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Abstract

Wild rodents are important reservoirs and vectors of various pathogens, and play a crucial role in the spread of zoonotic
pathogens. The garden dormouse (Eliomys quercinus), an arboreal nocturnal rodent species native to Europe, has declined
throughout much of its natural range in recent decades. The reason for this ongoing decline is not yet fully understood,
but infectious diseases may play a role. This study aimed to review the diversity of pathogens associated with the garden
dormouse. For this purpose, a comprehensive review of the existing literature on garden dormouse-associated viruses,
bacteria and protozoa was conducted. In parallel, we analysed samples from 294 garden dormice, that were found dead
in Germany, for rodent-associated and zoonotic pathogens. The scientific literature currently, comprising 53 references,
covers 73 years and primarily addresses Borrelia spp. and Eimeria myoxi. In the literature, a total of eight pathogens have
been detected in garden dormice. In our own investigations, we were able to detect four different pathogens as well as
antibodies against hepatitis E virus. The most prevalent pathogen found in our study was Staphylococcus aureus (29%,
n=58). Borrelia spielmanii and B. afzelii were found in 5.6% of garden dormice (n=143) and 22% of the ticks attached
to garden dormice (n=32). This study reports the first documentation of Leptospira spp. in garden dormice, with L. borg-
petersenii, serogroup Sejroe, sequence type 197 detected in 2 of 176 animals. Beside these zoonotic pathogens metage-
nomic sequencing of selected samples revealed representatives of multiple DNA-virus families, including Parvoviridae
and Polyomaviridae, most likely without zoonotic potential. There is currently no evidence, either from the literature or
from our own investigations, that pathogens play a significant role in the decline of the garden dormouse in Germany.
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Introduction

The garden dormouse (Eliomys quercinus), an arboreal
rodent species native to Europe, occurring in the western
Iberian Peninsula, Italy, France and on some Mediterranean
islands, extending further to central and eastern Europe and
the Urals (Storch 1978; Bertolino et al. 2008), has disap-
peared from a large part of its geographic range in recent
decades (Bertolino 2017). Consequently, it is listed as
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vulnerable by the International Union for Conservation of
Nature (IUCN) (Bertolino et al. 2024). Garden dormice
commonly inhabit broad-leaved, mixed, or coniferous for-
ests, but can also be found in high-altitude shrubs and rocky
slopes (Biichner et al. 2024). They make use of rocky envi-
ronments with tree or shrub cover (Bertolino et al. 2005) and
can be found in these habitats from sea level to the upper
limit of the arboreal vegetation (2,000-2,200 m) (Bertolino
et al. 2008). Garden dormice are also synanthropic, in some
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regions occupying gardens, orchards, vineyards and even
houses within human settlements (Gil-Delgado et al. 2010;
Biichner et al. 2018).

The decline in garden dormouse populations appears to
be the result of multiple, interacting factors. Habitat loss and
fragmentation, reduced food availability, and exposure to
environmental toxins such as rodenticides have been identi-
fied as primary drivers (Biichner et al. 2024; Famira-Parc-
setich et al. 2024). However, the role of infectious diseases
is yet to be established.

Wild rodents are natural reservoirs for a diverse array of
viruses, bacteria, fungi, and parasites. While many of these
pathogens persist asymptomatically in their reservoir hosts,
they can cause severe or even fatal disease in other species,
including humans (Meerburg et al. 2009; Nakamura et al.
2013; Yarto-Jaramillo 2015; Kirilov et al. 2022). Glob-
ally, approximately one-third of infectious agents detected
in rodents — including viruses, bacteria, and protozoa — are
capable of infecting humans (Han et al. 2015). Because
garden dormice, similar to house mice (Mus musculus,
M. domesticus) and rats (Rattus spp.), may occur in close
proximity to human dwellings, the potential for zoonotic
transmission — particulary via athropod vectors — warrants
detailed investigation.

Vector-borne zoonotic pathogens

Among rodent-associated vector-borne zoonotic bacteria,
the Borrelia burgdorferi sensu lato complex is particulary
noteworthy. These spirochetes, which cause Lyme disease
— the most prevalent tick-borne disease in humans in the
Northern Hemisphere (Matuschka and Spielmann 1986)
— are transmitted by Ixodes ticks. The vectors acquire the
infection during larval feeding on infected rodents and
subsequently transmit the bacteria to new hosts during the
blood meal as nymphal stage (Steere AC 1989; Donahue et
al. 1987; Lane and Loye 1991). Distinct Borrelia genospe-
cies differ in their host associations: B. afzelii is maintained
mainly by mice (Apodemus spp.) and voles (Clethrionomys
spp.) (Wolcott et al. 2021), whereas B. spielmanii has been
closely linked to the garden dormouse (Richter et al. 2004,
2006).

Rodents also serve as reservoirs for other tick-borne
pathogens, including tick-borne encephalitis virus (Flavi-
viridae), and intracellular bacteria of the order Rickettsiales,
such as Anaplasma spp., Ehrlichia spp. and Rickettsia spp.
Additionally, protozoan parasites such as Babesia spp. and
Theileria spp., which are of veterinary relevance, have been
documented in rodent hosts (Meerburg et al. 2009; Kirilov
etal. 2022).
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Non vector-borne zoonotic pathogens

Beyond vector transmission, rodents can carry numer-
ous viruses and bacteria that are directly transmissible to
humans. Hantaviruses (Hantaviridae) are a prominent
example, with species from the families Muridae and Cri-
cetidae serving as reservoirs. In Europe, Puumala virus
(PUUV) is the most commonly detected zoonotic rodent-
borne hantavirus, though symptoms in humans are typically
mild to moderate. However, hantavirus species such as
Seoul virus (SEOV) and Dobrava-Belgrade virus (DOBV),
which may cause more severe symptoms, are also present
(Klempa et al. 2006).

Rodents and shrews in Europe are also known to transmit
encephalitis-causing viruses such as bornaviruses and lym-
phocytic choriomeningitis virus (LCMV).

The variegated squirrel bornavirus 1 (VSBV-1) is associ-
ated with exotic squirrel species, while Borna disease virus
1 (BoDV-1) is maintained in bicolored white-toothed shrews
(Crocidura leucodon) (Dirrwald et al. 2014; Hoffmann et
al. 2015; Schlottau et al. 2017). In humans and other mam-
mals, BoDV-1 infections can cause fatal, immune-mediated
non-suppurative encephalitis with neurological deficits
(Richt et al. 2001; Rubbenstroth et al. 2019; Schulze et al.
2020). Similarly, arenaviruses (Arenaviridae) can cause
encephalitis in humans and are transmitted primarily by
rodents of the families Muridae and Cricetidae. The lym-
phocytic choriomeningitis virus, the only arenavirus with
a global distribution, is hosted mainly by the house mouse
but has also been detected in wood mice (Apodemus sylvati-
cus) from Germany (Mehl et al. 2024) and Spain (Ledesma
et al. 2009) and pet Syrian golden hamsters (Mesocricetus
auratus) (Ackermann et al. 1972). Human infections occur
through direct contact with rodents or their excreta and may
cause aseptic meningoencephalitis or congenital malfor-
mations of the central nervous system (CNS) and eyes of
embryos (Ackermann et al. 1972, 1975; Jay et al. 2005).

Other zoonotic rodent-borne viruses from Germany
include hepeviruses, such as rat hepatitis E virus (ratHEV)
(Johne et al. 2010), which may cause acute or persistent hep-
atitis in humans (Andonov et al. 2019) and orthopoxviruses
such as cowpox virus (CPXV) or monkeypox virus (MPV)
(Ntumvi et al. 2018; Meseko et al. 2023; Jo et al. 2024).

Among bacteria zoonoses, Streptobacillus monilifor-
mis, the causative agent of rat bite fever, is noteworthy.
This pathogen is transmitted directly via bites or indirectly
through contaminated food or water, leading to fever, arthri-
tis, and a maculopapular, petechial or pustular rush, and
occasionally to life-threatening complications (Kondruweit
et al. 2007; Eisenberg et al. 2017).
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In Europe, the European brown hare (Lepus europaeus) is
the main reservoir host for Francisella tularensis, the caus-
ative agent of tularemia, but F. fularensis has been detected
also in voles of different species (Kaysser et al. 2008; Runge
et al. 2011; Jeske et al. 2019).

Rodents also serve as important reservoirs for pathogenic
Leptospira spp., spirochete bacteria that cause leptospirosis
— one of the most widespread zoonotic diseases worldwide.
Symptoms range from mild (headaches, chills) to severe
forms such as Weil’s disease or pulmonary involvement
(Karesh et al. 2012; Hamond et al. 2023).

Rodent specific and wildlife-relevant pathogens

Not all rodent-associated pathogens are zoonotic. Some
are host-specific commensals or affect other wildlife spe-
cies, potentially influencing population dynamics. A good
example is the decline of the European red squirrel (Sci-
urus vulgaris) in Great Britain, which was driven largely by
the introduction of invasive Eastern grey squirrels (Sciurus
carolinensis) carrying squirrelpox virus (SPPV). While grey
squirrels remain unaffected, the virus is lethal to red squir-
rels (Rushton et al. 2006; Lurz et al. 2025). The effects of
this introduced pathogen is exacerbated by anthropgenic
influences, such as deforestation, habitat degradation, and
resource competition. In addition, British red squirrels are
threatened by Staphylococcus aureus, which can cause fatal
exsudative dermatitis (Simpson et al. 2013). In these cases,
rats (Rattus norvegicus, Rattus rattus) and moles (Talpa
europaea) are considered reservoir hosts. Rodents may also
carry host-specific viruses — such as herpesviruses and poly-
omaviruses — that do not infect other mammalian species
but may still impact rodent health (Ehlers et al. 2007, 2019).
Likewise, certain animal pathogens, such as rustrela virus
(Bennett et al. 2020), can be transmitted from rodents to
larger mammals, where they may cause diesease in suscep-
tible hosts.

This study aims to (i) provide a comprehensive literature
review of known bacterial, viral, and protozoan pathogens
in E. quercinus, and (ii) present original pathogen screening
results from incidental collected samples from dead garden
dormice found in Germany, to assess whether pathogens
may be contributing to the species’ decline, and addition-
ally whether E. quercinus poses a zoonotic risk, given that
they often inhabit areas in close proximity to humans. This
pathogen screening was based on pathogen-specific and
non-targeted metagenomic analyses, and existing sequence
read archive (SRA) evaluation.

Materials and methods
Literature review

Relevant papers were searched and selected in January 2025
using the international online databases: PubMed and Web
of Science. The searches covered the scientific literature
published up to, and including, December 2024 with no
time or language limits. To find studies on garden dormice,
the following search strings were used: (Viruses OR Bacte-
ria OR Protozoa OR Disease OR Pathogen) AND (Garden
dormouse OR Eliomys quercinus OR Eliomys OR Gliridae).
The workflow followed the PRISMA guidelines (Page et al.
2021).

Sample collection and pathogen screening

Carcasses of 294 garden dormice found dead in Germany
between 2015 and 2021 (Fig. 1), were subjected to post-
mortem examination (Famira-Parcsetich et al. 2024), dur-
ing which, samples were taken for further analysis. The
number of samples submitted for testing for various patho-
gens, including various bacteria and viruses, varied due to
a number of factors, including the sometimes poor quality
of the sample material, resulting from decomposition. For
example, samples were not used if the organs had become
desiccated or severely autolytic due to prolonged exposure
to the elements, whereas samples were used even after a
prolonged period of freezing (Nippert et al. 2023). Other
factors included differing funding sources and the time at
which the samples were analysed during the course of the
project. We engaged in numerous collaborative endeavours
with diverse research laboratories, coordinated by the net-
work “Rodent-borne pathogens” (Ulrich et al. 2009, 2025
in press).

Depending on the tissue tropism of each pathogen, rel-
evant tissues were homogenized and nucleic acids were
extracted. Detection of pathogens or their nucleic acids,
or reactive antibodies was performed according to previ-
ously established protocols. Detailed information including
examined pathogens, methods and references can be found
in Table 1.

Metagenomic sequencing
A subset of obtained kidney samples (n=73) was subjected

to metagenomic next-generation sequencing (NGS). For this
purpose, DNA was extracted from kidney tissue and amplified
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Fig. 1 Distribution range of garden dormice in Europe, and Germany in particular (grey, [UCN 2023). Origin of the specimens examined in this

study (black dots). ©EEA 2022 and ©GeoBasis-DE/BKG 2021

via strand displacement amplification (SDA) with EquiPhi29
DNA polymerase as described previously (Vasilifinaité et
al. 2024). Seven such DNA samples were used directly for
sequencing library preparation. Another 66 samples were ran-
domly combined into three pools for sequencing (details avail-
able at Online Resource 1). Sequencing libraries were prepared
with Nextera XT library preparation kit (Illumina Inc., San
Diego, CA, USA) and sequenced using a NovaSeq Xplus 10B
machine with 2 x 150 bp (bp) paired-end reads at the Sequenc-
ing Facility of Center for Cancer Research, National Cancer
Institute, (Frederick, MD, USA). Additionally, 161 garden
dormouse associated Sequence Read Archive (SRA) datasets
available online before 2025-02—01 were downloaded and
analyzed in parallel (list of SRA datasets available at Online
Resource 2). Obtained sequencing reads from both our study
and the publicly available SRAs were trimmed with fastp tool
(v0.24.0) (Chen 2023). Sequences were assembled de novo
with megahit (v1.2.9.) (Liu et al. 2023), and viral sequences
longer than 300 nucleotides (nt) were annotated with Cenote-
taker3 (v3.3.2) (Tisza et al. 2021). Additionally, MetaPhlAn
4.0.3 (database vJun23) (Blanco-Miguez et al. 2023) analy-
sis was performed with standard parameters to determine the
presence of bacterial pathogens.

The computational resources of the National Institutes of
Health high-performance computing cluster Biowulf were
utilized. Sequencing reads were uploaded at the National
Center for Biotechnology Information (NCBI) under Bio-
Project accession number PRINA1241767.
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Furthermore, samples were analysed for the presence of
polyomaviruses. The results of these analyses have been
previously published and appear in the literature review
(Vasilitinaité et al. 2024).

Results
Literature review

The literature search yielded a total of 53 publications,
covering a 73-year period (1951-2024), and describes the
detection of eight different pathogens in garden dormice
(Table 2). Prior to 2010, fewer than one manuscript was
published per year, but since 2011 an increase was observed.
In the current decade, an average of 3.25 manuscripts were
published per year (Fig. 2). However, 40 of the 53 publica-
tions were excluded from the analysis because, on closer
inspection, they did not meet the search criteria (Fig. 3).
Two of the literature sources do not address pathogens or
the garden dormouse. Four of the sources address the gar-
den dormouse, but do not discuss pathogens. Pathogens in
other species, such as the edible dormouse (Glis glis), are
discussed in 23 publications. Eleven of the papers focus on
endoparasites such as nematodes or cestodes that do not
align with the aims of this study (Fig. 3).

Of the remaining 13 publications (Table 2), three manu-
scripts were published in the 1950s and 1970s and focus on
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Table 1 Analysis of garden dormouse samples for 16 pathogens, including sample material, sample size, detection method and respective refer-
ences and results of the examinations with information on the number of positive samples (and precise pathogen differentiation) and the resulting
prevalences. Responsible laboratories are indicated as footnotes

Pathogen Sample Sample Method Reference Positive Samples Prevalence 95% Con-
Material Size Type (%) fidence
Interval
RNA — Viruses
pan-hantavirus' Lung 19 RT-PCR, L Klempa et al. (2006) 0 0
segment
Puumala virus and related' Lung 19 RT-PCR,S  Schmidt et al. (2016) 0 0
segment
Borna disease-virus-1' Brain 60 RT - qPCR  Schulze et al. (2020) 0 0
Arenaviruses' Kidney 176 RT - PCR Vieth et al. (2007) 0 0
Hepatitis E-Virus' Liver 19 RT - PCR Ryll et al. (2017) 0 0
SARS-CoV-2? Throat Swab 23 RT - PCR Corman et al. (2020) 0 0
DNA — Viruses
Herpesviruses' Spleen 64 PCR Chmielewicz et al. (2001) 0
Orthopoxviruses! Nasal 70 qPCR Scaramozzino et al. 0 0
septum (2007)
Bacteria
Streptobacillus moniliformis® Throat swab 28 qPCR Fawzy et al. (2022) 0 0
Leptospira spp.* Kidney 176 qPCR Stoddard et al. (2009) 2 (Leptospira 1.1 0-3%
MLST Victoria et al. (2008) borgpetersenii,
Boonslip et al. (2013) serogroup Sejroe,
sequence type 197)
Borrelia spp.’ Skin 143 Nested-PCR  Richter and Matuschka 8 (Borrelia spielma- 5.6 9-18%
(2006) nii (7/8),
Borrelia afzelii (1/8)
Borrelia spp.’ Ticks 32 Nested-PCR  Richter and Matuschka 7 (Borrelia 22 7-36%
(20006) spielmanir)
AnaplasmalEhrlichia spp.'  Spleen 18 PCR Parola et al. (2000) 0 0
Rickettsia spp.! Spleen 18 PCR Regnery et al. (1991) 0 0
Staphylococcus aureus® Nose 58 Selective Mrochen et al. (2018) 17 29 1741%
media,
agglutina-
tion test,
PCR
Protozoa
Babesia spp.! Spleen 18 PCR Hilpertshauser et al. 0 0
(2006)
Serology
Anti-HEV antibodies’ Chest cavity 68 Indirect- Simanavicius et al. (2018) 1 (IgGtorat HEV 1 0-4%
fluid 1gG- ELISA CP(112-608) and

IgG to HEV GT3
CP (1-660))

! Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17,493 Greifswald — Insel Riems, Germany; 2 Clinic for Birds,
Reptiles, Amphibians and Fish, Justus-Liebig-University Giessen, 35,392 Giessen, Germany; 3 Hessian State Laboratory, 35,392 Giessen, Ger-
many; “Institute of Animal Hygiene and Veterinary Public Health, Veterinary Faculty, Leipzig University > Institute of Geoecology, Landscape
Ecology and Environmental Systems Analysis, Technische Universitit Braunschweig, 38,106 Braunschweig, Germany; © Institute of Immu-
nology, University Medicine Greifswald, 17,475 Greifswald, Germany; ’ Institute of Biotechnology, Life Sciences Center, Vilnius University,

01513 Vilnius, Lithuania

CP capsid protein, GT3 genotype 3, HEV hepatitis E virus, [gG immunoglobulin G, ratHEV rat hepatitis E virus, SARS-CoV-2 severe acute
respiratory syndrome coronavirus 2, MLST Multi locus sequence typing

viruses, bacteria and protozoa in garden dormice, including
tick-borne pathogens, such as Rickettsia prowazeki (Perez
Gallardo et al. 1951) and Coxiella burnetii (Perez Gallardo
et al. 1952). A further increase in the number of publica-
tions on tick-borne bacteria in garden dormice was observed

between 1999 and 2011, particularly with regard to Borrelia
spp. in France and Germany (Matuschka et al. 1999; Rich-
ter et al. 2004, 2011). From 2005 onwards, several publi-
cations on protozoa emerged (Bertolino and Canestri-Trotti
2005; Kvicerova et al. 2011; Azami-Conesa et al. 2023;
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Table 2 Results of the literature search for bacteria, viruses and proto-
zoa in garden dormice. Pathogens analysed in publications and deter-
mined prevalences

Pathogen Reference Country Prevalence 95%
(cohort Confi-
size) dence

Interval

RNA-Viruses Fischer et al. 0%

Borna disease ~ (2018a) Germany (n=156)
virus
DNA-Viruses
Polyomavirus  Vasilitinaité et Germany 3% 0-6%
al. (2024) (n=74)

Anti-polyoma-  Vasilitinaité et Germany 17% 8-26%

virus al. (2024) (n=69)

antibodies

Bacteria

Enterococcus  Silva et al. Portugal 97% 91-

feacium (2012) (n=33) 100%

Enterococcus  Silva et al. Portugal 3% 0-8%

Jaecalis (2012) (n=33)

Spirochetal Matuschka et France 91% 85—
infection al. (1999) (n=60) 99%
Borrelia afzelii  Richter et al.  France 31% 16—
(2004) (n=35) 47%
Borrelia Richter etal.  France 80% 67—
spielmanii (2004) (n=35) 93%
Richter etal. Germany !
(2011)
Staphylococcus Goémez etal.  Spain 0% (n=1)
aureus (2014)
Coxiella Perez Gal- Spain -
burnetii lardo et al.
(1952)
Rickettsia spp.  Perez Gal- Spain -
lardo et al.
(1951)
Protozoa
Eimeria sp. Fischeretal. Germany 2% 0-5%
(2018a) (n=57)
Eimeria myoxi  Cuoso-Pérez ~ Spain 57% 39—
et al. (2023) (n=28) 75%
Kvicerovaet Czech 85% 76—
al. (2011) Republic (n=54) 95%
Bertolinoet  Italy 64.7% 42—
al. (2005) (n=17in 8%
2000) and and
54.6% 25—
(n=11in  84%
2002)
Eimeria Bertolino et Italy 82.4% 64—
melanuri al. (2005) (n=17in  100%
2000) and and
36.4% 8-65%
(n=111n
2002)
Leishmania Azami- Spain 0% (n=1)
infantum Conesa et al.
(2023)

IThese publications are based on experimental infection trials, no
prevalences are given.
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Couso-Pérez et al. 2023), and from the 2010s on, single
publications on pathogens such as Enterococcus sp. (Silva
et al. 2012), Staphylococcus aureus (Goémez et al. 2014) and
polyomaviruses (Vasilitinaité et al. 2024) were published
(Table 2).

Specific pathogen screening

In our own investigations, we were able to detect four dif-
ferent pathogens as well as antibodies against hepatitis E
virus (HEV). Leptospira spp. DNA was found in two of 176
(1.1%, 95% CI 0-3%) kidney tissue samples. These were
further identified by multi locus sequence typing (MLST) as
Leptospira borgpetersenii, serogroup Sejroe, sequence type
(ST) 197 (Table 1). The positive samples came from one
animal in Rhineland-Palatinate (death 2019) and one ani-
mal in North Rhine-Westphalia (death 2021). In addition,
DNA of Borrelia burgdorferi s.l. was detected in eight of
143 (5.6%, 95% CI 9-18%) skin samples. We detected Bor-
relia spielmanii in seven of the eight positive samples, and
Borrelia afzelii in one sample. In seven of 149 ticks, from
32 different animals, we detected B. spielmanii DNA. Of the
seven animals in which B. spielmanii was detected, three
were found to be carrying ticks that also tested positive for
this bacterial DNA. In one out of 68 (1%, 95% CI 0—4%)
chest cavity fluid samples, antibodies against HEV (IgG to
rat HEV CP (112-608) and IgG to HEV GT3 CP (1-660))
were detected. The highest prevalence was found for Staph-
ylococcus aureus at 29% (95% CI 17-41%), with 17 out of
58 nose samples testing positive (Table 1). Of these 7/17
(41%) belonged to the lineage clonal complex (CC) 121/
CC1956. Moreover, we isolated several CC188 (n=3),
CC49 (n=2), CC15 (n=2) strains, as well as single iso-
lates belonging to CC5, CC7, CC121, CC130 and CC133.
All isolates were methicillin susceptible S. aureus (MSSA),
with singular isolates showing resistances to penicillin, cip-
rofloxacin, erythromycin and others (Table 3).

Metagenomic sequencing

MetaPhlAn analysis of metagenomic sequencing data from
garden dormouse kidney-derived DNA extracts (n=73)
and publicly available SRA datasets obtained from dif-
ferent garden dormouse tissues (feces, gut, liver, muscle,
hypothalamus, other unidentified tissue, n=161) revealed
a diverse range of bacterial pathogens (Fig. 4, Online
Resource 3 and 4). The highest diversity of the species iden-
tified was observed in fecal samples (30 species). Detection
of Enterococcus faecium and E. faecalis in fecal samples
was consistent with previously reported findings, how-
ever other Enterococcus and other species not previously
reported in garden dormouse were also identified (Table 2;
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Log-Transformed Species Abundance in Garden Dormouse Samples
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Fig. 4 Log-transformed heatmap of microbial species abundance
across garden dormouse samples. The species were profiled using
MetaPhlAn4 (Blanco-Miguez et al. 2023). The analysis included gar-
den dormouse kidney samples sequenced in this study and the gar-
den dormouse sequence read archive (SRA) datasets, and abundance
values are expressed as log-transformed relative abundances. Warmer

Fig. 4). Cutibacterium acnes was the only bacterial patho-
gen detected in the hypothalamus samples; however, this
species has been previously reported as a contaminant in
certain laboratory reagents and kits (Liu et al. 2022). In

@ Springer

-5

log transformed
average relative
R abundance

Sample

colors (e.g. yellow) indicate higher log-abundance values, while colder
colors (e.g. blue) indicate lower or absent microbial presence in that
tissue. MetaPhlAn4 screen results were combined by sequenced tis-
sue type (feces; hypothalamus; kidney; gut, liver, muscle, and other
unidentified tissue), and average relative abundance was determined
for each tissue type for each microbial species detected

addition Chlamydia psittaci, Pasteurella multocida, Entero-
bacter hormaechei and E. kobei, which are known opportu-
nistic agents in animals (Seriki et al. 2025; Smallman et al.
2024; Wang et al. 2024), were detected in kidney derived
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samples. In other tissue samples, opportunistic and environ-
mental bacteria such as Hafnia paralvei, Mycobacteroides
franklinii, Porphyromonas canoris, Morganella morganii,
and Erwinia rhapontici were detected at low abundance.
Investigation for viral sequences, with Cenote-Taker3, iden-
tified 129 viral contigs of at least 300 nt in length in 54 of
the sequenced samples (, revealing the presence of viruses
of multiple DNA-virus families, including Parvoviridae,
Adenoviridae, Circoviridae, Polyomaviridae, Anelloviri-
dae and Genomoviridae (Online Resource 5). Parvovirus-
related sequences belonging to diverse representatives of the
family Parvoviridae were present in five out of ten kidney
sequencing libraries prepared, and in at least four analyses
of SRA datasets. Complete genome sequences of 13 circu-
lar viruses were assembled (12 without perviously identi-
fied polyomavirus, Table 4, Online Resource 6). Assembled
viral sequences had very low to no similarity to each other
on the nucleotide sequence level, however, some resembled
previously identified sequences. For example, a circular
gemykrogvirus genome (Genomoviridae) extracted from a
pooled kidney sample of garden dormice, showed almost
99% identity to the sequence LK931484.1, previously iden-
tified in a sample of healthy bovine blood. The near-identical
dormouse-derived gemykrogvirus sequence to one reported

from bovine blood likely reflects the common environmen-
tal source of genomviruses, which are commonly detected
in diverse vertebrate and non-vertebrate samples (Kazlaus-
kas et al. 2019). In contrast, multiple genomovirus-related
sequences were recovered from pooled kidney samples,
highlighting diverse circular single stranded (ss) DNA
viruses in the dormouse-associated virome.

Discussion

As part of this study, we conducted an extensive literature
review, which shows that prior to 2010, the number of
publications concerning pathogens of garden dormice was
minimal, with even fewer addressing the bacteria, viruses
and protozoa that are present in these animals. This low
level of research interest in pathogens in garden dormice is
in line with the overall decline in research and publications
on garden dormice in general between 2000 and 2017 com-
pared to the period 1950 to 1999, with an apparent increase
only in 2017 (Lang et al. 2022). With regard to publications
on pathogens in garden dormice, the annual publications
increased since 2011. This may be because emerging zoo-
notic diseases have become a focal point in research, with

Table 4 Complete viral genomes recovered from garden dormouse kidney samples or sample pools. Summary of complete viral genomes identi-
fied using Cenote-Taker3 and screened with NCBI BLAST. Sequences were classified into viral families using top NCBI BLAST results, with
percent identity and accession numbers shown. Genomes were considered complete based on full-length alignment to reference genomes and the

presence of terminal repeats (DTRs)

GenBank  Length, Virus family NCBI Description Query %Identity  Acc. Accession

accession  nucleotides blast Cover Length

PV685787 1901 Circoviridae blastn MAG: ssDNA virus sp. isolate 64%  96.76% 1898  OMS§92393.1
164Circo-2, complete genome

PV685788 2146 Genomoviridae  blastn MAG: Genomoviridae sp. isolate 52%  92.07% 2153  NC_076323.1
ctdb80, complete genome

PV685792 2202 Genomoviridae  blastn Chicken genomovirus mg4 1196, com- 100% 79.91% 2191 MN379606.1
plete genome

PV685789 2158 Genomoviridae  blastn MAG: Genomoviridae sp. isolate 97%  91.56% 2156 0Q198078.1
GenomoviridaeDogfe418C1 genomic
sequence

PV685791 2125 Genomoviridae  blastn Sorex coronatus feces associated gemy- 98%  91.01% 2126  PQ576940.1
circularvirus 11, complete genome

PV685794 2204 Genomoviridae ~ blastn Red panda feces-associated gemycir- 57%  91.18% 2205  MZ556140.1
cularvirus isolate AliP03geno(09-2015
genomic sequence

PV685796 2034 N/A! blastn Dulem virus 22 isolate Duke43_SS 313, 91%  93.40% 2046  PP498712.1
complete genome

PV685795 2254 Genomoviridae  blastn MAG: Genomoviridae sp. isolate 47%  73.75% 2191 MT309841.1
6537_278, complete genome

PV685790 2881 Circoviridae blastx MAG: hypothetical protein [Cirlivirales 35%  57.18% 342 XOF03152.1
sp.]

PV685797 2191 Genomoviridae  blastn  MAG: Genomoviridae sp. isolate 17%  77.25% 2196  OMS892312.1
210Gen-2, complete genome

PV685793 2121 Genomoviridae ~ blastn HCBI9.212 virus complete sequence 99%  98.72% 2121  LK931484.1

PV685798 2748 N/A! blastx - 23%  56.94% 234  XOE94280.1

N/A not available, MAG Metagenome-Assembled Genome
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rodents being identified as reservoirs of many zoonotic
pathogens (Karesh et al. 2012; Wu et al. 2018). Additional
drivers, such as climate change and its associated alteration
of the distribution of arthropods and arthropod-borne patho-
gens may influence the presence of pathogens in rodents
(Caminade et al. 2019). Another aspect that may explain
the increase in research on pathogens in garden dormice is
the development and improvement of diagnostic methods
(Liu et al. 2023). A novel polyomavirus detected in garden
dormice by Vasilitinaité et al. (2024) serves as a notable
illustration. Another factor might be the establishment
and ivolvement of the network “Rodent-borne pathogens”
(Ulrich et al. 2025 in press).

The samples analysed in this study were collected as part
of an extensive research project carried out in Germany over
a period of six years (Biichner et al. 2024). A major focus of
this project was to investigate the causes of the decline of the
garden dormouse in Germany. It is likely that this extensive
project has helped to bring the garden dormouse back into
the focus of research, resulting in a significant increase in
annual publications since 2021. Because some of these pub-
lications also come from other European countries, such as
Spain (Azami-Conesa et al. 2023; Couso-Pérez et al. 2023),
it may be assumed that such extensive research initiatives in
one country have also led to an increase in research on the
garden dormouse in other countries. Furthermore, species
are brought to public interest and the attention of financial
supporters only in cases where they are listed as endangered
or where negative population trends are observed. This in
turn leads to increased research and, consequently, more
publications (Jari¢ et al. 2017; Davies et al. 2018).

While numerous studies on endoparasites were identified
in the literature (Makarikov 2017; Mas-Coma et al. 1977a,
(1977b), (1982); Miquel et al. 1996), they were excluded
from this review due to our selection criteria. Since these,
like ectoparasites, were neglected in our own investiga-
tions as well, this represents a major limitation in our study.
Notably, cestodes of the family Hymenolepididae have been
reported in garden dormice but appear to have no impact on
garden dormouse health (Makarikov and Georgiev 2020).

Vector-borne pathogens

In the past, a number of studies have focused on vector-
borne pathogens such as Rickettsia prowazeki (Perez Gal-
lardo et al. 1951), Coxiella burnetii (Perez Gallardo et al.
1952) and Borrelia spp. (Matuschka et al. 1999; Richter et
al. 2004, 2011) in garden dormice. Even in our own inves-
tigations, representatives of Borrelia spp. were detected.
Although B. afzelii has been detected in a related host, the
edible dormouse (Fietz et al. 2014), we mainly detected
B. spielmanii with only one instance of B. afzelii in our

@ Springer

samples. This confirms the role of the garden dormouse
as the main reservoir host of B. spielmanii, as persistent
infectivity of B. spielmanii in garden dormice for ticks has
been experimentally demonstrated (Richter et al. 2011) and
observed in the field (Richter et al. 2004 and manuscript in
preparation).

Non-vector-borne pathogens

Of particular zoonotic relevance, here, is the first detection
of L. borgpetersenii (serogroup Sejroe, ST 197) in the gar-
den dormouse. This species has previously been found in
the yellow-necked mouse (4dpodemus flavicollis) and bank
vole (Myodes glareolus) (Fischer et al. 2018b). Both spe-
cies are widespread in Europe and Germany and, like the
garden dormouse, inhabit broadleaf and mixed forests, as
well as structurally rich gardens and hedges. It is therefore
possible that the Leptospira were aquired from an environ-
ment contaminated by these two rodent species. The trans-
mission of pathogens from other rodents to garden dormice
must always be considered. This is illustrated by outbreaks
of Yersinia pseudotuberculosis infections, and associated
deaths, in two enclosure populations of garden dormice in
1991 (Meinig unpublished data) and in 2023 (Poéhle and
Ulber unpublished data). In both cases, it was subsequently
shown that the bacterium had been introduced by house
mice, leading to fatal diseases in the affected animals.

The absence of hantavirus detection in garden dormice,
in contrast to findings in edible dormice (Stanojevic et al.
2015), may reflect several contributing factors. Firstly,
hantaviruses show a high level of host specificity and spill-
over infections are detected only very rarely (Schlegel et
al. 2014), suggesting that the garden dormouse may not
serve as a natural reservoir in the way the edible dormouse
does (Plyusnin et al. 2014). Additionally, the transmission
and maintenance of a hantavirus within rodent host popula-
tions require a minimum host density, which may not be
present for the garden dormouse, and certain demographic
structures; below these thresholds, viral persistence may fail
(Tian et al. 2019).

Like the edible dormouse (Ehlers et al. 2019), the gar-
den dormouse has been shown to harbour an associated
polyomavirus (Vasilitinaité et al. 2024), however respective
viruses belong to different genera of the family Polyoma-
viridae. Both garden dormice in which the polyomavirus
was detected showed signs of hepatic changes and a whitish
substance was identified in the abdominal cavity of one of
the two animals. In this animal, an infectious disease had
been suspected as the cause of death (Vasililinaité et al.
2024). However, none of the other tested pathogens were
detected in these animals. Antibodies against the new poly-
omavirus were not detected in either of the two animals,
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whereas antibodies were found in samples of 12 other gar-
den dormice (Vasiliiinaité et al. 2024). Although viral DNA
and antibodies were detected in different individuals, phylo-
genetic analysis supports garden dormice as the natural host
rather than incidental environmental exposure. The absence
of antibodies in DNA-positive animals may reflect an acute
infection prior to seroconversion or possible persistence in
renal tissue, although the kidney has not yet been confirmed
as a reservoir for this virus (Vasilitinaité et al. 2024).

Rodent-specific and wildlife-relevant pathogens

Staphylococcus aureus was detected at a high prevalence
(29%) in the garden dormouse samples. Staphylococcus
aureus is an opportunistic pathogen in many small mam-
mals, including mice, shrews, voles, rats and squirrels
(Mrochen et al. 2018; Raafat et al. 2020; Yebra et al. 2024).
The predominant S. aureus lineages that we detected in the
garden dormice are also common in other wild small mam-
mals. For instance, CC121/CC1956 is common in mice,
shrews and voles (Mrochen et al. 2018), and CC49 is the
dominant lineage in wild small rodents (voles and mice),
but rare in humans. CC188 is common in laboratory rats and
other rodents, but rare in humans. This suggests that certain
rodent-adapted S. aureus lineages are circulating among dif-
ferent small mammal species, with some overlap between
the species. The absence of typical human or livestock CCs,
such as CC398-MRSA, in this wild rodent S. aureus popu-
lation, as well as the lack of antibiotic resistances, suggest
limited interaction of the garden dormouse population with
the human or livestock S. aureus population. The lack of
typical signs of S. aureus infections (i.e. purulent skin infec-
tions, abscesses) in the analysed garden dormice, and the
high genetic diversity of the S. aureus isolates, suggest a
commensal relationship rather than active infection, unlike
in British red squirrels (Simpson et al. 2013).

Metagenomic sequencing

MetPhlAn analysis revealed a variety of bacterial patho-
gens. Some of the pathogens were reported in previous
studies, such as Enterococcus feacium and E. faecalis, in
garden dormouse feces (Silva et al. 2012), however, to our
knowledge, the majority were identified here for the first
time. Several of these species, like Chlamydia psittaci,
Pasteurella multocida and E. hormaechei, are recognized
zoonotic pathogens, and their detection in dormouse kid-
neys, a normally sterile site, could be relevant. The pres-
ence of P. multocida may also be attributable to contact with
domestic cats, as some of the garden dormice were bitten
or even predated on by domestic cats (Famira-Parcsetich
et al. 2024). Furthermore, E. hormaechei was detected in

garden dormouse feces datasets and in 5 out of 10 kidney
sequencing libraries with relatively high abundance. Oth-
ers (e.g., C. acnes, Mammaliicoccus sciuri) may represent
low-virulence commensals or environmental contaminants.
It should be noted that the publicly available SRA datas-
ets and our kidney-derived libraries were generated using
different protocols, enrichment strategies, and sequencing
approaches (metagenomic, genomic, and transcriptomic),
reflecting differing study aims. Therefore, these results are
exploratory and require confirmation in dedicated follow-up
studies.

Metagenomic sequencing revealed viruses from multiple
DNA-virus families, including Parvoviridae, Adenoviridae,
Circoviridae, Polyomaviridae, Anelloviridae, and Genomo-
viridae. With the exception of Polyomaviridae, previously
reported in garden dormice (Vasilitinaité et al. 2024), rep-
resentatives of all other virus families are reported here
in garden dormice for the first time. The majority of viral
sequences from this study, particularly those from small cir-
cular DNA viruses, were highly divergent from previously
published sequences and likely represent novel rodent-asso-
ciated lineages. Notably, all 12 complete circular genomes
assembled here were derived from our kidney libraries
that were enriched for circular molecules (both pooled and
individual samples); none of the publicly available SRA
datasets used such enrichment, which likely explains why
substantially more circular DNA viruses were recovered in
our dataset. Parvovirus sequences were found in five of ten
kidney libraries and several SRA datasets; the longest frag-
ment (3056 nt) closely matched a rat-associated parvovirus
(98.57% identity), while others were more divergent, sug-
gesting multiple parvovirus lineages. Because many viral
detections originate from pooled samples and sequencing
strategies varied widely between datasets, abundance sig-
nals are exploratory and cannot confirm systemic infection
or individual prevalence. Nonetheless, the consistent detec-
tion of diverse circular DNA viruses sequences in kidney
tissue raises the possibility of active or persistent infections
in dormice, warranting targeted follow-up studies to clarify
host range and pathogenic potential.

Zoonotic risk and decline of the garden dormouse

The garden dormouse often inhabits areas in close prox-
imity to human settlements, which could facilitate contact
between wildlife, humans, and ectoparasites. According to
our findings, to date, the results indicate that — apart from
B. spielmanii and B. afzelii —zoonotic pathogens can only
be detected in garden dormice in rare cases. Nevertheless,
their frequent association with tick populations, capable of
feeding on both garden dormice and humans, underscores a
potential indirect public health risk, as infected ticks may be
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transmitted between wildlife reservoirs and people. Moni-
toring tick-borne pathogens in these habitats remains impor-
tant to assess and manage local zoonotic risk. Furthermore,
the samples examined exhibited a limited presence of patho-
gens. This finding suggests that infectious diseases may not
be the primary factor contributing to the observed decline
in the population of garden dormice under the prevailing
conditions. In case that a single pathogen is responsible for
the observed decline, a higher detection rate than observed
in this study should be assumed.

Limitations

Due to the suboptimal quality of the samples, as the animals
examined were already undergoing auto- and heterolysis
and had been deep-frozen prior to the examination, which
made it difficult to detect minor pathological abnormalities
or to carry out histopathological examinations, it was not
possible to carry out targeted tests for specific pathogens.
Given that all garden dormice were found to be deceased,
and the majority of these died as a result of predation, it
is likely that deaths due to pathogens are underrepresented,
and there is also a bias in the detected prevalences. The
presence of negative results and low prevalences neces-
sitates careful interpretation, as the sample sizes were too
small in some cases to draw reliable conclusions. Further-
more, due to constrained financial resources and laboratory
capacity, pathogens such as fungi or helminths, which could
also contribute to the decline of the garden dormouse, were
not investigated.

Conclusion

Our investigations suggest that, with exception of B. spielma-
nii, B. afzelii and L. borgpetersenii, no other pathogens with
zoonotic potential were present to any significant extent in
the garden dormice investigated from Germany. A more thor-
ough analysis, encorporating NGS of RNA viruses, should
be done since there might be even more unknown pathogens
infecting garden dormice that were missed so far. The novel
polyomavirus, that was detected in a previous study, is a good
example. Moreover, further investigation into the viruses
detected is recommended, as they may potentially be a con-
tributing factor to the observed decline. The literature review
revealed that the garden dormouse, and the pathogens affect-
ing this species, have been understudied in the past. Although
this study provides valuable data on infectious agents, patho-
gens alone are unlikely to explain the decline of E. guercinus.
However, the increasing number of studies on this topic in

@ Springer

recent years has created a growing body of research that may
help identify the causes of the garden dormouse’s decline or,
as in the case of pathogens, rule them out as possible factors.
Future research should therefore integrate ecological, envi-
ronmental, and anthropogenic factors to better understand its
population dynamics and conservation needs.
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material available at https://doi.org/10.1007/s10344-025-02008-0.
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