

1 **Transcriptomic Plasticity is a Hallmark of Metastatic Pancreatic**
2 **Cancer**

3 **Running Title:** Transcriptomic plasticity is a hallmark of metastatic PDAC

4 Alejandro Jiménez-Sánchez^{1,19,*}, Sitara Persad^{1,2,*}, Akimasa Hayashi^{3,12,*}, Shigeaki Umeda³,
5 Roshan Sharma¹, Yubin Xie^{1,4,13}, Arnav Mehta^{5,6,14}, Wungki Park^{3,7,8}, Ignas Masilionis^{1,15}, Tinyi
6 Chu^{1,16}, Feiyang Zhu^{2,17}, Jungeui Hong³, Ronan Chaligne¹, Eileen M. O'Reilly^{3,7,8}, Linas
7 Mazutis^{1,18}, Tal Nawy¹, Itsik Pe'er^{2,†}, Christine A. Iacobuzio-Donahue^{3,9,10,†}, Dana Pe'er^{1,11,†}

8 * Equal contribution

9 † Corresponding authors

10 1. Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
11 2. Department of Computer Science, Fu Foundation School of Engineering & Applied Science, Columbia University,
12 New York, NY
13 3. The David M Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New
14 York, NY
15 4. Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY
16 5. Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA
17 6. Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
18 7. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
19 8. Weill Cornell Medicine, Cornell University, New York, NY
20 9. Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
21 10. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
22 11. Howard Hughes Medical Institute, New York, NY, USA
23 12. Present address: Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
24 13. Present address: Noetik Inc., San Francisco, CA
25 14. Present address: The Column Group, San Francisco, CA, USA
26 15. Deceased
27 16. Present address: Yale University, New Haven, CT
28 17. Present address: Stanford University, Stanford, CA
29 18. Present address: Vilnius University, Vilnius, Lithuania
30 19. Present address: Immunotherapy Platform, James P. Allison Institute, The University of Texas MD Anderson
31 Cancer Center, Houston, TX, USA

33 **Corresponding authors:**

34 Dana Pe'er, PhD
35 Computational & Systems Biology Program, Sloan Kettering Institute
36 Memorial Sloan Kettering Cancer Center
37 417 E 68th Street
38 New York, NY 10065
39 Email: peerd@mskcc.org

41 Christine A. Iacobuzio-Donahue, MD, PhD
42 Memorial Hospital Research Laboratories
43 Memorial Sloan Kettering Cancer Center
44 417 E 68th Street
45 New York, NY 10065
46 Email: iacobuzc@mskcc.org

47 Itsik Pe'er, PhD

49 Department of Computer Science
50 Columbia University
51 500 West 120 Street, Room 450
52 MC0401
53 New York, NY 10027
54 Email: jp2169@columbia.edu
55

56 Conflict of Interest

57 A.M. has served in consultant or advisory roles for Third Rock Ventures, Asher Biotherapeutics,
58 Abata Therapeutics, Clasp Therapeutics, Flare Therapeutics, venBio Partners, BioNTech,
59 Rheos Medicines and Checkmate Pharmaceuticals. He was previously an Entrepreneur-in-
60 Residence at Third Rock Ventures, is currently a Venture Partner for The Column Group, is a
61 co-founder of Monet Lab, an equity holder in Monet Lab, Clasp Therapeutics, Asher
62 Biotherapeutics and Abata Therapeutics, and has received research funding support from
63 Bristol-Myers Squibb (BMS). C.I.D. received research support from BMS and is on the advisory
64 board of Episteme. D.P. has equity interests and consults for Insitro. All other authors declare
65 no competing interests.

66 Abstract

67 Metastasis is the leading cause of cancer deaths. To develop strategies for intercepting
68 metastatic progression, a better understanding of how tumor cells adapt to vastly different organ
69 contexts is needed. To investigate this question, a single-cell transcriptomic atlas of primary
70 tumor and diverse metastatic samples (liver, omentum, peritoneum, stomach wall, lymph node,
71 and diaphragm) from a patient with pancreatic ductal adenocarcinoma who underwent rapid
72 autopsy was generated. Using unsupervised archetype analysis, both shared and site-specific
73 gene programs were identified, including lipid metabolism and gastrointestinal programs
74 prevalent in peritoneal and stomach wall lesions, respectively. We developed PICASSO as a
75 probabilistic approach for inferring clonal phylogeny from single-cell and matched whole-exome
76 sequencing data. Comparison of PICASSO-generated clonal structure with phenotypic
77 signatures revealed that pancreatic cancer cells adapted to local environments with minimal
78 contribution from clonal genotype. Our results suggest a paradigm whereby strong
79 environmental effects are imposed on highly plastic cancer cells during metastatic
80 dissemination.

81 Significance

82 Single-cell transcriptional profiling of primary tumor and metastases from rapid autopsy samples
83 of an individual with pancreatic cancer, combined with probabilistic clonal inference by
84 PICASSO, reveals substantial transcriptomic plasticity in metastatic cells.

85 **Introduction**

86 Metastasis is a systemic disease responsible for the majority of cancer-related deaths(1), yet
87 our understanding of how tumor cells disseminate and thrive in distant tissues remains limited.
88 To metastasize, cancer cells must overcome many hurdles, including the need to escape from
89 the tissue of origin, migrate, evade immune surveillance and invade distant tissue(2). The
90 microenvironments of different organs each pose additional adaptive challenges for cancer cell
91 colonization. For some tumor types, selection may act on intratumor genetic heterogeneity to
92 shape these adaptive processes(3), whereas for others, genomic studies have uncovered few
93 recurrent mutations associated with specific metastatic behaviors or organotropism(4). More
94 recently, epigenetic plasticity has emerged as a hallmark of cancer, which confers the ability to
95 reinvent cellular phenotypes and drive phenotypic heterogeneity in the service of adaptation(5).
96 How this plasticity manifests at the molecular level, the extent to which it shapes tumor
97 progression(6), and its relevance to treatment(7) are major open questions.

98 Pancreatic ductal adenocarcinoma (PDAC) exhibits particularly low heterogeneity in driver
99 mutations, which tend to be shared across primary and metastatic sites(8), underscoring the
100 need to identify alternate adaptive mechanisms. Advanced tumors are not commonly resected
101 and metastases are rarely biopsied sequentially, making it difficult to reconstruct tumor
102 progression and providing scant metastatic data in some organs. Rapid autopsy offers a critical
103 opportunity for systematically investigating shared and organ-specific metastatic programs in
104 multiple lesions derived from a single germline(9). The ability to collect multiple independent
105 metastases from a single organ also provides an unparalleled approximation of a controlled
106 biological replicate in human cancer. Such post-mortem sampling, coupled with genotyping and
107 lineage reconstruction, recently provided insights into modes of evolution and metastatic
108 seeding in PDAC(10).

109 To gain insights into the molecular mechanisms of adaptation in this patient-centric view,
110 however, requires a combination of clonal lineage information and deep phenotypic profiling.
111 Single-cell gene expression data provides rich phenotypic information at the cellular level, but it
112 is problematic for clonal and phylogenetic reconstruction, whereas simultaneously sequencing
113 single-cell DNA can provide genotype information but does not scale sufficiently. Typical
114 phenotypic analyses are also not designed to find adaptive gene programs. Computational
115 approaches are thus needed to overcome these challenges, and to enable the comparison of
116 clonal lineage and molecular phenotypes in a single cancer across multiple lesions and organs.

117 We collected two primary and nine metastatic tumors from a patient with PDAC who underwent
118 a rapid autopsy, and subjected the samples to single-nucleus RNA sequencing (snRNA-seq),
119 recovering the transcriptomes of over 45,000 cancer epithelial cells. Using archetypal analysis,
120 we identified adaptive gene programs that are missed by standard clustering. To investigate the
121 evolutionary dynamics of metastatic PDAC, we developed IntegrateCNV, an approach to
122 robustly infer copy number alterations (CNAs) from snRNA-seq and matching bulk whole exome
123 sequencing (WES) data, and PICASSO, a method to identify cell clones and generate clonal
124 phylogenies using potentially noisy single-cell CNA profiles. We find evidence of strong
125 adaptation to local organ microenvironment, including metabolic rewiring of peritoneal lesions—
126 a very common but little-studied site of metastasis in PDAC—as well as multiple different

127 shared epithelial–mesenchymal transition programs. Our work identifies plasticity as the major
128 force in PDAC metastatic adaptation, and provides approaches for deep phenotypic and
129 phylogenetic analysis from single-cell expression data.

130 Materials and Methods

131 Biospecimen collection

132 **Patient information**

133 Warm autopsy samples were collected from a 35-year-old female patient with informed consent
134 to the Last Wish Program and approval of the patient's family. Written informed consent was
135 obtained from all patients whose tissues were used. The study was conducted in accordance
136 with the recognized ethical guidelines Declaration of Helsinki and Belmont Report, and
137 approved by the Institutional Review Board at Memorial Sloan Kettering Cancer Center (IRB
138 protocol 15-021).

139 The patient was diagnosed with metastatic PDAC, exhibiting macroscopic lesions in the
140 pancreas and liver (detected by computed tomography scan) and upregulated CA19-9 tumor
141 biomarker. The patient was treated with standard mFOLFIRINOX therapy and tumors showed
142 clinical response for approximately 6 months before they stopped responding, at which point
143 mFOLFIRINOX was halted and a dose of Gemcitabine + nab-Paclitaxel was given, but no
144 further response was observed. The patient survived for just over 9 months from diagnosis,
145 which is expected in a metastatic PDAC patient treated with standard chemotherapy.

146 Both primary and metastatic tumors were readily detectable. The primary tumor appeared as a
147 white-gray mass, while liver metastases were white-yellow with extensive necrosis. Multiple
148 peritoneal and omental metastases, along with a single gastric metastasis, were palpable and
149 appeared as white nodules. Prominent diaphragm metastases resembling an "omental cake"
150 were also identified.

151 **Biospecimen collection**

152 Samples were obtained using standard autopsy techniques, specifically the Rokitansky method.
153 Following the removal of all organs from the body, more than 50 samples were collected from
154 macroscopically identifiable tumors in both primary and metastatic sites. Autopsies were
155 initiated within two hours of death, and biospecimens were collected within an hour. Multiple
156 lesions collected from the same organ were clearly separate anatomically. The exception is
157 primary tumor, for which two adjacent sections were processed as Pancreas A and B samples
158 (see below for sectioning information) for single-nucleus RNA sequencing. Tumors larger than 1
159 cm in size were trimmed to 1-cm squares, then divided in half. One half was used to generate a
160 formalin-fixed paraffin-embedded block for detailed histological analysis. The other half was cut
161 into 5–7 mm pieces, placed in cryotubes, rapidly frozen in liquid nitrogen, and stored at –80°C.
162 For particularly large primary tumors, samples were obtained after slicing. The position of each

163 sampling site within the organ was meticulously documented during the autopsy. Approximately
164 10 normal tissue samples were taken alongside the tumors.

165 For whole exome sequencing, a portion of each flash-frozen sample was used to create an
166 optimal cutting temperature (OCT) block. H&E staining of frozen OCT sections was performed
167 to identify tumor regions and confirm inclusion of sufficient tumor tissue before macrodissection
168 to extract DNA for bulk WES, typically from 5–10 sections. H&E staining was performed by the
169 MSKCC Pathology Core Facility.

170 For snRNA-seq, a different portion of the frozen tissue was sectioned and tumor tissue inclusion
171 was confirmed using the frozen H&E slide before proceeding with single-nucleus suspension
172 and sequencing library preparation.

173 **Experimental Methods**

174 **Whole exome sequencing**

175 For bulk whole exome sequencing, genomic DNA was extracted from each tissue sample using
176 QIAamp DNA Mini Kits (Qiagen; RRID:SCR_008539). Sequencing was carried out on an
177 Illumina HiSeq 4000 (RRID:SCR_016386) or NovaSeq 6000 (RRID:SCR_016387) platform, by
178 the MSKCC Integrated Genomics Operation Core with a target coverage of 250x for all
179 samples.

180 **Single-nucleus RNA-seq**

181 **Generation of nucleus suspensions**

182 Single-nucleus suspensions were generated following the Frozen tissue dissociation for single-
183 nucleus RNA-seq protocol([Citation error]). This protocol is optimized for the capture of epithelial
184 cells. Specifically, frozen rapid autopsy specimens were cut into approximately 2-mm³ pieces
185 using a disposable scalpel (Technocut, 10148-882) and transferred to 1 ml of freshly prepared
186 ice-cold lysis solution (250 mM sucrose, 50 mM citric acid, 0.01% DEPC). Next, the entire lysis
187 solution with specimens was transferred to a Dounce homogenizer (Sigma, D8938-1SET).
188 Tissue grinding was performed by gently moving a large-clearance pestle (Tube A) up and
189 down 10 to 15 times, followed by a small clearance pestle 10 times (Tube B). After grinding, the
190 homogeneous suspension of minced tissue was strained through a 35-µm snap cap strainer
191 (Fisher Scientific, 352235) and kept on ice for 1 min. Filtered nucleus suspension was
192 transferred into a 2-ml tube and spun at 4 °C in a swinging bucket centrifuge at 500 g for 5 min.
193 The supernatant was discarded, leaving ~20 µl above the nucleus pellet. Next, the pellet was
194 resuspended in 1 ml ice-cold 1 ml nucleus wash buffer (250 mM sucrose, 50 mM citric acid, 1%
195 (w/v) BSA, 20 mM DTT and 0.2 U µl⁻¹ RNase inhibitor (Ambion Inc.; RRID:SCR_008406,
196 AM2682), in DEPC-treated water (Ambion Inc., AM9915G). The tube was centrifuged in a
197 swinging bucket at 500 g for 5 min at 4 °C and the supernatant was aspirated without disrupting
198 the now-smaller pellet. The pellet was then resuspended in 0.5 ml nucleus resuspension buffer
199 (3X SCC (Invitrogen, AM9770), 20 mM DTT, 1% (w/v) BSA, and 0.2 U µl⁻¹ RNase inhibitor
200 (Ambion Inc., AM2682), in DEPC-treated water (Ambion Inc., AM9915G)) and passed through a
201 35-µm snap cap strainer. Nuclei were quantified by staining 10 µl of nucleus suspension with

202 0.2 μ l of 100 μ g ml⁻¹ DAPI and 10 μ l of 0.4% Trypan Blue, and carefully inspected for quality and
203 separation under bright field and fluorescence microscopes. The entire procedure took
204 approximately 1 hr to complete and generated 10⁶–10⁷ single nuclei per 1 ml.

205 **Single-nucleus enrichment**

206 Prior to snRNA-seq, single nuclei were purified by fluorescence-activated cell sorting (FACS) to
207 remove debris and clumps following our protocol([Citation error]). In a typical scenario, a 50- μ l
208 aliquot of the nucleus suspension was added to 250 μ l nucleus resuspension buffer and used
209 as an unstained reference sample for FACS, and the remaining suspension (~900–950 μ l) was
210 stained with 10 μ l of 100 μ g ml⁻¹ DAPI. Nucleus sorting was performed on a BD FACS Aria II
211 Cell Sorter (RRID:SCR_018934) instrument equipped with a 100- μ m nozzle. Sorting was
212 conducted at 5,000–10,000 events/second, by selecting events based on DAPI signal and
213 particle size. The sorted nuclei were transferred to 1.5-ml Protein LoBind tube (Eppendorf) and
214 centrifuged in a swinging bucket at 600 g for 5 min at 4 °C. The nucleus pellet was resuspended
215 in 100 μ l of supernatant and manually counted under bright field microscope after mixing 10 μ l
216 of nucleus suspension with 10 μ l of 0.4% Trypan Blue. The suspension concentration was
217 adjusted to obtain ~2000 nuclei/ μ l before proceeding with the v3 chemistry kit on the Chromium
218 instrument (10x Genomics; RRID:SCR_023672).

219 All samples were split and processed by the sorting protocol above or without it (unsorted). Both
220 unsorted and sorted samples were submitted for snRNA-seq preparation to ensure no
221 systematic biases were experimentally generated.

222 **snRNA-seq library preparation**

223 Single-nucleus RNA library preparation was performed following the Chromium Single Cell 3'
224 Reagent Kits User Guide, v3.1 Chemistry (10x Genomics), as in our protocol([Citation error]).
225 Library sequencing was performed on Illumina NovaSeq 6000 instruments using a paired-end 2
226 x 150-bp configuration.

227 **Algorithmic development**

228 **IntegrateCNV for copy number inference**

229 Copy number inference from scRNA-seq data assumes that changes in gene expression reflect
230 underlying changes in gene dosage. However, epigenetic factors also affect expression and
231 obscure the link between expression and copy number. Furthermore, scRNA-seq data is noisy
232 and sparse, leading to noise in the inferred copy number profiles. To mitigate noise and
233 sparsity, we restrict single-cell copy number inference to regions that are known, with high
234 confidence, to harbor CNAs based on bulk WES data, thereby greatly reducing false positive
235 calls. Sparsity is also mitigated by aggregating expression across genes for greater robustness
236 within these regions.

237 We developed IntegrateCNV to infer per-cell copy number variation from single-cell or single-
238 nucleus RNA-seq paired with sample-matched bulk WES data. IntegrateCNV first identifies
239 regions likely to harbor CNAs in WES data, then calculates the likelihood of each of these
240 genomic regions being altered in each single-cell. IntegrateCNV accepts as input (i) a cell \times
241 gene count matrix of scRNA-seq data and "normal" or "tumor" annotation for each cell, and (ii)
242 paired copy number profiles from bulk WES data in matching samples. Using this information,

243 the algorithm determines (i) a set of chromosomal regions that are copy-neutral across all
244 samples, and (ii) a set of chromosomal regions of sufficient size that are altered in at least one
245 sample. Finally, integrateCNV outputs (iii) a cell \times region matrix containing the likelihood of that
246 cell being copy number neutral in that region for each (cell, region) pair.

247 **IntegrateCNV algorithm**

248 The integrateCNV algorithm performs a two-tailed hypothesis test to determine whether each
249 (cell, region) pair has expression levels that differ significantly from the expression levels in
250 known normal cells. The null distribution of expression in each region is Gaussian, with
251 expression mean and variance taken from matching regions in a set of reference normal cells.
252 The algorithm performs the following steps:

- 253 1. Identify chromosomal regions that are copy number neutral across all samples as a
254 normalization factor.
- 255 2. Identify chromosomal regions that are copy number altered in at least one sample based
256 on bulk WES data.
- 257 3. Aggregate expression across genes within each altered region.
- 258 4. Normalize and log-transform the per-region expression.
- 259 5. Determine the null distribution based on annotated non-tumor cells.
- 260 6. Perform a hypothesis test to indicate the presence or absence of an alteration.

261 IntegrateCNV allows us to better normalize single-cell expression data against neutral regions
262 without removing the biological signal inherent in library size.

263 **Determining neutral and altered regions**

264 The first input to integrateCNV is a set of copy number profiles derived from bulk DNA
265 sequencing. For each sample, we use FACETS (RRID:SCR_026264)(11) to identify the total
266 copy number in each region. CNAs are centered around 0 so that a neutral region is
267 represented by the copy number '0'. The CNA profiles are saved as BED files, containing, for
268 each region, information about the chromosome, start position, end position, and copy number.
269 BED files from all samples are processed to find intersecting genomic regions using the
270 multi_intersect function from pybedtools (RRID:SCR_021018). The resulting intersections
271 capture the chromosomal regions and CNAs in each sample. Neutral regions are then identified
272 as those with no CNA in any sample. We denote the set of neutral regions by A^0 .

273 Candidate altered regions are first identified as those in which at least one sample contains an
274 alteration. Of the candidate regions, only those containing sufficient genes (>20 by default) are
275 retained for downstream analysis so as to provide sufficient coverage to reliably recover copy
276 numbers without being unduly influenced by the potential outlier effects of few genes. This set of
277 altered regions, A^{20+} , is used as the set of regions within which we will infer CNAs.

278 **Processing count data**

279 We denote the scRNA-seq cell \times gene count matrix by X , where $X_{c,g}$ represents the expression
280 of gene g for cell $c = 1, \dots, n$. Using the set of candidate regions (A^{20+}), we aggregate counts
281 over genes within a given region, indexed by r , to determine a cell \times region matrix, U .

$$U_{c,r} = \sum_{g \in G_r} X_{c,g}$$

282 where $g \in G_r$ are the genes which physically overlap with the genomic region indexed by r .

283 The counts from regions A^0 that are found to be neutral in all samples are used as a pseudo
 284 'spike-in' control in order to normalize count data without removing the biological signal of total
 285 library size, which can correlate with copy number burden. The total counts from genes across
 286 all neutral regions are summed for each cell, c , and the sum is denoted by library size
 287 normalization factor, l_c .

$$l_c = \sum_{r \in A^0} \sum_{g \in G_r} X_{c,g}$$

288 The cell \times region matrix, U , is then divided by the library size normalization factor and the *log* of
 289 the resulting normalized expression is computed to give data matrix, V .

290
$$V_{c,r} = \log \frac{1}{l_c} U_{c,r}$$

291 **Inferring CNAs and extracting integer copy number calls**

292 The log-normalized expression matrix, restricted to normal cells, now defines a null Gaussian
 293 distribution on expression levels in unaltered cells for each region. For each cell and region, the
 294 *z*-score is computed using this null distribution, and is used to define copy number altered
 295 regions.

296 Finally, a two-tailed hypothesis test is performed for each (cell, region) pair to determine
 297 whether the cell has expression values significantly higher or significantly lower than expected
 298 in a diploid cell. A *p*-value threshold (default 0.05) is used to determine the critical values for
 299 two-tailed hypothesis testing. All regions above or below the upper or lower critical values,
 300 respectively, are called as alterations. We note that because deleted regions have a small
 301 dynamic range (0, 1 or 2), there is less power to detect them and thus the procedure results in
 302 many false negatives for deleted regions. For all called alterations, we use the copy number
 303 from the corresponding bulk WES sample to insert an integer copy number. This denoising
 304 procedure ensures that, for a region to be denoted as altered in a cell, it must be supported by
 305 evidence from both snRNA-seq and sample-level bulk DNA data. The final output matrix is an
 306 integer copy number profile for each single cell, and can be used for downstream phylogenetic
 307 analysis of clonal relationships.

308 **Comparison of CNA inference methods**

309 To benchmark integrateCNV against existing approaches that infer CNAs from scRNA-seq data,
 310 we first determined single-cell copy number *z*-score profiles, which are computed without any
 311 prior knowledge of which sample (or bulk WES data) each cell belongs to. We then aggregated
 312 cells within samples to compare against the 'ground truth' bulk WES copy number profile.

313 For each sample, we ran inferCNV (RRID:SCR_021140)(12) and CopyKat
 314 (RRID:SCR_024512)(13), which return per-region and per-gene CNA scores, respectively, for
 315 each cell in the sample. We also ran Numbat(14) both with and without bulk copy number

316 profiles per sample as input to the algorithm. Numbat performed best with bulk profiles provided,
317 and thus these single-cell copy number profiles were used for comparisons. For integrateCNV,
318 we computed the z score for each altered region harboring an alteration in each cell. The z-
319 scores are computed per-cell in a sample-agnostic manner, so that no sample-identifying
320 information is provided to integrateCNV. We then computed the average score across all cells in
321 the sample to determine a pseudo-bulk CNA score for each method. Since all methods return
322 continuous valued predictions of alterations rather than discrete copy number calls, we
323 computed the correlation between the bulk DNA CNA call and the pseudo-bulked inferred CNA
324 score.

325 **Identifying recurrent CNAs**

326 We use the four gamete test(15) to identify potential violations of the infinite sites assumption
327 that may be due to recurrent alterations. The four gamete test considers mutation states at pairs
328 of sites. We binarize CNAs, representing diploid sites as 0 and aneuploid sites as 1. For any two
329 sites in a sequence, there are four possible combinations of mutation states - (1,1), (1,0), (0,1)
330 and (0,0). If all four combinations are observed in a population, this violates the infinite sites
331 model (which assumes that each mutation only occurs once).

332 For each pair of regions for which single-cell copy number profiles were computed by
333 IntegrateCNV, we identify all pairs of mutation states which are observed in our inferred CNA
334 profiles. To account for noise in the copy number inference, we consider only pairs which are
335 represented in at least 100 cells. If all four mutation state pairs are observed, we denote that
336 region pair as violating the infinite sites assumption, likely due to recurrent CNAs.

337 **Phylogenetic inference from single-cell CNA calls**

338 Most efforts to reconstruct tumor phylogenies rely on single-nucleotide variants (SNVs) derived
339 from DNA sequencing data. A few approaches specifically address CNA phylogenies(16,17),
340 but they are designed for copy number profiles derived from deconvolved bulk DNA sequencing
341 or single-cell DNA sequencing. These methods typically assume that input copy number profiles
342 are reliable and accurately specified for contiguous genomic regions, and most do not scale to
343 large numbers of cells. These assumptions do not hold when considering CNA profiles derived
344 from scRNA-seq experiments, as inferred copy number profiles are very noisy and dataset sizes
345 are significantly larger. Researchers thus often resort to distance-based agglomerative
346 clustering methods such as neighbor joining to reconstruct cell hierarchies.

347 To overcome these challenges, we developed PICASSO (phylogenetic inference from copy
348 number alterations in single-cell sequencing observations), to infer cellular clones and their
349 phylogenetic relationships from CNA calls derived from single-cell expression data. The
350 PICASSO algorithm assumes that observed single-cell copy number profiles are noisy
351 measurements of true clonal profiles, such that cells in the same clone share similar CNA
352 patterns. Phylogenetic relationships are unobserved and result from (potentially recurrent) gain
353 and loss of copy number variants from an original parent clone. PICASSO thus aims to group
354 single cells based on membership to inferred clones, and determine the evolutionary
355 relationships between these clones.

356 As input, PICASSO accepts a character matrix of cells by regions, with each entry consisting of
357 an integer CNA state for the corresponding region and cell. Using this information, the algorithm

358 generates (i) assignments of cells to clones and (ii) a phylogeny describing the relationship
359 between clones.

360 **PICASSO algorithm**

361 PICASSO is a tree-recursive algorithm whereby each iteration considers the cells currently
362 assigned to a leaf node of the phylogenetic tree and determines whether to split that leaf into
363 further branches. It comprises the following steps:

- 364 1. Encode integer copy numbers into ternary profiles. If the maximum absolute copy
365 number (relative to diploid) is j , copy number k is encoded as a vector of length j with k
366 leading 1s so that similar copy number profiles are similar in the encoded space. In
367 practice, we cap the maximum copy number at $j = 2$, distinguishing only between
368 amplified and highly amplified copy numbers. Similarly, negative copy number $-k$ is
369 encoded as a vector of length j with k leading -1s. This allows us to represent the
370 cumulative nature of CNAs, whereby moderate gains or losses may precede more
371 severe alterations, and also account for small mistakes when inferring CNA magnitude.
- 372 2. Construct an initial phylogeny comprising a single leaf node containing all cells in the
373 dataset.
- 374 3. For each leaf node, split the node into two clones based on shared CNAs using
375 expectation–maximization (EM). Cells are partitioned such that (i) CNAs are allowed to
376 recur independently in distinct clones, and (ii) cells are grouped based on global CNA
377 profile, mitigating the outsize effect of noisy or incorrect calls in a few genomic regions.

378 More explicitly, for each non-terminal leaf in the phylogeny:

- 379 a. If sufficient evidence exists to split cells, assign cells to one of two subclones
380 using EM. These subclones are the new children of the original leaf node.
- 381 b. If insufficient evidence exists to split cells, designate this leaf as a terminal node.
- 382 c. Repeat until all leaf nodes are terminal nodes.

- 383 4. Cell groupings identified from this iterative process constitute clone assignments, and
384 relationships between groups constitute the phylogenetic relationships between clones.
385 The tree is re-rooted so that the clone with fewest CNAs is most ancestral, reflecting the
386 fact that CNA burden generally increases during evolutionary progression.
- 387 5. As optional post-processing, we may collapse small subclones containing too few cells
388 to draw meaningful statistical conclusions.

389 **Encoding the character matrix**

390 We denote the cell \times region matrix of integer CNAs by B , where $B_{c,r}$ represents the inferred
391 copy number of cell $c = 1 \dots n$ in region r in A^{20+} , and A^{20+} denotes the set of altered regions.
392 To facilitate further analysis, we transform matrix B into a matrix M using the following encoding
393 scheme:

394 1. Determine the maximum absolute value.

395 For each column (region) r in B , determine the maximum absolute value, p_r ,
396 representing the highest CNA observed in that region. In practice, we cap this value at
397 copy number +2 (two copies more than expected in a diploid cell), as we may not trust or
398 be able to reliably distinguish between very large copy numbers.

399 2. Encode copy number values.

400 For each cell c and region r , encode the copy number $k = B_{c,r}$ into p_r columns in M
401 according to this scheme:

402 a. If $k \geq 0$, the encoding is $[1, 1, \dots, 1, 0, 0, \dots, 0]$ with k ones followed by $p_r - k$
403 zeros.

404 b. If $k < 0$, the encoding is $[-1, -1, \dots, -1, 0, 0, \dots, 0]$ with $|k|$ negative ones
405 followed by $p_r - |k|$ zeros.

406 3. Construct the matrix M .

407 Replace each column r in B with p_r columns in M according to the above encoding
408 scheme, resulting in a ternary matrix where each original region is expanded into
409 multiple columns representing CNA magnitude and direction.

410 This transformation allows us to enforce similar copy number profiles between CNAs of similar
411 values. The dimension of the resulting matrix M is $n \times \sum_{r \in A^{20+}} p_r$.

412 **Top-down phylogeny construction**

413 We use an expectation–maximization approach to construct a top-down phylogenetic tree
414 based on shared patterns of copy number breakpoints. The phylogeny is initialized with a single
415 clone containing all the cells in the data set. At each iteration, the depth of the existing tree may
416 be increased by one as each leaf clone may be split into two further subclones if there is
417 sufficient evidence of differences between them. Sufficient evidence of differences between
418 potential subclones exists when the copy number patterns observed cannot be reasonably
419 explained by a single population. Using the Bayesian information criterion (BIC), we only create
420 a new branch in the evolutionary tree when the data strongly suggests that two distinct copy
421 number clone populations exist. Alternatively, any given clone may remain intact as a terminal
422 clone.

423 **Mixture model for clustering CNA clones**

424 The input to PICASSO is the copy number profile of distinct genomic regions that are likely to
425 harbor CNAs. We therefore assume that CNA occurrences at each genomic region are
426 independent, which allows us to consider each profile as a draw from a multivariate categorical
427 mixture model. We can use an EM algorithm to cluster each existing leaf into two subclones,
428 mimicking the evolutionary process that distinguishes clones by the accumulation of copy
429 number differences.

430 For each subclone, we learn a probabilistic profile over CNAs, allowing us to capture several
431 essential features. The learned probability associated with the categorical distribution for a given
432 CNA can be less than 1, permitting CNAs to only be present in a subset of cells in an inferred
433 subclone. Further, the subclonal structure can be disentangled by subclone splitting in

434 subsequent iterations. Additionally, the probabilistic profile allows us to model the high degree of
435 false positives and false negatives in inferred CNA data by tolerating small probabilities of a
436 clone missing or containing a specific alteration. Finally, there may be a positive probability of a
437 particular alteration occurring at the same position in both clones, allowing for the independent
438 recurrence of copy number changes in multiple clonal lineages, which has been observed
439 extensively in previous CNA of cancer data(18).

440 The EM algorithm is a widely used iterative method to find maximum likelihood estimates of
441 parameters in probabilistic models, particularly for clustering problems. PICASSO uses an EM
442 algorithm for clustering categorical data with states $\{-1,0,1\}$, which represent different CNAs in
443 cells.

444 The observed copy number profiles, $M = \{M_1, M_2, \dots, M_n\}$, contain the encoded CNAs for each
445 cell, $c = 1 \dots n$, across regions. Each $M_c = [m_{c1}, m_{c2}, \dots, m_{cd}]$ is a vector of d categorical
446 observations for cell c . Each observation m_{cj} can take one of three states: -1 , 0 , or 1 ,
447 representing different CNAs.

448 We assume there are two clusters representing an evolutionary split between subclones, and
449 each cluster k is characterized by a set of parameters $\theta_k = \{\pi_k, \phi_k\}$, where π_k parametrizes
450 the prior probability of cluster k and ϕ_k the probability distribution over the states for each
451 observation in cluster k .

452 **Expectation maximization algorithm**

453 The EM algorithm iterates between the expectation (E) and maximization (M) steps until
454 convergence. The goal is to assign each cell to one of the subclones in a way that maximizes
455 the likelihood of the observed data.

456 We let $\phi_k \in \mathbb{R}^{3 \times d}$ represent the parameters of the categorical distribution for component
457 $k \in \{1,2\}$, and π_k represent the mixture proportions. We also define the latent variable z_c , which
458 indicates the membership of the c -th observation to one of the two components, where $z_c \in$
459 $\{1,2\}$. The responsibility $\gamma_{ck} = \mathbb{E}[z_{ck}]$ is the expectation of z_{ik} .

460 The complete data log-likelihood is:

$$\log p(M, Z | \pi, \phi) = \sum_{c=1}^n \sum_{k=1}^2 z_{ck} (\log \pi_k + \sum_{j=1}^d \log \phi_{k, m_{cj}, j})$$

461 The E-step updates the prediction of which subclone each cell belongs to based on the
462 likelihood of the observed data under the current model. We calculate the posterior probabilities,
463 γ_{ck} , also known as responsibilities, which represent the probability that each cell c belongs to
464 each cluster, k .

465 The M-step uses the assignment probabilities calculated in the E-step to update the model
466 parameters. Specifically, we adjust the subclone priors π_k and the categorical distribution
467 parameters $\phi_k \in \mathbb{R}^{3 \times d}$ to maximize the expected log-likelihood of the observed data, weighted
468 by the assignment probabilities. The categorical distribution parameters $\phi_k \in \mathbb{R}^{3 \times d}$ for clone k
469 represents the probability of observing each (copy number state, encoded region) pair. This

470 step ensures that the parameters better reflect the observed data given the current cluster
 471 assignments.

472 By iteratively updating the assignment probabilities in the E-step and the model parameters in
 473 the M-step, the EM algorithm gradually converges to a set of parameters that maximize the
 474 likelihood of the data. This iterative process allows the algorithm to find the most probable
 475 clustering of the cells based on shared CNA patterns.

476 **Initialization.** We begin by randomly initializing the subclone assignments, γ_{ck} of each cell so
 477 that cells are distributed randomly between clones. In order to mitigate the effect of local minima
 478 when performing this iterative optimization, we perform five random restarts and select the
 479 model which has the highest likelihood amongst the five trials.

480 **E-step.** To determine the optimal assignment of cells to sub-clones, we compute the posterior
 481 probabilities (responsibilities) that each cell M_c belongs to sub-clone k :

$$482 \quad \gamma_{ck} \leftarrow \frac{\pi_k \prod_{j=1}^d \phi_k(m_{cj})}{\sum_{l=1}^n \pi_l \prod_{j=1}^d \phi_l(m_{cj})},$$

483 where $\phi_k(m_{cj})$ is the probability of observing m_{cj} in cluster k .

484 **M-step.** To update the probabilistic sub-clone profiles, we update the parameters π_k and ϕ_k to
 485 maximize the expected log-likelihood:

$$486 \quad \pi_k \leftarrow \frac{1}{n} \sum_{c=1}^n \gamma_{ck}$$

$$\phi_k(z) \leftarrow \frac{\sum_{c=1}^n \sum_{j=1}^d \gamma_{ck} \delta(m_{cj}, z)}{\sum_{c=1}^n \sum_{j=1}^d \gamma_{ck}},$$

487 where z is a copy number state (-1,0,1) being updated and $\delta(a, b)$ is the Kronecker delta
 488 function, which is 1 if $a = b$ and 0 otherwise.

489 **Termination of subclone splitting**

490 We implement two methods to determine whether a clone should be split further. The first (and
 491 preferred) option compares the Bayesian information criterion (BIC) score of a model with one
 492 clone to that of a model with two clones, and terminates the splitting process if the BIC score
 493 does not improve with two clones. Specifically, we calculate

$$BIC = -2 \ln(L) + k \times \ln(n)$$

494 where L is the maximum likelihood, k is the number of parameters in the model, and n is the
 495 number of cells. When splitting a clone into two subclones, the model gains additional
 496 parameters (new probabilistic profiles and mixing proportions), which incurs a penalty term in
 497 the BIC calculation. Only when the improvement in likelihood outweighs this complexity penalty
 498 do we proceed with the split. This approach rigorously controls model complexity by requiring
 499 substantial evidence that observed variations reflect genuine biological differences rather than
 500 stochastic noise.

501 In cases with limited cell numbers, the statistical power needed for BIC to detect meaningful
 502 biological differences may be insufficient. The cell assignment confidence approach provides a

503 complementary criterion that can identify biologically relevant subpopulations even when BIC
504 would prematurely terminate splitting, making it particularly valuable for datasets with fewer cells
505 or more subtle clonal differences.

506 The second method relies on cell assignment confidence. Using the responsibilities matrix from
507 the EM algorithm, we check the proportion of confidently assigned cells. Specifically, if a cell's
508 responsibility value exceeds a user-defined threshold (e.g., 0.75), it is considered confidently
509 assigned. If the proportion of confidently assigned cells falls below a user-defined threshold
510 (typically 0.6–0.8), the splitting process is terminated. This ensures further subdivisions are only
511 made when cells show clear membership patterns, avoiding overfitting to noisy data.

512 **Post-processing subclones**

513 Inference from scRNA-seq data produces inherently noisy copy number profiles due to technical
514 limitations in the sequencing process. These profiles may contain artifacts and false signals that
515 can lead to the detection of spurious subclones. To ensure the reliability of our phylogenetic
516 analysis, we implement a post-processing step that retains only those clones with sufficient
517 statistical support and biological plausibility, filtering out clusters that likely arise from technical
518 noise rather than true clonal evolution.

519 In order to mitigate the occurrence of clones derived from noise in the copy number inference
520 process, we require clones to (i) be composed of more than 75 cells and (ii) contain at least one
521 CNA at high frequency. We selected a conservative threshold of 75 cells as a minimum clone
522 size in order to ensure that clones are likely to represent true biological subpopulations rather
523 than technical artifacts arising from the copy number inference process.

524 For a given clone, we define high frequency CNAs as alterations present in at least 80% of the
525 cells in that clone. The requirement for at least one high-frequency CNA provides additional
526 confidence that the identified clone represents a genuine biological subpopulation with shared
527 genomic alterations.

528 Clones that do not satisfy these conditions are removed from the phylogenetic analysis, since
529 we do not have sufficient confidence to draw conclusions about the cells they contain.

530 **PICASSO benchmarking**

531 To evaluate PICASSO's phylogenetic reconstruction accuracy, we simulated a series of ground
532 truth CNA trees. Existing single-cell phylogenetic algorithms are not well suited to constructing
533 clone trees from noisy, large scale datasets. For example, CNETML(17), a maximum likelihood
534 algorithm for deriving phylogenies from copy number profiles, only scales to the low hundreds of
535 cells. We thus compared our ability to recover phylogenetic relationships in these simulations
536 with an agglomerative tree-building algorithm, neighbor joining.

537 **Simulation experiments**

538 We start by generating random binary trees that form the backbone of our CNA simulations,
539 providing a structure on which we can model evolutionary relationships. Each leaf in the tree
540 represents a copy number clone, and branches depict the divergence of clonal lineages over
541 time. Next, we annotate these trees with regions and alterations using a Dirichlet distribution to
542 generate probability vectors for region selection. This distribution allows us to model the relative

543 likelihood of alterations occurring across different genomic regions and capture the biological
544 reality that some regions are more susceptible to CNAs than others.

545 Each branch is assigned specific alterations (values of -2, -1, +1, or +2) based on a predefined
546 probability distribution [0.5, 0.3, 0.2] that determines only how many alterations will occur per
547 branch (with 0.5 probability of 1 alteration, 0.3 probability of 2 alterations, and 0.2 probability of
548 3 alterations), reflecting the accumulation of genetic changes as cells evolve. The actual
549 alterations themselves are randomly selected from the set [-2, -1, +1, +2] with equal probability.

550 To capture the cumulative effect of these alterations, we calculate the aggregated alterations for
551 each leaf node by tracing the path from the root to the leaf. This gives us a comprehensive copy
552 number profile for each clone, accounting for all the genetic changes that occurred along its
553 lineage. Cells are then attached to the leaves of the tree, with the number of cells per clone
554 partially determined by the distribution of clone sizes observed in the data. Specifically, we
555 leverage real-world PDAC data, using half the actual observed clone sizes to balance
556 computational efficiency with biological fidelity while preserving the relative proportions of clonal
557 populations seen in patient samples.

558 In order to simulate realistic copy number profiles inferred from single-cell data, it is essential to
559 introduce realistic noise, including extensive false positives and false negatives:

560 1. **False positives: Add noise to neutral regions.** Simulate false-positive inferred CNAs
561 by randomly selecting a proportion of neutral (no copy number change) regions within
562 the cell profiles and applying random alterations. We perform these simulations across
563 four false positive rate parameter regimes: the false positive rate (0.01, 0.1, 0.2, or 0.3)
564 directly determines the proportion of neutral regions altered—for example, at a rate of
565 0.1, 10% of neutral regions receive artificial alterations. The magnitude of these
566 alterations follows a distribution derived from observed alterations to ensure realistic
567 noise patterns.

568 2. **False negatives: Zero-out existing alterations.** Simulate false negatives or loss of
569 signal by zeroing out existing alterations in the cell profiles randomly. The false negative
570 rate directly determines the probability of removing each existing alteration—for
571 example, at a rate of 0.2, each real alteration has a 20% chance of being removed. This
572 stochastic process simulates scenarios where genuine copy number changes go
573 undetected.

574 3. **Perturb existing alterations.** Simulate CNAs whose presence is correctly inferred, but
575 whose magnitude is not, by slightly increasing or decreasing copy number values. We
576 introduce magnitude perturbations with a probability of 0.1 per alteration, randomly
577 adjusting values by +1 or -1 while preserving the direction (gain or loss). This simulates
578 measurement uncertainty in copy number estimation from sequencing data. These
579 perturbations create a consistent baseline of noise across all experimental conditions,
580 independent of the varying false positive and false negative rates being tested, better
581 reflecting the technical challenges in precise CNA quantification.

582 We conduct simulation experiments with three replicates across multiple parameter
583 configurations. Each simulation maintains 60 leaves and 110 regions, dimensions comparable

584 to the PDAC tree inferred by PICASSO. By systematically varying false positive and false
585 negative rates (0.01, 0.1, 0.2, and 0.3), we comprehensively evaluate the robustness of both
586 neighbor joining and PICASSO methods under increasingly challenging conditions of data
587 quality.

588 **Metric for evaluating PICASSO**

589 We evaluated PICASSO and neighbor joining phylogenies using the triplets-correct metric(19),
590 which assesses the tree's ability to reconstruct correct phylogenetic relationships between
591 triplets of cells. For each simulated tree, we sample 10,000 triplets (a, b, c) . For each triplet, the
592 ground truth tree induces a phylogenetic ordering on the cells. For example, for triplet (a, b, c) ,
593 the ground truth phylogenetic relationship of these cells may be $((a, b), c)$, indicating that cells a
594 and b share a more recent common ancestor than a and c or b and c . In an inferred tree, the
595 triplet is scored as "correct" if the phylogenetic relationship between these cells is accurately
596 recovered.

597 Since the simulated tree defines leaves as "clones" (groups of cells that cannot be distinguished
598 from each other by CNA profile), some triplets will have no clear phylogenetic relationship; they
599 are siblings in a clone. Unlike PICASSO, neighbor joining computes a fully resolved cell tree.
600 Therefore, when computing the proportion of triplet relationships that are correctly determined,
601 we only consider triplets with clearly defined phylogenetic relationships. By counting the
602 proportion of correctly inferred triplets, the triplets correct metric provides a quantitative measure
603 of the tree's accuracy, helping to identify discrepancies and assess the overall quality of the
604 inferred phylogenetic tree.

605 **PICASSO runtime and memory comparison**

606 Given the large size of scRNA-seq datasets, runtime complexity is a significant concern. The
607 neighbor-joining algorithm, commonly used in phylogenetic analysis, has a theoretical runtime
608 complexity of $O(n^3)$, where n is the number of cells, although some implementations of neighbor
609 joining use heuristics to improve performance in practice(20).

610 We evaluated run times on simulated datasets with 20,000 cells. Given the large size of the
611 datasets, we used a heuristic implementation of neighbor joining, rapidNJ. We measured the
612 runtimes for both neighbor joining and PICASSO on each dataset across all replicates and
613 found that PICASSO is significantly faster and less memory intensive than neighbor joining.

614 **PICASSO robustness testing**

615 To evaluate the robustness and reproducibility of PICASSO, we ran the method five times on
616 the full PDAC dataset of approximately 40,000 single cells and assessed the consistency of the
617 resulting phylogenetic reconstructions. Pairwise comparisons of the clone assignments across
618 runs were quantified using normalized mutual information (NMI) and adjusted Rand index (ARI),
619 widely used metrics for comparing the similarity between two clustering assignments.

620 NMI measures the mutual information shared between two clustering assignments, normalized
621 to a 0–1 scale:

$$NMI(U, V) = 2 \times \frac{MI(U, V)}{H(U) + H(V)}$$

622 where $MI(U, V)$ is the mutual information between clustering assignments U and V , and $H(U)$
623 and $H(V)$ are their respective entropies. An NMI score of 1 indicates perfect agreement
624 between clusterings, while 0 indicates completely independent clusterings. The NMI scores we
625 observed were consistently high, averaging around 0.85, indicating strong agreement in the
626 overall clustering structure across runs.

627 ARI measures the similarity between two clustering assignments by counting pairs of elements
628 that are either assigned to the same cluster or different clusters in both assignments, adjusted
629 for chance:

$$ARI = \frac{RI - E(RI)}{\max(RI) - E(RI)}$$

630 where RI is the raw Rand Index, $E(RI)$ is the expected raw RI and $\max(RI)$ represents the
631 theoretical maximum value the Rand Index could achieve for the given clustering problem. The
632 raw Rand Index is defined as:

$$RI = \frac{TP + TN}{TP + TN + FP + FN}$$

633 where TP is the number of pairs that are in the same cluster in both clusterings, TN is the
634 number of pairs in different clusters in both clusterings, FP is the number of pairs that are in the
635 same cluster in the first clustering but in different clusters in the second and FN is the number of
636 pairs that are in different clusters in the first clustering but in the same cluster in the second.

637 ARI ranges from -1 to 1, with 1 indicating perfect agreement, 0 indicating random cluster
638 assignments, and negative values indicating worse-than-random agreement. The observed ARI,
639 which is sensitive to both the number and composition of clusters, averaged around 0.6,
640 reflecting a reasonable level of stability given the complexity of the dataset and the stochastic
641 nature of the method.

642 To further assess consistency at the phylogenetic level, we computed the proportion of triplets
643 (evolutionary relationship between three cells) recovered in each run that matched those
644 identified in a separate run designated as the ground truth. High concordance of triplets across
645 runs demonstrates that PICASSO reliably reconstructs phylogenetic relationships despite
646 inherent variability in clustering.

647 To further assess the robustness of PICASSO, we conducted a downsampling analysis by
648 randomly subsampling the dataset to 75%, 80%, 85% and 90% of the original dataset. For each
649 downsampled dataset, we ran PICASSO and measured the proportion of triplets in the
650 reconstructed phylogenies that matched the triplets identified in the full dataset, which served as
651 the reference. Across all levels of downsampling, the proportion of correctly recovered triplets
652 remained high, demonstrating the method's robustness.

653 Computational analysis

654 **Digital histopathology**

655 Whole slide imaging data were obtained with the assistance of the Molecular Cytology Core
656 Facility at Memorial Sloan Kettering Cancer Center. H&E-stained slides were scanned using a
657 PANNORAMIC scanner (3DHistech, Budapest, Hungary) equipped with a 20x/0.8 NA objective.

658 The resulting data were analyzed using QuPath (version 0.5.1; RRID:SCR_018257)
659 (<https://qupath.github.io/>).

660 Adipose and fibrous tissues were annotated by a pathologist using QuPath. Following
661 annotation, the Pixel Classification tool in QuPath was applied with default settings to quantify
662 the areas of adipose and fibrous tissues.

663 For cell type evaluation, QuPath's Cell Detection tool was used to identify and analyze tumor,
664 stromal and immune cells. Regions containing these three cell types were annotated, and only
665 tumor-cell-containing areas were included in the analysis. A cell classifier was trained using the
666 Object Classification tool in QuPath with default settings, based on pathologist annotations.
667 Features such as nuclear circularity and eccentricity were calculated to characterize the
668 detected cells. The classifications were validated by the annotating pathologist to ensure
669 accuracy.

670 **WES data analysis**

671 **WES data preprocessing**

672 Initial processing began with adapter trimming of FASTQ files using cutadapt (v1.9.1;
673 RRID:SCR_011841) to remove standard Illumina 5' and 3' adapter sequences. The trimmed
674 reads were then mapped to the b37 reference genome from the Broad GATK resource bundle
675 using BWA-MEM (v0.7.12; RRID:SCR_010910). Post-alignment processing included sorting of
676 SAM files and addition of read group tags using PICARD tools (v1.124; RRID:SCR_006525).
677 The read group information includes sample identifiers, sequencing library identifiers, and
678 Illumina platform information. The sorted BAM files were then processed with PICARD
679 MarkDuplicates to identify PCR duplicates (https://github.com/soccin/BIC-variants_pipeline).

680 **Copy number alteration calling**

681 Copy-number alterations in solid tumors were computed from tumor and matched normal tissue
682 WES data using default settings in the FACETS (Fraction and Allele-Specific Copy Number
683 Estimates from Tumour Sequencing) (v0.6.2) algorithm (<https://github.com/mskcc/facets-suite>)(11). FACETS provides allele-specific copy number estimates at the level of both gene
685 and chromosome arm.

686 **Single-nucleotide variant calling**

687 We used the standardized Illumina (HiSeq) Exome Variant Detection Pipeline to detect variants
688 in the output of preprocessed WES data. Following duplicate marking, BAM files are processed
689 according to GATK (v3.4-0; RRID:SCR_001876) best practices version 3 for tumor–normal
690 pairs. This includes local realignment using ABRA (v2.17; SCR_003277) with default
691 parameters, followed by base quality score recalibration using BaseQRecalibrator with known
692 variants from the Broad GATK B37 resource bundle, including dbSNP (v138;
693 RRID:SCR_002338).

694 Somatic variant calling is performed using muTect (v1.1.7; RRID:SCR_000559) with default
695 parameters for SNV detection, while somatic indels are identified using GATK HaplotypeCaller
696 with subsequent custom post-processing. A final "fill-out" step computes the complete read

697 depth information at each variant position across all samples using the realigned BAMs. This
698 step applies quality filters requiring mapping quality ≥ 20 and base quality ≥ 0 , with no filtering
699 for proper read pairing.

700 All analyses were performed using a standardized computational environment managed through
701 Singularity (v2.6.0). The complete pipeline source code, including all post-processing scripts, is
702 available at:

703 • https://github.com/soccin/BIC-variants_pipeline
704 • <https://github.com/soccin/Variant-PostProcess>

705 Additional software versions used in the pipeline include Perl (v5.22.0; RRID:SCR_018313),
706 Samtools (v1.2; RRID:SCR_002105), VCF2MAF (v1.6.21; RRID:SCR_027063), and VEP
707 (v102; RRID:SCR_007931).

708 SNV and CNA visualization

709 To visualize the SNV and CNA status of key cancer genes, as well as tumor mutation burden,
710 we used CoMut(21).

711 **snRNA-seq data pre-processing**

712 After quality controls (see next section), snRNA-seq generated a total of 73,142 high-quality
713 transcriptomes from 11 samples (**Supplementary Table 1**).

714 **Alignment of sequencing reads**

715 All scRNA-seq samples were pre-processed as follows: FASTQ files from the rapid autopsy
716 samples were processed with the SEQC (v.0.2.4) pipeline(22)(<https://github.com/dpeerlab/seqc>)
717 using the hg38 human genome reference, default parameters and platform set to 10x Genomics
718 v3 3' scRNA-seq kit. The SEQC (v.0.2.4) pipeline performs read demultiplexing, alignment and
719 unique molecular identifier (UMI) and cell barcode correction, producing a preliminary count
720 matrix of cells by unique transcripts. By default, the pipeline will remove putative empty droplets
721 and poor-quality cells based on (1) the total number of transcripts per cell (cell library size); (2)
722 the average number of reads per molecule (cell coverage); (3) mitochondrial RNA content; and
723 (4) the ratio of the number of unique genes to library size (cell library complexity).

724 Nuclear transcriptomes from human rapid autopsy samples are expected to have lower RNA
725 content and quality than regular single-cell assays(23). To obtain a more comprehensive
726 representation of cancer phenotypes we included both FACS and non-sorted samples (see
727 Single-nucleus RNA-seq section), however, non-sorted samples carry a greater degree of low
728 quality nuclei. Therefore, due to the intrinsic lower RNA content and sample quality of flash-
729 frozen snRNA-seq derived transcriptomes, we performed further quality control steps as
730 described in the following sections.

731 **snRNA-seq data quality control**

732 **Ambient RNA removal**

733 During nucleus extraction from flash-frozen tissue, cell-free ambient RNA is liberated into the
734 dissociation solution and becomes encapsulated with nuclei during library construction. Ambient
735 RNA contamination can create undesired technical artifacts in single cell data, such as ectopic
736 gene expression and the obscuring of real biological differences between distinct cell population
737 transcriptomes.

738 To address this issue, we corrected for ambient RNA expression using CellBender
739 (v.0.1.0)(24)(<https://github.com/broadinstitute/CellBender>). CellBender is an unsupervised
740 Bayesian model that requires no prior knowledge of cell-type-specific gene expression profiles
741 to identify ambient RNA counts. The approach is based on the principle that ambient RNA
742 contamination will have a relatively uniform distribution across all cells, whereas cell-specific
743 RNA will display more variable expression patterns. The procedure for removing ambient RNA
744 using CellBender involved the following steps with default parameters:

745 **Quality control:** Rapid autopsy snRNA-seq samples (particularly non-sorted samples) have
746 more low-quality droplets with debris and ambient RNA than regular scRNA-seq samples(23).
747 To increase the signal-to-noise ratio between ambient RNA and real RNA counts, we first
748 performed a lenient QC by removing nuclei with more than 5% mitochondrial genes, and fewer
749 than 127 genes or fewer than 255 reads, and by removing genes present in fewer than 10 cells.
750 The estimated cell number of each batch was inferred with SEQC(22). We applied CellBender
751 (RRID:SCR_025990) to this initial lenient-filtered snRNA-seq data as follows.

752 **Estimation of ambient RNA levels:** CellBender estimated levels of ambient RNA for each
753 gene across all nuclei by assessing the distribution of expression levels for each gene and
754 identifying genes with a uniform distribution as candidates for ambient RNA contamination.

755 **Subtraction of ambient RNA:** Next, CellBender subtracted the estimated ambient RNA
756 contamination from the expression level of each gene in every droplet. This process generated
757 a corrected gene expression matrix with non-transformed integer counts.

758 **Evaluation of ambient RNA correction:** We selected 5,000 highly variable genes using the
759 variance-stabilizing transformation method(25). To normalize the data, we scaled each cell to
760 10,000 reads and applied a $\log_2(X+1)$ transformation. Dimensionality reduction was performed
761 using principal component analysis (PCA) and the top 50 components were utilized for
762 downstream analysis. We constructed a k-nearest neighbor (kNN) graph using $k = 30$ and
763 applied PhenoGraph (RRID:SCR_016919)(26) to identify distinct coarse cell clusters. Cell-type-
764 specific markers were used post-hoc to evaluate ambient RNA correction. CellBender
765 successfully retained cell-type-specific markers in corresponding clusters, while removing
766 unexpected RNA counts, particularly genes from acinar cells that appeared in other cell types.

767 **Filtering low-quality nuclear transcriptomes**

768 Proceeding with the CellBender-corrected count matrix, cells with a low number of detected
769 genes, a low total UMI count (sequencing depth) and a high fraction of mitochondrial counts
770 were designated low-quality cells, as they can represent dying cells with broken
771 membranes(27). Previous snRNA-seq protocols have also reported that ribosomes can remain
772 attached to the nuclear membrane during nucleus isolation(28); therefore, data were further
773 assessed for library size, total gene counts, mitochondrial and ribosomal RNA content.

774 **Library size and gene count thresholds:** We removed cells with fewer than 500 RNA counts
775 and fewer than 200 genes.

776 **Mitochondrial and ribosomal RNA content thresholds:** Since our droplets contained nuclear
777 transcriptomes, we reasoned that mitochondrial and ribosomal RNA should be greatly reduced
778 in high-quality transcriptomes. Hence, we checked for cells with high mitochondrial and
779 ribosomal content. Cells with higher levels of mitochondrial and ribosomal genes primarily
780 belonged to non-sorted samples, suggesting that these droplets contained higher levels of
781 debris, as expected. After manual assessment, we removed droplets with more than 1% of
782 mitochondrial RNA and/or more than 10% ribosomal RNA fractions.

783 **Doublet detection**

784 Multiplets (droplets containing more than a single nucleus), predominantly doublets, are an
785 undesired byproduct of library production that create artifactual transcriptomes and confound
786 real biological signal. Homotypic doublets encapsulate two nuclei from the same cell type, and
787 heterotypic doublets capture two different cell types, leading to cell-type mislabeling(27). Given
788 the challenging task of differentiating single transcriptomes from doublets, using more than one
789 detection approach and comparing results can increase the accuracy of doublet detection(29).
790 We used DoubletDetection(<https://zenodo.org/record/2678042>) and Scrublet(30), two of the top-
791 performing doublet detection algorithms(31), and further inspected identified doublets to confirm
792 larger library size compared to singlets, as well as expression of conflicting gene markers. For
793 each sample independently, we visually compared putative doublet and singlet total count
794 distributions together, and their clustering distribution in UMAP projections.

795 **DoubletDetection:** DoubletDetection is a machine-learning algorithm for identifying doublets in
796 scRNA-seq
797 data(<https://zenodo.org/record/2678042>)(<https://github.com/JonathanShor/DoubletDetection>). It
798 generates synthetic doublets, clusters them together with the original data using
799 PhenoGraph(26), and assigns a score and *p*-value for clusters with enriched synthetic doublets
800 using a hypergeometric test. We used DoubletDetection separately in each sample raw snRNA-
801 seq count matrix with default parameters.

802 **Scrublet:** Scrublet (RRID:SCR_018098)(30)(<https://github.com/swolock/scrublet>) simulates
803 doublets from the observed data and uses a kNN classifier to calculate a continuous
804 doublet_score (between 0 and 1) for each transcriptome. The score is automatically thresholded
805 to generate predicted_doublets, a boolean array that is True for predicted doublets and False
806 otherwise. We used Scrublet independently for each sample's raw snRNA-seq count matrix with
807 default parameters.

808 We found the results from both methods to be complementary and removed cells identified as
809 doublets by either method. Transcriptomes passing library size, mitochondrial, ribosomal and
810 doublet detection criteria were retained and the data matrices concatenated into a single matrix
811 (73,142 cells and 22,318 genes) for downstream analysis.

812 **snRNA-seq data analysis**

813 **Feature selection, normalization, and variance stabilization**

814 Following quality control, we selected 5,000 highly variable genes (HVGs) using 'seurat_v3' in
815 scanpy (v.1.9.8; RRID:SCR_018139)(32)(<https://github.com/scverse/scanpy>), which computes a
816 normalized variance for each gene on the raw counts(25). Other parameters were set as
817 default. To normalize the data we scaled each cell to 10,000 reads. The normalized counts were
818 then log-transformed (base 2).

819 **Dimensionality reduction and visualization**

820 PCA of the log-normalized matrix was performed using the ARPACK solver on the selected
821 HVGs. We retained the first 50 principal components (PCs), which explained 33.5% of the
822 variation in the data, and constructed a kNN graph using $k = 30$. To visualize the data, UMAP
823 was applied to the PCA-reduced data and a minimum distance of 0.1.

824 Since non-cancer cells from different libraries were well integrated, we did not perform any
825 batch correction on our data. Differences between samples from different anatomical locations
826 were regarded as biologically driven.

827 **Gene signature scores**

828 To generate all gene signature scores in our study, we used the Scanpy score_genes
829 function(33), which calculates the mean expression of genes of interest subtracted by the mean
830 expression of a random expression-matched set of reference genes. To control for gene set
831 sizes, we selected the random reference set to be the same size as the gene set of interest.
832 Other parameters were set to default.

833 **Cell-type annotation**

834 **Cancer cell-type annotation:** To annotate cell types, we first sought to discern cancer cells
835 from non-cancer cells. The tumors harbor a truncal *KRAS*^{G12V} mutation, detected both by MSK-
836 IMPACT(34) and WES mutation calling; therefore, we used two independent but complementary
837 *KRAS* signatures from the literature to generate a *KRAS*_signaling score per cell:

838 *KRAS_PDAC*(35): This signature of 36 genes is based on differential expression between
839 epithelial cells in wild-type *KRAS* and *KRAS*-knockout mouse tumors. We used the human
840 orthologs provided in the signature.

841 *KRAS_addiction*(36): This signature was generated by comparing human lung and pancreatic
842 cancer lines that require *KRAS* to maintain viability with those lines that do not; all lines
843 harbored *KRAS* mutations and were treated with short hairpin RNAs to deplete *KRAS*. The
844 resulting signature is specific to *KRAS*-dependent cells, and is associated with a well-
845 differentiated epithelial phenotype also observed in primary tumors.

846 We scored these signatures separately, and although high-scoring cells for the two signatures
847 did not overlap fully, both robustly identified the same clusters; thus, we used the union of
848 *KRAS_PDAC* and *KRAS_addiction* to generate the *KRAS*_signaling signature for cancer cell
849 annotation. Positive clusters were confirmed by CNA profiles inferred from the scRNA-seq data
850 using inferCNV(12), as described in the following section.

851 **Non-cancer cell-type annotation:** To label non-cancer cells, we clustered all cells using
852 PhenoGraph(26) with default parameters on the previously obtained PCs, and used literature-
853 curated canonical cell-type-specific markers (**Supplementary Table 2**) to annotate the clusters.

854 For clusters related to smooth muscle cells, MUC1/MUC6 epithelial cells, and adipocytes, no
855 initial cell-type identity could be discerned. We therefore ranked the genes underlying each
856 cluster using the Scanpy function `scanpy.tl.rank_genes_groups` with the sparse matrix and
857 default parameters. Reference clusters were set to 'rest' as well as adjacent clusters with known
858 cell-type identity for increased granularity. Genes among the top 20 ranked genes were used to
859 identify the cell identity of those clusters.

860 **Inferring copy number alterations from snRNA-seq data**

861 To infer chromosomal CNAs in tumor cells, we ran `inferCNV`
862 (v1.10.0)(12)(<https://github.com/broadinstitute/inferCNV>) and
863 (v1.1.0)(13)(<https://github.com/navinlabcode/copykat>) using the Python API of these algorithms
864 implemented in the `infercnvpy` package (v0.1.0). We ran both packages using default parameter
865 settings, and used non-cancer cell types as the diploid reference. InferCNV was run with a
866 window size of 100 genes and a step size of 1, to balance the detection of focal and broad CNA
867 events.

868 **Phylogenetic inference in rapid autopsy data**

869 We used ductal and acinar cells as reference normal cells for IntegrateCNV. The algorithm
870 returned a matrix containing copy numbers for 43,949 cells in 116 genetic regions. We only took
871 the subset of cells annotated as tumor, and expanded this matrix to a ternary matrix, as
872 described above, resulting in 177 features. We then removed features that are highly similar
873 across all cells by filtering out features that are modal with frequency 99% or higher, reasoning
874 that small variations in copy number (frequencies below 1%) are likely noise, leaving a final
875 input matrix containing 101 features.

876 We applied PICASSO to this input data and required that each cell have an UMI count greater
877 than 750 and that each clone contains at least 75 cells, generating 66 clones. As a final filtering
878 step to remove noisy clones data from the phylogeny, we required each clone to have at least
879 one CNA at a prevalence greater than 80% to be considered valid. We reason that clones
880 without highly prevalent CNAs are not likely to be well-supported and may represent 'noise'
881 clones with cellular CNA profiles that are inconsistent with more well-defined clones. Removing
882 four such noisy clones left a total of 62 clones (95–1,613 cells per clone, median = 618 cells)
883 containing 40,994 cells in the phylogeny.

884 We defined a primary clone as containing at least 50% of cells from the primary tumor, yielding
885 four primary clones in the data. As a proxy for the metastatic behavior of each primary clone, we
886 calculated the proportion of non-primary cells within each clone, with higher values indicating
887 greater dissemination.

888 **AC5 clone assignment**

889 To confirm that primary cells expressing the archetype cluster 5 (AC5) program were strongly
890 associated with advanced clones, we focused on the two advanced AC5 clones with the most
891 primary cells (clones I and J, bearing 7 and 9 cells, respectively). We compared the CNA
892 profiles of these cells to the clone profiles (CNA change probabilities at each site) of their
893 assigned clones as well as the clone profiles of a representative clone (clone 1-1-0-1-1-0) with a
894 majority of primary cells.

895 We also computed the log-likelihoods of the primary cells CNA profiles in these clones,
896 compared them with those of all other cells in the clone, and found that they exhibited median
897 levels of clone confidence compared to the other (primarily stomach and liver) cells in the
898 clones.

899 **Pairwise diffusion distances of pancreas primary archetype 5 cells**

900 To quantitatively evaluate the similarity of pancreas primary AC5 cells with metastatic cells
901 versus other pancreas primary cells we compared the pairwise diffusion distances from all
902 primary AC5 cells to all metastatic AC5 cells and to all other primary cells separately. We used
903 the 'scipy.spatial.distance.cdist' (RRID:SCR_008058) function with the metric = euclidean on
904 the diffusion map coordinates. This computes the distance between each pair of the two
905 collections of inputs.

906 **Archetype analysis**

907 We used archetype analysis to identify optimal phenotypes (representing adaptive processes)
908 among cancer cell transcriptomes, which may be shared or specific to one or more tumor sites.
909 Archetype analysis identifies the vertices of a convex polytope—an approximation of a convex
910 hull that encapsulates the data in phenotypic space(37), which in our case is diffusion space.
911 Archetypes often correspond to the extremes of single diffusion components, which are
912 commonly used to approximate the major axes of variation within the phenotypic manifold. As
913 m , the number of diffusion components as computed in the section "diffusion components"
914 below, corresponds to the dimensionality of the data, we selected the number of archetypes we
915 wished to identify as $m + 1$. To understand the gene programs that cancer cells use to adapt to
916 different metastatic sites, which likely pose unique challenges and stresses, we computed
917 archetypes in each tissue independently as described below.

918 **Archetype analysis per tumor site**

919 First, we partitioned the data by tumor site (pancreas primary, liver, omentum, peritoneum,
920 diaphragm, stomach, lymph node). Each site was normalized independently by scaling each cell
921 to 10,000 reads and applying a $\log_2(X+1)$ transformation.

922 The selection of the number of HVGs is crucial for capturing meaningful biological variability
923 while minimizing technical noise. Too few HVGs (<500) risks losing important biological
924 variation, while too many HVGs (>5,000) increases noise without adding significant biological
925 variation. In general, our study and others with large data sets (>50,000 cells) and diverse cell
926 types select around 5,000 HVGs. For medium size datasets (5,000–50,000 cells) and less cell-
927 type diversity, 2,000–3,000 HGVs are recommended. To perform archetype analysis per site,
928 which includes only cancer cells from the same organ (470–23,950 cancer cells per organ,
929 median 4,031), we computed 2,000 HVGs using the 'seurat_v3'(25) method in scanpy.

930 We computed 50 PCs using the svd_solver = 'arpack' on the HVGs on each dataset. Sites
931 included PDAC primary (3,479 cells, 40% variance explained by PCA), liver (4,031 cells, 36%
932 variance), peritoneum (23,950 cells, 36% variance), lymph node (470 cells, 44% variance),
933 stomach (4,075 cells, 35% variance), diaphragm (6,137 cells, 37% variance) and omentum
934 (3,305 cells, 34% variance). We then computed the kNN graph with $k = 30$ neighbors on the PC
935 space representation (X_pca). We chose 30 neighbors to balance between adding noise (<20

936 neighbors) and losing biological variation (>50 neighbors) in the medium size datasets we
937 analyzed.

938 To visualize each site separately, we computed UMAP (min_dist = 0.1) and FDL with default
939 parameters on the kNN graph. We then clustered each dataset using Leiden clustering in
940 scanpy with default parameters and further assessed cell quality and cancer cell purity in each
941 cluster. We detected some outlier clusters with low library size in lymph node (n = 12 cells) and
942 stomach (n = 226 cells) and non-cancer cell contamination in liver (n = 85 cells) data partitions.
943 Given the objective of archetype analysis in detecting extreme data points in the
944 multidimensional space, we removed those cells from each data partition and from the entire
945 dataset.

946 **Diffusion components:** Given the presence of different cell-state densities in the data, we
947 used an adaptive anisotropic kernel(38), which adjusts the local bandwidth (sigma) based on
948 local density, to compute diffusion maps. This can give more flexibility in regions with different
949 densities, improving resolution in sparse areas and reducing over-smoothing in dense areas,
950 compared to the fixed anisotropic Gaussian kernel with a predefined scale (sigma) in scanpy,
951 which is more appropriate for relatively uniform cell-state density datasets.

952 With the adaptive anisotropic kernel, we computed 10 diffusion components (DCs) on the PC
953 projections of the data and calculated their corresponding eigenvalues and the diffusion
954 operator. We used the eigenvalue knee point to determine the number of DCs for each site:
955 pancreas 5 archetypes, liver 6 archetypes, lymph node 5 archetypes, peritoneum 5 archetypes,
956 omentum 6 archetypes, stomach 4 archetypes, diaphragm 5 archetypes. Archetypes were
957 calculated on the DCs using the Python implementation of the PCHA algorithm with *delta* = 0.
958 Archetypes were identified independently 10 times to assess robustness, and the nearest real
959 cell to each archetype was identified using Euclidean distance in diffusion space.

960 **Archetype neighborhoods:** We next sought to annotate each archetype based on gene
961 expression. Since each archetype is identified as a single cell, we enhance statistical power by
962 defining archetypal neighborhoods, consisting of each archetype's most similar cells in diffusion
963 map space. The neighborhoods are defined such that they include enough cells to enhance the
964 robustness of inference, while maintaining the archetypal phenotype and distinction between
965 archetypes. Importantly, different metastatic sites have different numbers of cancer cells,
966 archetypes and the density of cells in the phenotype space varies. To account for all these
967 differences, for a given archetype A in a given tissue, we calculate the diffusion distance (D) to
968 its nearest archetype and define the neighborhood for A as the set of cells which are within a
969 fraction of D. This ensures no overlap between the archetypal neighborhoods, thereby
970 maintaining their distinctions. Parameters used for each site are: PDAC primary DC fraction
971 distance = 1/3 (91–1,571 cells per neighborhood); liver DC fraction distance = 1/3 (63–696
972 cells); peritoneum DC fraction distance = 1/4 (311–1,098 cells); lymph node DC fraction
973 distance = 1/2 (36–112 cells); stomach DC fraction distance = 1/3 (315–997 cells); diaphragm
974 DC fraction distance = 1/3 (160–2,037 cells); and omentum DC fraction distance = 1/3 (43–417
975 cells). To visualize archetype neighborhoods, we colored the selected neighborhood cells on the
976 FDL projections.

977 **Differential gene expression:** For each tumor site, DEGs were calculated for each archetype
978 neighborhood versus all other neighborhoods from the same site, using raw counts. Genes
979 expressed in fewer than 5% of cells in each group were filtered out to reduce noise. Differential
980 expression was performed using diffxpy (<https://github.com/theislab/diffxpy>) with a Wald test,
981 considering DEGs with \log_2 fold change > 0.05 and q -value < 0.01 .

982 **Robustness analysis of archetype neighbors**

983 We tested the robustness of our archetype analysis and archetype neighborhood selection by
984 downsampling library size to various extents for each organ separately. For this, we
985 downsampled counts from each tumor site raw counts data using 'sc.pp.downsample_counts'.
986 We set the count_per_cell parameter to be 10% or 20% of the original library size, resulting in a
987 randomly downsampled dataset. For each site and downsampling level, we repeated the
988 analysis 20 times with a different random seed for subsampling.

989 We repeated the entire archetype analysis process using the same parameters as described
990 above in the subsampled data sets. We then compared the selected archetype neighborhoods
991 using the Jaccard metric, which measures the similarity between two sets of elements by
992 quantifying how many elements (archetype neighbor cells) the sets have in common relative to
993 their total unique elements.

994 To assess the robustness to higher synthetic dropout rates (10% and 20%), we computed
995 Jaccard similarity among the archetypal neighborhood across different iterations. We observed
996 a high similarity of > 0.75 indicating that the selected archetype neighborhoods are robust.

997 **Cell-density estimation**

998 To evaluate if archetype neighborhoods were driven by the cell-state density distribution in the
999 high-dimensional space, we estimated the cell-state density of each tumor site partitioned data
1000 using Mellon(39) (<https://github.com/settylab/Mellon>) with default parameters. Mellon is a non-
1001 parametric cell-state density estimator based on a nearest-neighbors-distance distribution. It
1002 estimates cell-state densities from high-dimensional representations of single-cell data using a
1003 Gaussian process. We preprocessed and calculated cell-state densities for each tumor site
1004 separately following the basic tutorial
1005 (https://github.com/settylab/Mellon/blob/main/notebooks/basic_tutorial.ipynb).

1006 **Integrated archetype clusters**

1007 To capture possible shared processes, we subsetted the data to include all cells labeled with an
1008 archetype, and all genes that were included in any DEGs associated with any archetype in any
1009 organ. All 14,826 archetype cells and 15,017 genes were combined into a single matrix which
1010 we median-count normalized, log-transformed counts. PCA (56 PCs, 20% variation explained)
1011 was followed by kNN graph construction ($k = 30$ neighbors), Leiden clustering ($resolution = 1$),
1012 PAGA(40), and UMAP visualization ($min_dist = 0.1$, $init_pos = \text{PAGA}$). The resulting leiden
1013 clusters aggregate together archetypes calculated from the different sites, hence we defined the
1014 leiden clusters as "integrated archetype clusters". We reasoned that each integrated archetype
1015 cluster could capture specific biological processes shared between different sites (e.g. cell
1016 cycle, EMT) or unique to a given site (e.g. lipid metabolism). To identify the underlying biological

1017 processes specific to each integrated archetype cluster we then calculated DEGs for each
1018 cluster and identified gene modules as described below.

1019 **Level 1: Differentially upregulated genes.** Differential expression using diffxpy
1020 (<https://github.com/theislab/diffxpy>) (Wald test, DEGs with \log_2 fold change > 1 and q -value < 0.05) was calculated for each integrated archetype versus all other archetypes.

1022 **Level 2: Gene modules.** Cancer cells are able to express a variety of gene expression
1023 programs that may resemble distinct modular processes in a physiological setting. To
1024 disentangle these gene expression programs we used Hotspot(41). Hotspot identifies
1025 informative genes based on gene-gene autocorrelation in local neighborhoods in the phenotypic
1026 manifold, using a kNN graph which we generated with weighted_graph = false, n_neighbors =
1027 30, and FDR < 0.05 . Gene modules were computed on these informative genes: Informative
1028 genes from Hotspot modules were ranked by local correlation z-score. Then pre-ranked gene
1029 set enrichment analysis (GSEA)(42,43) was performed using GSEAp (RRID:SCR_025803)(44)
1030 (<https://github.com/zqfang/GSEAp>) against selected GSEAp supported gene set libraries
1031 (<https://maayanlab.cloud/Enrichr/#libraries>) and expert-curated gene sets:

1032 *GSEAp libraries:* GO_Biological_Process_2021, MSigDB_Hallmark_2020, Reactome_2016,
1033 KEGG_2021_Human, GO_Cellular_Component_2021, GO_Molecular_Function_2021,
1034 WikiPathways_2019_Human, and Azimuth_Cell_Types_2021.

1035 *Expert-curated gene sets:* Azimuth_Pancreas_Cells
1036 (https://azimuth.hubmapconsortium.org/references/human_pancreas/), PDAC_Subtypes
1037 (classical and basal), PDAC_Signatures, Pancreas_Development, Cancer_Metaprograms,
1038 Cell_Cycle, KRAS_signaling. References and manually-curated gene sets are listed in
1039 **Supplementary Table 10.**

1040 The pancreas development gene set (Reference and genes in **Supplementary Table 10**) was
1041 generated by calculating DEGs (using MAST (RRID:SCR_016340)(45) with default parameters)
1042 between emergent endodermal pancreas (clusters marked by *PRX1*) and other emerging
1043 endodermal organs. Then we mapped the gene orthologs between mouse and human
1044 genomes.

1045 **Level 3: Archetype genes.** DEGs and genes with modules whose mean expression is highest
1046 in a given archetype were used to characterize the archetype. This level of annotation ensures
1047 that genes are specifically upregulated in the archetype over other archetypes. Level 3 genes in
1048 each archetype were manually inspected to confirm GSEA results and to increase the
1049 granularity of the archetype descriptions. Archetypes with low normalized enrichment scores
1050 (NES) from GSEA were further inspected and labeled according to level 3 genes.

1051 CZ CELLxGENE Discover (RRID:SCR_024894)(46) was used to annotate archetype 5. Gene
1052 expression of archetype cluster 5 genes was evaluated in CZ CELLxGENE. Higher average
1053 expression was observed in intestinal, stomach, and gallbladder tissues. Specifically, epithelial
1054 cell types were then evaluated for expression of AC5 genes.

1055 **Intestine:** endocrine cell, columnar/cuboidal epithelial cell, secretory cell, enterocyte, epithelial
1056 cell, mesothelial cell, glandular epithelial cell, goblet cell, absorptive cell, brush cell, intestinal
1057 crypt stem cell of colon, intestinal epithelial cell, intestinal enteroendocrine cell.

1058 **Stomach:** enterocyte, epithelial cell, ciliated epithelial cell, columnar/cuboidal epithelial cell,
1059 glandular epithelial cell, secretory cell, enteroendocrine cell, endocrine cell, peptic cell, mucous
1060 cell of stomach, parietal cell, glandular cell of esophagus, epithelial cell of esophagus, intestinal
1061 epithelial cell, brush cell, type G enteroendocrine cell, mucus secreting cell, goblet cell, intestine
1062 goblet cell.

1063 **Gallbladder:** epithelial cell, secretory cell, goblet cell.

1064 **Pancreas:** pancreatic ductal cell, epithelial cell of pancreas.

1065 To annotate AC2 at a more granular level, we also used the Kyoto Encyclopedia of Genes and
1066 Genomes (KEGG) database (RRID:SCR_012773)(47). Specifically, we used the KEGG Mapper
1067 Search Tool (<https://www.genome.jp/kegg/mapper/search.html>), which searches various KEGG
1068 objects, including genes, KOs, EC numbers, metabolites and drugs, against KEGG pathway
1069 maps and other network entities. Then the top matching KEGG objects found were used to
1070 explore and annotate the biology of AC2 modules:

1071 **Fatty acid and cholesterol biosynthesis:** Metabolic Pathways (hsa01100) and Fatty Acid
1072 Metabolism (hsa01212).

1073 **Oxidative stress and detoxification:** Metabolic Pathways (hsa01100), Ferroptosis
1074 (hsa04216), Glutathione metabolism (hsa480) and Chemical carcinogenesis - reactive oxygen
1075 species (hsa05208).

1076 **Archetype cluster annotation**

1077 Archetype cluster annotation was performed by first considering normalized enrichment scores
1078 (NES) and the specific archetype genes deemed significant by GSEA. The NES genes were
1079 used as an initial general guide. Higher priority was then given to the specific gene modules and
1080 genes to annotate clusters in a granular and specific manner. CZ CELLxGENE Discover(46)
1081 was used to annotate archetype cluster 5 since only the PDAC Adhesive gene program(48) was
1082 significantly enriched.

1083 **Comparison with Leiden clustering**

1084 To compare archetype clusters and Leiden clusters we first clustered the cancer data using
1085 'sc.tl.leiden' with default parameters. Then the same level 1 and 2 steps employed for
1086 archetypes were used to annotate gene programs associated with Leiden clusters. We
1087 compared the archetype and Leiden clusters' DEGs using Jaccard Similarity.

1088 **Archetype analysis and annotation of RA19_21 peritoneum metastases**

1089 Two PDAC peritoneum metastases were harvested from the rapid autopsy RA19_21 and
1090 snRNA-seq data were collected following the same protocol described in snRNA-seq data pre-
1091 processing, scRNA-seq data analysis, and archetype analysis sections above for RA19_10.
1092 Data preprocessing and quality control were also performed using the same workflow. The

1093 same archetype analysis and gene program annotation workflows were performed for these
1094 peritoneal metastatic samples to evaluate expression of the lipid metabolism and oxidative
1095 stress programs found in AC2. No integration of archetype clusters was required since only
1096 peritoneal metastases were analyzed.

1097 **Entropy of archetype distributions**

1098 We sought to determine whether each clone exhibits a greater diversity of archetypes than
1099 expected by chance, which would indicate phenotypic plasticity across the phylogeny. For each
1100 clone, we computed the Shannon entropy of the observed archetype distribution as a measure
1101 of phenotypic diversity. Shannon entropy, H , is calculated as:

$$1102 H = - \log \sum_{i=1}^k p_i \log (p_i),$$

1103 where p_i is the proportion of cells within the clone assigned to archetype i and $k = 18$ is the
1104 number of unique archetypes. This entropy metric allows us to quantify the spread of archetype
1105 diversity within clones, with higher entropy values indicating more even and diverse distributions
1106 of archetypes.

1107 **Null model comparisons**

1108 To contextualize the observed entropy and evaluate whether the diversity observed within
1109 clones is greater than expected by chance, we compared our results to several null models.
1110 Each null model simulates archetype distributions under different assumptions, providing a
1111 range of baselines. In order of decreasing expected diversity, they are:

- 1112 1. **Random assignment.** Archetypes are assigned to cells randomly across all clones, with
1113 probabilities matching the global frequencies of each archetype. This model retains the
1114 overall prevalence of each archetype, but removes any structure associated with clone
1115 or site, simulating a scenario in which cells randomly adopt a phenotype without any
1116 constraints.
- 1117 2. **Site-constrained random shuffle.** Archetypes are assigned to cells randomly *within*
1118 sites, preserving each site's archetype frequency distribution. This model retains the
1119 overall presence of each archetype and its prevalence within each site, but removes any
1120 structure associated with clones.
- 1121 3. **High site–archetype concordance assignment.** Archetypes are assigned to cells to
1122 minimize the dispersion of archetypes across sites. We carry out greedy assignment of
1123 archetype labels to cells within sites in a way that retains the global archetype frequency,
1124 but not the per-site frequencies. This model shows the expected diversity if cells were
1125 insufficiently plastic to adopt the same phenotype in multiple distinct sites.
- 1126 4. **Site entropy within clones.** We compute the entropy of site distribution within each
1127 clone, ignoring archetype labels, to model the simplistic scenario in which the site drives
1128 all phenotypic variation.

1129 **PLASTRO quantifies clone plasticity**

1130 The entropy of archetypes within clones provides information about the number of phenotypes a
1131 clone can adopt. However, to measure lineage plasticity—which we define as the cells' inherent
1132 capability to flexibly transition between various lineage states or phenotypes—we must examine

1133 cellular phenotypes in the context of their phylogenetic relationships. This approach allows us to
1134 assess the extent to which cells or cell groups adopt distinct phenotypes compared to their
1135 evolutionary ancestors.

1136 We leveraged two complementary data modalities to develop metrics for measuring lineage
1137 plasticity: PICASSO, which enables reconstruction of phylogenetic relationships, and archetype
1138 analysis, which characterizes the breadth of phenotypes present in the cells. Existing methods
1139 for measuring plasticity have key limitations, including the need to discretize continuous cell
1140 states, dependence on fully resolved cell phylogenies, and sensitivity to neighborhood size
1141 hyperparameters. Our integrated approach specifically addresses these concerns.

1142 Yang and colleagues(19) defined three metrics for quantifying cellular plasticity.
1143 **scEffectivePlasticity** applies the Fitch–Hartigan algorithm to calculate a normalized parsimony
1144 score based on discrete Leiden cluster transitions across a phylogenetic tree, while
1145 **scPlasticityAllelic** provides a tree-agnostic alternative by measuring the proportion of cells
1146 belonging to Leiden clusters that are not their closest genetic relatives (determined by edit
1147 distance). Both of these approaches rely on discretizing phenotypes into Leiden clusters, which
1148 makes them sensitive to clustering resolution and is poorly suited for continuously varying
1149 phenotypes, where small changes near cluster boundaries can be misclassified as plasticity.
1150 **scPlasticityL2** addresses this limitation by using continuous phenotypic measurements,
1151 calculating the Euclidean distance in scVI latent space between cells and their tree-defined
1152 neighbors. However, both scEffectivePlasticity and scPlasticityL2 require a fully described tree
1153 topology and are thus highly dependent on the accuracy of tree inference, while scPlasticityL2
1154 and scPlasticityAllelic further depend on a user-defined neighborhood size—a single predefined
1155 value that is difficult to choose optimally across datasets with varying sequencing depth,
1156 sampling density, and degrees of phenotypic change.

1157 Schiffman and colleagues(49) introduce phylogenetic correlations to quantify how cellular
1158 measurements are distributed across a phylogenetic tree using Moran's I (a measure of spatial
1159 autocorrelation) and its bivariate generalization. This approach measures correlation patterns
1160 directly across the phylogeny, facilitating analysis of both continuous expression patterns and
1161 discrete cell states within their evolutionary context. The method transforms pairwise
1162 phylogenetic distances into a weighted matrix, using carefully selected weighting functions. The
1163 choice of weighting function is critical as phylogenetic correlations depend significantly on the
1164 structure of the normalized weight matrix, and the function selected by the authors only includes
1165 cells that are each other's nearest phylogenetic neighbor. This choice of weighting function may
1166 not be suitable for larger scale datasets on the order of tens of thousands of cells.

1167 To address these concerns, we developed PLASTRO, a metric for quantifying plasticity from
1168 jointly profiled lineage and scRNA-seq information, without relying on the inference of complete
1169 and exact tree topologies, fixed neighbourhood size hyper-parameters or discretization of cell
1170 phenotypes. PLASTRO accepts two distance matrices as input: (i) lineage distance, which
1171 reflects how similar clones are to each other in evolutionary space, and (ii) phenotypic distance,
1172 which reflects how similar clones are to each other functionally. Given these matrices, we can
1173 define a lineage neighbourhood and a phenotypic neighbourhood of radius r clones for each
1174 clone. Each clone's neighbourhoods comprise its r closest cells in lineage and phenotype
1175 space, respectively. The key idea behind this approach is that there will be substantial

1176 agreement between the lineage neighbourhood and the phenotypic neighbourhood in non-
1177 plastic clones; thus, overlap in these neighbourhoods will be high on average. In contrast, highly
1178 plastic clones will exhibit phenotypes distinct from other clones in their lineage, and their
1179 neighbourhoods will overlap very little on average.

1180 **Computation of PLASTRO score**

1181 PLASTRO accepts a lineage distance matrix and a phenotypic distance matrix as input. Given
1182 these matrices, we can define, for each cell, a lineage neighbourhood and a phenotypic
1183 neighbourhood of radius r cells. The choice of radius clearly has a strong effect on the degree of
1184 overlap between phylogenetic and phenotypic neighborhoods. At very small radii, even non-
1185 plastic cells may exhibit low overlap by random chance. Conversely, at very large radii, plastic
1186 cells will exhibit strong overlap as well, given that each neighbourhood contains nearly all the
1187 cells in the dataset. In addition, different radii provide varying signals that help differentiate
1188 plastic and non-plastic cells depending on the parameters of the dataset. To circumvent this
1189 issue and avoid reliance on neighbourhood size as a parameter of our approach, we measure
1190 neighbourhood overlap at varying scales and combine the signal present at each scale.

1191 PLASTRO consists of four main steps:

- 1192 1. Compute the lineage and phenotypic distance matrices.
- 1193 2. For each cell, rank all other cells in terms of the distance from that cell in both (a) lineage
1194 space and (b) phenotypic space.
- 1195 3. For a given cell at overlap radius r , compute the overlap in their r closest cells as defined
1196 by phenotypic distance and by lineage distance. This is the number of cells that lie in
1197 both the phenotypic neighbourhood of size r and the lineage radius of size r .
- 1198 4. Aggregate signal across radii by computing the area under the overlap versus radius
1199 graph.

1200 **Phenotypic distance matrix**

1201 We calculate the pairwise phenotypic distances between clones using Bray–Curtis dissimilarity,
1202 a metric that captures differences in relative abundances and is commonly used in ecological
1203 and compositional analyses. Bray–Curtis is particularly suited to compositional data as it
1204 accounts for the proportional structure of the data, measuring dissimilarity on a scale from 0
1205 (identical composition) to 1 (completely dissimilar).

1206 The archetype composition for clone A is denoted by $a \in R^k$ where k is the number of
1207 archetypes and satisfies

$$\sum_{i=1}^k a_j$$

1208 $0 < a_i < 1.$

1209 The Bray–Curtis distance between two clones A and B is then given by

1210
$$D(A, B) = \frac{\sum_{i=1}^k |a_i - b_i|}{\sum_{i=1}^k |a_i + b_i|}.$$

1211 The Bray–Curtis distance ranges from 0 to 1, where 0 indicates that the two samples have
1212 identical compositions and 1 that the two samples have completely disjoint compositions (no
1213 shared components).

1214 **Phylogenetic (lineage distance) matrix**

1215 We use the phylogeny inferred by PICASSO to construct a pairwise distance matrix between
1216 clones; the distance between two clones is given by the number of edges separating them in the
1217 phylogeny.

1218 **Overlap computation**

1219 Given a lineage distance matrix D_L and a phenotypic distance matrix D_P constructed on a set of
1220 cells, X , we compute the overlap for the cell of interest c at radius r as follows. We denote the
1221 distance in lineage space between cell c and its r^{th} nearest neighbour as $D_L(c, r)$. Similarly,
1222 $D_P(c, r)$ is the distance in phenotypic space between cell c and its r^{th} nearest neighbour.

1223 We define the lineage neighbourhood of cell c at radius r as:

$$1224 N_L(c, r) = \{x \in X \mid D_L(c, x) \leq D_L(c, r)\}$$

1225 and the phenotypic neighbourhood of cell c at radius r as:

$$1226 N_P(c, r) = \{x \in X \mid D_P(c, x) \leq D_P(c, r)\}$$

1227 The overlap for cell c at radius r is then defined as the Jaccard similarity of its phenotypic
1228 neighbourhood and its lineage neighbourhood:

$$1229 Overlap(c, r) = \frac{N_L(c, r) \cap N_P(c, r)}{r}$$

1230 Plastic cells will have lower agreement between lineage and phenotypic neighbourhoods,
1231 particularly at lower radii, and thus a lower overlap at that radius on average, compared to less
1232 plastic cells.

1233 **Aggregating signal across radii**

1234 To avoid hard-coding a radius which may have a strong effect on the measured plasticity, we
1235 aggregate signals across radii by considering overlap size as a function of radius, which is an
1236 increasing function bounded by the line $y = x$. We compute plasticity as the difference between
1237 the area under the line $y = x$ and the area under the overlap-radius curve.

1238 For more plastic clones, the number of cells in the overlap is lower for smaller radii since the
1239 phenotypic neighborhood is highly distinct from the phylogenetic neighborhood, and grows to
1240 include all cells as the neighborhood size grows, resulting in a higher plasticity score. For less
1241 plastic cells, the overlap proportion is expected to be higher overall, and the overlap-radius
1242 curve more closely resembles the $y = x$ line and thus yields a lower plasticity score.

1243 **Application of PLASTRO to PDAC clones**

1244 We apply PLASTRO to compute the plasticity of each clone in our data. The lineage distance
1245 matrix is computed based on the topology of the phylogenetic tree, where clones A and B have
1246 a phylogenetic distance $D_L(A, B) = n$ if there are n branches on the shortest tree path between
1247 them. The phenotypic distance was computed as described above using the Bray–Curtis
1248 dissimilarity between archetype composition of clones.

1249 **Calculation of global plasticity**
1250 We used PLASTRO to calculate plasticity at the clonal level, but to assess global plasticity
1251 across the entire biological system, we turned to the Mantel test (50), which assesses the
1252 correlation between two distance matrices (the phylogenetic and phenotypic compositional
1253 distance matrices). The Mantel test is a non-parametric test for assessing matrix correlations
1254 and is well-suited for evaluating the phylogenetic signal in data without assuming a specific
1255 model of evolution. Mathematically, the Mantel test statistic is computed as

1256
$$m = \frac{1}{(n-1)} \sum_{i,j} \frac{(A_{i,j} - \bar{A})}{\sqrt{\sum_{k,l} (A_{k,l} - \bar{A})}} \frac{(B_{i,j} - \bar{B})}{\sqrt{\sum_{k,l} (B_{k,l} - \bar{B})}}$$

1257 where $A, B \in R^{n \times n}$ are the distance matrices being compared, and \bar{A}, \bar{B} are their respective
1258 means. The statistic ranges from -1 to $+1$, with $+1$ indicating a perfect positive correlation (as
1259 distances in one matrix increase, distances in the other matrix increase proportionally).

1260 A significant positive correlation between the compositional and phylogenetic distance matrices
1261 would indicate that clones with closer evolutionary relationships also have more similar
1262 compositions. A value of -1 represents a perfect negative correlation (increasing distances in
1263 one matrix correspond to decreasing distances in the other, reflecting a complete inverse
1264 relationship). A Mantel test statistic near 0 indicates no correlation between the two matrices,
1265 such that distances in one matrix do not predict distances in the other, implying that
1266 compositional differences are more likely to be driven by factors other than shared ancestry. We
1267 used Spearman correlation to measure the association between matrices and performed 1000
1268 permutations to test the significance of the observed correlation.

1269 Data and software availability

1270 The snRNA-seq data generated in this study are publicly available in the Human Tumor Atlas
1271 Network (HTAN)(51) Data Portal(52) at

1272 https://data.humantumoratlas.org/publications/hta8_2025_biorxiv_alejandro-jim%C3%A9nez-s%C3%A1nchez.

1274 The WES data (BAM files) generated in this study are publicly available through the European
1275 Genome-Phenome Archive (EGA) as part of the EGAD00001011109 dataset (Multi-region
1276 sequencing of PDAC patients) and can be accessed at <https://ega-archive.org/datasets/EGAD00001011109>. The names of the samples used in this study,
1277 snRNA-seq HTAN IDs, and the WES EGA IDs are listed in **Supplementary Table 11**. Each
1278 WES EGA ID relates to two or more snRNA-seq HTAN IDs because different experimental
1279 protocols were applied during the nuclei extraction prior to the snRNA-seq encapsulation
1280 process (see Methods).

1282 The data analyzed in figure 4c and supplementary tables 7 and 8 in this study were obtained
1283 from CZ CELLxGENE Discover database(46) at

1284 <https://cellxgene.cziscience.com/gene-expression>.

1285 The IntegrateCNV algorithm along with documentation, notebooks and tutorials is available at
1286 dpeerlab/integrateCNV.

1287 The PICASSO algorithm, as well as documentation and tutorials for inferring CNA phylogenies
1288 and visualizing transcriptional and phenotypic information alongside the tree, is available at
1289 <https://github.com/dpeerlab/picasso>.
1290 Code for computing the PLASTRO metric, as well as documentation and tutorials, is available at
1291 <https://github.com/dpeerlab/PLASTRO>.
1292 All other raw data are available upon request from the corresponding authors.

1293 Results

1294 A patient-specific atlas of PDAC metastasis

1295 Using rapid autopsy specimens from a single patient with PDAC and optimized specimen
1296 dissociation and snRNA-seq protocols, we constructed a comprehensive atlas spanning primary
1297 and metastatic sites, enabling the study of how cancer evolves and adapts across diverse tissue
1298 environments. We integrated snRNA-seq and matched WES data from each specimen to
1299 uncover both clonal architecture and adaptive transcriptional programs driving metastatic
1300 progression.

1301 The patient was diagnosed at age 35 with PDAC and extensive synchronous liver metastases,
1302 as evidenced by computed tomography, which was used in addition to CA19-9 tumor marker
1303 levels to follow disease status over the 9 months that the patient survived (**Fig. 1a,b**). Despite
1304 initial robust response to standard-of-care modified FOLFIRINOX (5-fluorouracil, leucovorin,
1305 irinotecan, and oxaliplatin), the rapid emergence of refractory disease, unresponsive to second-
1306 line gemcitabine + nab-paclitaxel, highlighted the cancer's remarkable adaptive capacity within
1307 months of treatment.

1308 We collected 11 tumor specimens representing diverse tissue microenvironments, including the
1309 pancreas and six distal organs, by rapid autopsy. The sampling included, where possible,
1310 anatomically separate lesions from the same organ (the best approximation of biological
1311 replicates in human cancer): two peritoneal and three liver metastatic samples, in addition to
1312 two regions of the primary tumor (**Fig. 1c**). These 11 samples, collected from 7 distinct organ
1313 sites, exhibit diverse cell-type compositions and tissue morphologies (**Supplementary Fig. 1a–c**).

1315 We recovered 73,142 high-quality snRNA-seq profiles from all samples (**Supplementary Fig.**
1316 **1d–f** and **Supplementary Table 1**), organized into 39 clusters by PhenoGraph(26), which we
1317 annotated based on known marker genes (**Supplementary Fig. 1b,c, Supplementary Table 2**
1318 and Methods). To distinguish cancer cells from non-cancer, we identified cells with high *KRAS*
1319 signaling(35),(36) and detected clusters with accumulated CNAs using inferCNV(12)
1320 (**Supplementary Fig. 2a,b** and Methods). We evaluated the expression of genes associated
1321 with ductal cells, PDAC, mesenchymal, and EMT gene programs to distinguish normal ductal
1322 cells from primary PDAC cells (**Supplementary Fig. 2c**). In total, we recovered 45,134 cancer
1323 epithelial nuclei across all lesions, bearing multiple cancer-related mutations (**Fig. 1d** and
1324 **Supplementary Fig. 2d,e**). From the bulk WES, we identified the expected common PDAC
1325 alterations such as *KRAS* and *TP53* missense mutations; copy number deletions of *CDKN2A*,
1326 *SMAD4*, *DCC*; and copy number amplifications of *MYC*, *MCL1*, and *CCNE1* (**Supplementary**

1327 **Fig. 2e**). In addition, CNA bulk analysis (Methods) showed both PDAC primary tumor samples
1328 and metastatic samples harbor broad copy number alterations widespread across the genome
1329 (**Supplementary Fig. 2f**). Together, these analyses underscore that the genomic landscape of
1330 this PDAC patient recapitulates the known alterations and genomic features of metastatic
1331 PDAC.

1332 **PICASSO resolves single-cell phylogenies**

1333 The availability of both primary and metastatic cells from the same patient provides a unique
1334 opportunity to study how cancer cells evolve and adapt to different tissue environments. To
1335 dissect the relative roles of genetic mutations and epigenetic plasticity in metastatic adaptation,
1336 it is essential to reconstruct the evolutionary history of cancer cells and compare their genotypic
1337 and phenotypic characteristics within a shared phylogenetic framework. However, current
1338 approaches face significant limitations.

1339 Bulk whole exome sequencing offers a coarse view of phylogenetic relationships across lesions;
1340 however, it lacks single-cell resolution and cannot link genetic mutations to cellular phenotypes.
1341 Combined DNA-RNA single-cell assays(53,54) are limited by cost and throughput—published
1342 studies consist of too few cells (typically <1000)(53–55) to capture the full phenotypic
1343 heterogeneity typically observed within lesions(56). Although copy number inference from
1344 single-nucleus or single-cell RNA-seq (scRNA-seq) data(12,13) can inform clonal relationships,
1345 current methods are extremely noisy and strongly impacted by confounding factors such as the
1346 influence of tumor cell state and its related gene expression patterns(57–59). In addition, many
1347 phylogenetic algorithms assume that mutations occur only once (“perfect phylogeny”), whereas
1348 in cancer, CNAs are highly recurrent(60–62). For example, over 50% of CNA regions violate the
1349 perfection assumption in our data, complicating traditional phylogenetic approaches
1350 (**Supplementary Fig. 3a** and Methods). Finally, classic algorithms for phylogenetic analysis
1351 assume evolutionary characters are reliable, whereas CNAs called from single-cell expression
1352 data are uncertain and noisy. Uncovering genotype–phenotype relationships and the role of
1353 epigenetic plasticity during cancer progression thus requires new approaches that can (1)
1354 reliably infer CNAs from scRNA-seq data, and (2) construct a robust phylogeny of cancer
1355 clones, taking into account noise, uncertainty and possible CNA recurrence, as well as the large
1356 scale of single-cell data.

1357 To address these challenges, we instigated a two-step approach. First, we developed
1358 IntegrateCNV, a statistical framework that leverages matched bulk WES and snRNA-seq
1359 profiles to infer CNAs at single-cell resolution (**Supplementary Fig. 3b** and Methods). Unlike
1360 existing methods that infer CNAs genome-wide from scRNA-seq alone(13,63,64), IntegrateCNV
1361 uses bulk WES data to identify regions harboring CNAs before performing targeted inference
1362 from scRNA-seq data for individual cells in these candidate regions. This focused strategy
1363 increases signal-to-noise by limiting analysis to regions with strong evidence of copy number
1364 variation. Specifically, for each cell and candidate region, it determines whether an alteration is
1365 likely to be present based on gene expression relative to a copy-neutral reference
1366 (**Supplementary Fig. 3b** and Methods). IntegrateCNV achieves higher or equal correlation with
1367 sample-level CNAs derived from bulk WES data compared to widely used tools such as
1368 inferCNV(12), CopyKat(13), and Numbat(14) (**Supplementary Fig. 3c**), even when bulk copy

1369 number calls are provided to Numbat to guide inference. As IntegrateCNV only calls CNAs for a
1370 confident subset of the genome, it is significantly faster than CopyKat and Numbat, requiring
1371 only hours to run on a standard laptop compared to multiple days on high-performance
1372 computing clusters.

1373 While IntegrateCNV improves CNA detection accuracy, the profiles it generates still contain
1374 many errors (**Supplementary Fig. 3c**), especially false negatives. Unfortunately, even
1375 phylogenetic reconstruction methods that allow errors in the character matrix typically assume
1376 them to be minimal. Moreover, the few algorithms that infer phylogenies from single-cell CNA
1377 profiles are designed for small-scale single-cell DNA sequencing experiments and assume
1378 error-free input(16,17). To overcome these challenges and construct robust phylogenies, we
1379 developed PICASSO (Phylogenetic Inference from Copy number Alterations in Single-cell
1380 Sequencing Observations), a maximum-likelihood method tailored to large-scale, noisy CNA
1381 profiles (**Fig. 2a**, **Supplementary Fig. 3d** and Methods). PICASSO employs a tree-recursive
1382 algorithm that starts with a single leaf node containing all cells, then iteratively decides whether
1383 to split each leaf into two subclones. Each decision to split is based on maximizing shared
1384 information in consensus CNA patterns, corrected for noise and missing values, using
1385 expectation–maximization. When there is insufficient evidence for further splitting, a leaf is
1386 marked terminal. The output of PICASSO is a probabilistic assignment of cells to clones, and a
1387 likelihood-optimized final tree describing clonal phylogenetic relationships and associated
1388 uncertainties. This top-down recursive approach only reconstructs major evolutionary
1389 relationships with good evidential support, and is substantially more robust to noisy data than
1390 standard bottom-up approaches.

1391 We validated performance using simulated data, which demonstrated that PICASSO produces
1392 more parsimonious phylogenies and outperforms agglomerative clustering in both speed and
1393 accuracy under varying levels of noise (**Supplementary Fig. 4a,b**). By providing a probabilistic
1394 assignment of cells to clones and a likelihood-optimized tree describing clonal relationships and
1395 uncertainties, PICASSO is thus an effective tool for dissecting the relationship between
1396 genotype and phenotype during cancer progression.

1397 Evolutionary reconstruction of metastatic PDAC

1398 We applied IntegrateCNV to cancer cells in our metastatic PDAC dataset and used PICASSO
1399 on the resulting 45,134 single-cell copy number profiles in this large-scale dataset (**Fig. 2b** and
1400 Methods). Based on CNA calls in 116 candidate regions, PICASSO resolved 62 clones with a
1401 clear phylogenetic structure following noise removal. The resulting phylogeny is highly stable;
1402 despite the probabilistic nature of the algorithm, most evolutionary relationships are conserved
1403 across repeated runs (**Supplementary Fig. 4c**). Furthermore, bootstrapping analysis reveals
1404 that the tree structure remains stable even when removing a fraction of cells for each region
1405 (**Supplementary Fig. 4d**).

1406 We used the inferred phylogeny to investigate patterns of metastasis, first asking which clones
1407 in the primary tumor spread, and why. We identified four primary clones, defined as containing
1408 at least 50% of cells from the primary tumor—two that metastasized, and two that did not (**Fig.**
1409 **2b**). A subset of tumor cells from liver metastases were found to be closely related to the
1410 metastasizing clones from the primary tumor. Notably, liver-dominant clones are the most

1411 closely related metastatic clones to those found in the primary tumor, suggesting that the liver
1412 was the initial site of metastasis in this patient, consistent with the observation that PDAC
1413 typically spreads to the liver first(65) (**Fig. 2b,c**). We also observed that peritoneal samples,
1414 unlike other organ sites, were composed of several clones that appear to be unique or nearly
1415 unique to that site (**Fig. 2b**). This pattern could be due to several reasons, including better
1416 sampling (peritoneum has many more cells than other sites; **Supplementary Fig. 2d**) or limited
1417 inter-metastatic seeding due to the large physical distance separating peritoneal lesions from
1418 other metastases (**Fig. 1c**).

1419 Analysis of the metastasizing primary clones revealed distinct genomic and transcriptional
1420 features associated with metastatic potential. Metastatic clones from the primary had many
1421 more CNAs than their non-metastatic counterparts. Notably, amplification of the oncogenic
1422 *KRAS*^{G12V} locus is a hallmark of nearly all metastatic clones. We recently showed that
1423 oncogenic *KRAS* enhances plasticity during PDAC premalignancy, partly by remodeling the
1424 communication between cancer cells and their environment(66). Our findings suggest that
1425 oncogenic *KRAS* continues to drive plasticity in advanced disease, and that its amplification
1426 provides an additional boost that promotes metastatic competence.

1427 In addition to genetic alterations, our dataset provides a rare opportunity to examine the
1428 transcriptional states of metastasizing clones. Mapping known PDAC tumor phenotypes
1429 revealed that most primary tumor cells from metastatic clones display a mesenchymal
1430 phenotype, indicating an epithelial-to-mesenchymal transition (EMT), which has been strongly
1431 associated with metastasis(67) (**Fig. 2d,e** and Methods). In contrast, non-metastatic clones are
1432 enriched for epithelial phenotypes, suggesting that metastatic clones are already
1433 transcriptionally poised for dissemination while in the primary tumor. The observation of
1434 mesenchymal phenotypes in cells from non-metastatic clones signifies that EMT alone is
1435 insufficient for successful metastasis. This level of resolution is uniquely enabled by our
1436 approach, as it allows us to connect transcriptional phenotypes to phylogenetic patterns.

1437 The phylogenetic tree provides insights into metastatic seeding and spread. While some clones
1438 map to a dominant metastatic site, most are found in multiple organs, suggesting that metastatic
1439 clones can adapt to diverse tissue environments. Conversely, each metastatic site contains
1440 cells from multiple clones, some separated by large phylogenetic distances (**Fig. 2b**), implying
1441 that metastatic sites were seeded by multiple clones in independent events. This and similar
1442 findings in other contexts(68,69) support the idea that once tumor cells establish themselves at
1443 distal sites, they remodel the local microenvironment to create a favorable "soil" for further
1444 seeding by the primary tumor or other metastases(70).

1445 Archetype analysis identifies metastatic gene programs

1446 The observation that most clones metastasized to multiple organs raises the question of how
1447 tumor cells adapt to these distinct environments. While metastatic cells must overcome
1448 universal hurdles such as migration and extravasation to establish at distal locations, each
1449 organ presents unique challenges requiring site-specific adaptations for successful colonization
1450 and growth. We reasoned that these adaptations should manifest as highly optimized
1451 transcriptional phenotypes, and that examining multiple metastatic sites from the same primary
1452 tumor would make it possible to uncover both shared and organ-specific mechanisms.

1453 To systematically identify these adaptive programs, we applied archetype analysis(71,72),
1454 which identifies boundary phenotypes known to represent optimized tasks, using a two-tiered
1455 approach (**Supplementary Fig. 5a,b** and Methods). Our strategy was to first analyze each
1456 organ separately, identifying four to six archetypes per tissue in a highly robust manner
1457 (**Supplementary Figs. 5c** and **6a**). Archetype neighborhoods did not associate with cell-state
1458 density (**Supplementary Fig. 5c**), suggesting that archetype neighborhoods may represent
1459 both major cancer cell state phenotypes (high-density) and rare (low-density) cancer phenotype
1460 states(39). Next, to find archetypes and programs that are potentially shared across organs, we
1461 integrated all 14,513 archetype-labeled cells (32% of all cancer cells) into a single matrix and
1462 applied graph-based clustering, yielding 19 archetype clusters (**Fig. 3a** and Methods). Finally,
1463 each archetype cluster was annotated using differentially expressed genes (DEGs) and
1464 Hotspot(41) analysis (**Fig. 3b** and Methods).

1465 Our analysis generated well-defined archetype clusters, including some that are unique to one
1466 organ and others that appear in multiple organs (**Fig. 3b,c**, **Supplementary Fig. 6b** and
1467 **Supplementary Tables 3–5**). For example, cells in archetype clusters 3, 9, 14 and 18 are only
1468 found in primary PDAC; cluster 13 (unfolded protein response: *HSP90AA1*, *HSPH1*, *HSPD1*,
1469 *DNAJA1*) is unique to the liver; and cluster 8 (development: *PBX1*, *HES1*, *PDGFB* and wound
1470 healing: *FOS*, *JUNB*, *NR4A1*, *ANGPTL4*) is specific to omentum. Additionally, cluster 5
1471 (gastrointestinal: *MUC13*, *FABP1*, *FCGBP*) is found mostly in the stomach wall and cluster 2
1472 (lipid metabolism: *HMGCS1*, *SQLE*, *FDPS*) is mainly in the peritoneum.

1473 In contrast, we found that archetypes related to core cellular processes, such as cell cycle,
1474 migration, EMT, and cell–environment interactions, such as extracellular matrix (ECM)
1475 interactions and inflammation, are typically shared across multiple organs (**Fig. 3b,c**). To gain
1476 insight into biological functions that broadly contribute to metastatic capacity, we focused on
1477 archetype clusters 1, 4 and 16, which are present in multiple organs that together comprise all
1478 seven organ sites (**Fig. 3c**). These three clusters express mesenchymal genes and transcription
1479 factors related to EMT programs associated with metastatic spread(73) (**Fig. 3d**). However,
1480 further analysis revealed that these apparently similar EMT states are distinguished by distinct
1481 gene and regulatory programs (**Supplementary Tables 4** and **5**).

1482 Cluster 1 is enriched for programs associated with cytokine and chemokine secretion as well as
1483 TNF- α /NF- κ B and IL-17 signaling, suggesting inflammatory activation. Cluster 16 is enriched for
1484 focal adhesion and ECM interactions. ECM remodeling is required for cancer cell growth and
1485 can recruit immune cells(74), suggesting a potential role in establishing the metastatic niche. In
1486 contrast, cluster 4 is enriched for glucagon signaling, a common liver-expressed pathway(75)
1487 that may reflect the influence of the liver microenvironment on cluster 4 cells, most of which
1488 originate in this organ (**Fig. 3c**). We found that cluster 4 has the highest expression of *MYC*,
1489 *MYC* target *ODC1*, and *CA9*, which can be regulated by *MYC* under hypoxic conditions(76), as
1490 well as genes downstream of *MYC* signaling (**Fig. 3d**), and is most enriched for *MYC*-
1491 expressing cells (**Supplementary Fig. 6c,d**). PDAC patient data and mouse models have linked
1492 *MYC* hyperactivation to more aggressive metastatic disease(77) and chemoresistance(78).
1493 Moreover, both *MYC* and EMT pathways are enriched in metastases compared to primary
1494 tumors in PDAC patients(77,79). Further distinguishing these states, archetype cluster 1
1495 expresses inflammatory genes, while cluster 16 expresses HLA-I antigen processing genes

1496 (Fig. 3d). Together, these findings reveal three distinct EMT phenotypes: archetypes 1 and 16
1497 have a mesenchymal profile associated with inflammatory response, while archetype 4 has an
1498 EMT program that co-occurs with *MYC* signaling.

1499 Unlike archetype analysis, traditional clustering approaches are not designed to identify gene
1500 programs optimized for specific biological tasks. Rather, they aim to define groups of cells that
1501 have more similar average expression than cells in other clusters. Direct comparison of these
1502 approaches in our dataset reveals substantial differences in cell groupings, DEGs between
1503 groups, and biological annotations (Supplementary Fig. 6e–g). While clustering detects broad
1504 processes such as EMT, proliferation, and stress (Supplementary Table 6), more specific
1505 adaptations to metastatic sites, such as lipid metabolism and gastrointestinal gene programs,
1506 are only identified by archetypes (Supplementary Table 4). The ability to identify adaptive
1507 programs in archetype analysis stems from the focus on boundary states that represent
1508 specialized cellular functions, rather than average behaviors captured by clustering. The
1509 combination of comprehensive sampling across metastatic sites and archetype-based analysis
1510 thus provides a powerful framework for discovering key metastatic phenotypes.

1511 Stomach wall metastases express gastrointestinal gene programs

1512 While liver metastasis in PDAC is well-studied, metastasis to the stomach wall is rare and poorly
1513 characterized, despite often leading to severe gastrointestinal complications including pain,
1514 ascites, bowel obstruction and other morbidity. Our analysis revealed evidence of organ-specific
1515 adaptation: tumor cells from the stomach wall are enriched in archetype cluster 5 (AC5), and the
1516 vast majority of AC5 cells originate from this site (Figs. 3b,c and 4a). Hotspot analysis identified
1517 three distinct gene modules expressed by AC5 cells that correspond to intestinal, stomach, and
1518 gallbladder epithelial cells based on healthy human single-cell reference data(46) (Fig. 4b).
1519 These gene modules are minimally expressed in normal pancreatic tissue, indicating that while
1520 these metastatic cells are of pancreatic origin, they have acquired transcriptional programs
1521 resembling other gastrointestinal epithelia (Fig. 4c and Supplementary Tables 7 and 8).

1522 Archetype cluster 5 genes reflect diverse functions of the gastrointestinal tract, including
1523 digestion, nutrient absorption, protective barrier maintenance, and bile production (a gallbladder
1524 function), which are distinct from physiological pancreatic capabilities. Although the pancreas is
1525 a gastrointestinal tissue, it is considered an accessory organ whose primary function is to
1526 secrete digestive enzymes and bicarbonate to neutralize stomach acid. We found AC5
1527 gastrointestinal genes related to cell adhesion and structural integrity (*CDH17*, *RHPN2*, *CLDN7*,
1528 *MYO1A*, *MYO7B*), mucus production and protection (*MUC17*, *MUC13*, *MUC5B*, *FCGBP*,
1529 *GCNT3*), metabolism and transport (*HSD17B2*, *FABP1*, *SLC22A18*, *GDA*), and epithelial cell
1530 differentiation (*PLAC8*). As expected, AC5 genes are specific to the archetype cells and
1531 minimally expressed in non-archetype cells in the tissues present in AC5 (Supplementary Fig.
1532 6h). Our analysis thus demonstrates that PDAC metastatic cells acquire extensive new
1533 gastrointestinal features in the stomach, likely as an adaptation or response to its unique
1534 signaling milieu.

1535 Interestingly, a small group of cells from the primary tumor also predominantly express the AC5
1536 gene program. Mapping archetype clusters to the primary tumor revealed that AC5 cells
1537 correspond to a classical–mucin phenotype (Fig. 2e and Supplementary Fig. 7a), which has

1538 been observed in human primary PDAC tumors, as well as primary lung, colorectal, gastric(80),
1539 liver, and head and neck cancers(81). Consistent with this phenotype, AC5 cells in primary
1540 tumor express high levels of mucin (*MUC13*, *MUC5AC*, *MUC5B*), mucin production (*GCNT3*,
1541 *TFF1*–*TFF3*), and mucus-producing goblet cell differentiation (*CREB3L1*) genes, compared to
1542 other primary tumor cells (**Supplementary Fig. 7b**). We find that the classical–mucin phenotype
1543 is more similar to metastatic states than to other primary phenotypes, as classical–mucin cells
1544 co-embed near metastatic AC5 cells and are separated by shorter diffusion distances, reflecting
1545 greater transcriptional similarity (**Supplementary Fig. 7c** and Methods).

1546 We examined clonal membership to understand the origins of AC5 classical–mucin cells in the
1547 primary tumor, finding that they belong to advanced clones composed mainly of metastatic liver
1548 and stomach cells (**Supplementary Fig. 7d**). While it is difficult to conclusively distinguish
1549 between reseeding from stomach metastases and primary spread to the stomach, several
1550 observations favor the reseeding hypothesis. These clones are enriched for more advanced
1551 classical–mucin phenotypes, and not the earlier classical–mucin–HLA-II phenotypes (**Fig. 2e**
1552 and **Supplementary Fig. 7e**). Their copy number profiles are more similar to cells that
1553 metastasized to the stomach and express the AC5 phenotype compared to other primary cells
1554 (**Supplementary Fig. 7f**). To confirm the clone assignments of primary cells expressing AC5,
1555 we examined the CNA profiles of cells from the two advanced AC5 clones harboring the most
1556 primary cells (clones I and J, **Supplementary Fig. 7d**) and found that they are more similar to
1557 the profiles of their assigned clones than those of non-metastasizing primary clones
1558 (**Supplementary Fig. 7f** and Methods). The primary cells in these clones exhibit similar
1559 assignment confidence values as the other cells (primarily stomach and liver) in their assigned
1560 clones (**Supplementary Fig. 7f**). In addition, these primary cells show higher copy number
1561 burden than other primary cells, reaching levels comparable to metastatic cells
1562 (**Supplementary Fig. 7g,h**). Thus, although few primary cells express the AC5 program, the
1563 combination of their advanced phenotype, greater similarity to stomach metastatic cells than to
1564 other primary cells, and elevated copy number burden provides evidence consistent with
1565 reseeding from stomach metastases.

1566 Another mucus production program, which includes robust expression of transcription factor
1567 *SPDEF* and its targets *AGR2* and *ERN2*, is highly expressed in precancerous lesions and
1568 classical tumor subtypes(82). We found that these genes are enriched in primary archetype
1569 cluster 14 (AC14), which also expresses high levels of HLA-II molecules, thus fully capturing the
1570 PDAC primary classical–mucin–HLA-II phenotype (**Fig. 3b** and **Supplementary Fig. 7b**).
1571 Moreover, the classical–mucin–HLA-II cells belong to the earliest clone in the phylogeny (**Fig.**
1572 **2b,d,e**), supporting that this program is indeed related to early PDAC stages, as reported in
1573 mouse models and laser-capture microdissected epithelium from patients with PDAC(82). In a
1574 phase II first-line chemoimmunotherapy clinical trial in advanced gastroesophageal
1575 adenocarcinoma patients, a gene program containing AC5 genes *TFF1* and *MUC5AC* was the
1576 program most highly expressed by cancer epithelial cells in fast-progressing patients compared
1577 to slow progressors(83). In contrast, expression of AC14 genes (HLA-II programs) by cancer
1578 epithelial cells was significantly higher in slow progressors(83). Our results suggest that PDAC
1579 cells can express at least two different mucin production programs—classical–mucin–HLA-II
1580 captured by AC14, representing earlier-stage primary cells with a less aggressive prognosis,

1581 and classical–mucin associated with AC5, representing later clones associated with greater
1582 metastatic potential or chemotherapy resistance.

1583 Peritoneal metastases rewire lipid metabolism

1584 Archetype cluster 2 (AC2) consists almost entirely of cells from the peritoneum (**Figs. 3b** and
1585 **5a**). The peritoneal cavity is the second most common site of metastasis in pancreatic
1586 cancer(84), but the mechanisms of metastatic initiation, progression, and adaptation remain
1587 poorly understood. Unlike hematogenous metastases to the liver or lungs, which typically
1588 present as discrete nodules or masses, peritoneal dissemination often occurs through trans-
1589 coelomic spread, leading to thin, diffuse layers over the omentum that escape detection(85).
1590 Peritoneal metastases are typically only diagnosed after reaching an advanced, treatment-
1591 refractory state known as peritoneal carcinomatosis, which accelerates cachexia—a syndrome
1592 characterized by malabsorption, significant weight loss, malignant ascites, and bowel
1593 obstruction—and the subsequent rapid decline limits opportunities for investigation.

1594 We found that the two peritoneal metastases from opposite flanks of the patient both contribute
1595 substantially to AC2 (**Fig. 5a**) and have very similar transcriptomic profiles (median 33% of a
1596 cell's kNN graph neighbors are from the other site), including strong upregulation of lipid
1597 metabolism genes compared to other archetype clusters (**Supplementary Fig. 8a**,
1598 **Supplementary Table 3** and Methods). Hotspot identified multiple gene modules, including one
1599 associated with fatty acid and cholesterol biosynthesis and another with oxidative stress and
1600 detoxification (**Fig. 5b**). Genes uniquely upregulated in AC2 include key players in cholesterol
1601 (*TM7SF2*) and fatty acid (*ME1*, *IDH1*) biosynthesis; aldo-ketoreductases (*AKR1B10*, *AKR1C2*,
1602 *AKR1C3*); prostaglandin regulators (*PTGIS*, *PTGR1*); and redox balance genes (*GCLM*, *GCLC*,
1603 *GPX2*, *GSR*, *PIR*, *SLC7A11*, *TXNRD1*, *UGDH*) that respond to oxidative stress triggered by
1604 lipid production and accumulation (**Fig. 5b** and **Supplementary Fig. 8b**). Genes involved in lipid
1605 droplet turnover (*SQSTM1*), lipid transport (*ABCA10*, *ABCC3*) and adipocyte differentiation
1606 (*PLAC8*) are also differentially upregulated in AC2 cells. As expected, AC2 genes are specific to
1607 the archetype cells and minimally expressed in non-archetype cells in the peritoneum samples
1608 (**Supplementary Fig. 6h**). Lipid metabolic and oxidative stress genes are not expressed
1609 appreciably in tumor immune or stromal cells, confirming that their detection in cancer cells is
1610 not due to ambient peritoneal RNA (**Supplementary Fig. 8b**).

1611 The peritoneal cavity is supported by metabolically active adipose tissue that is rich in free fatty
1612 acids and signaling molecules, including adipokines and cytokines(86). Digital pathology of
1613 peritoneal and primary tumor sections revealed a greater fraction of adipose tissue in peritoneal
1614 metastases than in primary samples, which are dominated by fibrotic stroma (**Fig. 5c,d**).
1615 Moreover, whereas cancer cells in primary PDAC tumors typically occur in multiple distinct
1616 pockets(87), they are interspersed among adipocytes in the peritoneal samples
1617 (**Supplementary Fig. 8c**). The upregulated genes associated to AC2 constitute many
1618 components of the lipogenic pathway (**Supplementary Fig. 8d**), by which fatty acids are
1619 synthesized for energy storage and cell membrane biosynthesis, primarily in the liver and
1620 adipose tissue. Thus, in contrast to the catabolic processes and patient-level wasting caused by
1621 cachexia, our observations suggest that metastatic PDAC cells respond to the adipocyte-rich
1622 peritoneal environment by upregulating lipid anabolism and oxidative stress detoxification. A

1623 lipogenic phenotype has been reported previously in PDAC cell lines(88) as well as preclinical
1624 models and PDAC patients(89), but its robust upregulation has not been previously associated
1625 with peritoneal metastasis.

1626 To determine whether the lipid metabolic phenotype generalizes beyond the two independent
1627 samples in our patient, we obtained two post-mortem peritoneal metastases from a different
1628 patient with PDAC and performed snRNA-seq and similar data analysis (Methods). Importantly,
1629 the second subject was 70 years old, succumbed to metastatic disease within three months of
1630 diagnosis, and did not receive treatment. Despite the markedly different clinical circumstances
1631 in these two cases, we found that fatty acid and cholesterol biosynthesis, as well as cholesterol
1632 metabolism and homeostasis, are the most significantly enriched gene programs in the second
1633 case (**Supplementary Fig. 9a** and **Supplementary Table 9**).

1634 Lipid metabolic rewiring is not driven by genotype

1635 We sought to understand whether the highly specialized phenotypes that dominate peritoneal
1636 metastases are due to clonal selection of genetically encoded adaptive traits, or were acquired
1637 by epigenetically plastic cells in response to a novel environment. To help distinguish between
1638 these possibilities, we leveraged the two anatomically separate peritoneal metastases and the
1639 cancer phylogeny.

1640 We hypothesized that if clonal selection—under the clonal evolution model(90)—drove the lipid
1641 anabolism phenotype, distinct clades of AC2 clones would map to each peritoneal site; after
1642 passing through the original selection bottleneck, cells at each site would accumulate unique
1643 sets of alterations over time due to genetic drift. On the other hand, if the lipid anabolism
1644 phenotype was due to plastic cells responding to the lipid-rich peritoneal environment, there
1645 would be no association between clone identity and peritoneal site, and diverse peritoneal
1646 clones could contain cells from opposite flanks of the body. We assessed which lipid anabolism-
1647 enriched clones (defined as >10% of cells with AC2 phenotype) belong to each peritoneal
1648 metastasis in the phylogenetic tree, and found 26 clones spread across all three major clades,
1649 including early branches with fewer CNAs as well as late branches (**Fig. 5e** and
1650 **Supplementary Fig. 9b**). Both pure and mixed clones are present in the independent peritoneal
1651 sites. For example, early clones enriched for lipid metabolism are derived from both peritoneum
1652 A (16% to 68%) and B (8% to 40%) sites, and late clones are derived from a mix of sites as well
1653 (69% to 83% peritoneum A and 8% to 12% peritoneum B). Intermediate clones are pure for
1654 either peritoneum site but still share the same clades, suggesting common ancestors in the
1655 primary tumor (**Supplementary Fig. 9b**).

1656 The existence of diverse clones enriched for lipid anabolism over several branches of the tree—
1657 some populating both peritoneal sites, some specific to each site but belonging to the same
1658 clade—support the hypothesis that cancer cell plasticity drove the lipid anabolism phenotype
1659 through phenotypic convergence to local environmental pressures.

1660 Transcriptomic plasticity is a hallmark of PDAC metastasis

1661 The plasticity we identified in peritoneal tumors involves multiple clones that express a diversity
1662 of additional archetypes, motivating a more systematic investigation of whether plasticity is a

1663 general feature of PDAC metastasis. Indeed, while each clone represents a shared genetic
1664 lineage, clones throughout the phylogeny do not appear to be constrained by their lineage and
1665 express a diversity of archetypal phenotypes, corresponding to high per-clone archetype
1666 entropy (**Fig. 6a** and Methods). This is in line with a lineage tracing study in a PDAC mouse
1667 model, which found that cell cycle and EMT cell states are not correlated with cellular
1668 phylogeny(49). We asked whether the diversity of archetypes that clones exhibit is greater than
1669 expected, which would indicate substantial phenotypic plasticity (Methods). The empirical
1670 distribution of per-clone archetype entropy (mean $\bar{x} = 1.42$) is shifted higher than expected
1671 under simulations in which the site is highly predictive of phenotype ($\bar{x} = 0.97$), but lower than
1672 expected under random assignment of archetypes to cells ($\bar{x} = 2.42$, **Fig. 6b** and Methods).
1673 This suggests that the variety of archetypes present in each clone is not driven by the diversity
1674 of tumor sites within each clone, but rather by the ability of cells to acquire a range of
1675 phenotypes even within a single site.

1676 To quantify plasticity more rigorously at the clonal level, we developed plasticity analysis from
1677 single-cell transcriptional and evolutionary neighborhood overlap (PLASTRO) (**Supplementary**
1678 **Fig. 10** and Methods). PLASTRO compares evolutionary similarity (lineage distance) and
1679 phenotypic similarity (phenotypic distance with respect to archetype composition) between cells,
1680 based on the assumption that low cellular plasticity should result in a strong overlap between
1681 lineage and phenotype. Specifically, for a given clone, it quantifies the degree of discordance
1682 between phenotypic and phylogenetic neighborhoods, while remaining insensitive to
1683 neighborhood size. Interestingly, we found that cells with few CNAs tend to have low PLASTRO
1684 scores, whereas more advanced clones bearing extensive CNAs score high for plasticity (**Fig.**
1685 **6c**). Given that CNA burden correlates with metastasis in PDAC and other cancers(4), our
1686 finding that CNA burden is strongly associated with plasticity is consistent with a model whereby
1687 plasticity enables metastasis. To evaluate this effect more quantitatively, we performed a Mantel
1688 test(50), which assesses the correlation between two distance matrices (Methods). We
1689 observed a Mantel test statistic of 0.13 ($p < 1 \times 10^{-3}$) for matrices of phenotypic distances
1690 within distinct clones, suggesting that cells are plastic (the statistic ranges between -1 and 1,
1691 with 0 denoting no correlation), as their phenotypes differ significantly from that of their lineage.

1692 Discussion

1693 Rapid autopsy makes it possible to investigate clonal lineage histories and adaptive phenotypes
1694 in a single cancer ecosystem. In our comprehensive analysis of a patient with PDAC who
1695 underwent rapid autopsy, we evaluated the phenotypic landscape that a single cancer can
1696 occupy and developed computational approaches that bridge single-cell transcriptomics with
1697 phylogenetic reconstruction to dissect the relative contributions of clonal evolution and
1698 transcriptomic plasticity to metastatic adaptation. Our analysis reveals that transcriptional
1699 plasticity, rather than genetic evolution and selection, is the dominant force shaping metastatic
1700 phenotypes.

1701 We note that we tested multiple tools for phylogenetic reconstruction from bulk WES data, but
1702 each produced a strikingly different topology. Moreover, a probabilistic approach, CONIPHER,
1703 yielded multiple divergent trees with similar likelihoods. CONIPHER is designed to detect
1704 subclonal structure from bulk data, and consistently revealed extensive clonal mixing within

1705 each site and reseeding events to the primary tumor—supporting our own observations—but
1706 could not resolve a tree with more than a few branches that are supported across alternative
1707 trees, reinforcing the need for single-cell resolution in this context.

1708 While the patient in this study was diagnosed with metastatic PDAC at an unusually young age
1709 (35 years old), our molecular analyses are highly concordant with previously published datasets
1710 derived from larger and more typical PDAC cohorts (48,81). Specifically, the transcriptional
1711 phenotypes observed in this patient's primary tumor closely match subtype programs identified
1712 in a comprehensive study of 43 treatment-naive and neoadjuvantly treated PDAC specimens
1713 profiled using single-nucleus RNA sequencing and spatial transcriptomics. This molecular
1714 overlap suggests that the cellular programs we identified reflect conserved features of PDAC
1715 biology, rather than patient-specific outliers.

1716 A critical insight from our study is that successful metastatic clones exhibit remarkable
1717 phenotypic diversity, even within the same anatomical site. We demonstrate that genetically
1718 related metastatic clones can colonize multiple organs while manifesting diverse transcriptional
1719 states independent of their anatomical location. Moreover, each organ site harbored multiple
1720 phylogenetically distant clones, suggesting extensive parallel seeding. This evidence points to
1721 non-genetic plasticity as a key mechanism enabling metastatic cells to transition between
1722 different gene programs across metastatic sites, thereby enhancing their adaptability and
1723 survival. This plasticity is notably amplified in clones with higher CNA burden, suggesting that
1724 genomic instability may facilitate transcriptional adaptation—not through specific mutations, but
1725 by creating a permissive state for phenotypic exploration. This observation aligns with recent
1726 findings that chromatin accessibility increases with genomic instability in various cancers,
1727 potentially enabling broader transcriptional responses to environmental cues(91,92).

1728 Our profiling of common but understudied metastatic sites in PDAC revealed distinct organ-
1729 specific adaptation programs, providing new insight into how cancer cells respond to diverse
1730 tissue environments. The acquisition of gastrointestinal programs by stomach wall metastases
1731 demonstrates remarkable cellular plasticity, suggesting that tumor cells can co-opt organ-
1732 specific transcriptional modules to enhance colonization and acquire fitness in new
1733 environments. Similarly, peritoneal metastases upregulate lipid anabolism and oxidative stress
1734 response pathways, suggesting that tumor cells adopt metabolic features of adipocytes and
1735 adapt their redox response to counteract reactive oxygen species generated by metabolic
1736 stress. This is consistent with prior studies showing that lipid metabolism plays a crucial role in
1737 PDAC progression(93) and chemoresistance(94). Both site-specific gene programs suggest that
1738 metastatic cells adapt to their microenvironment, possibly in response to stroma-derived
1739 signaling and environment lipid availability(95). The convergent adaptation of these phenotypes
1740 across multiple independent clones strongly supports the role of microenvironmental pressures
1741 in shaping cellular phenotypes, independent of genetic evolution.

1742 The methodological advances developed for this study—particularly PICASSO for phylogenetic
1743 reconstruction and our approach to archetype analysis—provide a robust framework for similar
1744 investigations across cancer types. However, several critical questions emerge from our
1745 findings. How do specific tissue environments orchestrate the activation of adaptive programs?
1746 Can we target the mechanisms underlying cellular plasticity with therapies? What do genomic

1747 markers such as *RAS* amplification contribute, given the importance of plasticity as an emerging
1748 resistance mechanism to *RAS* therapies? Although we focused on epithelial cells and optimized
1749 their capture over other cell types, the role of stromal cells also remains an open question.
1750 Future studies combining spatial transcriptomics with single-cell lineage tracing could help
1751 address these questions and further illuminate the complex interplay between genetic
1752 inheritance and environmental adaptation in cancer progression.

1753 Our findings emphasize the fundamental roles of cellular plasticity and metabolic adaptation in
1754 enabling the successful colonization of diverse organ sites. They suggest that effective
1755 therapeutic strategies must account for both genetic and non-genetic mechanisms of
1756 adaptation, potentially through approaches that constrain cancer cell plasticity or target site-
1757 specific vulnerabilities. These insights may guide the development of more effective treatments
1758 for metastatic disease, particularly for challenging sites such as peritoneal metastases that
1759 currently lack targeted therapeutic options.

1760 **Acknowledgements**

1761 In deep gratitude, we honor the patient and family, whose courage and contribution to medical
1762 research for pancreatic cancer continue to inspire progress and hope for future patients. This
1763 work was supported by National Institutes of Health (NIH) cancer center support grant P30
1764 CA08748 and Human Tumor Atlas Network grant U2C CA233284 (D.P., C.I.D., I.P.), as well as
1765 U54 CA274492 (D.P.), R35 CA220508-03 (C.I.D.), P50 CA25788 (C.I.D., D.P.), and the AACR-
1766 CRUK Transatlantic Fellowship (A.J.S.). D.P. is a Howard Hughes Medical Institute investigator.
1767 We thank Vincent Liu for initial data exploration, and the Last Wish Program, Gerry Metastasis
1768 and Tumor Ecosystems Center, David M. Rubenstein Center for Pancreatic Cancer Research
1769 and Single-cell Analytics Innovation Lab at MSK for their support.

1770 **Contributions**

1771 D.P. and C.I.D. conceived the study and designed and supervised experiments. W.P. and
1772 E.M.O. provided patient care, clinical insights and diagnostics. A.H. collected and processed
1773 biospecimens. A.H., S.U. and J.H. provided pathological analysis and contributed to data
1774 interpretation. L.M. and R.C. oversaw single-cell genomics and I.M. carried out single-cell
1775 protocol optimization and data generation. I.P. and D.P. conceived and supervised algorithm
1776 development, Y.X. and A.J.S. performed data processing, S.P., T.C., Y.X. and A.J.S. developed
1777 IntegrateCNV, S.P. developed PICASSO and plasticity analysis approaches, A.J.S. and R.S.
1778 developed the archetype analysis pipeline. A.J.S., S.P., R.S., A.M., T.N., I.P. and D.P. carried
1779 out data analysis and interpretation, and D.P., A.J.S., S.P., I.P. and T.N. wrote the manuscript.
1780 All authors reviewed and edited the manuscript.

1781 **References**

- 1782 1. Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? *Cancer*
1783 *Medicine*. John Wiley & Sons, Ltd; 2019;8:5574–6.
- 1784 2. Massagué J, Obenau AC. Metastatic colonization by circulating tumour cells. *Nature* [Internet].
1785 *Nature*; 2016 [cited 2025 Feb 20];529. Available from: <https://pubmed.ncbi.nlm.nih.gov/26791720/>
- 1786 3. Turajlic S, Xu H, Litchfield K, Rowan A, Chambers T, Lopez JI, et al. Tracking Cancer Evolution

1787 Reveals Constrained Routes to Metastases: TRACERx Renal. *Cell* [Internet]. *Cell*; 2018 [cited 2025
1788 Feb 20];173. Available from: <https://pubmed.ncbi.nlm.nih.gov/29656895/>

1789 4. Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, et al. Genomic
1790 characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. *Cell*
1791 [Internet]. *Cell*; 2022 [cited 2025 Feb 20];185. Available from:
1792 <https://pubmed.ncbi.nlm.nih.gov/35120664/>

1793 5. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. *Science*
1794 (New York, NY) [Internet]. *Science*; 2017 [cited 2025 Feb 20];357. Available from:
1795 <https://pubmed.ncbi.nlm.nih.gov/28729483/>

1796 6. Househam J, Heide T, Cresswell GD, Spiteri I, Kimberley C, Zapata L, et al. Phenotypic plasticity and
1797 genetic control in colorectal cancer evolution. *Nature* [Internet]. *Nature*; 2022 [cited 2025 Feb
1798 20];611. Available from: <https://pubmed.ncbi.nlm.nih.gov/36289336/>

1799 7. Goyette MA, Lipsyc-Sharf M, Polyak K. Clinical and translational relevance of intratumor
1800 heterogeneity. *Trends in cancer* [Internet]. *Trends Cancer*; 2023 [cited 2025 Feb 20];9. Available
1801 from: <https://pubmed.ncbi.nlm.nih.gov/37248149/>

1802 8. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, et al. Limited heterogeneity of
1803 known driver gene mutations among the metastases of individual patients with pancreatic cancer.
1804 *Nature genetics* [Internet]. *Nat Genet*; 2017 [cited 2025 Feb 20];49. Available from:
1805 <https://pubmed.ncbi.nlm.nih.gov/28092682/>

1806 9. Iacobuzio-Donahue CA, Michael C, Baez P, Kappagantula R, Hooper JE, Hollman TJ. Cancer
1807 biology as revealed by the research autopsy. *Nature reviews Cancer* [Internet]. *Nat Rev Cancer*;
1808 2019 [cited 2025 Feb 20];19. Available from: <https://pubmed.ncbi.nlm.nih.gov/31519982/>

1809 10. Mullen KM, Hong J, Attiyeh MA, Hayashi A, Sakamoto H, Kohutek ZA, et al. The Evolutionary Forest
1810 of Pancreatic Cancer. *Cancer discovery* [Internet]. *Cancer Discov*; 2025 [cited 2025 Feb 20];15.
1811 Available from: <https://pubmed.ncbi.nlm.nih.gov/39378050/>

1812 11. Shen R, Seshan VE. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for
1813 high-throughput DNA sequencing. *Nucleic Acids Res*. Oxford Academic; 2016;44:e131.

1814 12. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq
1815 highlights intratumoral heterogeneity in primary glioblastoma. *Science* [Internet]. American
1816 Association for the Advancement of Science; 2014 [cited 2025 Feb 20]; Available from:
1817 <https://www.science.org/doi/10.1126/science.1254257>

1818 13. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and clonal
1819 substructure in human tumors from single-cell transcriptomes. *Nature Biotechnology*. Nature
1820 Publishing Group; 2021;39:599–608.

1821 14. Gao T, Soldatov R, Sarkar H, Kurkiewicz A, Biederstedt E, Loh P-R, et al. Haplotype-aware analysis
1822 of somatic copy number variations from single-cell transcriptomes. *Nat Biotechnol*. Springer Science
1823 and Business Media LLC; 2023;41:417–26.

1824 15. Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of
1825 a sample of DNA sequences. *Genetics*. Oxford University Press (OUP); 1985;111:147–64.

1826 16. Kaufmann TL, Petkovic M, Watkins TBK, Colliver EC, Laskina S, Thapa N, et al. MEDICC2: whole-
1827 genome doubling aware copy-number phylogenies for cancer evolution. *Genome Biology*. BioMed
1828 Central; 2022;23:1–27.

1829 17. Lu B, Curtius K, Graham TA, Yang Z, Barnes CP. CNETML: maximum likelihood inference of
1830 phylogeny from copy number profiles of multiple samples. *Genome Biology*. BioMed Central;

1831 2023;24:1–28.

1832 18. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of
1833 somatic copy-number alteration across human cancers. *Nature*. Springer Science and Business
1834 Media LLC; 2010;463:899–905.

1835 19. Yang D, Jones MG, Naranjo S, Rideout WM 3rd, Min KHJ, Ho R, et al. Lineage tracing reveals the
1836 phylogeny, plasticity, and paths of tumor evolution. *Cell*. Elsevier BV; 2022;185:1905–23.e25.

1837 20. Simonsen M, Mailund T, Pedersen CNS. Rapid neighbour-joining. *Lecture Notes in Computer
1838 Science*. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. page 113–22.

1839 21. Crowdus J, He MX, Reardon B, Van Allen EM. CoMut: visualizing integrated molecular information
1840 with comutation plots. *Bioinformatics*. Oxford University Press (OUP); 2020;36:4348–9.

1841 22. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell map of diverse
1842 immune phenotypes in the breast tumor microenvironment. *Cell*. Elsevier; 2018;174:1293–308.e36.

1843 23. Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, et al. A single-cell and
1844 single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. *Nat Med*. Springer Science and
1845 Business Media LLC; 2020;26:792–802.

1846 24. Fleming SJ, Chaffin MD, Arduini A, Akkad A-D, Banks E, Marioni JC, et al. Unsupervised removal of
1847 systematic background noise from droplet-based single-cell experiments using CellBender. *Nat
1848 Methods*. Springer Science and Business Media LLC; 2023;20:1323–35.

1849 25. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive
1850 integration of single-cell data. *Cell*. Elsevier BV; 2019;177:1888–902.e21.

1851 26. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with
1852 Prognosis. *Cell*. Cell Press; 2015;162:184–97.

1853 27. Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zappia L, et al. Best practices for single-cell
1854 analysis across modalities. *Nat Rev Genet*. Springer Science and Business Media LLC;
1855 2023;24:550–72.

1856 28. Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, Eraslan G, et al. The
1857 human and mouse Enteric nervous system at single-cell resolution. *Cell*. Elsevier BV;
1858 2020;182:1606–22.e23.

1859 29. Neavin D, Senabouth A, Arora H, Lee JTH, Ripoll-Cladellas A, sc-eQTLGen Consortium, et al.
1860 Demuxafy: improvement in droplet assignment by integrating multiple single-cell demultiplexing and
1861 doublet detection methods. *Genome Biol*. 2024;25:94.

1862 30. Wolock SL, Lopez R, Klein AM. Scrublet: Computational identification of cell Doublets in Single-cell
1863 transcriptomic data. *Cell Syst*. Elsevier BV; 2019;8:281–91.e9.

1864 31. Xi NM, Li JJ. Benchmarking computational doublet-detection methods for single-cell RNA
1865 sequencing data. *Cell Syst*. Elsevier BV; 2021;12:176–94.e6.

1866 32. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis.
1867 *Genome Biol*. 2018;19:15.

1868 33. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene
1869 expression data. *Nat Biotechnol*. Nature Publishing Group; 2015;33:495–502.

1870 34. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial Sloan Kettering-
1871 Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A hybridization capture-

1872 based next-generation sequencing clinical assay for solid tumor molecular oncology. *J Mol Diagn.*
1873 Elsevier; 2015;17:251–64.

1874 35. Ischenko I, D'Amico S, Rao M, Li J, Hayman MJ, Powers S, et al. KRAS drives immune evasion in a
1875 genetic model of pancreatic cancer. *Nature Communications.* Nature Publishing Group; 2021;12:1–
1876 15.

1877 36. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, et al. A gene expression
1878 signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival.
1879 *Cancer Cell.* 2009;15:489–500.

1880 37. Gaveau B, Schulman LS. Multiple phases in stochastic dynamics: geometry and probabilities. *Phys*
1881 *Rev E Stat Nonlin Soft Matter Phys.* American Physical Society (APS); 2006;73:036124.

1882 38. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. *Cell.* Cell Press;
1883 2018;174:716–29.e27.

1884 39. Otto DJ, Jordan C, Dury B, Dien C, Setty M. Quantifying cell-state densities in single-cell phenotypic
1885 landscapes using Mellon. *Nature Methods.* Nature Publishing Group; 2024;21:1185–95.

1886 40. Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, et al. PAGA: graph abstraction
1887 reconciles clustering with trajectory inference through a topology preserving map of single cells.
1888 *Genome Biol.* Springer Science and Business Media LLC; 2019;20:59.

1889 41. Hotspot identifies informative gene modules across modalities of single-cell genomics. *Cell Systems.*
1890 Cell Press; 2021;12:446–56.e9.

1891 42. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-
1892 responsive genes involved in oxidative phosphorylation are coordinately downregulated in human
1893 diabetes. *Nat Genet.* Nature Publishing Group; 2003;34:267–73.

1894 43. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
1895 enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
1896 *Proc Natl Acad Sci U S A.* 2005;102:15545–50.

1897 44. Fang Z, Liu X, Peltz G. GSEAp: a comprehensive package for performing gene set enrichment
1898 analysis in Python. *Bioinformatics.* Oxford University Press (OUP); 2023;39:btac757.

1899 45. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical
1900 framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA
1901 sequencing data. *Genome Biol.* Springer Science and Business Media LLC; 2015;16:278.

1902 46. CZI Cell Science Program, Abdulla S, Aevermann B, Assis P, Badajoz S, Bell SM, et al. CZ
1903 CELLxGENE Discover: a single-cell data platform for scalable exploration, analysis and modeling of
1904 aggregated data. *Nucleic Acids Res.* Oxford University Press (OUP); 2025;53:D886–900.

1905 47. Ogata H, Goto S, Fujibuchi W, Kanehisa M. Computation with the KEGG pathway database.
1906 *Biosystems.* Elsevier BV; 1998;47:119–28.

1907 48. Hwang WL, Jagadeesh KA, Guo JA, Hoffman HI, Yadollahpour P, Reeves JW, et al. Single-nucleus
1908 and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated
1909 with neoadjuvant treatment. *Nat Genet.* Springer Science and Business Media LLC; 2022;54:1178–
1910 91.

1911 49. Schiffman JS, D'Avino AR, Prieto T, Pang Y, Fan Y, Rajagopalan S, et al. Defining heritability,
1912 plasticity, and transition dynamics of cellular phenotypes in somatic evolution. *Nat Genet.* Nature
1913 Publishing Group; 2024;56:2174–84.

1914 50. Mantel N. The detection of disease clustering and a generalized regression approach. *Cancer Res.*
1915 *Cancer Res*; 1967;27:209–20.

1916 51. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, et al. The Human
1917 Tumor Atlas Network: Charting tumor transitions across space and time at single-cell resolution. *Cell*.
1918 Elsevier BV; 2020;181:236–49.

1919 52. de Bruijn I, Nikolov M, Lau C, Clayton A, Gibbs DL, Mitraka E, et al. Sharing data from the Human
1920 Tumor Atlas Network through standards, infrastructure and community engagement. *Nat Methods*.
1921 Springer Science and Business Media LLC; 2025;22:664–71.

1922 53. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and
1923 transcriptome sequencing of the same cell. *Nature Biotechnology*. Nature Publishing Group;
1924 2015;33:285–9.

1925 54. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of
1926 single-cell genomes and transcriptomes. *Nature Methods*. Nature Publishing Group; 2015;12:519–
1927 22.

1928 55. Rodriguez-Meira A, O'Sullivan J, Rahman H, Mead AJ. TARGET-Seq: A Protocol for High-Sensitivity
1929 Single-Cell Mutational Analysis and Parallel RNA Sequencing. *STAR Protocols*. 2020;1:100125.

1930 56. Peng J, Sun B-F, Chen C-Y, Zhou J-Y, Chen Y-S, Chen H, et al. Single-cell RNA-seq highlights intra-
1931 tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. *Cell*
1932 Research. Nature Publishing Group; 2019;29:725–38.

1933 57. Lin W, Noel P, Borazanci EH, Lee J, Amini A, Han IW, et al. Single-cell transcriptome analysis of
1934 tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and
1935 metastatic lesions. *Genome Medicine*. BioMed Central; 2020;12:1–14.

1936 58. Spatially confined sub-tumor microenvironments in pancreatic cancer. *Cell*. Cell Press;
1937 2021;184:5577–92.e18.

1938 59. Khaliq AM, Rajamohan M, Saeed O, Mansouri K, Adil A, Zhang C, et al. Spatial transcriptomic
1939 analysis of primary and metastatic pancreatic cancers highlights tumor microenvironmental
1940 heterogeneity. *Nature Genetics*. Nature Publishing Group; 2024;56:2455–65.

1941 60. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic
1942 profiling of human prostate cancer. *Cancer cell* [Internet]. Cancer Cell; 2010 [cited 2025 Feb 20];18.
1943 Available from: <https://pubmed.ncbi.nlm.nih.gov/20579941/>

1944 61. Integrated genomic analyses of ovarian carcinoma. *Nature*. Nature Publishing Group; 2011;474:609–
1945 15.

1946 62. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and
1947 transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature*. Nature
1948 Publishing Group; 2012;486:346–52.

1949 63. Fan J, Lee HO, Lee S, Ryu DE, Lee S, Xue C, et al. Linking transcriptional and genetic tumor
1950 heterogeneity through allele analysis of single-cell RNA-seq data. *Genome research* [Internet].
1951 *Genome Res*; 2018 [cited 2025 Feb 20];28. Available from:
1952 <https://pubmed.ncbi.nlm.nih.gov/29898899/>

1953 64. Wu H, Guo C, Wang C, Xu J, Zheng S, Duan J, et al. Single-cell RNA sequencing reveals tumor
1954 heterogeneity, microenvironment, and drug-resistance mechanisms of recurrent glioblastoma.
1955 *Cancer science* [Internet]. Cancer Sci; 2023 [cited 2025 Feb 20];114. Available from:
1956 <https://pubmed.ncbi.nlm.nih.gov/36853018/>

1957 65. Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, et al. DPC4 Gene Status of
1958 the Primary Carcinoma Correlates With Patterns of Failure in Patients With Pancreatic Cancer.
1959 Journal of Clinical Oncology [Internet]. American Society of Clinical Oncology; 2009 [cited 2025 Feb
1960 20]; Available from: <https://ascopubs.org/doi/10.1200/JCO.2008.17.7188>

1961 66. Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, et al. Epigenetic plasticity
1962 cooperates with cell-cell interactions to direct pancreatic tumorigenesis. *Science*.
1963 2023;380:eadd5327.

1964 67. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and
1965 implications for cancer. *Nature Reviews Molecular Cell Biology*. Nature Publishing Group;
1966 2018;20:69–84.

1967 68. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, et al. The
1968 evolutionary history of lethal metastatic prostate cancer. *Nature* [Internet]. Nature; 2015 [cited 2025
1969 Feb 20];520. Available from: <https://pubmed.ncbi.nlm.nih.gov/25830880/>

1970 69. Maddipati R, Stanger BZ. Pancreatic Cancer Metastases Harbor Evidence of Polyclonality. *Cancer*
1971 discovery [Internet]. *Cancer Discov*; 2015 [cited 2025 Feb 20];5. Available from:
1972 <https://pubmed.ncbi.nlm.nih.gov/26209539/>

1973 70. Oskarsson T, Acharyya S, Zhang XH-F, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer
1974 cells produce tenascin C as a metastatic niche component to colonize the lungs. *Nature Medicine*.
1975 Nature Publishing Group; 2011;17:867–74.

1976 71. Cutler A, Breiman L. Archetypal Analysis. *Technometrics*. JSTOR; 1994;36:338.

1977 72. Korem Y, Szekely P, Hart Y, Sheftel H, Hausser J, Mayo A, et al. Geometry of the Gene Expression
1978 Space of Individual Cells. *PLOS Computational Biology*. Public Library of Science;
1979 2015;11:e1004224.

1980 73. Stemmler MP, Eccles RL, Brabletz S, Brabletz T. Non-redundant functions of EMT transcription
1981 factors. *Nature Cell Biology*. Nature Publishing Group; 2019;21:102–12.

1982 74. Oskarsson T, Acharyya S, Zhang XH-F, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer
1983 cells produce tenascin C as a metastatic niche component to colonize the lungs. *Nature Medicine*.
1984 Nature Publishing Group; 2011;17:867–74.

1985 75. Nason SR, Kim T, Antipenko JP, Finan B, DiMarchi R, Hunter CS, et al. Glucagon-Receptor
1986 Signaling Reverses Hepatic Steatosis Independent of Leptin Receptor Expression. *Endocrinology*.
1987 2019;161:bqz013.

1988 76. Mongiardi MP, Savino M, Falchetti ML, Illi B, Bozzo F, Valle C, et al. c-MYC inhibition impairs
1989 hypoxia response in glioblastoma multiforme. *Oncotarget*. Impact Journals; 2016;7:33257–71.

1990 77. Maddipati R, Norgard RJ, Baslan T, Rathi KS, Zhang A, Saeid A, et al. Levels Regulate Metastatic
1991 Heterogeneity in Pancreatic Adenocarcinoma. *Cancer Discov*. 2022;12:542–61.

1992 78. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1 α
1993 balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. *Cell*
1994 *Metab*. Elsevier BV; 2015;22:590–605.

1995 79. Bulle A, Dekervel J, Libbrecht L, Nittner D, Deschuttere L, Lambrecht D, et al. Gemcitabine induces
1996 Epithelial-to-Mesenchymal Transition in patient-derived pancreatic ductal adenocarcinoma
1997 xenografts. *American Journal of Translational Research*. 2019;11:765.

1998 80. An M, Mehta A, Min BH, Heo YJ, Wright SJ, Parikh M, et al. Early Immune Remodeling Steers
1999 Clinical Response to First-Line Chemoimmunotherapy in Advanced Gastric Cancer. *Cancer Discov*.

2000 2024;14:766–85.

2001 81. Gavish A, Tyler M, Greenwald AC, Hoefflin R, Simkin D, Tschernichovsky R, et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. *Nature*. 2023;618:598–606.

2002

2003 82. Tonelli C, Yordanov GN, Hao Y, Deschênes A, Hinds J, Belleau P, et al. A mucus production programme promotes classical pancreatic ductal adenocarcinoma. *Gut*. BMJ Publishing Group; 2024;73:941–54.

2004

2005

2006 83. Mehta A, Kim YJ, Robert L, Tsoi J, Comin-Anduix B, Berent-Maoz B, et al. Immunotherapy Resistance by Inflammation-Induced Dedifferentiation. *Cancer Discov*. 2018;8:935–43.

2007

2008 84. Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, et al. DPC4 Gene Status of the Primary Carcinoma Correlates With Patterns of Failure in Patients With Pancreatic Cancer. *Journal of Clinical Oncology* [Internet]. American Society of Clinical Oncology; 2009 [cited 2025 Feb 20]; Available from: <https://ascopubs.org/doi/10.1200/JCO.2008.17.7188>

2009

2010

2011

2012 85. Blastik M, Plavecz É, Zalatnai A. Pancreatic Carcinomas in a 60-Year, Institute-Based Autopsy Material With Special Emphasis of Metastatic Pattern. *Pancreas*. 2011;40:478.

2013

2014 86. Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. *Front Cardiovasc Med. Frontiers*; 2020;7:522637.

2015

2016 87. Makohon-Moore AP, Matsukuma K, Zhang M, Reiter JG, Gerold JM, Jiao Y, et al. Precancerous neoplastic cells can move through the pancreatic ductal system. *Nature*. Nature Publishing Group; 2018;561:201–5.

2017

2018

2019 88. Daemen A, Peterson D, Sahu N, McCord R, Du X, Liu B, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. *Proc Natl Acad Sci U S A*. 2015;112:E4410–7.

2020

2021

2022 89. Sunami Y, Rebelo A, Kleeff J. Lipid Metabolism and Lipid Droplets in Pancreatic Cancer and Stellate Cells. *Cancers*. Multidisciplinary Digital Publishing Institute; 2017;10:3.

2023

2024 90. Nowell PC. The clonal evolution of tumor cell populations. *Science*. 1976;194:23–8.

2025

2026 91. Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, et al. The chromatin accessibility landscape of primary human cancers. *Science* [Internet]. 2018;362. Available from: <http://dx.doi.org/10.1126/science.aav1898>

2027

2028 92. D'Ambrosio A, Bressan D, Ferracci E, Carbone F, Mulè P, Rossi F, et al. Increased genomic instability and reshaping of tissue microenvironment underlie oncogenic properties of mutations. *Sci Adv*. 2024;10:eadh4435.

2029

2030

2031 93. Rozeveld CN, Johnson KM, Zhang L, Razidlo GL. KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL. *Cancer Res*. 2020;80:4932–45.

2032

2033 94. Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, et al. Lipid Synthesis Facilitates Gemcitabine Resistance through Endoplasmic Reticulum Stress in Pancreatic Cancer. *Cancer Res*. 2017;77:5503–17.

2034

2035

2036 95. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identification of neutral tumor evolution across cancer types. *Nature Genetics*. Nature Publishing Group; 2016;48:238–44.

2037

2038 Figure legends

2039 **Figure 1 | Profile of a cancer ecosystem from a single PDAC patient.** **a**, Top, maximal
2040 diameter of primary and liver tumors, based on CT measurements at the indicated time points
2041 from diagnosis (day 0). Blaixedck bar marks the period of mFOLFIRINOX treatment. Bottom,
2042 levels of CA 19-9 tumor marker in blood, based on indicated measurement days. Baseline at
2043 diagnosis (day 0) is 13,000 U ml⁻¹ and upper physiological limit is 37 U ml⁻¹ (red line). **b**,
2044 Representative CT scans. Primary and liver metastatic tumors are overdrawn with colored
2045 ellipses. L, left; R, right; A, anterior; P, posterior. **c**, Anatomical location of collected
2046 biospecimens used to generate matched snRNA-seq, WES, and hematoxylin and eosin (H&E)
2047 data. Circle diameter indicates relative tumor size. **d**, Force-directed layout (FDL) of cancer cell
2048 transcriptomes (45,134 nuclei), colored by sample (Methods). Stomach refers to stomach wall
2049 metastasis.

2050
2051 **Figure 2 | PICASSO generates a CNA-derived single-cell phylogeny.** **a**, PICASSO takes
2052 CNA profiles from scRNA-seq data (inferred by IntegrateCNV, for example) as input and
2053 encodes them in a probabilistic manner, then iteratively splits clones into subclones based on
2054 clustering shared patterns by expectation–maximization (Methods). The algorithm proceeds in a
2055 top-down fashion until it reaches terminal leaves, which lack evidence for further splits.
2056 PICASSO output is the probabilistic assignment of cells to subclones and a maximum-
2057 likelihood-optimized tree. **b**, Phylogenetic relationships between clones (rows) derived from
2058 single-cell CNA profiles, for all cancer cells in the rapid autopsy dataset. Each stacked bar plot
2059 indicates the clone's site composition (fraction of cells from each metastatic site), and the
2060 heatmap at right shows the modal copy numbers inferred by IntegrateCNV for that clone. The
2061 four clones that are predominantly from primary tumor (stars) are distinguished by whether they
2062 also contain cells in metastatic lesions. **c**, FDL of all cancer cells, colored by sample of origin for
2063 cells from the primary tumor clones (>50% cells from primary tumor) that also contain metastatic
2064 cells. Inset indicates the number of cells from each sample in these two clones. **d,e**, FDL of
2065 PDAC primary cells showing cancer clones colored by proportion of primary cells within the
2066 clones (d) and PDAC phenotypes (e). Gray cells in d were removed from phylogenetic analysis
2067 due to low transcript counts (Methods).

2068
2069 **Figure 3 | Archetype gene programs of primary and metastatic PDAC.** **a**, UMAP of
2070 clustered archetypal cells from primary and metastatic sites, colored by cluster. Gray box
2071 encompasses three distinct archetype clusters related to EMT. **b**, Archetype gene program
2072 expression in each tumor sample. **c**, Fraction of cancer cells per archetype cluster, colored by
2073 sample. **d**, Expression of individual markers in archetypes 1, 3, 4 and 16. Archetype 3
2074 corresponds to classical–squamous cells that are more epithelial, and is included for
2075 comparison. Canonical markers are indicated for epithelium, mesenchymal, and EMT, MYC,
2076 MYC targets and modules downstream of MYC signaling, inflammation, and HLA-I antigen
2077 processing and presentation.

2078
2079 **Figure 4 | A gastrointestinal archetype indicates PDAC adaptation to the stomach**
2080 **environment.** **a**, UMAP embedding (left) and distribution by sample (right) of archetype cluster

2081 5 cells. **b**, Hotspot modules in all archetype cluster 5 cells, based on 78 highly variable genes
2082 with significant autocorrelation (FDR < 0.05). Highlighted genes were used to annotate intestine,
2083 stomach and gallbladder modules. **c**, Expression of archetype cluster 5 genes in normal
2084 pancreas and gastrointestinal tissues based on the CZ CELLxGENE Discover database.

2085
2086 **Figure 5 | Lipid metabolic rewiring is a prominent feature of peritoneal metastases.** **a**,
2087 UMAP embedding, colored by tissue site (left), and sample distribution and composition (right),
2088 of all archetype 2 cluster cells. **b**, Archetype 2 Hotspot analysis, highlighting lipid metabolism
2089 and oxidative stress and detoxification modules. **c**, Digital pathology of H&E-stained primary
2090 and peritoneal metastasis tissue, showing expansion of adipose tissue in the peritoneum. **d**,
2091 Quantification of adipose and fibrotic tissue in sections in (c). **e**, Cancer clone phylogeny,
2092 indicating AC2-enriched clones (purple triangles), fractional tumor site composition for each
2093 clone (stacked bars) and proportion of cells in each clone assigned to AC2 (outer circle).

2094
2095 **Figure 6 | Transcriptomic plasticity is a common feature of metastatic cells.** **a**, PDAC
2096 tumor cell clonal phylogeny (center), showing fraction of cells from each site, fraction of
2097 archetypes, and archetype entropy from inside to outside, for each clone (leaf in the phylogeny).
2098 **b**, Entropy distributions for three null models and for data in this study (Methods). Bars indicate
2099 the number of clones for each binned entropy value ($n = 62$ clones for each distribution), curves
2100 represent smooth trends, and dashed vertical lines correspond to mean entropy. Observed
2101 clones have lower archetype entropy than clones with randomly assigned archetypes, but more
2102 than models based on strong archetype bias for metastatic site, indicating high cellular
2103 plasticity. **c**, PDAC tumor cell phylogeny showing copy number profiles of each clone,
2104 PLASTRO score (Methods), and archetype composition. The scatterplot indicates that a higher
2105 CNA burden is associated with higher plasticity. r , Pearson correlation.

Figure 1

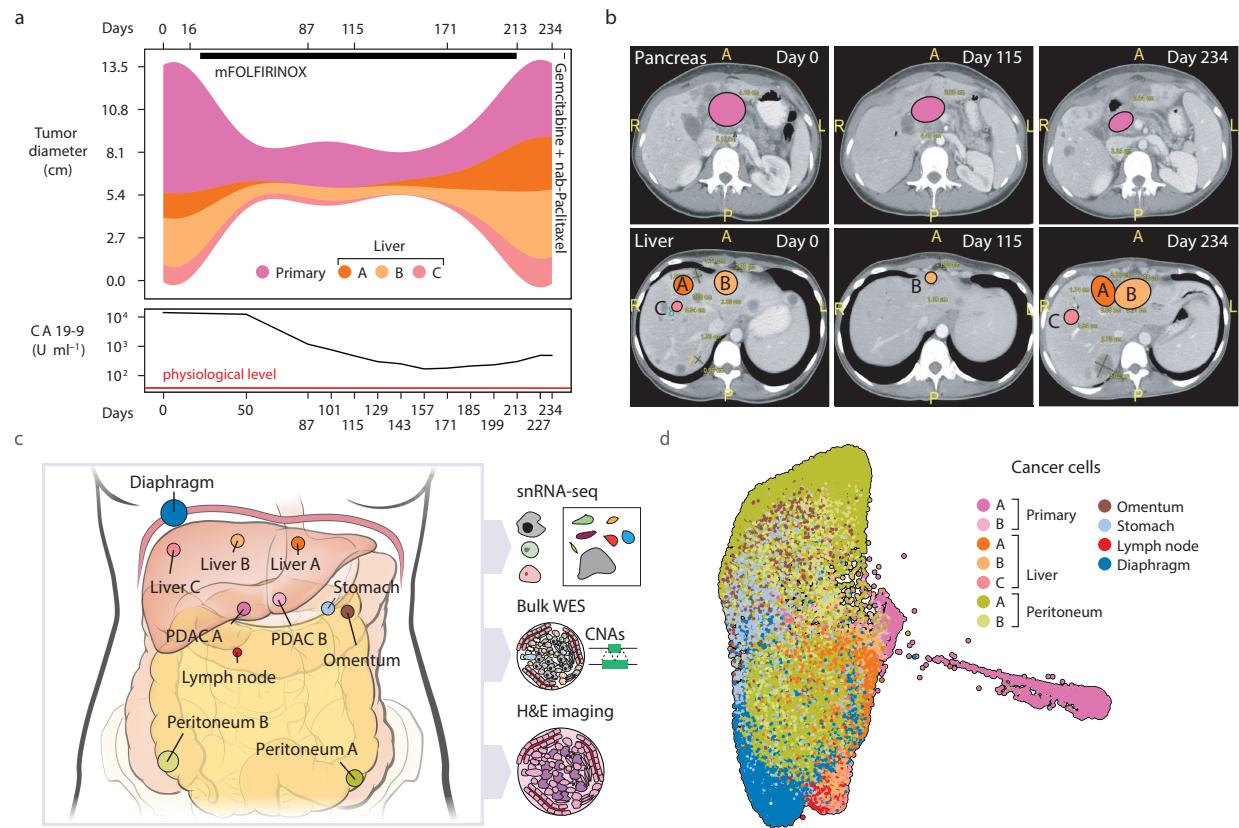


Figure 2

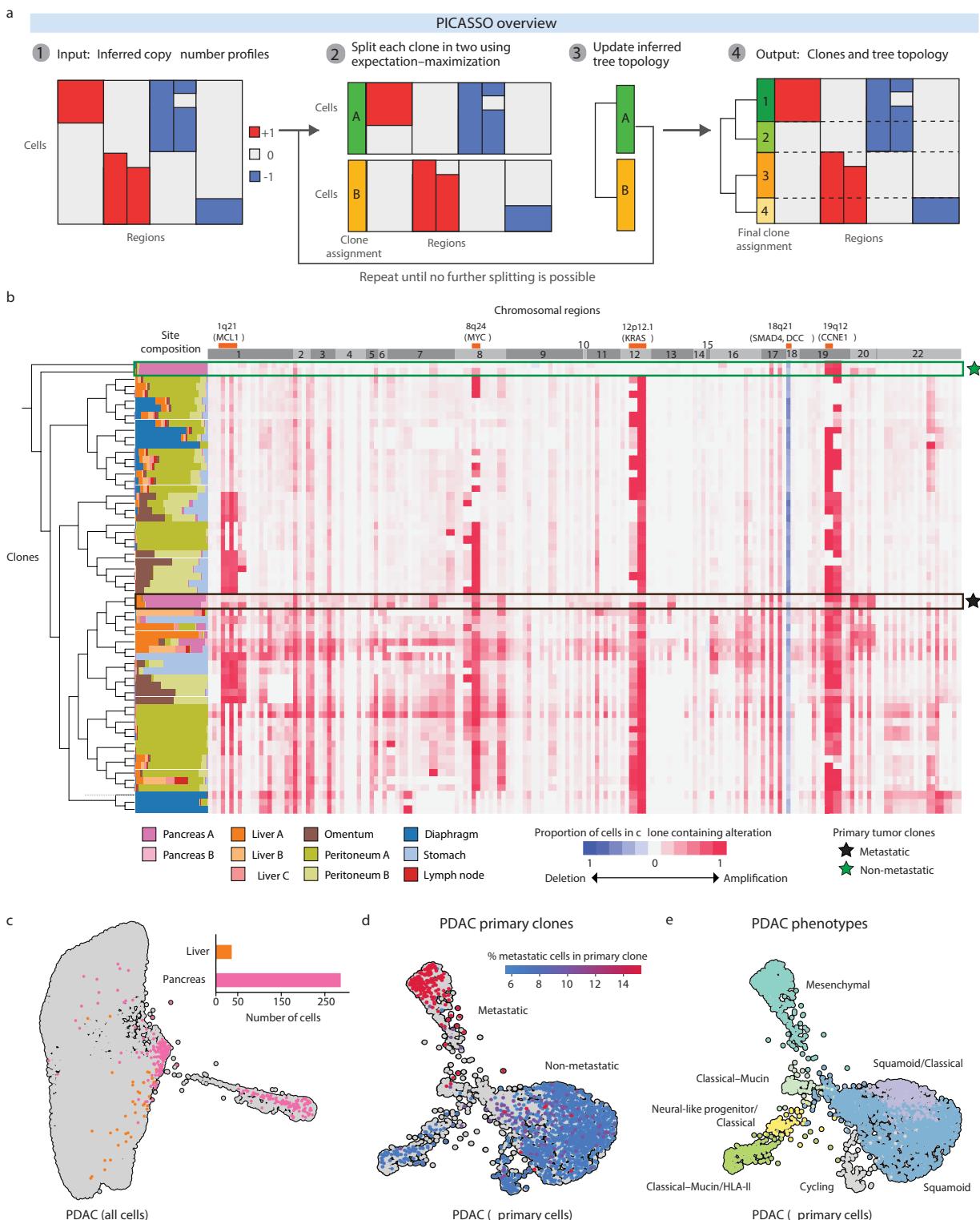


Figure 3

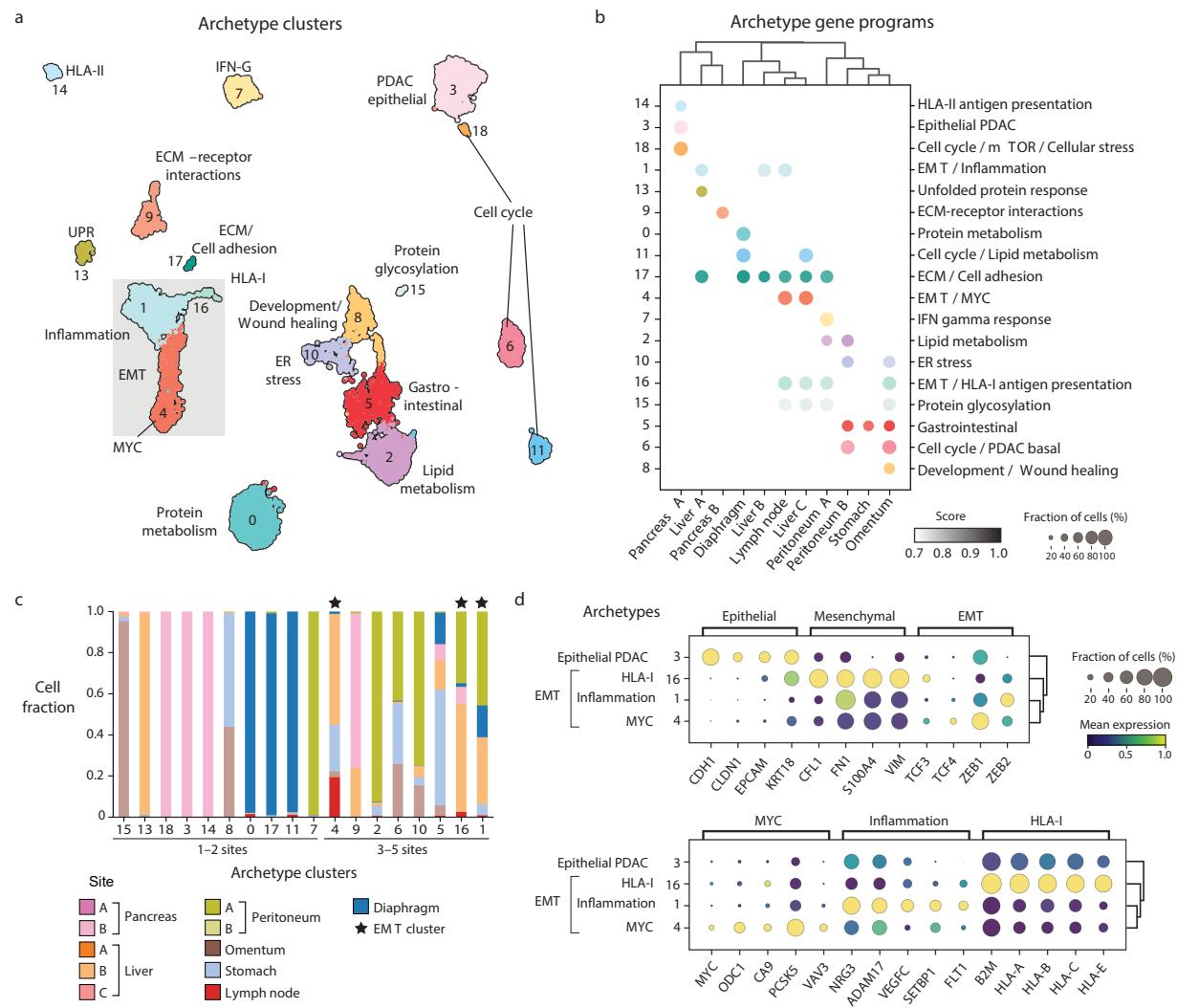


Figure 4

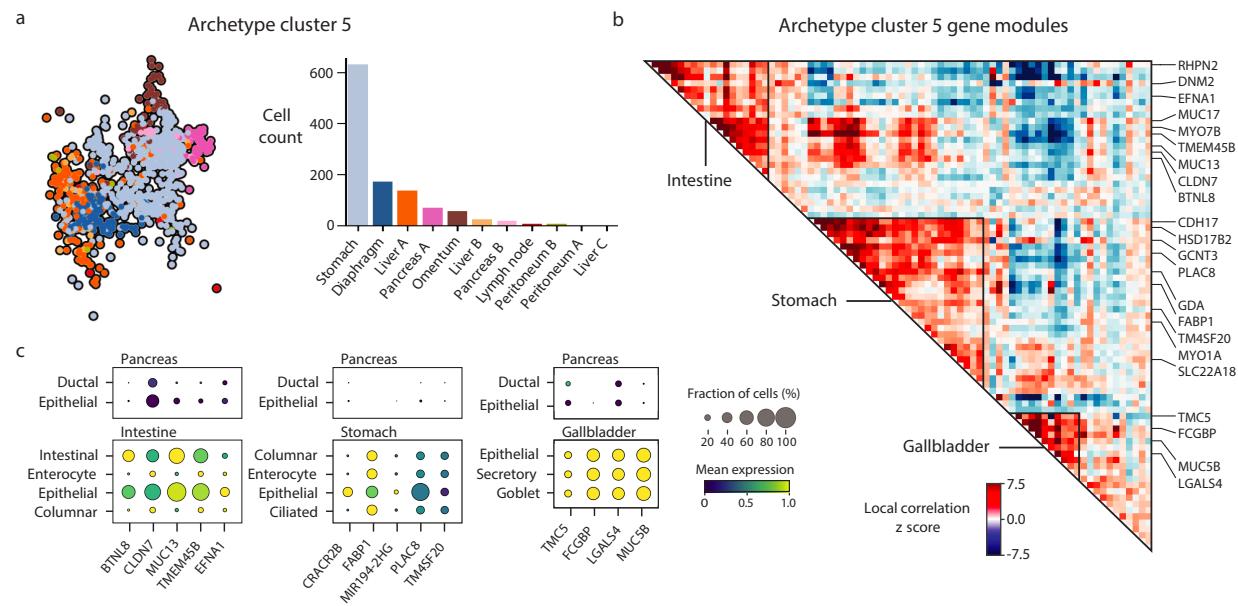


Figure 5

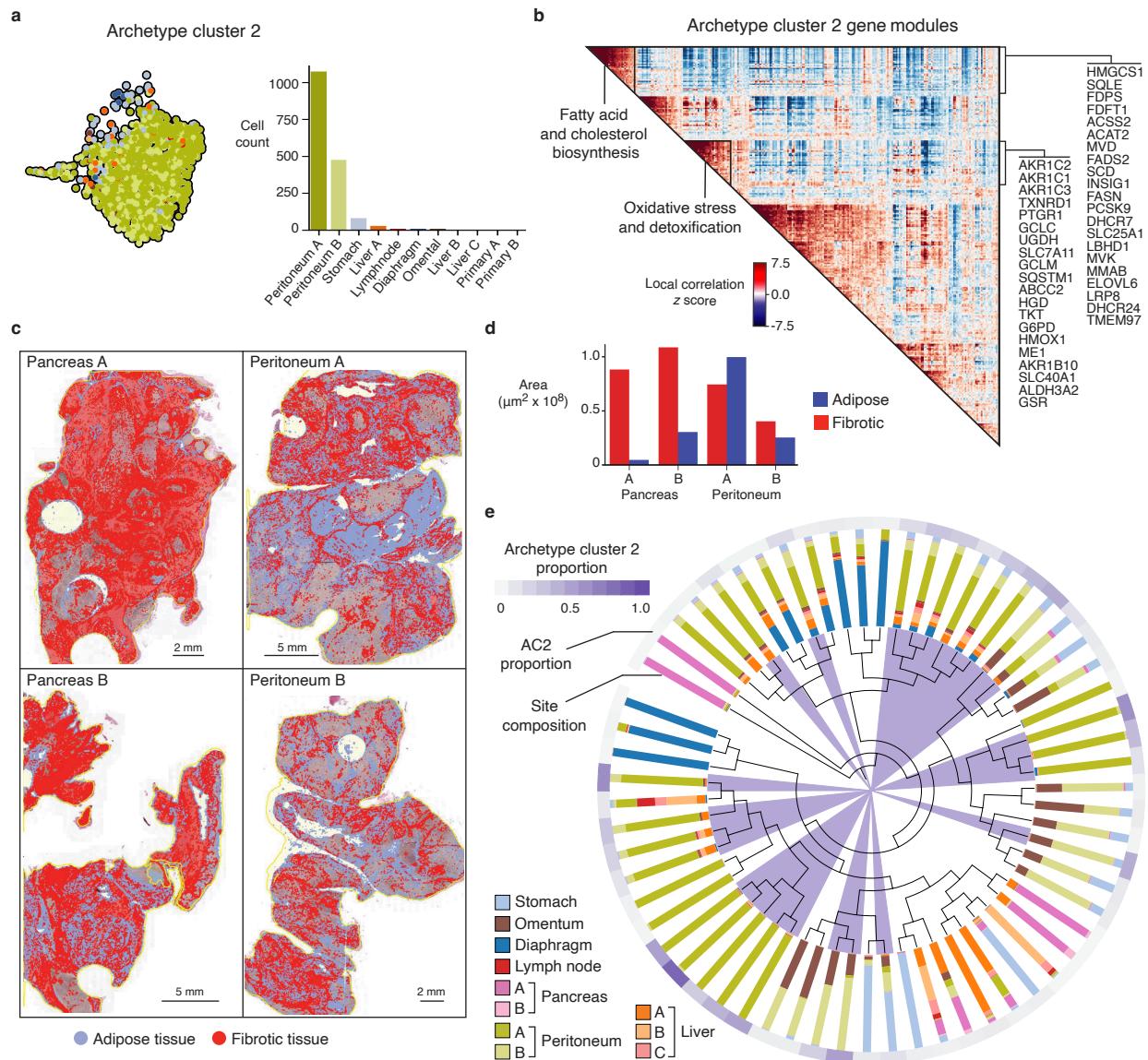


Figure 6

