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Abstract

Background: Encephalitis is a severe and potentially life-threatening inflammatory disorder
of the central nervous system. Without prompt diagnosis and appropriate treatment, it
often results in poor clinical outcomes. The study aimed to develop an artificial intelligence-
based model that distinguishes autoimmune encephalitis from infectious encephalitis,
encompassing a broad spectrum of autoimmune encephalitis phenotypes, serostatuses,
and neuroimmunological entities. Methods: We conducted a retrospective analysis of
patients diagnosed with autoimmune encephalitis, including paraneoplastic neurological
syndromes and/or infectious encephalitis, at Vilnius University Hospital Santaros Klinikos
from 2016 to 2024. Supervised machine learning techniques were used to train the models,
and Shapley Additive Explanations analysis was applied to improve their interpretability.
Results: A total of 233 patients were included in the study. The Random Forest model
demonstrated the best performance in differentiating the etiology of encephalitis, achieving
an AUROC of 0.966. Further analysis revealed that laboratory, electroencephalography, and
clinical data were the most influential predictors, whereas imaging data contributed less to
classification accuracy. Conclusions: We developed a machine learning model capable of
distinguishing infectious encephalitis from both seropositive and seronegative autoimmune
encephalitis. Since autoimmune cases may be misdiagnosed as infectious in the absence of
detectable antibodies, our model has the potential to support clinical decision-making and
reduce diagnostic uncertainty.

Keywords: autoimmune encephalitis; infectious encephalitis; paraneoplastic neurologic
syndromes; artificial intelligence; machine learning

1. Introduction
Encephalitis is a life-threatening inflammatory nervous system condition with poor

overall outcomes without timely diagnosis and appropriate management [1,2]. The two
most common forms of encephalitis are infectious (IE) and antibody-positive autoimmune
encephalitis (AE), with a comparable incidence of ~1/100,000 person/years [3].

Although encephalitis is rare, prompt etiological diagnosis is essential, as delayed
treatment delays frequently result in persistent neurological sequelae [4]. Unfortunately,
establishment of etiological diagnosis remains challenging. Even in tertiary academic
centers equipped with advanced diagnostic capabilities, including brain biopsies, the
etiology of encephalitis remains undetetermined in 30% to 60% of cases [5–7]. Furthermore,
in routine clinical settings, the diagnostic yield is likely even lower due to the limited
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availability of advanced investigative tools. Commercially available polymerase chain
reaction assays (PCR) for IE detect only a limited number of pathogens and may produce
false-negative results due to various factors [8–11]. Similarly, the availability of commercial
autoantibody testing for AE is limited, costly, and frequently associated with diagnostic
inaccuracies regardless of diagnostic modality [12–15].

To address these limitations, multiple scoring systems have been proposed to either
diagnose AE or differentiate between AE and IE, many of which have demonstrated high
performance and external validation [16,17]. In contrast, artificial intelligence (AI)-based
techniques have rarely been explored. A few published studies demonstrated initial
results suggesting that AI may differentiate the etiology of encephalitis with accuracy
comparable to that of experienced neurologists [18,19]. However, these studies have
involved a relatively small sample size of autoimmune encephalitis (AE), with a primary
focus on antibody-positive limbic encephalitis. In addition, they have not addressed extra-
limbic central nervous system manifestations, seronegative AE, peripheral nervous system
involvement, or paraneoplastic neurological syndromes. Moreover, most previous models
have relied primarily on MRI or laboratory data.

To build on this research, we aimed to develop a model that distinguishes between
AE and IE, incorporating a wider spectrum of AE phenotypes, serostatuses, and neuroim-
munological entities. Importantly, our approach integrates both clinical and laboratory
data to enhance its applicability in real-world clinical practice.

2. Materials and Methods
2.1. Data Collection

We retrospectively collected data on patients diagnosed with AE including para-
neoplastic neurological syndromes (PNS) and/or IE from Vilnius University Hospital
Santaros Klinikos between 2016 and 2024. For AE and PNS and their respective clinical
syndromes, diagnosis was made based on published relevant guidelines [20–23]. For
other immune-mediated neuroinflammatory conditions, diagnosis was made using estab-
lished criteria with histological verification when available [24]. Antibody testing was
performed with commercially available indirect immunofluorescence cell-based assays
(CBA; Euroimmun, Lubeck, Germany) for the detection of neuronal surface antibodies (anti-
N-methyl-D-aspartate receptor (NMDAR), anti-leucine-rich glioma-inactivated protein 1
(LGI-1), anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR),
anti-contactin-associated protein 2 (CASPR2), anti-gamma-amino-butyric acid B-receptor
(GABAbR)) were used in accordance with the manufacturer’s instructions. For commercial
CBAs, both serum and cerebrospinal fluid (CSF) were tested when available. Lineblots
for intracellular antibodies against intracellular antigens (anti-Hu, Anti-Yo, anti-Ma1/2,
anti-amphiphisin, anti-DNER, anti-CV2, anti-titin, anti-recoverin, anti-GAD65; Euroim-
mun, Lubeck, Germany) were used in accordance with the manufacturer’s instructions.
Paired CSF and serum testing was performed when feasible. Additionally, samples were
screened using in-house rat brain immunohistochemistry as previously described [25] to
detect autoantibodies beyond the scope for commercial assays.

For IE, cases with a confirmed pathogen were diagnosed based on either bacterial
cultures (blood and/or CSF), CSF polymerase chain reaction (PCR), or both. In a minority
of cases, pathogen-specific antibodies were identified using ELISA or Western blotting,
with the demonstration of intrathecal antibody production in all cases when appropriate.
A small fraction of patients received the diagnosis of IE only after brain biopsy.

The dataset included patient demographics, presenting symptoms, serum and CSF pa-
rameters, electroencephalographic (EEG) findings (including diffuse slowing/non-epileptic
or epileptiform abnormalities), and MRI results (with or without contrast use). Presenting
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symptoms were defined as the patient’s major complaints at the time of admission and/or
objective neurological findings after neurological or psychiatric evaluation. To increase
statistical power, we incorporated an external dataset comprising 20 cases of LGI1-antibody
encephalitis and 21 cases of herpes simplex virus encephalitis from Müller-Jensen et al. [26].
Prior to integration, we performed data harmonization to ensure consistency between
the internal and external datasets. All variables were reviewed for alignment in defini-
tions, measurement units, and coding practices. Categorical variables—such as clinical
symptoms, EEG findings, and MRI abnormalities—were compared across datasets and
assigned to shared categories based on equivalent clinical meaning. Continuous variables,
including serum C-reactive protein (CRP), white blood cell (WBC) count, and CSF parame-
ters, were checked for unit consistency and converted when required. Only variables that
could be consistently aligned across both datasets were included in the combined analysis.
The external dataset contained complete information for all required variables, including
age, sex, clinical symptoms, serum CRP and WBC counts, CSF profiles, EEG results, and
MRI findings.

2.2. Data Pre-Processing

Categorical variables were transformed into binary format using one-hot encoding.
Missing values were handled via univariate imputation: continuous variables were imputed
with their median values, while categorical variables were imputed using the mode of
each class. The dataset was split into training (70%) and testing (30%) sets using stratified
sampling to preserve the proportion of AE and IE cases. To address class imbalance, higher
weights were assigned to the minority class during model training, thereby improving the
sensitivity and overall performance.

Prior to model development, Recursive Feature Elimination with Cross-Validation
(RFECV) was applied to identify the most informative predictors. RFECV was implemented
using a stratified 5-fold cross-validation strategy. Feature elimination was guided by the
AUROC metric, and the process continued until performance no longer improved or a
minimum of 25 features remained. An XGBoost classifier was used as the underlying
estimator due to its ability to handle nonlinear relationships and mixed data types.

2.3. Model Development and Validation

Supervised machine learning classifiers were employed to develop predictive models
capable of distinguishing AE from IE. The models included XGBoost, Random Forest,
LightGBM, Logistic Regression, K-Nearest Neighbors, and Gaussian Naïve Bayes.

Hyperparameter tuning for all models was performed using RandomizedSearchCV
with stratified 5-fold cross-validation, which preserves the proportion of AE and IE cases
in each fold. The AUROC metric was used to evaluate model performance during cross-
validation, and the best hyperparameters were selected based on this score (see Table S1 for
the full hyperparameter search spaces).

Models were evaluated on the independent test set that was retained during the
dataset-splitting process. Performance was assessed using accuracy, sensitivity, specificity,
F1-score, precision, and AUROC. SHAP (SHapley Additive exPlanations) was used to
interpret the contribution of each variable to model predictions and identify the most
important features driving differential diagnosis.

2.4. Statistical Analysis

Statistical analysis was conducted using R 4.4.3 (R Foundation for Statistical Comput-
ing, Vienna, Austria) and Python 3.11.4 (Python Software Foundation, Wilmington, DE,
USA). The Shapiro–Wilk test was applied to check for data normality. Continuous data
were presented as medians with interquartile ranges, and categorical data as frequencies
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along with percentages. Association between categorical variables was assessed using the
chi-square test or Fisher’s exact test. Comparisons of two independent groups were con-
ducted using the Mann–Whitney U test or independent samples t-test. Data visualization
comprised pie charts to demonstrate the distribution of categorical variables, and chord
diagrams created with the R ‘circlize’ package to illustrate relationships between variables.
Locally weighted scatterplot smoothing (LOWESS) and zero-crossing analysis were applied
to determine model-derived thresholds for laboratory features. Statistical significance was
set at p < 0.05.

3. Results
3.1. Clinical and Paraclinical Features of the Cohort

Out of 368 total cases, we excluded 18 patients with hematologic malignancies
(12 leukemia, 5 lymphoma, 1 myeloma), 10 with brain abscess, 6 with other oncologic
conditions, and 101 with miscellaneous diagnoses not related to encephalitis, leaving a final
cohort of 233 patients. The study included 233 patients (83/233 (35.6%) AE and 150/233
(64.4%) IE). Most cases in the autoimmune group consisted of antibody positive limbic
encephalitis, while the infectious group included both viral (n = 84, 56.0%) and bacterial
(n = 66, 44.0%) agents (Table 1).

Table 1. Distribution of autoimmune and infectious encephalitides cases.

Autoimmune Encephalitides (n = 83) Infectious Encephalitides (n = 150)

Associated Antibody n (%) Associated Agent n (%)

Anti-LGI1 29 (34.9%) Viral 84 (56.0%)
Anti-NMDA 9 (10.8%) HSV-1/HSV-2 34 (22.7%)
Anti-AQP4 9 (10.8%) Unidentified 25 (16.7%)

Seronegative 9 (10.8%) VZV 12 (8.0%)
Anti-Yo 7 (8.4%) TBEV 10 (6.7%)

Anti-GAD65 4 (4.8%) CMV 1 (0.7%)
Anti-CASPR2 3 (3.6%) EBV 1 (0.7%)

Anti-Hu † 3 (3.6%) Parvovirus B19 1 (0.7%)
Anti-AMPAR 2 (2.4%) Bacterial 66 (44.0%)

Atypical 2 (2.4%) Unidentified 31 (20.7%)
Anti-GABAB 1 (1.2%) Streptococcus spp. 8 (5.3%)
Anti-KLHL11 1 (1.2%) L. monocytogenes 8 (5.3%)

Anti-GFAP 1 (1.2%) B. burgdorferi 7 (4.7%)
Anti-Ri 1 (1.2%) Staphylococcus spp. 5 (3.3%)

Anti-MOG 1 (1.2%) N. meningitidis 3 (2.0%)
ANA 1 (1.2%) M. tuberculosis 2 (1.3%)

H. influenzae 1 (0.7%)
T. pallidum 1 (0.7%)

NMDA: N-methyl-D-aspartate receptor; LGI1: leucine-rich glioma inactivated 1; CASPR2: contactin-associated
protein-like 2; AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; AQP4: aquaporin-4;
MOG: myelin oligodendrocyte glycoprotein; GAD65: glutamic acid decarboxylase 65; KLHL11: Kelch-like protein
11; GFAP: glial fibrillary acidic protein; GABAB: gamma-aminobutyric acid type B receptor; ANA: anti-nuclear
antibodies; VZV: varicella zoster virus; HSV: herpes simplex virus; TBEV: tick-borne encephalitis virus; CMV:
cytomegalovirus; EBV: Epstein–Barr virus. † One anti-Hu case overlapped with anti-CV2 antibodies.

Clinical, paraclinical, and demographical data are displayed in Table 2. Most com-
mon presenting symptoms for IE were fever (n = 110, 73.3%), ataxia (n = 62, 41.3%), and
headache (n = 69, 46.0%). In contrast, seizures (n = 42, 50.6%), memory impairment (n = 37,
44.6%), emotional changes (n = 27, 32.5%), and behavioral changes (n = 28, 33.7%) were
more frequent in AE. Laboratory findings showed that patients with IE had significantly
higher CSF cell counts, protein levels, hypoglycorrhachia, and elevated serum CRP levels
compared to AE.
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Table 2. Comparison of clinical features, laboratory data, EEG findings, and MRI abnormalities
among patients with autoimmune, infectious, and viral encephalitis.

Variable Autoimmune (n = 83) Infectious † (n = 150) Viral (n = 84) p-Value * p-Value **

Age (years), median (IQR) 59 (41–68.5) 46.5 (28–63) 54 (34.25–66) 0.0108 0.2032
Sex (male), n (%) 38 (45.8%) 88 (58.7%) 49 (58.3%) 0.0588 0.1045

Presenting symptoms
Headache 5 (6.0%) 69 (46.0%) 42 (50.0%) <0.0001 <0.0001

Disorientation 26 (31.3%) 45 (30.0%) 28 (33.3%) 0.8333 0.7815
Gait disturbance 17 (20.5%) 11 (7.3%) 7 (8.3%) 0.0031 0.0252

Sleep impairment 7 (8.4%) 3 (2.0%) 2 (2.4%) 0.0370 0.0989
Behavioral changes 28 (33.7%) 13 (8.7%) 12 (14.3%) <0.0001 0.0032

Balance disorder 17 (20.5%) 10 (6.7%) 7 (8.3%) 0.0016 0.0252
Fever 10 (12.0%) 110 (73.3%) 62 (73.8%) <0.0001 <0.0001

Impaired consciousness 22 (26.5%) 35 (23.3%) 23 (27.4%) 0.5895 0.8986
Seizures 42 (50.6%) 31 (20.7%) 20 (23.8%) <0.0001 0.0003

Paresthesia 9 (10.8%) 12 (8.0%) 6 (7.1%) 0.4680 0.4030
GI symptoms 4 (4.8%) 39 (26.0%) 22 (26.2%) <0.0001 0.0001

Dizziness 22 (26.5%) 14 (9.3%) 8 (9.5%) 0.0005 0.0043
Ataxia 27 (32.5%) 62 (41.3%) 37 (44.0%) 0.1854 0.1258

Nystagmus 21 (25.3%) 13 (8.7%) 6 (7.1%) 0.0005 0.0014
Vision impairment 15 (18.1%) 9 (6.0%) 4 (4.8%) 0.0037 0.0068

Hearing impairment 3 (3.6%) 7 (4.7%) 2 (2.4%) 0.7043 0.6818
Somnolence 11 (13.3%) 20 (13.3%) 10 (11.9%) 0.9862 0.7928

Tremor 7 (8.4%) 22 (14.7%) 12 (14.3%) 0.1675 0.2337
Speech disturbance 15 (18.1%) 37 (24.7%) 24 (28.6%) 0.2470 0.1088

Memory impairment 37 (44.6%) 19 (12.7%) 16 (19.0%) <0.0001 0.0004
Attention disorder 14 (16.9%) 2 (1.3%) 2 (2.4%) <0.0001 0.0015

Paresis/plegia 22 (26.5%) 47 (31.3%) 29 (34.5%) 0.4396 0.2607
Hallucinations 9 (10.8%) 2 (1.3%) 2 (2.4%) 0.0019 0.0275

Emotional changes 27 (32.5%) 5 (3.3%) 5 (6.0%) <0.0001 <0.0001
Rash 1 (1.2%) 14 (9.3%) 8 (9.5%) 0.0155 0.0173

Pelvic organ dysfunction 10 (12.0%) 5 (3.3%) 4 (4.8%) 0.0094 0.0894
Laboratory data

WBC (×109/L, serum)
7.88

(5.84–10.30)
8.98

(6.50–12.85)
8.38

(6.39–10.22) 0.0451 0.5000

CRP (mg/L, serum) 2.12
(0.60–5.75)

11.40
(2.00–85.00)

4.15
(1.06–21.31) <0.0001 0.0124

Cell count (cells/µL, CSF) 5
(2–18.75)

121
(43.75–410.75)

61
(29.75–126.75) <0.0001 <0.0001

Protein (g/L, CSF) 0.46
(0.32–0.71)

1.02
(0.60–2.07)

0.73
(0.49–1.15) <0.0001 <0.0001

Glucose (mmol/L, CSF) 3.51
(3.31–4.03)

3.00
(2.45–3.71)

3.24
(2.82–3.94) 0.0001 0.0300

Oligoclonal bands (CSF) 15/44 (34.1%) 14/34 (41.2%) 10/26 (38.5%) 0.5208 0.7123
EEG data

Diffuse slowing/non-epileptic
abnormalities 31/65 (47.7%) 49/60 (81.7%) 33/41 (80.5%) <0.0001 0.0008

Epileptic abnormalities 21/65 (32.3%) 15/60 (25.0%) 12/41 (29.3%) 0.3674 0.7421
MRI abnormalities

White matter lesions 4 (4.8%) 22 (14.7%) 11 (13.1%) 0.0294 0.0762
Basal ganglia 6 (4.8%) 13 (8.7%) 3 (3.6%) 0.7799 0.3175

Corpus callosum 1 (1.2%) 7 (4.7%) 2 (2.4%) 0.2684 0.5966
Pontine 2 (2.4%) 4 (2.7%) 3 (3.6%) 0.9515 0.7004

Midbrain 2 (2.4%) 4 (2.7%) 3 (3.6%) 0.9515 0.7004
Thalamus 5 (6.0%) 10 (6.7%) 6 (7.1%) 0.9218 0.8360

Corona radiata 1 (1.2%) 8 (5.3%) 3 (3.6%) 0.1690 0.6211
Cortical edema 4 (4.8%) 3 (2.0%) 3 (3.6%) 0.2375 0.7134

Cerebellum 2 (2.4%) 6 (4.0%) 3 (3.6%) 0.7178 0.7004
Limbic system 29 (34.9%) 42 (28.0%) 30 (35.7%) 0.1756 0.8949

Contrast enhancement 10/74 (13.5%) 53/113 (46.9%) 24/71 (33.8%) <0.0001 0.0039
Edema 9 (10.8%) 37 (24.7%) 25 (29.8%) 0.0172 0.0039

Restriction on DWI 9 (10.8%) 35 (23.3%) 14 (16.7%) 0.0292 0.3337

IQR: interquartile range; GI: gastrointestinal; WBC: white blood cells; CRP: c-reactive protein; CSF: cerebrospinal
fluid; EEG: electroencephalography; MRI: magnetic resonance imaging; DWI: diffusion-weighted imaging. † The
infectious group includes both bacterial and viral cases; * p-values represent comparisons between the autoimmune
and infectious groups; ** p-values represent comparisons between the autoimmune and viral groups.

Paraclinical findings were significant for encephalopathic EEG pattern in IE compared
to AE and for parenchymal/meningeal contrast enhancement, mass effect, and restricted
diffusion on MRI (Table 2).
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The most frequently observed clinical syndrome in AE was focal limbic encephalopa-
thy, whereas generalized encephalopathy predominated in IE. Presenting symptoms, their
relations, and established syndromes are illustrated in Figures 1 and 2.

Figure 1. Chord diagrams illustrating symptom interconnections in (a) limbic encephalopathy,
(b) generalized encephalopathy, and (c) cerebellar-brainstem syndrome.

Figure 2. Pie charts depicting established clinical syndromes in (a) autoimmune, (b) infectious, and
(c) viral encephalitis. The ‘Other’ category includes cases of encephalomyelitis, cerebral cortical
encephalitis, CLIPPERS, diencephalitis, and encephalomyeloradiculoneuritis.
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3.2. AI Modeling

After performing recursive feature elimination to select the most important variables,
we identified a subset of features for model development. The features selected for AI
modeling are presented in Table 3.

Table 3. Features used by humans for diagnostic decisions and features selected for AI modeling
after RFECV.

Features Used by Humans Selected for AI Model (After RFECV)

Demographics and clinical X
Age X X

Sex_male X X
Rash X

Headache X X
Fatigue X

Sleep impairment X
Gait disturbance X

Behavioral changes X
Shivering X

Balance disorder X X
Catatonia X

Fever X X
Consciousness disturbance X X

Joint/muscle pain X
Dyspnea X
Seizures X X
Drooling X
Cough X

Myoclonus X
Sore throat X

Disorientation X
Paresthesia X

Fainting X
GI symptoms X

Back pain X
Chills X

Dizziness X
Ataxia X X

Nystagmus X X
Visual impairment X X

Hearing impairment X
Lethargy X X

Somnolence X
Tremor X

Delirium X
Dysphagia X

Speech disorder X
Memory impairment X X

Attention disorder X X
Paresis X X

Hallucinations X
Emotional changes X X

Olfactory disturbance X
Pelvic organ dysfunction X X

Laboratory features X
WBC_serum X X
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Table 3. Cont.

Features Used by Humans Selected for AI Model (After RFECV)

CRP_serum X X
Cell count_CSF X X

Protein_CSF X X
Glucose_CSF X X

Oligoclonal bands_CSF X
EEG

Diffuse slowing/non-epileptic
abnormalities X X

Focal epileptic abnormalities X
MRI features

Leukoencephalopathy X X
Basal ganglia X X

Cerebellar peduncles X
Corpus callosum X

Pontine X
Midbrain X
Thalamus X

Cortical edema X
Corona radiata X

Cerebellum X
Limbic system X

Enhancement_MRI X
Enhancement_leptomeningeal X
Enhancement_pachymeningeal X

Enhancement_linear X
Restricted diffusion_DWI X X

Edema_MRI X X
RFECV: recursive feature elimination with cross-validation; EEG: electroencephalography; MRI: magnetic reso-
nance imaging; DWI: diffusion-weighted imaging; WBC: white blood cell; CRP: C-reactive protein; CSF: cere-
brospinal fluid; X: feature considered for inclusion.

Using these variables, we employed a set of widely used classifiers—XGBoost, Ran-
dom Forest, LightGBM, Logistic Regression, Naïve Bayes, and K-nearest Neighbors—
chosen for their established performance in classification tasks. Random Forest was chosen
as the final model because it was the most robust classifier with the highest predictive
performance based on AUROC values. The DeLong test was performed to compare the AU-
ROC values of the developed models, revealing that Random Forest, Logistic Regression,
and LightGBM were more robust compared to K-Nearest Neighbors. No other statistically
significant differences were found. Detailed performance metrics are presented in Table 4.
AUROC values for different classifiers are shown in Figure 3.

Table 4. Performance metrics of machine learning models for the diagnosis of encephalitis.

Model Accuracy Precision Sensitivity Specificity F1-Score AUROC

Random Forest 0.971 1.000 0.920 1.000 0.958 0.966
XGBoost 0.943 0.957 0.880 0.978 0.917 0.940

LightGBM 0.943 0.957 0.880 0.978 0.917 0.949
Logistic Regression 0.943 0.920 0.920 0.956 0.920 0.964

Naïve Bayes 0.886 0.840 0.840 0.911 0.840 0.880
K-nearest Neighbors 0.871 0.833 0.800 0.911 0.816 0.865
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Figure 3. Receiver Operating Characteristic (ROC) curves comparing the performance of multiple
machine learning models.

The SHAP framework was employed to evaluate the impact of different variables
on the differential diagnosis in the developed machine learning model. Persistent fever
(defined as body temperature ≥ 38 ◦C lasting ≥ 3 consecutive days), headache, and
diffuse slowing/non-epileptic abnormalities on EEG were strongly associated with IE
(Figure 4), whereas memory impairment, nystagmus, emotional changes, and seizures were
predictive of AE. Among the laboratory features, elevated CSF cell counts and protein levels
exhibited the highest predictive value for IE. In comparison, imaging features consistently
demonstrated lower predictive importance, as quantified by their SHAP values relative to
laboratory and clinical variables.

Figure 4. (a) SHAP beeswarm plot displaying the distribution and impact of individual feature values
on the model output. Each dot represents a single instance’s SHAP value for a feature, colored by the
feature value. (b) SHAP feature importance plot.
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LOWESS smoothing of SHAP values was applied to identify zero-crossing points,
which serve as model-derived thresholds beyond which the likelihood of autoimmune
encephalitis begins to increase for key laboratory features: CSF cell count 14.32 cells/µL,
CSF protein 0.67 g/L, serum CRP 6.85 mg/L, and CSF glucose 3.31 mmol/L (Figure 5).

Figure 5. SHAP value–feature plots with LOWESS smoothing for CSF and serum biomarkers. Each
panel displays SHAP values from the predictive model plotted against their respective feature values:
(a) CSF cell count, (b) CSF protein, (c) serum CRP, and (d) CSF glucose. The blue line shows the
LOWESS-smoothed trend. The vertical red line indicates the threshold where feature values begin to
drive predictions toward autoimmune encephalitis diagnosis.

Additionally, Figure S1 presents four force plots, each corresponding to a patient,
including two seropositive and two seronegative cases, to demonstrate how individual
features contributed to the diagnosis of AE in each case.

3.3. Comparison with Human Controls

To compare the performance of the developed AI model against human controls, we
constructed an independent database comprised of 70 IE and AE cases that had not been
used in model training. Model performance was then compared with that of clinicians
(Table 5). The features made available to clinicians are detailed in Table 3. Further analysis
demonstrated that clinicians primarily relied on laboratory data when differentiating
encephalitis etiology. The features considered most impactful for the decision-making
process are illustrated in Figure 6.

Table 5. Performance comparison of the AI model and human evaluators in classifying
encephalitis cases.

Accuracy Precision Sensitivity Specificity F1-Score AUROC

AI model 0.971 1.000 0.920 1.000 0.958 0.966
Neurologist in training 1 0.900 0.846 0.880 0.911 0.863 0.896
Neurologist in training 2 0.800 0.677 0.840 0.778 0.750 0.809
Neurologist in training 3 0.757 0.618 0.840 0.711 0.712 0.776

Attending physician 1 0.843 0.733 0.880 0.822 0.800 0.851
Attending physician 2 0.829 0.933 0.560 0.978 0.700 0.769
Attending physician 3 0.871 0.864 0.760 0.933 0.809 0.847
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Figure 6. Variables most frequently identified as important by neurologists across all cases.
CSF: cerebrospinal fluid, MRI: magnetic resonance imaging, DWI: diffusion-weighted imaging,
EEG: electroencephalopgraphy.

4. Discussion
In this study, we developed and evaluated an AI-based model to differentiate AE

from IE using demographic, clinical, and paraclinical variables. The model incorporated
both antibody-positive and antibody-negative cases as well as a substantial proportion
of extra-limbic manifestations including peripheral nervous system disorders, thereby
reflecting real-life clinical scenarios. Our model demonstrated good performance metrics
with accuracy comparable to trained neurologists.

Previous studies have emphasized the time of symptom onset as a key discrimina-
tor between IE and AE [27,28]. Indeed, common subtypes of AE (e.g., LGI-1, CASPR2,
GAD65 mediated syndromes) typically follow an indolent course [29–31]. This complicates
diagnosis as current clinical criteria only account for cases with sub-acute symptom onset
consequently delaying recognition and immunotherapy initiation. Our findings suggest
that differential diagnosis may be achievable based on initial presenting symptoms, in-
dependent of disease course, with the potential for the earlier prospective identification
of AE.

Serological testing remains the cornerstone of AE diagnosis, and the incorporation
of seropositive cases into our model facilitated robust disease modeling despite known
caveats of commercial assays. However, seronegative AE continues to pose substantial
diagnostic challenges, often leading to misdiagnosis, delays in treatment, and worse clinical
outcomes [32–34]. Although advanced techniques like phage immunoprecipitation se-
quencing may serve as an additional diagnostic modality in selected AE cases, they remain
inaccessible to most clinical centers [35]. Since up to 50% of AE cases may be seronegative,
there is a critical need for diagnostic tools that do not rely on antibody detection. Our
results indicate that an AI-based approach may help to address this gap [19,36]. Future
collaborative studies should prioritize the inclusion of seronegative cohorts as such an
approach would be cost-effective and broadly applicable to real-world clinical settings.
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In the testing of our model against neurologists and neurologists in training, we found
that clinicians relied on laboratory features, particularly CSF cell count and protein lev-
els. Despite selecting similar features to base the diagnosis, none of the human controls
outperformed the model. Nevertheless, the AI-based model and human diagnosticians
misclassified different cases. This suggests that etiological decisions of the AI and human
controls are based on different data. For example, CSF cell count thresholds differentiating
AE and IE differed greatly in our study from previous reports [27], likely due to differences
in population characteristics and sample size, underscoring the limited generalizability
of rigid cut-offs. In most cases, clinicians misclassified patients who did not present with
typical features of a specific encephalitis etiology. Borderline laboratory values often con-
tributed to these diagnostic errors. For example, some patients exhibited CSF pleocytosis,
elevated cell counts, and increased protein levels, which could be misinterpreted as indica-
tive of an infectious etiology. Differentiation remains challenging when laboratory findings
do not clearly align with the presenting symptoms. In contrast, the SHAP framework pro-
vided insights into model decision-making, suggesting that AI can move beyond subjective
thresholds such as cell count or symptom onset to refine etiological classification.

Likewise, MRI interpretation using AI-based techniques has shown potential to aid
in the diagnosis of AE [37]. Radiomics techniques can extract quantitative features—such
as texture, shape, and intensity—from medical images that may not be easily detected by
the human eye [38]. While incorporating radiomics features could potentially improve
model performance, we did not include them in the current study due to the relatively
modest sample size and the high dimensionality of radiomics data. Including hundreds of
imaging features with a limited number of AE cases could increase the risk of overfitting
and reduce model generalizability. Future studies with larger, multi-center cohorts and
external validation are warranted to investigate the added value of radiomics in enhancing
the AI-based differentiation of AE and IE.

The major strength of this study is the integration of both seropositive and seronegative
AE cases. Such an approach enhanced the model’s relevance for real-world practice,
where autoimmune etiologies may be overlooked in the absence of antibody detection.
Furthermore, the infectious etiology subgroup consisted of both bacterial and viral agents
broadening the applicability and generalizability of the developed model. A deliberate
methodological choice was made to exclude time of symptom onset, a parameter often
used in clinical reasoning but limited by the indolent course of common AE subtypes (e.g.,
LGI1, CASPR2). By focusing on initial presenting features, our model is better positioned
to facilitate early diagnosis.

The study also has limitations. First, our dataset sample size was modest, which may
limit the robustness of the model, particularly for rare AE subtypes. A small sample size
can reduce the generalizability of model-derived thresholds and increase the risk of overfit-
ting to patterns present in the internal cohort. Second, we faced class imbalance, which
was addressed using class weighting; however, this approach may accentuate overfitting
to more prevalent classes, potentially affecting predictions in underrepresented patient
groups. Third, external validation was not feasible in this study, and future investigations
across independent populations are required to confirm the model’s performance and gen-
eralizability. Fewer seronegative cases were included than seropositive cases in the current
dataset, which may limit predictive performance for this subgroup; nevertheless, their
inclusion enhances the overall applicability of the model, and future studies with larger
seronegative cohorts could further improve the predictions. Finally, the internal dataset
originated from a single tertiary center (Vilnius University Hospital Santaros Klinikos),
which may differ from other clinical settings in terms of patient demographics, comor-
bidities, and diagnostic practices. Consequently, the model’s applicability to community
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hospitals or resource-limited settings—where EEG or MRI may not be available—may
be limited.

5. Conclusions
AI-based techniques can effectively distinguish between autoimmune encephalitis and

infectious encephalitis in a manner comparable to human assessments based on presenting
symptoms, without relying on the timing of symptom onset. The developed model encom-
passes both limbic and extralimbic cases, addressing scenarios of both antibody-positive
and antibody-negative patients to better reflect real-world clinical situations. To account
for the diagnostic gap of seronegative autoimmune encephalitis, future efforts in AI-based
modeling should prioritize seronegative cases to address this critical clinical need and
enhance diagnostic accuracy across the entire spectrum of autoimmune encephalitis.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/jcm14228222/s1, Table S1. Hyperparameter search spaces for the
machine learning classifiers, Figure S1. SHAP force plots illustrating the impact of clinical features on
model predictions for autoimmune encephalitis cases.
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