containing copy numbers for 43,949 cells in 116 genetic regions. We only took 870 

the subset of cells annotated as tumor, and expanded this matrix to a ternary matrix, as 871 

described above, resulting in 177 features. We then removed features that are highly similar 872 

across all cells by filtering out features that are modal with frequency 99% or higher, reasoning 873 

that small variations in copy number (frequencies below 1%) are likely noise, leaving a final 874 

input matrix containing 101 features. 875 

We applied PICASSO to this input data and required that each cell have an UMI count greater 876 

than 750 and that each clone contains at least 75 cells, generating 66 clones. As a final filtering 877 

step to remove noisy clones data from the phylogeny, we required each clone to have at least 878 

one CNA at a prevalence greater than 80% to be considered valid. We reason that clones 879 

without highly prevalent CNAs are not likely to be well-supported and may represent ‘noise’ 880 

clones with cellular CNA profiles that are inconsistent with more well-defined clones. Removing 881 

four such noisy clones left a total of 62 clones (95–1,613 cells per clone, median = 618 cells) 882 

containing 40,994 cells in the phylogeny. 883 

We defined a primary clone as containing at least 50% of cells from the primary tumor, yielding 884 

four primary clones in the data. As a proxy for the metastatic behavior of each primary clone, we 885 

calculated the proportion of non-primary cells within each clone, with higher values indicating 886 

greater dissemination. 887 

AC5 clone assignment 888 

To confirm that primary cells expressing the archetype cluster 5 (AC5) program were strongly 889 

associated with advanced clones, we focused on the two advanced AC5 clones with the most 890 

primary cells (clones I and J, bearing 7 and 9 cells, respectively). We compared the CNA 891 

profiles of these cells to the clone profiles (CNA change probabilities at each site) of their 892 

assigned clones as well as the clone profiles of a representative clone (clone 1-1-0-1-1-0) with a 893 

majority of primary cells. 894 
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We also computed the log-likelihoods of the primary cells CNA profiles in these clones, 895 

compared them with those of all other cells in the clone, and found that they exhibited median 896 

levels of clone confidence compared to the other (primarily stomach and liver) cells in the 897 

clones. 898 

Pairwise diffusion distances of pancreas primary archetype 5 cells 899 

To quantitatively evaluate the similarity of pancreas primary AC5 cells with metastatic cells 900 

versus other pancreas primary cells we compared the pairwise diffusion distances from all 901 

primary AC5 cells to all metastatic AC5 cells and to all other primary cells separately. We used 902 

the ‘scipy.spatial.distance.cdist’ (RRID:SCR_008058) function with the metric = euclidean on 903 

the diffusion map coordinates. This computes the distance between each pair of the two 904 

collections of inputs. 905 

Archetype analysis 906 

We used archetype analysis to identify optimal phenotypes (representing adaptive processes) 907 

among cancer cell transcriptomes, which may be shared or specific to one or more tumor sites. 908 

Archetype analysis identifies the vertices of a convex polytope—an approximation of a convex 909 

hull that encapsulates the data in phenotypic space(37), which in our case is diffusion space. 910 

Archetypes often correspond to the extremes of single diffusion components, which are 911 

commonly used to approximate the major axes of variation within the phenotypic manifold. As 912 

m, the number of diffusion components as computed in the section “diffusion components” 913 

below, corresponds to the dimensionality of the data, we selected the number of archetypes we 914 

wished to identify as m + 1. To understand the gene programs that cancer cells use to adapt to 915 

different metastatic sites, which likely pose unique challenges and stresses, we computed 916 

archetypes in each tissue independently as described below. 917 

Archetype analysis per tumor site 918 

First, we partitioned the data by tumor site (pancreas primary, liver, omentum, peritoneum, 919 

diaphragm, stomach, lymph node). Each site was normalized independently by scaling each cell 920 

to 10,000 reads and applying a log2(X+1) transformation.  921 

The selection of the number of HVGs is crucial for capturing meaningful biological variability 922 

while minimizing technical noise. Too few HVGs (<500) risks losing important biological 923 

variation, while too many HVGs (>5,000) increases noise without adding significant biological 924 

variation. In general, our study and others with large data sets (>50,000 cells) and diverse cell 925 

types select around 5,000 HVGs. For medium size datasets (5,000–50,000 cells) and less cell-926 

type diversity, 2,000–3,000 HGVs are recommended. To perform archetype analysis per site, 927 

which includes only cancer cells from the same organ (470–23,950 cancer cells per organ, 928 

median 4,031), we computed 2,000 HVGs using the 'seurat_v3'(25) method in scanpy. 929 

We computed 50 PCs using the svd_solver = 'arpack' on the HVGs on each dataset. Sites 930 

included PDAC primary (3,479 cells, 40% variance explained by PCA), liver (4,031 cells, 36% 931 

variance), peritoneum (23,950 cells, 36% variance), lymph node (470 cells, 44% variance), 932 

stomach (4,075 cells, 35% variance), diaphragm (6,137 cells, 37% variance) and omentum 933 

(3,305 cells, 34% variance). We then computed the kNN graph with k = 30 neighbors on the PC 934 

space representation (X_pca). We chose 30 neighbors to balance between adding noise (<20 935 
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neighbors) and losing biological variation (>50 neighbors) in the medium size datasets we 936 

analyzed. 937 

To visualize each site separately, we computed UMAP (min_dist = 0.1) and FDL with default 938 

parameters on the kNN graph. We then clustered each dataset using Leiden clustering in 939 

scanpy with default parameters and further assessed cell quality and cancer cell purity in each 940 

cluster. We detected some outlier clusters with low library size in lymph node (n = 12 cells) and 941 

stomach (n = 226 cells) and non-cancer cell contamination in liver (n = 85 cells) data partitions. 942 

Given the objective of archetype analysis in detecting extreme data points in the 943 

multidimensional space, we removed those cells from each data partition and from the entire 944 

dataset. 945 

Diffusion components: Given the presence of different cell-state densities in the data, we 946 

used an adaptive anisotropic kernel(38), which adjusts the local bandwidth (sigma) based on 947 

local density, to compute diffusion maps. This can give more flexibility in regions with different 948 

densities, improving resolution in sparse areas and reducing over-smoothing in dense areas, 949 

compared to the fixed anisotropic Gaussian kernel with a predefined scale (sigma) in scanpy, 950 

which is more appropriate for relatively uniform cell-state density datasets. 951 

With the adaptive anisotropic kernel, we computed 10 diffusion components (DCs) on the PC 952 

projections of the data and calculated their corresponding eigenvalues and the diffusion 953 

operator. We used the eigenvalue knee point to determine the number of DCs for each site: 954 

pancreas 5 archetypes, liver 6 archetypes, lymph node 5 archetypes, peritoneum 5 archetypes, 955 

omentum 6 archetypes, stomach 4 archetypes, diaphragm 5 archetypes. Archetypes were 956 

calculated on the DCs using the Python implementation of the PCHA algorithm with delta = 0. 957 

Archetypes were identified independently 10 times to assess robustness, and the nearest real 958 

cell to each archetype was identified using Euclidean distance in diffusion space. 959 

Archetype neighborhoods: We next sought to annotate each archetype based on gene 960 

expression. Since each archetype is identified as a single cell, we enhance statistical power by 961 

defining archetypal neighborhoods, consisting of each archetype’s most similar cells in diffusion 962 

map space. The neighborhoods are defined such that they include enough cells to enhance the 963 

robustness of inference, while maintaining the archetypal phenotype and distinction between 964 

archetypes. Importantly, different metastatic sites have different numbers of cancer cells, 965 

archetypes and the density of cells in the phenotype space varies. To account for all these 966 

differences, for a given archetype A in a given tissue, we calculate the diffusion distance (D) to 967 

its nearest archetype and define the neighborhood for A as the set of cells which are within a 968 

fraction of D. This ensures no overlap between the archetypal neighborhoods, thereby 969 

maintaining their distinctions. Parameters used for each site are: PDAC primary DC fraction 970 

distance = 1/3 (91–1,571 cells per neighborhood); liver DC fraction distance = 1/3 (63–696 971 

cells); peritoneum DC fraction distance = 1/4 (311–1,098 cells); lymph node DC fraction 972 

distance = 1/2 (36–112 cells); stomach DC fraction distance = 1/3 (315–997 cells); diaphragm 973 

DC fraction distance = 1/3 (160–2,037 cells); and omentum DC fraction distance = 1/3 (43–417 974 

cells). To visualize archetype neighborhoods, we colored the selected neighborhood cells on the 975 

FDL projections. 976 
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Differential gene expression: For each tumor site, DEGs were calculated for each archetype 977 

neighborhood versus all other neighborhoods from the same site, using raw counts. Genes 978 

expressed in fewer than 5% of cells in each group were filtered out to reduce noise. Differential 979 

expression was performed using diffxpy (https://github.com/theislab/diffxpy) with a Wald test, 980 

considering DEGs with log2 fold change > 0.05 and q-value < 0.01. 981 

Robustness analysis of archetype neighbors 982 

We tested the robustness of our archetype analysis and archetype neighborhood selection by 983 

downsampling library size to various extents for each organ separately. For this, we 984 

downsampled counts from each tumor site raw counts data using ‘sc.pp.downsample_counts’. 985 

We set the count_per_cell parameter to be 10% or 20% of the original library size, resulting in a 986 

randomly downsampled dataset. For each site and downsampling level, we repeated the 987 

analysis 20 times with a different random seed for subsampling. 988 

We repeated the entire archetype analysis process using the same parameters as described 989 

above in the subsampled data sets. We then compared the selected archetype neighborhoods 990 

using the Jaccard metric, which measures the similarity between two sets of elements by 991 

quantifying how many elements (archetype neighbor cells) the sets have in common relative to 992 

their total unique elements. 993 

To assess the robustness to higher synthetic dropout rates (10% and 20%), we computed 994 

Jaccard similarity among the archetypal neighborhood across different iterations. We observed 995 

a high similarity of > 0.75 indicating that the selected archetype neighborhoods are robust. 996 

Cell-density estimation 997 

To evaluate if archetype neighborhoods were driven by the cell-state density distribution in the 998 

high-dimensional space, we estimated the cell-state density of each tumor site partitioned data 999 

using Mellon(39)(https://github.com/settylab/Mellon) with default parameters. Mellon is a non-1000 

parametric cell-state density estimator based on a nearest-neighbors-distance distribution. It 1001 

estimates cell-state densities from high-dimensional representations of single-cell data using a 1002 

Gaussian process. We preprocessed and calculated cell-state densities for each tumor site 1003 

separately following the basic tutorial 1004 

(https://github.com/settylab/Mellon/blob/main/notebooks/basic_tutorial.ipynb).  1005 

Integrated archetype clusters 1006 

To capture possible shared processes, we subsetted the data to include all cells labeled with an 1007 

archetype, and all genes that were included in any DEGs associated with any archetype in any 1008 

organ. All 14,826 archetype cells and 15,017 genes were combined into a single matrix which 1009 

we median-count normalized, log-transformed counts. PCA (56 PCs, 20% variation explained) 1010 

was followed by kNN graph construction (k = 30 neighbors), Leiden clustering (resolution = 1), 1011 

PAGA(40), and UMAP visualization (min_dist = 0.1, init_pos = PAGA). The resulting leiden 1012 

clusters aggregate together archetypes calculated from the different sites, hence we defined the 1013 

leiden clusters as “integrated archetype clusters”. We reasoned that each integrated archetype 1014 

cluster could capture specific biological processes shared between different sites (e.g. cell 1015 

cycle, EMT) or unique to a given site (e.g. lipid metabolism). To identify the underlying biological 1016 
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processes specific to each integrated archetype cluster we then calculated DEGs for each 1017 

cluster and identified gene modules as described below.  1018 

Level 1: Differentially upregulated genes. Differential expression using diffxpy 1019 

(https://github.com/theislab/diffxpy) (Wald test, DEGs with log2 fold change > 1 and q-value < 1020 

0.05) was calculated for each integrated archetype versus all other archetypes. 1021 

Level 2: Gene modules. Cancer cells are able to express a variety of gene expression 1022 

programs that may resemble distinct modular processes in a physiological setting. To 1023 

disentangle these gene expression programs we used Hotspot(41). Hotspot identifies 1024 

informative genes based on gene-gene autocorrelation in local neighborhoods in the phenotypic 1025 

manifold, using a kNN graph which we generated with weighted_graph = false, n_neighbors = 1026 

30, and FDR < 0.05. Gene modules were computed on these informative genes: Informative 1027 

genes from Hotspot modules were ranked by local correlation z-score. Then pre-ranked gene 1028 

set enrichment analysis (GSEA)(42,43) was performed using GSEApy (RRID:SCR_025803)(44) 1029 

(https://github.com/zqfang/GSEApy) against selected GSEApy supported gene set libaries 1030 

(https://maayanlab.cloud/Enrichr/#libraries) and expert-curated gene sets: 1031 

GSEApy libraries: GO_Biological_Process_2021, MSigDB_Hallmark_2020, Reactome_2016, 1032 

KEGG_2021_Human, GO_Cellular_Component_2021, GO_Molecular_Function_2021, 1033 

WikiPathways_2019_Human, and Azimuth_Cell_Types_2021. 1034 

Expert-curated gene sets: Azimuth_Pancreas_Cells 1035 

(https://azimuth.hubmapconsortium.org/references/human_pancreas/), PDAC_Subtypes 1036 

(classical and basal), PDAC_Signatures, Pancreas_Development, Cancer_Metaprograms, 1037 

Cell_Cycle, KRAS_signaling. References and manually-curated gene sets are listed in 1038 

Supplementary Table 10. 1039 

The pancreas development gene set (Reference and genes in Supplementary Table 10) was 1040 

generated by calculating DEGs (using MAST (RRID:SCR_016340)(45) with default parameters) 1041 

between emergent endodermal pancreas (clusters marked by PRX1) and other emerging 1042 

endodermal organs. Then we mapped the gene orthologs between mouse and human 1043 

genomes. 1044 

Level 3: Archetype genes. DEGs and genes with modules whose mean expression is highest 1045 

in a given archetype were used to characterize the archetype. This level of annotation ensures 1046 

that genes are specifically upregulated in the archetype over other archetypes. Level 3 genes in 1047 

each archetype were manually inspected to confirm GSEA results and to increase the 1048 

granularity of the archetype descriptions. Archetypes with low normalized enrichment scores 1049 

(NES) from GSEA were further inspected and labeled according to level 3 genes. 1050 

CZ CELLxGENE Discover (RRID:SCR_024894)(46) was used to annotate archetype 5. Gene 1051 

expression of archetype cluster 5 genes was evaluated in CZ CELLxGENE. Higher average 1052 

expression was observed in intestinal, stomach, and gallbladder tissues. Specifically, epithelial 1053 

cell types were then evaluated for expression of AC5 genes. 1054 
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Intestine: endocrine cell, columnar/cuboidal epithelial cell, secretory cell, enterocyte, epithelial 1055 

cell, mesothelial cell, glandular epithelial cell, goblet cell, absorptive cell, brush cell, intestinal 1056 

crypt stem cell of colon, intestinal epithelial cell, intestinal enteroendocrine cell. 1057 

Stomach: enterocyte, epithelial cell, ciliated epithelial cell, columnar/cuboidal epithelial cell, 1058 

glandular epithelial cell, secretory cell, enteroendocrine cell, endocrine cell, peptic cell, mucous 1059 

cell of stomach, parietal cell, glandular cell of esophagus, epithelial cell of esophagus, intestinal 1060 

epithelial cell, brush cell, type G enteroendocrine cell, mucus secreting cell, goblet cell, intestine 1061 

goblet cell. 1062 

Gallbladder: epithelial cell, secretory cell, goblet cell. 1063 

Pancreas: pancreatic ductal cell, epithelial cell of pancreas. 1064 

To annotate AC2 at a more granular level, we also used the Kyoto Encyclopedia of Genes and 1065 

Genomes (KEGG) database (RRID:SCR_012773)(47). Specifically, we used the KEGG Mapper 1066 

Search Tool (https://www.genome.jp/kegg/mapper/search.html), which searches various KEGG 1067 

objects, including genes, KOs, EC numbers, metabolites and drugs, against KEGG pathway 1068 

maps and other network entities. Then the top matching KEGG objects found were used to 1069 

explore and annotate the biology of AC2 modules: 1070 

Fatty acid and cholesterol biosynthesis: Metabolic Pathways (hsa01100) and Fatty Acid 1071 

Metabolism (hsa01212). 1072 

Oxidative stress and detoxification: Metabolic Pathways (hsa01100), Ferroptosis 1073 

(hsa04216), Glutathione metabolism (hsa480) and Chemical carcinogenesis - reactive oxygen 1074 

species (hsa05208). 1075 

Archetype cluster annotation 1076 

Archetype cluster annotation was performed by first considering normalized enrichment scores 1077 

(NES) and the specific archetype genes deemed significant by GSEA. The NES genes were 1078 

used as an initial general guide. Higher priority was then given to the specific gene modules and 1079 

genes to annotate clusters in a granular and specific manner. CZ CELLxGENE Discover(46) 1080 

was used to annotate archetype cluster 5 since only the PDAC Adhesive gene program(48) was 1081 

significantly enriched. 1082 

Comparison with Leiden clustering 1083 

To compare archetype clusters and Leiden clusters we first clustered the cancer data using 1084 

‘sc.tl.leiden’ with default parameters. Then the same level 1 and 2 steps employed for 1085 

archetypes were used to annotate gene programs associated with Leiden clusters. We 1086 

compared the archetype and Leiden clusters’ DEGs using Jaccard Similarity.  1087 

Archetype analysis and annotation of RA19_21 peritoneum metastases 1088 

Two PDAC peritoneum metastases were harvested from the rapid autopsy RA19_21 and 1089 

snRNA-seq data were collected following the same protocol described in snRNA-seq data pre-1090 

processing, scRNA-seq data analysis, and archetype analysis sections above for RA19_10. 1091 

Data preprocessing and quality control were also performed using the same workflow. The 1092 
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same archetype analysis and gene program annotation workflows were performed for these 1093 

peritoneal metastatic samples to evaluate expression of the lipid metabolism and oxidative 1094 

stress programs found in AC2. No integration of archetype clusters was required since only 1095 

peritoneal metastases were analyzed. 1096 

Entropy of archetype distributions 1097 

We sought to determine whether each clone exhibits a greater diversity of archetypes than 1098 

expected by chance, which would indicate phenotypic plasticity across the phylogeny. For each 1099 

clone, we computed the Shannon entropy of the observed archetype distribution as a measure 1100 

of phenotypic diversity. Shannon entropy, 𝐻, is calculated as: 1101 

𝐻 =  −  𝑙𝑜𝑔 ∑𝑘
𝑖=1 𝑝𝑖 𝑙𝑜𝑔 (𝑝𝑖) , 1102 

where 𝑝𝑖 is the proportion of cells within the clone assigned to archetype 𝑖 and 𝑘 = 18 is the 1103 

number of unique archetypes. This entropy metric allows us to quantify the spread of archetype 1104 

diversity within clones, with higher entropy values indicating more even and diverse distributions 1105 

of archetypes. 1106 

Null model comparisons 1107 

To contextualize the observed entropy and evaluate whether the diversity observed within 1108 

clones is greater than expected by chance, we compared our results to several null models. 1109 

Each null model simulates archetype distributions under different assumptions, providing a 1110 

range of baselines. In order of decreasing expected diversity, they are: 1111 

1. Random assignment. Archetypes are assigned to cells randomly across all clones, with 1112 

probabilities matching the global frequencies of each archetype. This model retains the 1113 

overall prevalence of each archetype, but removes any structure associated with clone 1114 

or site, simulating a scenario in which cells randomly adopt a phenotype without any 1115 

constraints. 1116 

2. Site-constrained random shuffle. Archetypes are assigned to cells randomly within 1117 

sites, preserving each site's archetype frequency distribution. This model retains the 1118 

overall presence of each archetype and its prevalence within each site, but removes any 1119 

structure associated with clones.  1120 

3. High site–archetype concordance assignment. Archetypes are assigned to cells to 1121 

minimize the dispersion of archetypes across sites. We carry out greedy assignment of 1122 

archetype labels to cells within sites in a way that retains the global archetype frequency, 1123 

but not the per-site frequencies. This model shows the expected diversity if cells were 1124 

insufficiently plastic to adopt the same phenotype in multiple distinct sites.  1125 

4. Site entropy within clones. We compute the entropy of site distribution within each 1126 

clone, ignoring archetype labels, to model the simplistic scenario in which the site drives 1127 

all phenotypic variation. 1128 

PLASTRO quantifies clone plasticity 1129 

The entropy of archetypes within clones provides information about the number of phenotypes a 1130 

clone can adopt. However, to measure lineage plasticity—which we define as the cells' inherent 1131 

capability to flexibly transition between various lineage states or phenotypes—we must examine 1132 
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cellular phenotypes in the context of their phylogenetic relationships. This approach allows us to 1133 

assess the extent to which cells or cell groups adopt distinct phenotypes compared to their 1134 

evolutionary ancestors. 1135 

We leveraged two complementary data modalities to develop metrics for measuring lineage 1136 

plasticity: PICASSO, which enables reconstruction of phylogenetic relationships, and archetype 1137 

analysis, which characterizes the breadth of phenotypes present in the cells. Existing methods 1138 

for measuring plasticity have key limitations, including the need to discretize continuous cell 1139 

states, dependence on fully resolved cell phylogenies, and sensitivity to neighborhood size 1140 

hyperparameters. Our integrated approach specifically addresses these concerns. 1141 

Yang and colleagues(19) defined three metrics for quantifying cellular plasticity. 1142 

scEffectivePlasticity applies the Fitch–Hartigan algorithm to calculate a normalized parsimony 1143 

score based on discrete Leiden cluster transitions across a phylogenetic tree, while 1144 

scPlasticityAllelic provides a tree-agnostic alternative by measuring the proportion of cells 1145 

belonging to Leiden clusters that are not their closest genetic relatives (determined by edit 1146 

distance). Both of these approaches rely on discretizing phenotypes into Leiden clusters, which 1147 

makes them sensitive to clustering resolution and is poorly suited for continuously varying 1148 

phenotypes, where small changes near cluster boundaries can be misclassified as plasticity. 1149 

scPlasticityL2 addresses this limitation by using continuous phenotypic measurements, 1150 

calculating the Euclidean distance in scVI latent space between cells and their tree-defined 1151 

neighbors. However, both scEffectivePlasticity and scPlasticityL2 require a fully described tree 1152 

topology and are thus highly dependent on the accuracy of tree inference, while scPlasticityL2 1153 

and scPlasticityAllelic further depend on a user-defined neighborhood size—a single predefined 1154 

value that is difficult to choose optimally across datasets with varying sequencing depth, 1155 

sampling density, and degrees of phenotypic change. 1156 

Schiffman and colleagues(49) introduce phylogenetic correlations to quantify how cellular 1157 

measurements are distributed across a phylogenetic tree using Moran's I (a measure of spatial 1158 

autocorrelation) and its bivariate generalization. This approach measures correlation patterns 1159 

directly across the phylogeny, facilitating analysis of both continuous expression patterns and 1160 

discrete cell states within their evolutionary context. The method transforms pairwise 1161 

phylogenetic distances into a weighted matrix, using carefully selected weighting functions. The 1162 

choice of weighting function is critical as phylogenetic correlations depend significantly on the 1163 

structure of the normalized weight matrix, and the function selected by the authors only includes 1164 

cells that are each other’s nearest phylogenetic neighbor. This choice of weighting function may 1165 

not be suitable for larger scale datasets on the order of tens of thousands of cells.  1166 

To address these concerns, we developed PLASTRO, a metric for quantifying plasticity from 1167 

jointly profiled lineage and scRNA-seq information, without relying on the inference of complete 1168 

and exact tree topologies, fixed neighbourhood size hyper-parameters or discretization of cell 1169 

phenotypes. PLASTRO accepts two distance matrices as input: (i) lineage distance, which 1170 

reflects how similar clones are to each other in evolutionary space, and (ii) phenotypic distance, 1171 

which reflects how similar clones are to each other functionally. Given these matrices, we can 1172 

define a lineage neighbourhood and a phenotypic neighbourhood of radius 𝑟 clones for each 1173 

clone. Each clone’s neighbourhoods comprise its 𝑟 closest cells in lineage and phenotype 1174 

space, respectively. The key idea behind this approach is that there will be substantial 1175 
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agreement between the lineage neighbourhood and the phenotypic neighbourhood in non-1176 

plastic clones; thus, overlap in these neighbourhoods will be high on average. In contrast, highly 1177 

plastic clones will exhibit phenotypes distinct from other clones in their lineage, and their 1178 

neighbourhoods will overlap very little on average. 1179 

Computation of PLASTRO score 1180 

PLASTRO accepts a lineage distance matrix and a phenotypic distance matrix as input. Given 1181 

these matrices, we can define, for each cell, a lineage neighbourhood and a phenotypic 1182 

neighbourhood of radius r cells. The choice of radius clearly has a strong effect on the degree of 1183 

overlap between phylogenetic and phenotypic neighborhoods. At very small radii, even non-1184 

plastic cells may exhibit low overlap by random chance. Conversely, at very large radii, plastic 1185 

cells will exhibit strong overlap as well, given that each neighbourhood contains nearly all the 1186 

cells in the dataset. In addition, different radii provide varying signals that help differentiate 1187 

plastic and non-plastic cells depending on the parameters of the dataset. To circumvent this 1188 

issue and avoid reliance on neighbourhood size as a parameter of our approach, we measure 1189 

neighbourhood overlap at varying scales and combine the signal present at each scale. 1190 

PLASTRO consists of four main steps: 1191 

1. Compute the lineage and phenotypic distance matrices. 1192 

2. For each cell, rank all other cells in terms of the distance from that cell in both (a) lineage 1193 

space and (b) phenotypic space. 1194 

3. For a given cell at overlap radius r, compute the overlap in their r closest cells as defined 1195 

by phenotypic distance and by lineage distance. This is the number of cells that lie in 1196 

both the phenotypic neighbourhood of size r and the lineage radius of size r. 1197 

4. Aggregate signal across radii by computing the area under the overlap versus radius 1198 

graph.  1199 

Phenotypic distance matrix 1200 

We calculate the pairwise phenotypic distances between clones using Bray–Curtis dissimilarity, 1201 

a metric that captures differences in relative abundances and is commonly used in ecological 1202 

and compositional analyses. Bray–Curtis is particularly suited to compositional data as it 1203 

accounts for the proportional structure of the data, measuring dissimilarity on a scale from 0 1204 

(identical composition) to 1 (completely dissimilar). 1205 

The archetype composition for clone 𝐴 is denoted by 𝑎 ∈  𝑅𝑘 where 𝑘 is the number of 1206 

archetypes and satisfies 1207 

∑

𝑘

𝑖=1

𝑎𝑗   

 0 <  𝑎𝑖 < 1. 1208 

The Bray–Curtis distance between two clones 𝐴 and 𝐵 is then given by 1209 

𝐷(𝐴, 𝐵)  =  
∑𝑘

𝑖=1 |𝑎𝑖−𝑏𝑖|

∑𝑘
𝑖=1 |𝑎𝑖+𝑏𝑖|

 . 1210 
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The Bray–Curtis distance ranges from 0 to 1, where 0 indicates that the two samples have 1211 

identical compositions and 1 that the two samples have completely disjoint compositions (no 1212 

shared components). 1213 

Phylogenetic (lineage distance) matrix 1214 

We use the phylogeny inferred by PICASSO to construct a pairwise distance matrix between 1215 

clones; the distance between two clones is given by the number of edges separating them in the 1216 

phylogeny. 1217 

Overlap computation 1218 

Given a lineage distance matrix 𝐷𝐿 and a phenotypic distance matrix 𝐷𝑃 constructed on a set of 1219 

cells, 𝑋, we compute the overlap for the cell of interest 𝑐 at radius 𝑟 as follows. We denote the 1220 

distance in lineage space between cell 𝑐 and its 𝑟𝑡ℎnearest neighbour as 𝐷𝐿(𝑐, 𝑟). Similarly, 1221 

𝐷𝑃(𝑐, 𝑟) is the distance in phenotypic space between cell 𝑐 and its 𝑟𝑡ℎ nearest neighbour. 1222 

We define the lineage neighbourhood of cell 𝑐 at radius 𝑟 as: 1223 

𝑁𝐿(𝑐, 𝑟)  =  {𝑥 ∈ 𝑋 | 𝐷𝐿(𝑐, 𝑥)  ≤  𝐷𝐿(𝐶, 𝑟)} 1224 

and the phenotypic neighbourhood of cell 𝑐 at radius 𝑟 as: 1225 

𝑁𝑃(𝑐, 𝑟)  =  {𝑥 ∈ 𝑋 | 𝐷𝑃(𝑐, 𝑥)  ≤  𝐷𝑃(𝐶, 𝑟)} 1226 

The overlap for cell 𝑐 at radius 𝑟 is then defined as the Jaccard similarity of its phenotypic 1227 

neighbourhood and its lineage neighbourhood: 1228 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑐, 𝑟)  =  
𝑁𝐿(𝑐,𝑟) ∩ 𝑁𝑃(𝑐,𝑟)

𝑟
  1229 

Plastic cells will have lower agreement between lineage and phenotypic neighbourhoods, 1230 

particularly at lower radii, and thus a lower overlap at that radius on average, compared to less 1231 

plastic cells. 1232 

Aggregating signal across radii 1233 

To avoid hard-coding a radius which may have a strong effect on the measured plasticity, we 1234 

aggregate signals across radii by considering overlap size as a function of radius, which is an 1235 

increasing function bounded by the line 𝑦 = 𝑥. We compute plasticity as the difference between 1236 

the area under the line 𝑦 = 𝑥 and the area under the overlap-radius curve. 1237 

For more plastic clones, the number of cells in the overlap is lower for smaller radii since the 1238 

phenotypic neighborhood is highly distinct from the phylogenetic neighborhood, and grows to 1239 

include all cells as the neighborhood size grows, resulting in a higher plasticity score. For less 1240 

plastic cells, the overlap proportion is expected to be higher overall, and the overlap-radius 1241 

curve more closely resembles the 𝑦 = 𝑥 line and thus yields a lower plasticity score. 1242 

Application of PLASTRO to PDAC clones  1243 

We apply PLASTRO to compute the plasticity of each clone in our data. The lineage distance 1244 

matrix is computed based on the topology of the phylogenetic tree, where clones 𝐴 and 𝐵 have 1245 

a phylogenetic distance 𝐷𝐿(𝐴, 𝐵) = 𝑛 if there are 𝑛 branches on the shortest tree path between 1246 

them. The phenotypic distance was computed as described above using the Bray–Curtis 1247 

dissimilarity between archetype composition of clones. 1248 
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Calculation of global plasticity 1249 

We used PLASTRO to calculate plasticity at the clonal level, but to assess global plasticity 1250 

across the entire biological system, we turned to the Mantel test (50), which assesses the 1251 

correlation between two distance matrices (the phylogenetic and phenotypic compositional 1252 

distance matrices). The Mantel test is a non-parametric test for assessing matrix correlations 1253 

and is well-suited for evaluating the phylogenetic signal in data without assuming a specific 1254 

model of evolution. Mathematically, the Mantel test statistic is computed as  1255 

𝑚 =  
1

(𝑛−1)
∑𝑖,𝑗

(𝐴𝑖,𝑗−𝐴̄)

√∑𝑘,𝑙 (𝐴𝑘,𝑙−𝐴̄)

(𝐵𝑖,𝑗−𝐵̄)

√∑𝑘,𝑙 (𝐵𝑘,𝑙−𝐵̄)

  1256 

where 𝐴, 𝐵 ∈ 𝑅𝑛×𝑛 are the distance matrices being compared, and 𝐴̄, 𝐵̄ are their respective 1257 

means. The statistic ranges from –1 to +1, with +1 indicating a perfect positive correlation (as 1258 

distances in one matrix increase, distances in the other matrix increase proportionally). 1259 

A significant positive correlation between the compositional and phylogenetic distance matrices 1260 

would indicate that clones with closer evolutionary relationships also have more similar 1261 

compositions. A value of –1 represents a perfect negative correlation (increasing distances in 1262 

one matrix correspond to decreasing distances in the other, reflecting a complete inverse 1263 

relationship). A Mantel test statistic near 0 indicates no correlation between the two matrices, 1264 

such that distances in one matrix do not predict distances in the other, implying that 1265 

compositional differences are more likely to be driven by factors other than shared ancestry. We 1266 

used Spearman correlation to measure the association between matrices and performed 1000 1267 

permutations to test the significance of the observed correlation. 1268 

Data and software availability 1269 

The snRNA-seq data generated in this study are publicly available in the Human Tumor Atlas 1270 

Network (HTAN)(51) Data Portal(52) at 1271 

https://data.humantumoratlas.org/publications/hta8_2025_biorxiv_alejandro-jim%C3%A9nez-1272 

s%C3%A1nchez. 1273 

The WES data (BAM files) generated in this study are publicly available through the European 1274 

Genome-Phenome Archive (EGA) as part of the EGAD00001011109 dataset (Multi-region 1275 

sequencing of PDAC patients) and can be accessed at https://ega-1276 

archive.org/datasets/EGAD00001011109. The names of the samples used in this study, 1277 

snRNA-seq HTAN IDs, and the WES EGA IDs are listed in Supplementary Table 11. Each 1278 

WES EGA ID relates to two or more snRNA-seq HTAN IDs because different experimental 1279 

protocols were applied during the nuclei extraction prior to the snRNA-seq encapsulation 1280 

process (see Methods). 1281 

The data analyzed in figure 4c and supplementary tables 7 and 8 in this study were obtained 1282 

from CZ CELLxGENE Discover database(46) at  1283 

https://cellxgene.cziscience.com/gene-expression. 1284 

The IntegrateCNV algorithm along with documentation, notebooks and tutorials is available at 1285 

dpeerlab/integrateCNV. 1286 
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The PICASSO algorithm, as well as documentation and tutorials for inferring CNA phylogenies 1287 

and visualizing transcriptional and phenotypic information alongside the tree, is available at 1288 

https://github.com/dpeerlab/picasso. 1289 

Code for computing the PLASTRO metric, as well as documentation and tutorials, is available at 1290 

https://github.com/dpeerlab/PLASTRO. 1291 

All other raw data are available upon request from the corresponding authors. 1292 

Results 1293 

A patient-specific atlas of PDAC metastasis 1294 

Using rapid autopsy specimens from a single patient with PDAC and optimized specimen 1295 

dissociation and snRNA-seq protocols, we constructed a comprehensive atlas spanning primary 1296 

and metastatic sites, enabling the study of how cancer evolves and adapts across diverse tissue 1297 

environments. We integrated snRNA-seq and matched WES data from each specimen to 1298 

uncover both clonal architecture and adaptive transcriptional programs driving metastatic 1299 

progression. 1300 

The patient was diagnosed at age 35 with PDAC and extensive synchronous liver metastases, 1301 

as evidenced by computed tomography, which was used in addition to CA19-9 tumor marker 1302 

levels to follow disease status over the 9 months that the patient survived (Fig. 1a,b). Despite 1303 

initial robust response to standard-of-care modified FOLFIRINOX (5-fluorouracil, leucovorin, 1304 

irinotecan, and oxaliplatin), the rapid emergence of refractory disease, unresponsive to second-1305 

line gemcitabine + nab-paclitaxel, highlighted the cancer's remarkable adaptive capacity within 1306 

months of treatment. 1307 

We collected 11 tumor specimens representing diverse tissue microenvironments, including the 1308 

pancreas and six distal organs, by rapid autopsy. The sampling included, where possible, 1309 

anatomically separate lesions from the same organ (the best approximation of biological 1310 

replicates in human cancer): two peritoneal and three liver metastatic samples, in addition to 1311 

two regions of the primary tumor (Fig. 1c). These 11 samples, collected from 7 distinct organ 1312 

sites, exhibit diverse cell-type compositions and tissue morphologies (Supplementary Fig. 1a–1313 

c). 1314 

We recovered 73,142 high-quality snRNA-seq profiles from all samples (Supplementary Fig. 1315 

1d–f and Supplementary Table 1), organized into 39 clusters by PhenoGraph(26), which we 1316 

annotated based on known marker genes (Supplementary Fig. 1b,c, Supplementary Table 2 1317 

and Methods). To distinguish cancer cells from non-cancer, we identified cells with high KRAS 1318 

signaling(35),(36) and detected clusters with accumulated CNAs using inferCNV(12) 1319 

(Supplementary Fig. 2a,b and Methods). We evaluated the expression of genes associated 1320 

with ductal cells, PDAC, mesenchymal, and EMT gene programs to distinguish normal ductal 1321 

cells from primary PDAC cells (Supplementary Fig. 2c). In total, we recovered 45,134 cancer 1322 

epithelial nuclei across all lesions, bearing multiple cancer-related mutations (Fig. 1d and 1323 

Supplementary Fig. 2d,e). From the bulk WES, we identified the expected common PDAC 1324 

alterations such as KRAS and TP53 missense mutations; copy number deletions of CDKN2A, 1325 

SMAD4, DCC; and copy number amplifications of MYC, MCL1, and CCNE1 (Supplementary 1326 
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Fig. 2e). In addition, CNA bulk analysis (Methods) showed both PDAC primary tumor samples 1327 

and metastatic samples harbor broad copy number alterations widespread across the genome 1328 

(Supplementary Fig. 2f). Together, these analyses underscore that the genomic landscape of 1329 

this PDAC patient recapitulates the known alterations and genomic features of metastatic 1330 

PDAC. 1331 

PICASSO resolves single-cell phylogenies 1332 

The availability of both primary and metastatic cells from the same patient provides a unique 1333 

opportunity to study how cancer cells evolve and adapt to different tissue environments. To 1334 

dissect the relative roles of genetic mutations and epigenetic plasticity in metastatic adaptation, 1335 

it is essential to reconstruct the evolutionary history of cancer cells and compare their genotypic 1336 

and phenotypic characteristics within a shared phylogenetic framework. However, current 1337 

approaches face significant limitations.  1338 

Bulk whole exome sequencing offers a coarse view of phylogenetic relationships across lesions; 1339 

however, it lacks single-cell resolution and cannot link genetic mutations to cellular phenotypes. 1340 

Combined DNA-RNA single-cell assays(53,54) are limited by cost and throughput—published 1341 

studies consist of too few cells (typically <1000)(53–55) to capture the full phenotypic 1342 

heterogeneity typically observed within lesions(56). Although copy number inference from 1343 

single-nucleus or single-cell RNA-seq (scRNA-seq) data(12,13) can inform clonal relationships, 1344 

current methods are extremely noisy and strongly impacted by confounding factors such as the 1345 

influence of tumor cell state and its related gene expression patterns(57–59). In addition, many 1346 

phylogenetic algorithms assume that mutations occur only once (“perfect phylogeny”), whereas 1347 

in cancer, CNAs are highly recurrent(60–62). For example, over 50% of CNA regions violate the 1348 

perfection assumption in our data, complicating traditional phylogenetic approaches 1349 

(Supplementary Fig. 3a and Methods). Finally, classic algorithms for phylogenetic analysis 1350 

assume evolutionary characters are reliable, whereas CNAs called from single-cell expression 1351 

data are uncertain and noisy. Uncovering genotype–phenotype relationships and the role of 1352 

epigenetic plasticity during cancer progression thus requires new approaches that can (1) 1353 

reliably infer CNAs from scRNA-seq data, and (2) construct a robust phylogeny of cancer 1354 

clones, taking into account noise, uncertainty and possible CNA recurrence, as well as the large 1355 

scale of single-cell data. 1356 

To address these challenges, we instigated a two-step approach. First, we developed 1357 

IntegrateCNV, a statistical framework that leverages matched bulk WES and snRNA-seq 1358 

profiles to infer CNAs at single-cell resolution (Supplementary Fig. 3b and Methods). Unlike 1359 

existing methods that infer CNAs genome-wide from scRNA-seq alone(13,63,64), IntegrateCNV 1360 

uses bulk WES data to identify regions harboring CNAs before performing targeted inference 1361 

from scRNA-seq data for individual cells in these candidate regions. This focused strategy 1362 

increases signal-to-noise by limiting analysis to regions with strong evidence of copy number 1363 

variation. Specifically, for each cell and candidate region, it determines whether an alteration is 1364 

likely to be present based on gene expression relative to a copy-neutral reference 1365 

(Supplementary Fig. 3b and Methods). IntegrateCNV achieves higher or equal correlation with 1366 

sample-level CNAs derived from bulk WES data compared to widely used tools such as 1367 

inferCNV(12), CopyKat(13), and Numbat(14) (Supplementary Fig. 3c), even when bulk copy 1368 
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number calls are provided to Numbat to guide inference. As IntegrateCNV only calls CNAs for a 1369 

confident subset of the genome, it is significantly faster than CopyKat and Numbat, requiring 1370 

only hours to run on a standard laptop compared to multiple days on high-performance 1371 

computing clusters. 1372 

While IntegrateCNV improves CNA detection accuracy, the profiles it generates still contain 1373 

many errors (Supplementary Fig. 3c), especially false negatives. Unfortunately, even 1374 

phylogenetic reconstruction methods that allow errors in the character matrix typically assume 1375 

them to be minimal. Moreover, the few algorithms that infer phylogenies from single-cell CNA 1376 

profiles are designed for small-scale single-cell DNA sequencing experiments and assume 1377 

error-free input(16,17). To overcome these challenges and construct robust phylogenies, we 1378 

developed PICASSO (Phylogenetic Inference from Copy number Alterations in Single-cell 1379 

Sequencing Observations), a maximum-likelihood method tailored to large-scale, noisy CNA 1380 

profiles (Fig. 2a, Supplementary Fig. 3d and Methods). PICASSO employs a tree-recursive 1381 

algorithm that starts with a single leaf node containing all cells, then iteratively decides whether 1382 

to split each leaf into two subclones. Each decision to split is based on maximizing shared 1383 

information in consensus CNA patterns, corrected for noise and missing values, using 1384 

expectation–maximization. When there is insufficient evidence for further splitting, a leaf is 1385 

marked terminal. The output of PICASSO is a probabilistic assignment of cells to clones, and a 1386 

likelihood-optimized final tree describing clonal phylogenetic relationships and associated 1387 

uncertainties. This top-down recursive approach only reconstructs major evolutionary 1388 

relationships with good evidential support, and is substantially more robust to noisy data than 1389 

standard bottom-up approaches.  1390 

We validated performance using simulated data, which demonstrated that PICASSO produces 1391 

more parsimonious phylogenies and outperforms agglomerative clustering in both speed and 1392 

accuracy under varying levels of noise (Supplementary Fig. 4a,b). By providing a probabilistic 1393 

assignment of cells to clones and a likelihood-optimized tree describing clonal relationships and 1394 

uncertainties, PICASSO is thus an effective tool for dissecting the relationship between 1395 

genotype and phenotype during cancer progression. 1396 

Evolutionary reconstruction of metastatic PDAC 1397 

We applied IntegrateCNV to cancer cells in our metastatic PDAC dataset and used PICASSO 1398 

on the resulting 45,134 single-cell copy number profiles in this large-scale dataset (Fig. 2b and 1399 

Methods). Based on CNA calls in 116 candidate regions, PICASSO resolved 62 clones with a 1400 

clear phylogenetic structure following noise removal. The resulting phylogeny is highly stable; 1401 

despite the probabilistic nature of the algorithm, most evolutionary relationships are conserved 1402 

across repeated runs (Supplementary Fig. 4c). Furthermore, bootstrapping analysis reveals 1403 

that the tree structure remains stable even when removing a fraction of cells for each region 1404 

(Supplementary Fig. 4d). 1405 

We used the inferred phylogeny to investigate patterns of metastasis, first asking which clones 1406 

in the primary tumor spread, and why. We identified four primary clones, defined as containing 1407 

at least 50% of cells from the primary tumor—two that metastasized, and two that did not (Fig. 1408 

2b). A subset of tumor cells from liver metastases were found to be closely related to the 1409 

metastasizing clones from the primary tumor. Notably, liver-dominant clones are the most 1410 
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closely related metastatic clones to those found in the primary tumor, suggesting that the liver 1411 

was the initial site of metastasis in this patient, consistent with the observation that PDAC 1412 

typically spreads to the liver first(65) (Fig. 2b,c). We also observed that peritoneal samples, 1413 

unlike other organ sites, were composed of several clones that appear to be unique or nearly 1414 

unique to that site (Fig. 2b). This pattern could be due to several reasons, including better 1415 

sampling (peritoneum has many more cells than other sites; Supplementary Fig. 2d) or limited 1416 

inter-metastatic seeding due to the large physical distance separating peritoneal lesions from 1417 

other metastases (Fig. 1c). 1418 

Analysis of the metastasizing primary clones revealed distinct genomic and transcriptional 1419 

features associated with metastatic potential. Metastatic clones from the primary had many 1420 

more CNAs than their non-metastatic counterparts. Notably, amplification of the oncogenic 1421 

KRASG12V locus is a hallmark of nearly all metastatic clones. We recently showed that 1422 

oncogenic KRAS enhances plasticity during PDAC premalignancy, partly by remodeling the 1423 

communication between cancer cells and their environment(66). Our findings suggest that 1424 

oncogenic KRAS continues to drive plasticity in advanced disease, and that its amplification 1425 

provides an additional boost that promotes metastatic competence. 1426 

In addition to genetic alterations, our dataset provides a rare opportunity to examine the 1427 

transcriptional states of metastasizing clones. Mapping known PDAC tumor phenotypes 1428 

revealed that most primary tumor cells from metastatic clones display a mesenchymal 1429 

phenotype, indicating an epithelial-to-mesenchymal transition (EMT), which has been strongly 1430 

associated with metastasis(67) (Fig. 2d,e and Methods). In contrast, non-metastatic clones are 1431 

enriched for epithelial phenotypes, suggesting that metastatic clones are already 1432 

transcriptionally poised for dissemination while in the primary tumor. The observation of 1433 

mesenchymal phenotypes in cells from non-metastatic clones signifies that EMT alone is 1434 

insufficient for successful metastasis. This level of resolution is uniquely enabled by our 1435 

approach, as it allows us to connect transcriptional phenotypes to phylogenetic patterns. 1436 

The phylogenetic tree provides insights into metastatic seeding and spread. While some clones 1437 

map to a dominant metastatic site, most are found in multiple organs, suggesting that metastatic 1438 

clones can adapt to diverse tissue environments. Conversely, each metastatic site contains 1439 

cells from multiple clones, some separated by large phylogenetic distances (Fig. 2b), implying 1440 

that metastatic sites were seeded by multiple clones in independent events. This and similar 1441 

findings in other contexts(68,69) support the idea that once tumor cells establish themselves at 1442 

distal sites, they remodel the local microenvironment to create a favorable "soil" for further 1443 

seeding by the primary tumor or other metastases(70). 1444 

Archetype analysis identifies metastatic gene programs 1445 

The observation that most clones metastasized to multiple organs raises the question of how 1446 

tumor cells adapt to these distinct environments. While metastatic cells must overcome 1447 

universal hurdles such as migration and extravasation to establish at distal locations, each 1448 

organ presents unique challenges requiring site-specific adaptations for successful colonization 1449 

and growth. We reasoned that these adaptations should manifest as highly optimized 1450 

transcriptional phenotypes, and that examining multiple metastatic sites from the same primary 1451 

tumor would make it possible to uncover both shared and organ-specific mechanisms. 1452 
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To systematically identify these adaptive programs, we applied archetype analysis(71,72), 1453 

which identifies boundary phenotypes known to represent optimized tasks, using a two-tiered 1454 

approach (Supplementary Fig. 5a,b and Methods). Our strategy was to first analyze each 1455 

organ separately, identifying four to six archetypes per tissue in a highly robust manner 1456 

(Supplementary Figs. 5c and 6a). Archetype neighborhoods did not associate with cell-state 1457 

density (Supplementary Fig. 5c), suggesting that archetype neighborhoods may represent 1458 

both major cancer cell state phenotypes (high-density) and rare (low-density) cancer phenotype 1459 

states(39). Next, to find archetypes and programs that are potentially shared across organs, we 1460 

integrated all 14,513 archetype-labeled cells (32% of all cancer cells) into a single matrix and 1461 

applied graph-based clustering, yielding 19 archetype clusters (Fig. 3a and Methods). Finally, 1462 

each archetype cluster was annotated using differentially expressed genes (DEGs) and 1463 

Hotspot(41) analysis (Fig. 3b and Methods). 1464 

Our analysis generated well-defined archetype clusters, including some that are unique to one 1465 

organ and others that appear in multiple organs (Fig. 3b,c, Supplementary Fig. 6b and 1466 

Supplementary Tables 3–5). For example, cells in archetype clusters 3, 9, 14 and 18 are only 1467 

found in primary PDAC; cluster 13 (unfolded protein response: HSP90AA1, HSPH1, HSPD1, 1468 

DNAJA1) is unique to the liver; and cluster 8 (development: PBX1, HES1, PDGFB and wound 1469 

healing: FOS, JUNB, NR4A1, ANGPTL4) is specific to omentum. Additionally, cluster 5 1470 

(gastrointestinal: MUC13, FABP1, FCGBP) is found mostly in the stomach wall and cluster 2 1471 

(lipid metabolism: HMGCS1, SQLE, FDPS) is mainly in the peritoneum. 1472 

In contrast, we found that archetypes related to core cellular processes, such as cell cycle, 1473 

migration, EMT, and cell–environment interactions, such as extracellular matrix (ECM) 1474 

interactions and inflammation, are typically shared across multiple organs (Fig. 3b,c). To gain 1475 

insight into biological functions that broadly contribute to metastatic capacity, we focused on 1476 

archetype clusters 1, 4 and 16, which are present in multiple organs that together comprise all 1477 

seven organ sites (Fig. 3c). These three clusters express mesenchymal genes and transcription 1478 

factors related to EMT programs associated with metastatic spread(73) (Fig. 3d). However, 1479 

further analysis revealed that these apparently similar EMT states are distinguished by distinct 1480 

gene and regulatory programs (Supplementary Tables 4 and 5). 1481 

Cluster 1 is enriched for programs associated with cytokine and chemokine secretion as well as 1482 

TNF-α/NF-κB and IL-17 signaling, suggesting inflammatory activation. Cluster 16 is enriched for 1483 

focal adhesion and ECM interactions. ECM remodeling is required for cancer cell growth and 1484 

can recruit immune cells(74), suggesting a potential role in establishing the metastatic niche. In 1485 

contrast, cluster 4 is enriched for glucagon signaling, a common liver-expressed pathway(75) 1486 

that may reflect the influence of the liver microenvironment on cluster 4 cells, most of which 1487 

originate in this organ (Fig. 3c). We found that cluster 4 has the highest expression of MYC, 1488 

MYC target ODC1, and CA9, which can be regulated by MYC under hypoxic conditions(76), as 1489 

well as genes downstream of MYC signaling (Fig. 3d), and is most enriched for MYC-1490 

expressing cells (Supplementary Fig. 6c,d). PDAC patient data and mouse models have linked 1491 

MYC hyperactivation to more aggressive metastatic disease(77) and chemoresistance(78). 1492 

Moreover, both MYC and EMT pathways are enriched in metastases compared to primary 1493 

tumors in PDAC patients(77,79). Further distinguishing these states, archetype cluster 1 1494 

expresses inflammatory genes, while cluster 16 expresses HLA-I antigen processing genes 1495 
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(Fig. 3d). Together, these findings reveal three distinct EMT phenotypes: archetypes 1 and 16 1496 

have a mesenchymal profile associated with inflammatory response, while archetype 4 has an 1497 

EMT program that co-occurs with MYC signaling.  1498 

Unlike archetype analysis, traditional clustering approaches are not designed to identify gene 1499 

programs optimized for specific biological tasks. Rather, they aim to define groups of cells that 1500 

have more similar average expression than cells in other clusters. Direct comparison of these 1501 

approaches in our dataset reveals substantial differences in cell groupings, DEGs between 1502 

groups, and biological annotations (Supplementary Fig. 6e–g). While clustering detects broad 1503 

processes such as EMT, proliferation, and stress (Supplementary Table 6), more specific 1504 

adaptations to metastatic sites, such as lipid metabolism and gastrointestinal gene programs, 1505 

are only identified by archetypes (Supplementary Table 4). The ability to identify adaptive 1506 

programs in archetype analysis stems from the focus on boundary states that represent 1507 

specialized cellular functions, rather than average behaviors captured by clustering. The 1508 

combination of comprehensive sampling across metastatic sites and archetype-based analysis 1509 

thus provides a powerful framework for discovering key metastatic phenotypes. 1510 

Stomach wall metastases express gastrointestinal gene programs 1511 

While liver metastasis in PDAC is well-studied, metastasis to the stomach wall is rare and poorly 1512 

characterized, despite often leading to severe gastrointestinal complications including pain, 1513 

ascites, bowel obstruction and other morbidity. Our analysis revealed evidence of organ-specific 1514 

adaptation: tumor cells from the stomach wall are enriched in archetype cluster 5 (AC5), and the 1515 

vast majority of AC5 cells originate from this site (Figs. 3b,c and 4a). Hotspot analysis identified 1516 

three distinct gene modules expressed by AC5 cells that correspond to intestinal, stomach, and 1517 

gallbladder epithelial cells based on healthy human single-cell reference data(46) (Fig. 4b). 1518 

These gene modules are minimally expressed in normal pancreatic tissue, indicating that while 1519 

these metastatic cells are of pancreatic origin, they have acquired transcriptional programs 1520 

resembling other gastrointestinal epithelia (Fig. 4c and Supplementary Tables 7 and 8). 1521 

Archetype cluster 5 genes reflect diverse functions of the gastrointestinal tract, including 1522 

digestion, nutrient absorption, protective barrier maintenance, and bile production (a gallbladder 1523 

function), which are distinct from physiological pancreatic capabilities. Although the pancreas is 1524 

a gastrointestinal tissue, it is considered an accessory organ whose primary function is to 1525 

secrete digestive enzymes and bicarbonate to neutralize stomach acid. We found AC5 1526 

gastrointestinal genes related to cell adhesion and structural integrity (CDH17, RHPN2, CLDN7, 1527 

MYO1A, MYO7B), mucus production and protection (MUC17, MUC13, MUC5B, FCGBP, 1528 

GCNT3), metabolism and transport (HSD17B2, FABP1, SLC22A18, GDA), and epithelial cell 1529 

differentiation (PLAC8). As expected, AC5 genes are specific to the archetype cells and 1530 

minimally expressed in non-archetype cells in the tissues present in AC5 (Supplementary Fig. 1531 

6h). Our analysis thus demonstrates that PDAC metastatic cells acquire extensive new 1532 

gastrointestinal features in the stomach, likely as an adaptation or response to its unique 1533 

signaling milieu. 1534 

Interestingly, a small group of cells from the primary tumor also predominantly express the AC5 1535 

gene program. Mapping archetype clusters to the primary tumor revealed that AC5 cells 1536 

correspond to a classical–mucin phenotype (Fig. 2e and Supplementary Fig. 7a), which has 1537 
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been observed in human primary PDAC tumors, as well as primary lung, colorectal, gastric(80), 1538 

liver, and head and neck cancers(81). Consistent with this phenotype, AC5 cells in primary 1539 

tumor express high levels of mucin (MUC13, MUC5AC, MUC5B), mucin production (GCNT3, 1540 

TFF1–TFF3), and mucus-producing goblet cell differentiation (CREB3L1) genes, compared to 1541 

other primary tumor cells (Supplementary Fig. 7b). We find that the classical–mucin phenotype 1542 

is more similar to metastatic states than to other primary phenotypes, as classical–mucin cells 1543 

co-embed near metastatic AC5 cells and are separated by shorter diffusion distances, reflecting 1544 

greater transcriptional similarity (Supplementary Fig. 7c and Methods). 1545 

We examined clonal membership to understand the origins of AC5 classical–mucin cells in the 1546 

primary tumor, finding that they belong to advanced clones composed mainly of metastatic liver 1547 

and stomach cells (Supplementary Fig. 7d). While it is difficult to conclusively distinguish 1548 

between reseeding from stomach metastases and primary spread to the stomach, several 1549 

observations favor the reseeding hypothesis. These clones are enriched for more advanced 1550 

classical–mucin phenotypes, and not the earlier classical–mucin–HLA-II phenotypes (Fig. 2e 1551 

and Supplementary Fig. 7e). Their copy number profiles are more similar to cells that 1552 

metastasized to the stomach and express the AC5 phenotype compared to other primary cells 1553 

(Supplementary Fig. 7f). To confirm the clone assignments of primary cells expressing AC5, 1554 

we examined the CNA profiles of cells from the two advanced AC5 clones harboring the most 1555 

primary cells (clones I and J, Supplementary Fig. 7d) and found that they are more similar to 1556 

the profiles of their assigned clones than those of non-metastasizing primary clones 1557 

(Supplementary Fig. 7f and Methods). The primary cells in these clones exhibit similar 1558 

assignment confidence values as the other cells (primarily stomach and liver) in their assigned 1559 

clones (Supplementary Fig. 7f). In addition, these primary cells show higher copy number 1560 

burden than other primary cells, reaching levels comparable to metastatic cells 1561 

(Supplementary Fig. 7g,h). Thus, although few primary cells express the AC5 program, the 1562 

combination of their advanced phenotype, greater similarity to stomach metastatic cells than to 1563 

other primary cells, and elevated copy number burden provides evidence consistent with 1564 

reseeding from stomach metastases. 1565 

Another mucus production program, which includes robust expression of transcription factor 1566 

SPDEF and its targets AGR2 and ERN2, is highly expressed in precancerous lesions and 1567 

classical tumor subtypes(82). We found that these genes are enriched in primary archetype 1568 

cluster 14 (AC14), which also expresses high levels of HLA-II molecules, thus fully capturing the 1569 

PDAC primary classical–mucin–HLA-II phenotype (Fig. 3b and Supplementary Fig. 7b). 1570 

Moreover, the classical–mucin–HLA-II cells belong to the earliest clone in the phylogeny (Fig. 1571 

2b,d,e), supporting that this program is indeed related to early PDAC stages, as reported in 1572 

mouse models and laser-capture microdissected epithelium from patients with PDAC(82). In a 1573 

phase II first-line chemoimmunotherapy clinical trial in advanced gastroesophageal 1574 

adenocarcinoma patients, a gene program containing AC5 genes TFF1 and MUC5AC was the 1575 

program most highly expressed by cancer epithelial cells in fast-progressing patients compared 1576 

to slow progressors(83). In contrast, expression of AC14 genes (HLA-II programs) by cancer 1577 

epithelial cells was significantly higher in slow progressors(83). Our results suggest that PDAC 1578 

cells can express at least two different mucin production programs—classical–mucin–HLA-II 1579 

captured by AC14, representing earlier-stage primary cells with a less aggressive prognosis, 1580 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-25-1117/3715170/can-25-1117.pdf by guest on 12 January 2026

https://paperpile.com/c/V7SFau/tGZwJ
https://paperpile.com/c/V7SFau/mSSBT
https://paperpile.com/c/V7SFau/zrumj
https://paperpile.com/c/V7SFau/zrumj
https://paperpile.com/c/V7SFau/aXaZF
https://paperpile.com/c/V7SFau/aXaZF


 

41 

and classical–mucin associated with AC5, representing later clones associated with greater 1581 

metastatic potential or chemotherapy resistance. 1582 

Peritoneal metastases rewire lipid metabolism 1583 

Archetype cluster 2 (AC2) consists almost entirely of cells from the peritoneum (Figs. 3b and 1584 

5a). The peritoneal cavity is the second most common site of metastasis in pancreatic 1585 

cancer(84), but the mechanisms of metastatic initiation, progression, and adaptation remain 1586 

poorly understood. Unlike hematogenous metastases to the liver or lungs, which typically 1587 

present as discrete nodules or masses, peritoneal dissemination often occurs through trans-1588 

coelomic spread, leading to thin, diffuse layers over the omentum that escape detection(85). 1589 

Peritoneal metastases are typically only diagnosed after reaching an advanced, treatment-1590 

refractory state known as peritoneal carcinomatosis, which accelerates cachexia—a syndrome 1591 

characterized by malabsorption, significant weight loss, malignant ascites, and bowel 1592 

obstruction—and the subsequent rapid decline limits opportunities for investigation. 1593 

We found that the two peritoneal metastases from opposite flanks of the patient both contribute 1594 

substantially to AC2 (Fig. 5a) and have very similar transcriptomic profiles (median 33% of a 1595 

cell’s kNN graph neighbors are from the other site), including strong upregulation of lipid 1596 

metabolism genes compared to other archetype clusters (Supplementary Fig. 8a, 1597 

Supplementary Table 3 and Methods). Hotspot identified multiple gene modules, including one 1598 

associated with fatty acid and cholesterol biosynthesis and another with oxidative stress and 1599 

detoxification (Fig. 5b). Genes uniquely upregulated in AC2 include key players in cholesterol 1600 

(TM7SF2) and fatty acid (ME1, IDH1) biosynthesis; aldo-ketoreductases (AKR1B10, AKR1C2, 1601 

AKR1C3); prostaglandin regulators (PTGIS, PTGR1); and redox balance genes (GCLM, GCLC, 1602 

GPX2, GSR, PIR, SLC7A11, TXNRD1, UGDH) that respond to oxidative stress triggered by 1603 

lipid production and accumulation (Fig. 5b and Supplementary Fig. 8b). Genes involved in lipid 1604 

droplet turnover (SQSTM1), lipid transport (ABCA10, ABCC3) and adipocyte differentiation 1605 

(PLAC8) are also differentially upregulated in AC2 cells. As expected, AC2 genes are specific to 1606 

the archetype cells and minimally expressed in non-archetype cells in the peritoneum samples 1607 

(Supplementary Fig. 6h). Lipid metabolic and oxidative stress genes are not expressed 1608 

appreciably in tumor immune or stromal cells, confirming that their detection in cancer cells is 1609 

not due to ambient peritoneal RNA (Supplementary Fig. 8b). 1610 

The peritoneal cavity is supported by metabolically active adipose tissue that is rich in free fatty 1611 

acids and signaling molecules, including adipokines and cytokines(86). Digital pathology of 1612 

peritoneal and primary tumor sections revealed a greater fraction of adipose tissue in peritoneal 1613 

metastases than in primary samples, which are dominated by fibrotic stroma (Fig. 5c,d). 1614 

Moreover, whereas cancer cells in primary PDAC tumors typically occur in multiple distinct 1615 

pockets(87), they are interspersed among adipocytes in the peritoneal samples 1616 

(Supplementary Fig. 8c). The upregulated genes associated to AC2 constitute many 1617 

components of the lipogenic pathway (Supplementary Fig. 8d), by which fatty acids are 1618 

synthesized for energy storage and cell membrane biosynthesis, primarily in the liver and 1619 

adipose tissue. Thus, in contrast to the catabolic processes and patient-level wasting caused by 1620 

cachexia, our observations suggest that metastatic PDAC cells respond to the adipocyte-rich 1621 

peritoneal environment by upregulating lipid anabolism and oxidative stress detoxification. A 1622 
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lipogenic phenotype has been reported previously in PDAC cell lines(88) as well as preclinical 1623 

models and PDAC patients(89), but its robust upregulation has not been previously associated 1624 

with peritoneal metastasis. 1625 

To determine whether the lipid metabolic phenotype generalizes beyond the two independent 1626 

samples in our patient, we obtained two post-mortem peritoneal metastases from a different 1627 

patient with PDAC and performed snRNA-seq and similar data analysis (Methods). Importantly, 1628 

the second subject was 70 years old, succumbed to metastatic disease within three months of 1629 

diagnosis, and did not receive treatment. Despite the markedly different clinical circumstances 1630 

in these two cases, we found that fatty acid and cholesterol biosynthesis, as well as cholesterol 1631 

metabolism and homeostasis, are the most significantly enriched gene programs in the second 1632 

case (Supplementary Fig. 9a and Supplementary Table 9). 1633 

Lipid metabolic rewiring is not driven by genotype 1634 

We sought to understand whether the highly specialized phenotypes that dominate peritoneal 1635 

metastases are due to clonal selection of genetically encoded adaptive traits, or were acquired 1636 

by epigenetically plastic cells in response to a novel environment. To help distinguish between 1637 

these possibilities, we leveraged the two anatomically separate peritoneal metastases and the 1638 

cancer phylogeny. 1639 

We hypothesized that if clonal selection—under the clonal evolution model(90)—drove the lipid 1640 

anabolism phenotype, distinct clades of AC2 clones would map to each peritoneal site; after 1641 

passing through the original selection bottleneck, cells at each site would accumulate unique 1642 

sets of alterations over time due to genetic drift. On the other hand, if the lipid anabolism 1643 

phenotype was due to plastic cells responding to the lipid-rich peritoneal environment, there 1644 

would be no association between clone identity and peritoneal site, and diverse peritoneal 1645 

clones could contain cells from opposite flanks of the body. We assessed which lipid anabolism-1646 

enriched clones (defined as >10% of cells with AC2 phenotype) belong to each peritoneal 1647 

metastasis in the phylogenetic tree, and found 26 clones spread across all three major clades, 1648 

including early branches with fewer CNAs as well as late branches (Fig. 5e and 1649 

Supplementary Fig. 9b). Both pure and mixed clones are present in the independent peritoneal 1650 

sites. For example, early clones enriched for lipid metabolism are derived from both peritoneum 1651 

A (16% to 68%) and B (8% to 40%) sites, and late clones are derived from a mix of sites as well 1652 

(69% to 83% peritoneum A and 8% to 12% peritoneum B). Intermediate clones are pure for 1653 

either peritoneum site but still share the same clades, suggesting common ancestors in the 1654 

primary tumor (Supplementary Fig. 9b). 1655 

The existence of diverse clones enriched for lipid anabolism over several branches of the tree—1656 

some populating both peritoneal sites, some specific to each site but belonging to the same 1657 

clade—support the hypothesis that cancer cell plasticity drove the lipid anabolism phenotype 1658 

through phenotypic convergence to local environmental pressures. 1659 

Transcriptomic plasticity is a hallmark of PDAC metastasis 1660 

The plasticity we identified in peritoneal tumors involves multiple clones that express a diversity 1661 

of additional archetypes, motivating a more systematic investigation of whether plasticity is a 1662 
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general feature of PDAC metastasis. Indeed, while each clone represents a shared genetic 1663 

lineage, clones throughout the phylogeny do not appear to be constrained by their lineage and 1664 

express a diversity of archetypal phenotypes, corresponding to high per-clone archetype 1665 

entropy (Fig. 6a and Methods). This is in line with a lineage tracing study in a PDAC mouse 1666 

model, which found that cell cycle and EMT cell states are not correlated with cellular 1667 

phylogeny(49). We asked whether the diversity of archetypes that clones exhibit is greater than 1668 

expected, which would indicate substantial phenotypic plasticity (Methods). The empirical 1669 

distribution of per-clone archetype entropy (mean � = 1.42) is shifted higher than expected 1670 

under simulations in which the site is highly predictive of phenotype (� = 0.97), but lower than 1671 

expected under random assignment of archetypes to cells (� = 2.42, Fig. 6b and Methods). 1672 

This suggests that the variety of archetypes present in each clone is not driven by the diversity 1673 

of tumor sites within each clone, but rather by the ability of cells to acquire a range of 1674 

phenotypes even within a single site.  1675 

To quantify plasticity more rigorously at the clonal level, we developed plasticity analysis from 1676 

single-cell transcriptional and evolutionary neighborhood overlap (PLASTRO) (Supplementary 1677 

Fig. 10 and Methods). PLASTRO compares evolutionary similarity (lineage distance) and 1678 

phenotypic similarity (phenotypic distance with respect to archetype composition) between cells, 1679 

based on the assumption that low cellular plasticity should result in a strong overlap between 1680 

lineage and phenotype. Specifically, for a given clone, it quantifies the degree of discordance 1681 

between phenotypic and phylogenetic neighborhoods, while remaining insensitive to 1682 

neighborhood size. Interestingly, we found that cells with few CNAs tend to have low PLASTRO 1683 

scores, whereas more advanced clones bearing extensive CNAs score high for plasticity (Fig. 1684 

6c). Given that CNA burden correlates with metastasis in PDAC and other cancers(4), our 1685 

finding that CNA burden is strongly associated with plasticity is consistent with a model whereby 1686 

plasticity enables metastasis. To evaluate this effect more quantitatively, we performed a Mantel 1687 

test(50), which assesses the correlation between two distance matrices (Methods). We 1688 

observed a Mantel test statistic of 0.13 (p < 1 × 10−3) for matrices of phenotypic distances 1689 

within distinct clones, suggesting that cells are plastic (the statistic ranges between –1 and 1, 1690 

with 0 denoting no correlation), as their phenotypes differ significantly from that of their lineage. 1691 

Discussion 1692 

Rapid autopsy makes it possible to investigate clonal lineage histories and adaptive phenotypes 1693 

in a single cancer ecosystem. In our comprehensive analysis of a patient with PDAC who 1694 

underwent rapid autopsy, we evaluated the phenotypic landscape that a single cancer can 1695 

occupy and developed computational approaches that bridge single-cell transcriptomics with 1696 

phylogenetic reconstruction to dissect the relative contributions of clonal evolution and 1697 

transcriptomic plasticity to metastatic adaptation. Our analysis reveals that transcriptional 1698 

plasticity, rather than genetic evolution and selection, is the dominant force shaping metastatic 1699 

phenotypes. 1700 

We note that we tested multiple tools for phylogenetic reconstruction from bulk WES data, but 1701 

each produced a strikingly different topology. Moreover, a probabilistic approach, CONIPHER, 1702 

yielded multiple divergent trees with similar likelihoods. CONIPHER is designed to detect 1703 

subclonal structure from bulk data, and consistently revealed extensive clonal mixing within 1704 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-25-1117/3715170/can-25-1117.pdf by guest on 12 January 2026

https://paperpile.com/c/V7SFau/2WZmt
https://paperpile.com/c/V7SFau/xnSf2
https://paperpile.com/c/V7SFau/I16pd


 

44 

each site and reseeding events to the primary tumor—supporting our own observations—but 1705 

could not resolve a tree with more than a few branches that are supported across alternative 1706 

trees, reinforcing the need for single-cell resolution in this context. 1707 

While the patient in this study was diagnosed with metastatic PDAC at an unusually young age 1708 

(35 years old), our molecular analyses are highly concordant with previously published datasets 1709 

derived from larger and more typical PDAC cohorts (48,81). Specifically, the transcriptional 1710 

phenotypes observed in this patient's primary tumor closely match subtype programs identified 1711 

in a comprehensive study of 43 treatment-naive and neoadjuvantly treated PDAC specimens 1712 

profiled using single-nucleus RNA sequencing and spatial transcriptomics. This molecular 1713 

overlap suggests that the cellular programs we identified reflect conserved features of PDAC 1714 

biology, rather than patient-specific outliers. 1715 

A critical insight from our study is that successful metastatic clones exhibit remarkable 1716 

phenotypic diversity, even within the same anatomical site. We demonstrate that genetically 1717 

related metastatic clones can colonize multiple organs while manifesting diverse transcriptional 1718 

states independent of their anatomical location. Moreover, each organ site harbored multiple 1719 

phylogenetically distant clones, suggesting extensive parallel seeding. This evidence points to 1720 

non-genetic plasticity as a key mechanism enabling metastatic cells to transition between 1721 

different gene programs across metastatic sites, thereby enhancing their adaptability and 1722 

survival. This plasticity is notably amplified in clones with higher CNA burden, suggesting that 1723 

genomic instability may facilitate transcriptional adaptation—not through specific mutations, but 1724 

by creating a permissive state for phenotypic exploration. This observation aligns with recent 1725 

findings that chromatin accessibility increases with genomic instability in various cancers, 1726 

potentially enabling broader transcriptional responses to environmental cues(91,92). 1727 

Our profiling of common but understudied metastatic sites in PDAC revealed distinct organ-1728 

specific adaptation programs, providing new insight into how cancer cells respond to diverse 1729 

tissue environments. The acquisition of gastrointestinal programs by stomach wall metastases 1730 

demonstrates remarkable cellular plasticity, suggesting that tumor cells can co-opt organ-1731 

specific transcriptional modules to enhance colonization and acquire fitness in new 1732 

environments. Similarly, peritoneal metastases upregulate lipid anabolism and oxidative stress 1733 

response pathways, suggesting that tumor cells adopt metabolic features of adipocytes and 1734 

adapt their redox response to counteract reactive oxygen species generated by metabolic 1735 

stress. This is consistent with prior studies showing that lipid metabolism plays a crucial role in 1736 

PDAC progression(93) and chemoresistance(94). Both site-specific gene programs suggest that 1737 

metastatic cells adapt to their microenvironment, possibly in response to stroma-derived 1738 

signaling and environment lipid availability(95). The convergent adaptation of these phenotypes 1739 

across multiple independent clones strongly supports the role of microenvironmental pressures 1740 

in shaping cellular phenotypes, independent of genetic evolution. 1741 

The methodological advances developed for this study—particularly PICASSO for phylogenetic 1742 

reconstruction and our approach to archetype analysis—provide a robust framework for similar 1743 

investigations across cancer types. However, several critical questions emerge from our 1744 

findings. How do specific tissue environments orchestrate the activation of adaptive programs? 1745 

Can we target the mechanisms underlying cellular plasticity with therapies? What do genomic 1746 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-25-1117/3715170/can-25-1117.pdf by guest on 12 January 2026

https://paperpile.com/c/V7SFau/7kNri+mSSBT
https://paperpile.com/c/V7SFau/cQiSJ+8dElb
https://paperpile.com/c/V7SFau/k8eLf
https://paperpile.com/c/V7SFau/WmpUx
https://paperpile.com/c/V7SFau/ONkdU


 

45 

markers such as RAS amplification contribute, given the importance of plasticity as an emerging 1747 

resistance mechanism to RAS therapies? Although we focused on epithelial cells and optimized 1748 

their capture over other cell types, the role of stromal cells also remains an open question. 1749 

Future studies combining spatial transcriptomics with single-cell lineage tracing could help 1750 

address these questions and further illuminate the complex interplay between genetic 1751 

inheritance and environmental adaptation in cancer progression. 1752 

Our findings emphasize the fundamental roles of cellular plasticity and metabolic adaptation in 1753 

enabling the successful colonization of diverse organ sites. They suggest that effective 1754 

therapeutic strategies must account for both genetic and non-genetic mechanisms of 1755 

adaptation, potentially through approaches that constrain cancer cell plasticity or target site-1756 

specific vulnerabilities. These insights may guide the development of more effective treatments 1757 

for metastatic disease, particularly for challenging sites such as peritoneal metastases that 1758 

currently lack targeted therapeutic options. 1759 
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Figure legends 2038 

Figure 1 | Profile of a cancer ecosystem from a single PDAC patient. a, Top, maximal 2039 

diameter of primary and liver tumors, based on CT measurements at the indicated time points 2040 

from diagnosis (day 0). Blaixedck bar marks the period of mFOLFIRINOX treatment. Bottom, 2041 

levels of CA 19-9 tumor marker in blood, based on indicated measurement days. Baseline at 2042 

diagnosis (day 0) is 13,000 U ml–1 and upper physiological limit is 37 U ml–1 (red line). b, 2043 

Representative CT scans. Primary and liver metastatic tumors are overdrawn with colored 2044 

ellipses. L, left; R, right; A, anterior; P, posterior. c, Anatomical location of collected 2045 

biospecimens used to generate matched snRNA-seq, WES, and hematoxylin and eosin (H&E) 2046 

data. Circle diameter indicates relative tumor size. d, Force-directed layout (FDL) of cancer cell 2047 

transcriptomes (45,134 nuclei), colored by sample (Methods). Stomach refers to stomach wall 2048 

metastasis. 2049 

 2050 

Figure 2 | PICASSO generates a CNA-derived single-cell phylogeny. a, PICASSO takes 2051 

CNA profiles from scRNA-seq data (inferred by IntegrateCNV, for example) as input and 2052 

encodes them in a probabilistic manner, then iteratively splits clones into subclones based on 2053 

clustering shared patterns by expectation–maximization (Methods). The algorithm proceeds in a 2054 

top-down fashion until it reaches terminal leaves, which lack evidence for further splits. 2055 

PICASSO output is the probabilistic assignment of cells to subclones and a maximum-2056 

likelihood-optimized tree. b, Phylogenetic relationships between clones (rows) derived from 2057 

single-cell CNA profiles, for all cancer cells in the rapid autopsy dataset. Each stacked bar plot 2058 

indicates the clone’s site composition (fraction of cells from each metastatic site), and the 2059 

heatmap at right shows the modal copy numbers inferred by IntegrateCNV for that clone. The 2060 

four clones that are predominantly from primary tumor (stars) are distinguished by whether they 2061 

also contain cells in metastatic lesions. c, FDL of all cancer cells, colored by sample of origin for 2062 

cells from the primary tumor clones (>50% cells from primary tumor) that also contain metastatic 2063 

cells. Inset indicates the number of cells from each sample in these two clones. d,e, FDL of 2064 

PDAC primary cells showing cancer clones colored by proportion of primary cells within the 2065 

clones (d) and PDAC phenotypes (e). Gray cells in d were removed from phylogenetic analysis 2066 

due to low transcript counts (Methods). 2067 

 2068 

Figure 3 | Archetype gene programs of primary and metastatic PDAC. a, UMAP of 2069 

clustered archetypal cells from primary and metastatic sites, colored by cluster. Gray box 2070 

encompasses three distinct archetype clusters related to EMT. b, Archetype gene program 2071 

expression in each tumor sample. c, Fraction of cancer cells per archetype cluster, colored by 2072 

sample. d, Expression of individual markers in archetypes 1, 3, 4 and 16. Archetype 3 2073 

corresponds to classical–squamous cells that are more epithelial, and is included for 2074 

comparison. Canonical markers are indicated for epithelium, mesenchymal, and EMT, MYC, 2075 

MYC targets and modules downstream of MYC signaling, inflammation, and HLA-I antigen 2076 

processing and presentation. 2077 

 2078 

Figure 4 | A gastrointestinal archetype indicates PDAC adaptation to the stomach 2079 

environment. a, UMAP embedding (left) and distribution by sample (right) of archetype cluster 2080 
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5 cells. b, Hotspot modules in all archetype cluster 5 cells, based on 78 highly variable genes 2081 

with significant autocorrelation (FDR < 0.05). Highlighted genes were used to annotate intestine, 2082 

stomach and gallbladder modules. c, Expression of archetype cluster 5 genes in normal 2083 

pancreas and gastrointestinal tissues based on the CZ CELLxGENE Discover database. 2084 

 2085 

Figure 5 | Lipid metabolic rewiring is a prominent feature of peritoneal metastases. a, 2086 

UMAP embedding, colored by tissue site (left), and sample distribution and composition (right), 2087 

of all archetype 2 cluster cells. b, Archetype 2 Hotspot analysis, highlighting lipid metabolism 2088 

and oxidative stress and detoxification modules. c, Digital pathology of H&E-stained primary 2089 

and peritoneal metastasis tissue, showing expansion of adipose tissue in the peritoneum. d, 2090 

Quantification of adipose and fibrotic tissue in sections in (c). e, Cancer clone phylogeny, 2091 

indicating AC2-enriched clones (purple triangles), fractional tumor site composition for each 2092 

clone (stacked bars) and proportion of cells in each clone assigned to AC2 (outer circle). 2093 

 2094 

Figure 6 | Transcriptomic plasticity is a common feature of metastatic cells. a, PDAC 2095 

tumor cell clonal phylogeny (center), showing fraction of cells from each site, fraction of 2096 

archetypes, and archetype entropy from inside to outside, for each clone (leaf in the phylogeny). 2097 

b, Entropy distributions for three null models and for data in this study (Methods). Bars indicate 2098 

the number of clones for each binned entropy value (n = 62 clones for each distribution), curves 2099 

represent smooth trends, and dashed vertical lines correspond to mean entropy. Observed 2100 

clones have lower archetype entropy than clones with randomly assigned archetypes, but more 2101 

than models based on strong archetype bias for metastatic site, indicating high cellular 2102 

plasticity. c, PDAC tumor cell phylogeny showing copy number profiles of each clone, 2103 

PLASTRO score (Methods), and archetype composition. The scatterplot indicates that a higher 2104 

CNA burden is associated with higher plasticity. r, Pearson correlation. 2105 
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