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Abstract

Background DNA methylation (DNAm) can regulate gene expression, and its
genome-wide patterns (epigenetic scores or EpiScores) can act as biomarkers

for complex traits. The relative stability of methylation profiles may enable better
assessment of chronic exposures compared to single time-point protein measures. We
present the first large-scale epigenetic study of the highly-abundant serum proteome
measured via ultra-high throughput mass spectrometry in 14,671 samples from the
Generation Scotland cohort. We further demonstrate the first large-scale comparison of
protein EpiScores and their respective proteins as predictors of incident cardiovascular
disease.

Results Marginal epigenome-wide association models, adjusting for age, sex,
measurement batch, estimated white cell proportions, BMI, smoking and methylation
principal components, reveal 15,855 significant CpG — protein associations across 125
of 133 proteins Pgonferroni < 2.7 1 X 1070, Bayesian epigenome-wide association studies
of the same 133 proteins reveal 697 CpG-Protein associations (posterior inclusion
probability >0.95). 112 protein EpiScores correlate significantly with their respective
protein in a holdout test-set. Of these, sixteen associate significantly with incident all-
cause cardiovascular disease (Ng ent,=191) compared to one measured protein.

Conclusions We highlight a complex interplay between the blood-based methylome
and proteome. Importantly, we show that protein EpiScores correlate with measured
proteins and demonstrate that the, as-yet understudied, high-abundance proteome
may yield clinically relevant biomarkers. The protein EpiScores demonstrate more
significant associations with cardiovascular disease than directly measured proteins,
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suggesting their potential as clinical biomarkers for monitoring or predicting disease
risk. We suggest that biomarker development could be enhanced by the consideration
of protein EpiScores alongside measured proteins.

Keywords Epigenetics, Proteomics, Cardiovascular disease, Biomarkers

Background

Blood-based protein measurements are under increasing focus for the development of
biomarkers of morbidity and mortality [1, 2], with evidence that protein prediction mod-
els outperform models using clinical information [2]. In addition to genetic influences,
a complex interplay exists between the proteome and other omics layers, such as the
methylome [3]. The methylome describes the pattern of genome-wide DNA methyla-
tion (DNAm), the addition of a methyl group to cytosine nucleotides, most commonly
occurring at cytosines which precede a guanine (CpG sites) acting to regulate transcrip-
tion [4]. Epigenome-wide association studies can help elucidate the relationship between
DNAm and the circulating proteome, providing greater insight into the latter’s regula-
tion and the potential role of various environmental, biological and lifestyle factors on
health.

The use of DNAm-based proxies for complex traits, including protein levels and health
outcomes, represents an expanding field of research [5]. Where proteins are concerned,
these proxies, which we call epigenetic scores (EpiScores), have been shown to display
a more stable longitudinal measurement [6], likely reflecting cumulative and sustained
impacts of environmental effects and biological changes [7]. This property is key to the
promise of EpiScores as biomarkers and tools for risk prediction, stratification and pre-
cision medicine. Research thus far has demonstrated that EpiScores can track proteomic
markers to enhance our understanding of the impact of chronic inflammation on both
cardiovascular and neurological health [8, 9]; highlight novel associations with incident
disease [10]; and augment prediction models for disease, offering measurable improve-
ment in prediction over and above traditional risk factors [11]. Therefore, in the search
for disease biomarkers to enhance risk prediction and monitor interventions to improve
outcomes, both epigenetic and proteomic biomarkers should be considered.

Studies of the circulating proteome have predominantly captured lower abundant
signalling and tissue-leakage proteins, using multiplexed antibody or aptamer-based
assays, such as the Olink® and SomaScan platforms, which capture up to ~11,000 pro-
teins. These targeted approaches navigate the challenges of the wide dynamic range of
the human proteome and can quantify low-abundant proteins, many of which are poten-
tial biomarkers. However, quantification of high-abundance proteins, which constitute
99% of total protein mass in blood [12], using these assays is challenging due to the pres-
ence of multiple isoforms and saturation of affinity reagents, limiting the dynamic range
of measurement [13]. In contrast to tissue leakage or signalling proteins, these proteins
mostly function in processes occurring within blood, such as nutrient transport, innate
immunity, or coagulation. Such proteins are well quantified using mass spectrometry
(MS) [14] and data acquisition can be untargeted, independent of current paradigms or
knowledge [12].

In this study, we conduct the first large-scale epigenome-wide association studies of
the serum proteome as measured by mass spectrometry, to uncover novel associations
between DNAm and proteins. Further, in independent data subsets, we train protein
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EpiScores and then test their associations with incident cardiovascular disease. We
then provide the first large-scale analysis of both measured proteins and protein EpiS-
cores in association with incident cardiovascular disease. Figure 1 illustrates the project

overview.

Results

EWAS

Marginal linear regression models were run using OmicS-data-based Complex trait
Analysis (OSCA, v0.46.1) [15]. In these models each CpG was independently regressed
on protein level, yielding 15,855 significant CpG — protein associations across 125 of the
133 uniquely mapped proteins (Pp, orroni < 2-71 x 107 1), with a median genomic infla-
tion factor of 1.17 (Additional file 1: Tables S1 & S2). These models do not account for
inter-probe correlations or attempt to fine-map the findings. Consequently, we applied
a joint and conditional Bayesian regression approach (Bayesian Grouped Mixture of
Regressions Model for analysing OMIcs data, GMRMomi) [16, 17]. This resulted in
697 CpG — protein associations (PIP >0.95) for 120 of 133 uniquely mapped proteins,
involving 457 unique CpGs. 286 of these were cis associations (CpG within 1 Mb of the
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Fig. 1 Overview of EWAS and EpiScore workflow and results. For OSCA linear marginal regression analysis, each
CpG is modelled individually for every protein within each model. For GMRMomi Bayesian penalised regression, all
CpGs are modelled jointly. The Bayesian approach was subsequently used to identify lead CpGs and for the genera-
tion of protein EpiScores. WBC = estimated white blood cell proportions; BMI=log transformation of body mass
index (kg/mz); smoking=log transformation of smoking pack-years (+ 1); PCs=Principal Components; PIP = poste-
rior inclusion probability. Created in BioRender, Marioni, R. (2025) https://BioRender.com/q80a293
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transcription start-site (TSS) of the associated protein’s gene) and 387 were trans asso-
ciations (CpG more than 1 Mb outside of the associated protein’s TSS or on a different
chromosome) (Additional file 1: TableS3). 298 of the 457 CpGs map to 233 unique genes.

The Bayesian approach identified 505 of the protein-CpG associations (for 115 unique
proteins and 333 unique CpGs) found with the OSCA approach (See Additional file 1:
Table S4). The direction of the effect was consistent across all loci and there was a Pear-
son correlation of 0.94 in their effect sizes. Of the remaining 192 associations found via
GMRMomi, 67 were present at P < 3.6 x 10~ ® (epigenome-wide significance threshold)
[18], and an additional 119 present at P < 0.05 in the OSCA analyses.

Epigenetic architecture of the lead findings from the Bayesian EWAS

The distribution of associations by protein and CpG for the 697 lead findings from the
Bayesian EWAS are displayed in Fig. 2. These demonstrate that most proteins (59%) have
6 or fewer associations, with a maximum number of 20 for P02750 (Leucine-rich alpha-
2-glycoprotein). There was a strong concordance (r = 0.64) between the number of CpGs
with PIPs >0.95 and the mean proportion of variance explained by all CpG loci for each
protein, supporting the investigation of DNAm proxies for proteins (Fig. 2C). Most CpGs
(79%) had one protein association, with up to 22 associations for one CpG (cg06072257,
in open sea on chromosome 1, see Additional file 1: Table S5). Correlation analysis of the
22 associated proteins revealed Pearson r values between — 0.37 and 0.62 between pairs
of proteins, with several demonstrating no intercorrelation (Additional file 1: Table S6).
Network analysis with StringDB [19] revealed both functionally related and unrelated
proteins, including those involved in the complement and coagulation cascades. This
locus was associated with 11 different immunoglobulin components, 3 complement pro-
teins, in addition to Ficolin-3, Angiotensinogen, Serotransferrin, Alpha-1-acidglycopro-
tein 1, Cell division cycle 5-like protein, C4b-binding protein alpha and beta chains and
Vitronectin (Additional file 2: Figs. S1. and S2.). Across the 133 Bayesian protein EWASs,
the significant loci were not distributed proportionally across the genomic regions (e.g.
OpenSea, CpG Islands etc.) captured by the array (X% 6299, df =5, P = 2.92 x 10”12,
Fig. 2D). For example, there was an enrichment of findings within OpenSea regions but
fewer findings than would be expected in CpG Islands. The majority (56%) of the effect
sizes were identified in trans locations although there were no differences by direction or
magnitude between cis and trans associations (Fig. 2E). The distribution of cis and trans
associations across the genome is displayed in Fig. 2F.

EWAS catalogue

The EWAS catalogue [20] was searched (download date: 05/08/25) to identify any previ-
ously reported associations for our 697 results from the Bayesian model. After filtering
to entries from “whole blood” and P < 3.6 x 10~ # and matching on UniProt ID, the pro-
tein gene or the word “protein’, four previously identified associations were identified -
all from our previous EWAS of SomaScan proteins [21] (Additional file 1: Table S7). That
study (n = 774, Npyopeins = 4,058) [21] featured 60 unique proteins that were also
present in the MS dataset. There were 12 CpG loci with P < 3.6 x 10~ ® for 8 of these 60
proteins, of which four (associating with three proteins) had a PIP >0.95, all with concor-

individuals

dant effect size directions in our current analyses. If the P-value threshold is relaxed to <
0.05, there are 4107 CpG loci demonstrating associations with the 60 proteins, of which
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Fig.2 Summary of 697 protein ~ CpG associations from the Bayesian EWAS results. A The distribution of number
of proteins by number of CpG associations; B The distribution of number CpGs by number of protein associations;
C The correlation between the number of CpG association of each protein, by the mean proportion of variance
explained by all CpG loci; D The proportion of CpGs in regions, specified by relation to CpG islands for the EPIC array
and for the Bayesian EWAS results, demonstrating enriched results in Open Sea and reduced in Island regions; E
Mean effect size of associations by association type, demonstrating the effect size is similar whether the associa-
tion is in cis or trans. Unassigned associations are those for which the protein gene could not be annotated to a
position in GRCh37 (N = 24, Additional file 3: Methods M3); F Each association plotted by genomic position of the
protein gene and CpG probe demonstrating the distribution of associations across the genome
24 had a PIP >0.95 in the current study, with a correlation of effect sizes of 0.8 (P = 2.6 x
10°). It is important to note the differences between the methods employed by the two
studies (marginal regression vs. joint and conditional modelling of the CpGs). Further,
the SomaScan EWAS considered plasma proteins rather than serum as in the current
MS proteome analysis. Although both studies utilised data from Generation Scotland,
the biosamples were taken at different time points, with the blood samples for plasma
being obtained between 2015 and 2018, compared to between 2006 and 2011 for serum
samples analysed via MS [22].

To identify any traits previously associated with the 457 lead loci, we again filtered

to entries from “whole blood” with P < 3.6 x 10~ ® and further to studies with N >1000.
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231 of the 457 CpGs have previous trait-associations documented in the EWAS cata-
logue, 105 of these with more than one trait (see Additional file 1: Table S8). This dem-
onstrates that our results align with and expand on previous associations identified in
other EWASs. For example, we identified additional and relevant protein associations of
cg00574958 (CPT1A gene) and cg06500161 (ABCGI gene), previously associated with
multiple metabolic traits [23, 24]. Similarly, we identified relevant protein associations
for cg19693031 (TXNIP gene) previously associated with type 2 diabetes [23, 25] and
cg07839457 (NLRCS gene) previously associated with immune-related proteins such as
CD48 antigen [26] or traits such as rheumatoid arthritis [23].

EpiScores

We generated 133 protein EpiScores using the Bayesian GMRMomi approach which,
through joint and conditional modelling of all CpG loci provides a parsimonious solu-
tion for each protein. The number of CpGs with non-zero weights for each EpiScore,
the majority of which (91%) can also be found on the EPICv2 array, are summarised in
Additional file 1: Table S9.

Of the 133 Protein EpiScores, 112 had Pearson r>0.1 and P<0.05 with rank-based
inverse normalised proteins when projected into an independent Generation Scotland
test set (n=3,463) (Fig. 3., Additional file 1: Table S10). These patterns largely persisted
when we reprojected the EpiScores using loci common to both EPICvl and EPICv2
arrays (Additional file 1: Table S11, Additional file 2: Fig. S3).

The 112 EpiScores and their corresponding proteins were then studied in relation to
incident cardiovascular disease via Cox proportional hazards models with a follow-up
duration of up to 17.6 years (n =3,345, after excluding those with a prevalent cardiovas-
cular disease diagnosis — see Methods) (Fig. 4).

We compared the number and magnitude of statistically significant associa-
tions (hazard ratios) for both the protein EpiScores and directly measured proteins
in relation to incident cardiovascular disease. After adjustment for age and sex, 16
protein EpiScores demonstrated a significant relationship with the composite cardio-

vascular disease outcome, compared to only one of the measured proteins ( <

PBonferroni

it
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Fig. 3 Pearson correlation of 112 EpiScores and proteins in the Generation Scotland test set. Test set N = 3,463.
Correlation results displayed for 112 EpiScores where Pearson r>0.1 and P < 0.05 using the EPICv1 loci. Central
dot represents Pearson r and the error bars represent 95% confidence intervals. Proteins are labelled by gene,
except for Ig-like domain-containing protein 1 (AOA0G2JRQ6) and 2 (AOA0J9YY99), annotated by UniProtID. These
proteins were annotated to scaffolds or patches in build hg19 and have not been assigned gene names (see Ad-
ditional file 3: Methods M3.). Transferrin (C9JB55, 75 amino acids) is also labelled by UniProtID as it originates from
the same gene as Serotransferrin (P02787, 698 amino acids, labelled TF)
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Fig. 4 EpiScore and measured protein hazard ratios for time-to incident cardiovascular disease. Results are dis-
played where either protein or EpiScore demonstrate Bonferroni-significant associations (P<0.05/112) in model
1. Model 1: TTE ~ EpiScore/Protein +age + sex; Model 2: TTE ~ EpiScore/Protein +age + sex + BMI + smoking + alco-
hol; Model 3: TTE ~EpiScore/Protein +age + sex+ BMI+ smoking +alcohol + diabetes + hypertension + HDL cho-
lesterol +Total cholesterol+average systolic blood pressure +average diastolic blood pressure. EpiScore/Protein
denotes EpiScore or protein as a predictor variable. HR=Hazard Ratio per SD of the predictor, Cl=95% confidence
interval. Colour in bold denotes significance at Py ermoni < 446X 107 (=0.05/112). Proteins are labelled by gene,
with the exception of Ig-like domain-containing protein 1 (AOA0G2JRQ6) and 2 (AOA0JIYY99), annotated by Uni-
ProtID, which were annotated to scaffolds or patches in build hg19 and have not been assigned gene names (see
Additional file 3: Methods M3.). Transferrin (C9JB55, 75 amino acids) is also labelled by UniProtID as it originates
from the same gene as Serotransferrin (P02787, 698 amino acids, labelled TF)

0.05/112=4.46 x 10~*); 52 EpiScores and 21 proteins — mapping to 56 unique proteins
— were significant at a nominal P<0.05 threshold (Additional file 1: Tables S12 and
S13). Furthermore, the absolute values of the log-hazards (per standard deviation of the
predictor variable) were consistently greater for the EpiScores compared to the corre-
sponding measured proteins (Fig. 4., full results: Additional file 1: Table S13 and Addi-
tional file 2: Fig. S4). These findings remain nominally significant (P<0.05) upon further
adjustment for covariates relevant to cardiovascular disease. The proportional hazards
assumption was met for all models (Schoenfeld residual Py,;,,>0.05, Pyiscore/protein >0-05
Additional file 1: Tables S14 & S15) with the exception of one EpiScore (Cell division
cycle 5-like protein, CDC5L, Q99459) and one protein (Vitronectin, VTN, P04004).
Finally, we compared nested Cox proportional hazard models to determine if the EpiS-
core augmented the measured protein in the incident cardiovascular disease analyses.
Here, we considered the 17 instances where both the model with the EpiScore and the

model with the corresponding, directly measured protein had nominally significant
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(P<0.05) associations for the EpiScore and protein. Adding the EpiScore to a model con-
trolling for age, sex and the measured protein resulted in a significantly improved model
fit for 10 of the 17 models at P<0.003 (0.05/17), (Additional file 2: Fig. S5., and Addi-
tional file 1: Tables S16 and S17).

Discussion

Here, we present the first large scale epigenome-wide assessment of the highly abun-
dant serum proteome, as measured by mass spectrometry. Using two different regres-
sion frameworks, we revealed 15,855 significant associations via a marginal linear
approach and 697 associations using a penalised Bayesian approach. 505 of the protein
~ CpG associations overlapped between the two methods. The two EWAS approaches
offer different insights into the relationship between the methylome and the proteome.
As the marginal regression models consider each CpG in isolation, ignoring any correla-
tion patterns across the genome, it identifies a large number of associations. By contrast,
the penalised Bayesian approach implicitly performs fine mapping through the joint and
conditional analysis of all CpGs. This yields parsimonious solutions for downstream
analyses and EpiScore applications [16].

As we have shown for other complex traits, such as markers of metabolic health [27],
the method used to conduct an EWAS has major implications on the number of sig-
nificant loci identified. Here, a marginal approach identified 15,855 lead loci, compared
to 697 in the joint and conditional penalised Bayesian regression. Both methods offer
valid insights. The former highlights associations for intercorrelated CpGs, potentially
across genes which are functionally related. The latter identifies a parsimonious set of
high-confidence lead loci, reducing the chance of false-positive findings.

Focussing on the Bayesian EWAS, our results include both previously unreported asso-
ciations and those that align with and expand upon results reported in the literature. For
example, some of our loci, mapping to ABCGI, CPTIA and TXNIP, have been associated
with lipid and metabolic traits such as triglycerides, BMI, and type 2 diabetes [23-25, 28,
29]. Four CpGs within ABCG1, which encodes a protein involved in cholesterol trans-
port [30], associated with 12 different proteins. For example, cg06500161 had 8 trans
associations with apolipoprotein F, apolipoprotein C4, afamin, gelsolin, vitronectin, apo-
lipoprotein A-I, antithrombin-III, and plasminogen. Additionally, cg00574958 (CPT1A,
important for mitochondrial oxidation of long-chain fatty acids [31]), was found here
to be associated with Apolipoprotein E, Apolipoprotein B-100, and two immunoglobu-
lin components, complementing previous protein associations with APOC3 and CRP
[21, 32]. We identified associations for cg19693031 (TXNIP, an oxidative stress medi-
ator, particularly associated with diabetes [33]) and eight different proteins, including
those involved in the innate immune response such as Ficolin 3, Attractin and Comple-
ment component C9, which provides further insight into the link between diabetes and
inflammation [34]. Finally, we build on previously identified associations between CpGs
annotated to NLRCS5 and immune-system proteins [26]. We found associations between
cg0783945 (NLRCS) and seven proteins, including four immunoglobulin components, 2
complement proteins and plasminogen whilst cg16411857 (NLRCS5) was also associated
with an immunoglobulin component, thus reinforcing the role of the NLRCS as a regula-
tor of immune responses [35].
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In our results, the most pleiotropic CpG site (cg06072257) associated with 22 proteins.
The CpQG itself is not directly annotated to a gene, but is situated near UBIADI, which
encodes UbiA Prenyltransferase Domain Containing 1, a protein involved with antioxi-
dant processes [36]. It has previously been associated with prevalent breast cancer [23],
incident COPD [23], an age-by-sex interaction [37] and the levels of 17 proteins includ-
ing CRP, SERPING1, CHAD and CGA [21, 32]. However, none of these proteins previ-
ously identified were assessed in our dataset. A network analysis using StringDB [19]
highlighted multiple interactions (Additional file 2: Fig. S2). For example, complement
8 alpha and gamma chains and vitronectin are classified as having ‘known interactions’
(KEGG annotated pathway: Complement and coagulation cascades, via StringDB). How-
ever, in our data, vitronectin did not correlate strongly with the complement 8 alpha or

gamma chains ( -0.07, 0.017, respectively) and only shared this one high confi-

Tpearson =
dence CpG locus. Further, Ficolin-3 and complement factor H, which were weakly corre-
lated (rpeapson = 0-16, S17), are both annotated to the serine-type endopeptidase complex
(Protein complexes annotated by the Gene Ontology Consortium, as of August 2022,
via StringDB). The association of this CpG locus with proteins of related functions, in
our results and previous EWASs [21] suggest it could play a regulatory role or reflect
changes in the activity of these pathways. However, this analysis was partly limited by
incomplete recognition of genes for immunoglobulin proteins in the StringDB database
and further experimental evidence is required to explore this in detail.

In independent train/test Generation Scotland subsets, we generated statistically sig-
nificant EpiScores for 112 proteins using CpGs from the EPICv1 array. As suggested
from our sensitivity analyses, not all will translate perfectly to different Illumina array
versions. Sixteen of the generated EpiScores were associated significantly with inci-
dent cardiovascular disease compared to just one measured protein, in an age and sex
adjusted model. In general, the hazard ratio estimates for EpiScores were either higher
(where HR > 1) or lower (where HR < 1) than the respective measured protein estimates.
Further, it is not necessarily the EpiScores which correlate the highest with their respec-
tive protein which demonstrate the strongest disease associations. For example, Gel-
solin (GSN, P06396) associates with cardiovascular disease with a hazard ratio of 0.6,
P=4.9x10"' and demonstrates a Pearson r of 0.21 with its paired measured protein.
This pattern extends to models adjusted for cardiovascular-relevant covariates, where
three EpiScore associations remained Bonferroni significant.

Many of the EpiScore findings align with previously studies on proteins and cardiovas-
cular disease. For example, vitronectin (P04004) has already attracted considerable inter-
est as a putative biomarker for cardiovascular disease. It is a glycoprotein found both in
blood, alpha granules of platelets and the extracellular matrix, with suspected roles in
platelet aggregation following vascular injury and, via plasminogen activator inhibitor-1,
a role in reducing thrombus clearance [38]. Vitronectin levels have been shown to cor-
relate with the extent of coronary atherosclerosis [39], to be higher in patients with acute
coronary syndromes [40] and be an independent risk factor for adverse cardiovascular
events in patients undergoing percutaneous cardiac interventions [41]. Thus, it has been
suggested as a biomarker to increase the accuracy of acute coronary syndrome diagno-
sis [42]. Our results (P04004y;s .. HR per SD (95% CI): 1.48 (1.28,1.7), compared to
P04004,....rc
prediction, suggest it would be worth considering an EpiScore for vitronectin alongside

4 1.39 (1.19, 1.62)), which focused on longer term cardiovascular disease
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the measured protein itself when investigating biomarker utility. Similarly, lipopolysac-
charide-binding protein (P18428) has also been associated with increased risk of car-
diovascular disease [43], and the EpiScore demonstrated a stronger association with
incident cardiovascular disease 1.42 (1.23-1.64) compared to 1.04 (0.9-1.2) for the mea-
sured protein.

By contrast, Heparin cofactor 2 (P05546, SERPIND1) is a thrombin inhibitor, and has
predominantly been suggested to be protective against cardiovascular disease [44, 45].
However, our findings showed an increased risk of a cardiovascular diagnosis or death
with increasing concentrations (EpiScore HR 1.47 [1.27-1.71], measured protein 1.17
[1.01-1.35]).

Gelsolin (P06396, GSN) is another interesting example. This protein facilitates actin
filament recombination and circulating GSN is proposed to mitigate the development
of atherosclerosis through multiple pathways including inflammatory cell migration and
interleukin release and limiting endothelial injury [46]. In our results, the GSN EpiScore
demonstrated a significant protective association with incident cardiovascular disease
(HR: 0.61 [0.52,0.71], P = 4.96 x 10~ 1), whilst the measured protein demonstrated a pro-
tective, but non-significant relationship after correction for multiple comparisons (HR:
0.81, p = 0.005).

Blood-based DNAm measures methylation predominantly in leucocytes [47]. High
abundant proteins, comprising up to 99% of plasma proteins by mass [12] are mostly
synthesised in the liver and secreted into plasma [48]. Therefore, the association between
blood-based DNAm measurements and protein abundance is indirect. Nevertheless, we
have demonstrated that blood-based DNAm significantly associates with relative protein
abundance in 112 of 133 proteins assessed. We hypothesise that DNAm patterns reflect
biological changes underpinning variation in these proteins, largely influenced by factors
impacting protein regulation and synthesis such as inflammatory and metabolic states.

For example, ApoA-1 is a major component of high-density lipoproteins, transporting
cholesterol from tissues to the liver for excretion, with additional immuno-modulatory
and anti-inflammatory roles [49]. Synthesis of ApoA-1 occurs principally in the liver and
also the intestine, regulated by hormonal mediators such as oestrogen, thyroid hormone
and insulin [50], in turn impacted via lifestyle factors such as diet and exercise [51].
Further, systemic inflammation, a feature of metabolic syndrome, can inhibit Apo-Al
production via inflammatory cytokines such as IL-6 and TNF-alpha [52]. There is a well-
established impact of inflammation and metabolic state on DNA methylation in blood
[9, 32] and thus it is likely these common features underpin correlations between EpiS-
cores and proteins. Multiple studies have identified an association of ApoA-1 or ApoA-
1:lipid ratio and cardiovascular disease [53, 54]. We found Apolipoprotein A1l (ApoA-1)
was associated with decreased hazards of cardiovascular disease (HR,eq5ured protein:0-79; P
=0.001, HRppigcoret 0.71, P = 4.76 x 10 %) in the age and sex adjusted model.

Though the strength of the mass spectrometry approach is its untargeted nature,
reducing potential selection bias, it does not easily measure low abundance proteins.
As approximately 20 proteins constitute 98% of the protein mass in human plasma,
mass spectrometry may lose valuable information from low-abundance proteins which
remain highly relevant for health and disease, unless particular strategies are employed
to allow their accurate detection [55]. An example of this could be interleukins, which
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occur at concentrations of ng/L in contrast to, for instance, apolipoproteins at concen-
trations of g/L [56].

Alternative mass spectrometry approaches such as the Seer platform [57] have also
been used to develop protein EpiScores (termed epigenetic biomarker proxies). As fur-
ther test-sets become available, it will be interesting to compare the performance of
EpiScores for the same protein generated on different platforms.

As the Generation Scotland cohort is predominantly of white European ancestry and
limited to those living in Scotland, these results are not necessarily generalisable to other
populations, although previous work has demonstrated that EpiScores for diabetes risk,
metabolic traits, CRP and smoking have all translated well to other cohorts, including
those of diverse ancestries [11, 27, 32, 58]. As the methylation and protein data are cross-
sectional, results and interpretation could be strengthened by analysis in longitudinal
datasets, allowing within subject comparison of changes in methylation and protein lev-
els. Additionally, DNAm is only one form of epigenetic regulation. To form a complete
understanding of the relationship between the epigenome and the circulating proteome
we could also consider additional factors such as histone modification, chemical modifi-
cation of RNA and mitochondrial gene expression [7].

Our analyses demonstrates that protein EpiScores exhibit significant relationships
with incident cardiovascular disease where measured proteins do not and tend to dem-
onstrate stronger hazard ratio point estimates. However, further modelling, in a larger
dataset, including other known cardiovascular disease risk factors should be undertaken
to probe this relationship further.

Conclusions

Here, we conducted the first large scale methylome-wide analyses of the high abun-
dant serum proteome as measured by mass spectrometry. Using two separate statisti-
cal frameworks, we identified 505 common CpG-protein associations, the majority of
which were trans associations. We find a complex interplay between these omics layers,
including a single CpG (cg06072257) associating as a trans locus with 22 proteins, whilst
most CpGs are associated with a small number of proteins. Furthermore, we generated
EpiScores for 112 proteins, 16 of which demonstrated both significant and stronger
associations with incident cardiovascular disease compared to the respective measured
proteins. There was also evidence for additive effects when including both the measured
protein and its corresponding EpiScore in the same model.

Our results demonstrate the potential for protein EpiScores as disease biomarkers,
particularly applicable to non-communicable diseases associated with environmental
and lifestyle factors. The potential for applications in disease prediction, evaluating ther-
apeutic intervention, risk stratification and precision medicine warrant further investi-
gation alongside proteome measurements.

Methods

Generation Scotland

Generation Scotland is an epidemiological study with comprehensive DNA, clinical, and
socio-demographic data from approximately 24,000 volunteers with linkage to medical
records [59]. Participants were recruited from across Scotland, aged 17-99, between
2006 and 2011. Blood samples were taken during the initial clinic visit for just over
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20,000 volunteers, alongside health, cognitive and lifestyle questionnaires. Participants
provided informed consent to electronic-health records linkage to both secondary and
primary care data, allowing analysis of prevalent and incident disease.

Mass spectrometry proteomics

Measurement of the circulating proteome in Generation Scotland was carried out using
a high flow-rate liquid chromatography tandem mass spectrometry, using SWATH
acquisition [60]. Data processing was performed with DIA-NN, using a spectral library
approach [61].This generated data for 439 inferred proteins, for 15,818 participants at
the time of analysis.

Full details of the protocol have been described previously [62]. In brief, serum sam-
ples were pre-processed for protein denaturation and trypsinisation, prior to liquid
chromatography - mass spectrometry (LC)-MS, using the Agilent 1290 Infinity II sys-
tem and TripleTOF 6600 mass spectrometer (SCIEX) and a scanning SWATH method
[60]. Output data were processed by DIA-NN [61], identified using a spectral library
[63] with precursor false discovery rate (FDR) set to 1%. R was used for further post-
processing including within-batch drift correction using a previously described method
[64] and between-batch correction, using the “limma” v3.54.2 algorithm [65]. Identified
signals were mapped to Universal Protein Resource (UniProt) IDs [66]. 133 of the signals
were uniquely mapped to one protein (Additional file 1: Table S18) and the remaining
306 were mapped to multiple possible target outcomes (Additional file 3: Methods M1).
For computational efficiency, we focus here on the 133 individual proteins, the values
for which were rank-based inverse normalised before being taken forward for further
analysis.

DNA methylation

Whole blood-based DNAm measurements were profiled on samples from the Gen-
eration Scotland baseline appointment, on sodium bisulphite treated DNA, with the
Mlumina Infinium HumanMethylationEPIC BeadChip array v1.0 [67]. Sample process-
ing and quality control (QC) of the methylation data is described in Additional file 3:
Methods M2, and has previously been described in full [22]. Briefly, DNAm was pro-
filed in four separate sets (Post QC: Ng; = 5,087, Ng.p = 459, Ngo3 = 4,450, Ngopy =
8,873, Total N = 18,869) [22]. Samples were removed if the median methylated signal
intensity was over three standard deviations lower than the expected value, where the
methylation-derived sex differed from self-reported sex and if >0.5% CpGs in the sample
had a detection P-value >0.01 (or >1% of CpGs with a detection P-value >0.05 for set 1).
Poorly performing probes were also removed if the beadcount was < 3 in >5% of samples
or >1% of the samples had a detection P-value of >0.01 (>0.5% samples with detection
P-value >0.05 in set 1). A total of 752,722 CpQG sites were included following quality con-
trol. Normalised methylation M-values were used for downstream analyses. 14,671 indi-
viduals from the Generation Scotland cohort had complete methylation and protein data
for analysis.

Epigenome-wide association studies (EWASs)
EWASs were performed to identify CpG-protein associations. We first employed a
marginal linear model approach (separate linear model for each possible CpG-protein
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association), using OmicS-data-based Complex trait Analysis (OSCA, v0.46.1) [15].
Marginal regression analyses do not account for the correlation structure between CpGs
across the genome, considering each locus in isolation. This approach is most com-
monly taken in omics association studies but can lead to issues with genomic inflation
[68] which was observed here. We subsequently employed a newly developed Bayes-
ian approach (GMRMomi) which models all CpGs jointly and conditionally on each
other for each protein [16]. This estimates CpG effects whilst considering relationships
between probes, selecting highly influential probes amongst those which are correlated.
Therefore, whilst the marginal linear analysis seeks to identify all CpGs associated with
the phenotype of interest, the penalised Bayesian approach facilitates both dimension-
ality reduction and fine mapping to identify the most strongly influential probes and
parsimonious EpiScore signatures. In order to reduce the computational burden of the
>400 million linear and 133 Bayesian EWASs, methylation M-values were pre-regressed
for age, sex and measurement batch using the limma package (version 3.60.4) in R [65].
Residuals from the output of a linear model for each CpG were scaled to have a mean of
zero and unit variance prior to the EWASs. Demographics for the 14,671 included indi-
viduals can be found in Additional file 1: Table S19. All analyses outside of OSCA and

GMRMomi were conducted in R version 4.4.1.

OSCA linear

Rank-based inverse normalised values for 133 proteins were taken forward to mixed-
effects linear regression analyses that adjusted for age and sex as fixed effects and a kin-
ship matrix as a random effect using the Imekin function (coxme package, version 2.2.20
[69]). The kinship matrix accounts for relatedness within the known family structures in
Generation Scotland. Residuals from each model (one per protein) were then scaled to
have mean of zero and unit variance prior to downstream analysis.

The fast-linear option within OSCA was used for the frequentist EWASs, with an
iterative approach for including covariates known to impact methylation [70], see Fig. 1.
Added covariates included: estimated white blood cell proportions (Houseman method
[71], with neutrophils dropped to minimise collinearity) in model 2. In model 3, we fur-
ther included body mass index (BMI, kg/m?) and smoking pack-years, where one smok-
ing pack-year equates to smoking 20 cigarettes per day for one year, both known to affect
DNA methylation [27, 58]. Both variables were log transformed (a constant of 1 was
added to all values in the smoking variable to account for never smokers in the transfor-
mation), to minimise skew in the data. Missing data (BMI: n = 92, smoking pack-years,
n = 275) were mean-imputed using the impute_mean function from the missMethods
package, version 0.4.0 in R [72], prior to log transformations. Finally, in model 4, we
added the first 20 principal components of the methylation data to account for possible
unmeasured confounding, given ongoing evidence of model inflation (Additional file 2:
Fig. S6) and as previously employed in EWASs in GS [22, 27]. The relationship between
the principal components and other continuous covariates is illustrated in Additional file
2: Fig. S7. The strongest correlation observed were those between PC6 and eosinophil
proportion and PC9 and eosinophil proportions (Pearson r = 0.25 and r = —0.25, respec-
tively, Additional file 1: Table S20). The strongest correlations observed between pro-
teins and PCs were 0.09 (PC14 and C3, P01024) and - 0.09 (PC15 and PON1, P27169),
see Additional file 1: Table S21. A Bonferroni-corrected threshold of Py forroni < 2.71 x
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107 1% was set for statistical significance. This was calculated using P < 3.6 x 10~ 8 as the
epigenome-wide significance threshold divided by the number of proteins assessed (133)
[18].

GMRMomi

GMRMomi is a software implementation of Bayesian penalised regression [16, 17]
based upon a framework proposed for genomics data (GMRM), adapted for large-scale
multi-omics data. The method utilises Gibbs sampling to generate draws from the pos-
terior distribution, considering the underlying genetic architecture and intercorrelation
of CpG sites, modelling all CpGs jointly and conditionally on each other. In addition to
controlling for known covariates, this method implicitly controls for unknown variables
such as white-cell proportions, which would usually be estimated from the methylation
data itself. This contrasts with the marginal analysis undertaken by OSCA, which con-
siders each probe separately.

Methylation M-values were prepared as above. Rank-based inverse normally trans-
formed protein levels were regressed on age, sex, logarithmic transformation of BMI,
and the logarithmic transformation of smoking pack-years (+ 1). Any missing data (BMI:
n = 92, smoking pack-years: n = 275) were mean imputed. The residuals from these lin-
ear models were scaled (mean zero, unit variance) and taken forward for further analy-
ses. Prior mixture variance proportions were set to 0.0, 0.001, 0.01, and 0.1, equivalent
to negligible, small, medium and large CpG effect sizes, as previously used for Bayes-
ian EWAS studies of the circulating proteome [73]. 2000 model iterations were run for
each protein, with 750 ‘burn-in’ iterations discarded prior to averaging the effect sizes
over the last 1250 posterior samples. A posterior-inclusion probability (PIP) of >0.95 was
used to select robust CpG-protein associations (Fig. 1). The mean proportion of variance
explained by all CpG loci for each protein was calculated as the mean variance explained
by methylation probes divided by total variance across the last 1250 iterations.

Annotation of proteins and methylation sites

CpG sites were annotated using the minfi package in R (IlluminaHumanMethylation-
EPICanno.ilm10b4.hgl9), version 1.50.0 [74], to establish chromosome, probe position,
relation to CpG-island and any nearby genes. Protein gene annotations were performed
in R using BioMaRT and Ensembl (Genome reference consortium build37, GRCh37, to
establish chromosome and transcription start-site (TSS) [75, 76].

CpG sites were characterised as being in cis (within 1 Mb) or trans (outside of this
region or on a different chromosome) of the TSS of the associated protein’s gene. It is
important to note that these annotations are for positional and descriptive purposes,
irrespective of the primary tissue responsible for protein synthesis and we make neither
a directional nor causal assumption about the nature of the relationships between CpGs
and proteins.

Three proteins could not be fully annotated to a genomic position in GRCh37, for fur-
ther details see Additional file 3: Methods M3. A Chi-squared test and post hoc Z-tests
assessed whether the distribution of CpG location (e.g., part of a CpG island) for the sig-
nificant EWAS loci, differed from the distribution of all probes on the array.

Further analysis included an EWAS catalogue [20] search for previous associations for
CpGs identified as statistically significant in the EWASs, along with the characterisation
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of pleiotropic loci and assessment for pathway enrichment in probe-associated genes
(Additional file 3: Methods M4 & M5).

Protein episcores

The 14,671 Generation Scotland participants were split into training and test datasets to
build protein EpiScores. The training dataset contained 6,816 individuals from measure-
ment Sets 1, 2 and 4. To minimise overfitting, all individuals (# = 3,671) within the same
family pedigree [77] as participants in the test dataset were removed from the training
dataset. The test dataset contained 3,463 unrelated individuals who had DNAm pro-
cessed together in Set 3. Demographics for the training and test sets can be found in
Additional file 1: Tables 522 & S23. In the training dataset, GMRMomi was run as previ-
ously specified (prior mixture variance proportions were set to 0.0, 0.001, 0.01, and 0.1,
total iterations to 2000 and 750 burn-in iterations. The mean posterior CpG weights,
calculated from post-burn-in iterations, for each of the 133 protein regression models
were extracted. EpiScores were then projected into the test set to create protein EpiS-
cores (additive sum of all CpG weights multiplied by the measured CpG M-values).
We additionally calculated the proportion of CpG loci for each EpiScore which can be
found on the EPICv2 array [78] (Additional file 1: Table S9) and re-calculated the pro-
tein EpiScores using only the loci on both the EPICv1 and EPICv2 arrays. To gauge the
translatability of these EpiScores to data where methylation has been measured using
the EPICv2 array we assessed the correlation between both sets of EpiScores and their
paired measured protein (Fig. 3., Additional file 1: Table S11).

Protein episcore versus measured proteins: associations with incident cardiovascular
outcomes

EpiScores which demonstrated a significant correlation with the measured protein level
(Pearson r >0.1 and uncorrected P < 0.05), were taken forward for further analysis in the
test dataset (I
with incident cardiovascular disease using Cox proportional-hazards models [79]. Inci-

ndividuals = 3463). We explored the association of the protein EpiScores
dent cardiovascular disease was defined as a composite outcome, including a diagnosis
of coronary heart disease, ischaemic stroke, myocardial infarction and any death related
to cardiovascular disease. Diagnoses were determined from secondary care records,
using CALIBER/HDRUK consensus definitions [80] and cardiovascular disease related
death using ICD codes 100-99, aligning with previous work on cardiovascular disease
carried out in Generation Scotland [81] (for further details see Additional file 3: Methods
M6). The censor date was set to the most recent date of linkage to disease data (August
2023) or non-CVD-related death, with a total follow up period of up to 17.6 years from
3154). Any individuals
with a diagnosis of cardiovascular disease received prior to their baseline appointment,

baseline appointment (NCVD—diagnoses and deaths — 191, Ncensored =

were excluded from the analysis (Npeyyient = 116). For baseline demographic and out-
come details see Additional file 1: Table S24.

Within the Generation Scotland test dataset, Cox proportional hazards models were
run for each protein EpiScore and each mass spectrometry measured protein level and
time-to incident cardiovascular disease using the survival R package, version 3.7.0 [82].
To compare the strength of association of both EpiScores and their paired, measured

proteins with incident cardiovascular disease we ran models adjusting for age and sex.
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This approach has also been taken with other work assessing the potential of epigenetic
biomarker proxies [57]. We additionally ran sensitivity analyses to control for further
covariates: firstly BMI, smoking pack-years and alcohol consumption (units per week)
(model 2) and finally also adding prevalent diabetes, prevalent hypertension, HDL cho-
lesterol, Total cholesterol and average systolic and diastolic blood pressures (model 3).
Missing data (BMI = 16, smoking pack-years = 4, alcohol units/week = 254, average sys-
tolic and diastolic blood pressures = 3, HDL cholesterol = 25 and total cholesterol = 21)
were imputed using kNN (VIM v.6.6.2 [83]) For further information on the derivation
of these variables see Additional file 3: Methods M6 and Additional file 1: Table S25 for
ICD codes used. Both the EpiScores and proteins were rank inverse normalised prior
to modelling. Finally, where both the EpiScore and measured protein were nominally
significant (P < 0.05) in association with incident cardiovascular disease, nested models
determined if the EpiScore improved fit by likelihood-ratio tests, (stats package in R,
version 3.6.2) after adding it to a model adjusting for age, sex and the relevant (mea-
sured) protein.
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