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vulnerable by the International Union for Conservation of 
Nature (IUCN) (Bertolino et al. 2024). Garden dormice 
commonly inhabit broad-leaved, mixed, or coniferous for-
ests, but can also be found in high-altitude shrubs and rocky 
slopes (Büchner et al. 2024). They make use of rocky envi-
ronments with tree or shrub cover (Bertolino et al. 2005) and 
can be found in these habitats from sea level to the upper 
limit of the arboreal vegetation (2,000–2,200 m) (Bertolino 
et al. 2008). Garden dormice are also synanthropic, in some 
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The garden dormouse (Eliomys quercinus), an arboreal 
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and Polyomaviridae, most likely without zoonotic potential. There is currently no evidence, either from the literature or 
from our own investigations, that pathogens play a significant role in the decline of the garden dormouse in Germany.
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regions occupying gardens, orchards, vineyards and even 
houses within human settlements (Gil-Delgado et al. 2010; 
Büchner et al. 2018).

The decline in garden dormouse populations appears to 
be the result of multiple, interacting factors. Habitat loss and 
fragmentation, reduced food availability, and exposure to 
environmental toxins such as rodenticides have been identi-
fied as primary drivers (Büchner et al. 2024; Famira-Parc-
setich et al. 2024). However, the role of infectious diseases 
is yet to be established.

Wild rodents are natural reservoirs for a diverse array of 
viruses, bacteria, fungi, and parasites. While many of these 
pathogens persist asymptomatically in their reservoir hosts, 
they can cause severe or even fatal disease in other species, 
including humans (Meerburg et al. 2009; Nakamura et al. 
2013; Yarto-Jaramillo 2015; Kirilov et al. 2022). Glob-
ally, approximately one-third of infectious agents detected 
in rodents – including viruses, bacteria, and protozoa – are 
capable of infecting humans (Han et al. 2015). Because 
garden dormice, similar to house mice (Mus musculus, 
M. domesticus) and rats (Rattus spp.), may occur in close 
proximity to human dwellings, the potential for zoonotic 
transmission – particulary via athropod vectors – warrants 
detailed investigation.

Vector-borne zoonotic pathogens

Among rodent-associated vector-borne zoonotic bacteria, 
the Borrelia burgdorferi sensu lato complex is particulary 
noteworthy. These spirochetes, which cause Lyme disease 
– the most prevalent tick-borne disease in humans in the 
Northern Hemisphere (Matuschka and Spielmann 1986) 
– are transmitted by Ixodes ticks. The vectors acquire the 
infection during larval feeding on infected rodents and 
subsequently transmit the bacteria to new hosts during the 
blood meal as nymphal stage (Steere AC 1989; Donahue et 
al. 1987; Lane and Loye 1991). Distinct Borrelia genospe-
cies differ in their host associations: B. afzelii is maintained 
mainly by mice (Apodemus spp.) and voles (Clethrionomys 
spp.) (Wolcott et al. 2021), whereas B. spielmanii has been 
closely linked to the garden dormouse (Richter et al. 2004, 
2006).

Rodents also serve as reservoirs for other tick-borne 
pathogens, including tick-borne encephalitis virus (Flavi-
viridae), and intracellular bacteria of the order Rickettsiales, 
such as Anaplasma spp., Ehrlichia spp. and Rickettsia spp. 
Additionally, protozoan parasites such as Babesia spp. and 
Theileria spp., which are of veterinary relevance, have been 
documented in rodent hosts (Meerburg et al. 2009; Kirilov 
et al. 2022).

Non vector-borne zoonotic pathogens

Beyond vector transmission, rodents can carry numer-
ous viruses and bacteria that are directly transmissible to 
humans. Hantaviruses (Hantaviridae) are a prominent 
example, with species from the families Muridae and Cri-
cetidae serving as reservoirs. In Europe, Puumala virus 
(PUUV) is the most commonly detected zoonotic rodent-
borne hantavirus, though symptoms in humans are typically 
mild to moderate. However, hantavirus species such as 
Seoul virus (SEOV) and Dobrava-Belgrade virus (DOBV), 
which may cause more severe symptoms, are also present 
(Klempa et al. 2006).

Rodents and shrews in Europe are also known to transmit 
encephalitis-causing viruses such as bornaviruses and lym-
phocytic choriomeningitis virus (LCMV).

The variegated squirrel bornavirus 1 (VSBV-1) is associ-
ated with exotic squirrel species, while Borna disease virus 
1 (BoDV-1) is maintained in bicolored white-toothed shrews 
(Crocidura leucodon) (Dürrwald et al. 2014; Hoffmann et 
al. 2015; Schlottau et al. 2017). In humans and other mam-
mals, BoDV-1 infections can cause fatal, immune-mediated 
non-suppurative encephalitis with neurological deficits 
(Richt et al. 2001; Rubbenstroth et al. 2019; Schulze et al. 
2020). Similarly, arenaviruses (Arenaviridae) can cause 
encephalitis in humans and are transmitted primarily by 
rodents of the families Muridae and Cricetidae. The lym-
phocytic choriomeningitis virus, the only arenavirus with 
a global distribution, is hosted mainly by the house mouse 
but has also been detected in wood mice (Apodemus sylvati-
cus) from Germany (Mehl et al. 2024) and Spain (Ledesma 
et al. 2009) and pet Syrian golden hamsters (Mesocricetus 
auratus) (Ackermann et al. 1972). Human infections occur 
through direct contact with rodents or their excreta and may 
cause aseptic meningoencephalitis or congenital malfor-
mations of the central nervous system (CNS) and eyes of 
embryos (Ackermann et al. 1972, 1975; Jay et al. 2005).

Other zoonotic rodent-borne viruses from Germany 
include hepeviruses, such as rat hepatitis E virus (ratHEV) 
(Johne et al. 2010), which may cause acute or persistent hep-
atitis in humans (Andonov et al. 2019) and orthopoxviruses 
such as cowpox virus (CPXV) or monkeypox virus (MPV) 
(Ntumvi et al. 2018; Meseko et al. 2023; Jo et al. 2024).

Among bacteria zoonoses, Streptobacillus monilifor-
mis, the causative agent of rat bite fever, is noteworthy. 
This pathogen is transmitted directly via bites or indirectly 
through contaminated food or water, leading to fever, arthri-
tis, and a maculopapular, petechial or pustular rush, and 
occasionally to life-threatening complications (Kondruweit 
et al. 2007; Eisenberg et al. 2017).
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In Europe, the European brown hare (Lepus europaeus) is 
the main reservoir host for Francisella tularensis, the caus-
ative agent of tularemia, but F. tularensis has been detected 
also in voles of different species (Kaysser et al. 2008; Runge 
et al. 2011; Jeske et al. 2019).

Rodents also serve as important reservoirs for pathogenic 
Leptospira spp., spirochete bacteria that cause leptospirosis 
– one of the most widespread zoonotic diseases worldwide. 
Symptoms range from mild (headaches, chills) to severe 
forms such as Weil’s disease or pulmonary involvement 
(Karesh et al. 2012; Hamond et al. 2023).

Rodent specific and wildlife-relevant pathogens

Not all rodent-associated pathogens are zoonotic. Some 
are host-specific commensals or affect other wildlife spe-
cies, potentially influencing population dynamics. A good 
example is the decline of the European red squirrel (Sci-
urus vulgaris) in Great Britain, which was driven largely by 
the introduction of invasive Eastern grey squirrels (Sciurus 
carolinensis) carrying squirrelpox virus (SPPV). While grey 
squirrels remain unaffected, the virus is lethal to red squir-
rels (Rushton et al. 2006; Lurz et al. 2025). The effects of 
this introduced pathogen is exacerbated by anthropgenic 
influences, such as deforestation, habitat degradation, and 
resource competition. In addition, British red squirrels are 
threatened by Staphylococcus aureus, which can cause fatal 
exsudative dermatitis (Simpson et al. 2013). In these cases, 
rats (Rattus norvegicus, Rattus rattus) and moles (Talpa 
europaea) are considered reservoir hosts. Rodents may also 
carry host-specific viruses – such as herpesviruses and poly-
omaviruses – that do not infect other mammalian species 
but may still impact rodent health (Ehlers et al. 2007, 2019). 
Likewise, certain animal pathogens, such as rustrela virus 
(Bennett et al. 2020), can be transmitted from rodents to 
larger mammals, where they may cause diesease in suscep-
tible hosts.

This study aims to (i) provide a comprehensive literature 
review of known bacterial, viral, and protozoan pathogens 
in E. quercinus, and (ii) present original pathogen screening 
results from incidental collected samples from dead garden 
dormice found in Germany, to assess whether pathogens 
may be contributing to the species’ decline, and addition-
ally whether E. quercinus poses a zoonotic risk, given that 
they often inhabit areas in close proximity to humans. This 
pathogen screening was based on pathogen-specific and 
non-targeted metagenomic analyses, and existing sequence 
read archive (SRA) evaluation.

Materials and methods

Literature review

Relevant papers were searched and selected in January 2025 
using the international online databases: PubMed and Web 
of Science. The searches covered the scientific literature 
published up to, and including, December 2024 with no 
time or language limits. To find studies on garden dormice, 
the following search strings were used: (Viruses OR Bacte-
ria OR Protozoa OR Disease OR Pathogen) AND (Garden 
dormouse OR Eliomys quercinus OR Eliomys OR Gliridae). 
The workflow followed the PRISMA guidelines (Page et al. 
2021).

Sample collection and pathogen screening

Carcasses of 294 garden dormice found dead in Germany 
between 2015 and 2021 (Fig. 1), were subjected to post-
mortem examination (Famira-Parcsetich et al. 2024), dur-
ing which, samples were taken for further analysis. The 
number of samples submitted for testing for various patho-
gens, including various bacteria and viruses, varied due to 
a number of factors, including the sometimes poor quality 
of the sample material, resulting from decomposition. For 
example, samples were not used if the organs had become 
desiccated or severely autolytic due to prolonged exposure 
to the elements, whereas samples were used even after a 
prolonged period of freezing (Nippert et al. 2023). Other 
factors included differing funding sources and the time at 
which the samples were analysed during the course of the 
project. We engaged in numerous collaborative endeavours 
with diverse research laboratories, coordinated by the net-
work “Rodent-borne pathogens” (Ulrich et al. 2009, 2025 
in press).

Depending on the tissue tropism of each pathogen, rel-
evant tissues were homogenized and nucleic acids were 
extracted. Detection of pathogens or their nucleic acids, 
or reactive antibodies was performed according to previ-
ously established protocols. Detailed information including 
examined pathogens, methods and references can be found 
in Table 1.

Metagenomic sequencing

A subset of obtained kidney samples (n = 73) was subjected 
to metagenomic next-generation sequencing (NGS). For this 
purpose, DNA was extracted from kidney tissue and amplified 
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Furthermore, samples were analysed for the presence of 
polyomaviruses. The results of these analyses have been 
previously published and appear in the literature review 
(Vasiliūnaitė et al. 2024).

Results

Literature review

The literature search yielded a total of 53 publications, 
covering a 73-year period (1951–2024), and describes the 
detection of eight different pathogens in garden dormice 
(Table  2). Prior to 2010, fewer than one manuscript was 
published per year, but since 2011 an increase was observed. 
In the current decade, an average of 3.25 manuscripts were 
published per year (Fig. 2). However, 40 of the 53 publica-
tions were excluded from the analysis because, on closer 
inspection, they did not meet the search criteria (Fig.  3). 
Two of the literature sources do not address pathogens or 
the garden dormouse. Four of the sources address the gar-
den dormouse, but do not discuss pathogens. Pathogens in 
other species, such as the edible dormouse (Glis glis), are 
discussed in 23 publications. Eleven of the papers focus on 
endoparasites such as nematodes or cestodes that do not 
align with the aims of this study (Fig. 3).

Of the remaining 13 publications (Table 2), three manu-
scripts were published in the 1950 s and 1970 s and focus on 

via strand displacement amplification (SDA) with EquiPhi29 
DNA polymerase as described previously (Vasiliūnaitė et 
al. 2024). Seven such DNA samples were used directly for 
sequencing library preparation. Another 66 samples were ran-
domly combined into three pools for sequencing (details avail-
able at Online Resource 1). Sequencing libraries were prepared 
with Nextera XT library preparation kit (Illumina Inc., San 
Diego, CA, USA) and sequenced using a NovaSeq Xplus 10B 
machine with 2 × 150 bp (bp) paired-end reads at the Sequenc-
ing Facility of Center for Cancer Research, National Cancer 
Institute, (Frederick, MD, USA). Additionally, 161 garden 
dormouse associated Sequence Read Archive (SRA) datasets 
available online before 2025-02−01 were downloaded and 
analyzed in parallel (list of SRA datasets available at Online 
Resource 2). Obtained sequencing reads from both our study 
and the publicly available SRAs were trimmed with fastp tool 
(v0.24.0) (Chen 2023). Sequences were assembled de novo 
with megahit (v1.2.9.) (Liu et al. 2023), and viral sequences 
longer than 300 nucleotides (nt) were annotated with Cenote-
taker3 (v3.3.2) (Tisza et al. 2021). Additionally, MetaPhlAn 
4.0.3 (database vJun23) (Blanco-Míguez et al. 2023) analy-
sis was performed with standard parameters to determine the 
presence of bacterial pathogens.

The computational resources of the National Institutes of 
Health high-performance computing cluster Biowulf were 
utilized. Sequencing reads were uploaded at the National 
Center for Biotechnology Information (NCBI) under Bio-
Project accession number PRJNA1241767.

Fig. 1  Distribution range of garden dormice in Europe, and Germany in particular (grey, IUCN 2023). Origin of the specimens examined in this 
study (black dots). ©EEA 2022 and ©GeoBasis-DE/BKG 2021
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between 1999 and 2011, particularly with regard to Borrelia 
spp. in France and Germany (Matuschka et al. 1999; Rich-
ter et al. 2004, 2011). From 2005 onwards, several publi-
cations on protozoa emerged (Bertolino and Canestri-Trotti 
2005; Kvičerová et al. 2011; Azami-Conesa et al. 2023; 

viruses, bacteria and protozoa in garden dormice, including 
tick-borne pathogens, such as Rickettsia prowazeki (Perez 
Gallardo et al. 1951) and Coxiella burnetii (Perez Gallardo 
et al. 1952). A further increase in the number of publica-
tions on tick-borne bacteria in garden dormice was observed 

Table 1  Analysis of garden dormouse samples for 16 pathogens, including sample material, sample size, detection method and respective refer-
ences and results of the examinations with information on the number of positive samples (and precise pathogen differentiation) and the resulting 
prevalences. Responsible laboratories are indicated as footnotes
Pathogen Sample 

Material
Sample 
Size

Method 
Type

Reference Positive Samples Prevalence 
(%)

95% Con-
fidence 
Interval

RNA – Viruses
 pan-hantavirus1 Lung 19 RT – PCR, L 

segment
Klempa et al. (2006) 0 0

 Puumala virus and related1 Lung 19 RT-PCR, S 
segment

Schmidt et al. (2016) 0 0

 Borna disease-virus-11 Brain 60 RT - qPCR Schulze et al. (2020) 0 0
 Arenaviruses1 Kidney 176 RT - PCR Vieth et al. (2007) 0 0
 Hepatitis E-Virus1 Liver 19 RT - PCR Ryll et al. (2017) 0 0
 SARS-CoV-22 Throat Swab 23 RT - PCR Corman et al. (2020) 0 0
DNA – Viruses
 Herpesviruses1 Spleen 64 PCR Chmielewicz et al. (2001) 0 0
 Orthopoxviruses1 Nasal 

septum
70 qPCR Scaramozzino et al. 

(2007)
0 0

Bacteria
 Streptobacillus moniliformis3 Throat swab 28 qPCR Fawzy et al. (2022) 0 0
 Leptospira spp.4 Kidney 176 qPCR

MLST
Stoddard et al. (2009)
Victoria et al. (2008)
Boonslip et al. (2013)

2 (Leptospira 
borgpetersenii, 
serogroup Sejroe, 
sequence type 197)

1.1 0–3%

 Borrelia spp.5 Skin 143 Nested-PCR Richter and Matuschka 
(2006)

8 (Borrelia spielma-
nii (7/8),
Borrelia afzelii (1/8)

5.6 9–18%

 Borrelia spp.5 Ticks 32 Nested-PCR Richter and Matuschka 
(2006)

7 (Borrelia 
spielmanii)

22 7–36%

 Anaplasma/Ehrlichia spp.1 Spleen 18 PCR Parola et al. (2000) 0 0
 Rickettsia spp.1 Spleen 18 PCR Regnery et al. (1991) 0 0
 Staphylococcus aureus6 Nose 58 Selective 

media,
agglutina-
tion test, 
PCR

Mrochen et al. (2018) 17 29 17–41%

Protozoa
 Babesia spp.1 Spleen 18 PCR Hilpertshauser et al. 

(2006)
0 0

 Serology
 Anti-HEV antibodies7 Chest cavity 

fluid
68 Indirect-

IgG- ELISA
Simanavicius et al. (2018) 1 (IgG to rat HEV 

CP(112–608) and 
IgG to HEV GT3 
CP (1–660))

1 0–4%

1 Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17,493 Greifswald – Insel Riems, Germany; 2 Clinic for Birds, 
Reptiles, Amphibians and Fish, Justus-Liebig-University Giessen, 35,392 Giessen, Germany; 3 Hessian State Laboratory, 35,392 Giessen, Ger-
many; 4Institute of Animal Hygiene and Veterinary Public Health, Veterinary Faculty, Leipzig University 5 Institute of Geoecology, Landscape 
Ecology and Environmental Systems Analysis, Technische Universität Braunschweig, 38,106 Braunschweig, Germany; 6 Institute of Immu-
nology, University Medicine Greifswald, 17,475 Greifswald, Germany; 7 Institute of Biotechnology, Life Sciences Center, Vilnius University, 
01513 Vilnius, Lithuania
CP capsid protein, GT3 genotype 3, HEV hepatitis E virus, IgG immunoglobulin G, ratHEV rat hepatitis E virus, SARS-CoV-2 severe acute 
respiratory syndrome coronavirus 2, MLST Multi locus sequence typing
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Couso-Pérez et al. 2023), and from the 2010 s on, single 
publications on pathogens such as Enterococcus sp. (Silva 
et al. 2012), Staphylococcus aureus (Gómez et al. 2014) and 
polyomaviruses (Vasiliūnaitė et al. 2024) were published 
(Table 2).

Specific pathogen screening

In our own investigations, we were able to detect four dif-
ferent pathogens as well as antibodies against hepatitis E 
virus (HEV). Leptospira spp. DNA was found in two of 176 
(1.1%, 95% CI 0–3%) kidney tissue samples. These were 
further identified by multi locus sequence typing (MLST) as 
Leptospira borgpetersenii, serogroup Sejroe, sequence type 
(ST) 197 (Table  1). The positive samples came from one 
animal in Rhineland-Palatinate (death 2019) and one ani-
mal in North Rhine-Westphalia (death 2021). In addition, 
DNA of Borrelia burgdorferi s.l. was detected in eight of 
143 (5.6%, 95% CI 9–18%) skin samples. We detected Bor-
relia spielmanii in seven of the eight positive samples, and 
Borrelia afzelii in one sample. In seven of 149 ticks, from 
32 different animals, we detected B. spielmanii DNA. Of the 
seven animals in which B. spielmanii was detected, three 
were found to be carrying ticks that also tested positive for 
this bacterial DNA. In one out of 68 (1%, 95% CI 0–4%) 
chest cavity fluid samples, antibodies against HEV (IgG to 
rat HEV CP (112–608) and IgG to HEV GT3 CP (1–660)) 
were detected. The highest prevalence was found for Staph-
ylococcus aureus at 29% (95% CI 17–41%), with 17 out of 
58 nose samples testing positive (Table  1). Of these 7/17 
(41%) belonged to the lineage clonal complex (CC) 121/
CC1956. Moreover, we isolated several CC188 (n = 3), 
CC49 (n = 2), CC15 (n = 2) strains, as well as single iso-
lates belonging to CC5, CC7, CC121, CC130 and CC133. 
All isolates were methicillin susceptible S. aureus (MSSA), 
with singular isolates showing resistances to penicillin, cip-
rofloxacin, erythromycin and others (Table 3).

Metagenomic sequencing

MetaPhlAn analysis of metagenomic sequencing data from 
garden dormouse kidney-derived DNA extracts (n = 73) 
and publicly available SRA datasets obtained from dif-
ferent garden dormouse tissues (feces, gut, liver, muscle, 
hypothalamus, other unidentified tissue, n = 161) revealed 
a diverse range of bacterial pathogens (Fig.  4, Online 
Resource 3 and 4). The highest diversity of the species iden-
tified was observed in fecal samples (30 species). Detection 
of Enterococcus faecium and E. faecalis in fecal samples 
was consistent with previously reported findings, how-
ever other Enterococcus and other species not previously 
reported in garden dormouse were also identified (Table 2; 

Table 2  Results of the literature search for bacteria, viruses and proto-
zoa in garden dormice. Pathogens analysed in publications and deter-
mined prevalences
Pathogen Reference Country Prevalence 

(cohort 
size)

95% 
Confi-
dence 
Interval

RNA-Viruses Fischer et al. 
(2018a)

0% 
(n = 156) Borna disease 

virus
Germany

DNA-Viruses
 Polyomavirus Vasiliūnaitė et 

al. (2024)
Germany 3% 

(n = 74)
0–6%

 Anti-polyoma-
virus
antibodies

Vasiliūnaitė et 
al. (2024)

Germany 17% 
(n = 69)

8–26%

Bacteria
 Enterococcus 
feacium

Silva et al. 
(2012)

Portugal 97% 
(n = 33)

91–
100%

 Enterococcus 
faecalis

Silva et al. 
(2012)

Portugal 3% 
(n = 33)

0–8%

 Spirochetal 
infection

Matuschka et 
al. (1999)

France 91% 
(n = 60)

85–
99%

 Borrelia afzelii Richter et al. 
(2004)

France 31% 
(n = 35)

16–
47%

 Borrelia 
spielmanii

Richter et al. 
(2004)

France 80% 
(n = 35)

67–
93%

Richter et al. 
(2011)

Germany 1

 Staphylococcus 
aureus

Gómez et al. 
(2014)

Spain 0% (n = 1)

 Coxiella 
burnetii

Perez Gal-
lardo et al. 
(1952)

Spain -1

 Rickettsia spp. Perez Gal-
lardo et al. 
(1951)

Spain -1

Protozoa
 Eimeria sp. Fischer et al. 

(2018a)
Germany 2% 

(n = 57)
0–5%

 Eimeria myoxi Cuoso-Pérez 
et al. (2023)

Spain 57% 
(n = 28)

39–
75%

Kvičerová et 
al. (2011)

Czech 
Republic

85% 
(n = 54)

76–
95%

Bertolino et 
al. (2005)

Italy 64.7% 
(n = 17 in 
2000) and 
54.6% 
(n = 11 in 
2002)

42–
87% 
and
25–
84%

 Eimeria 
melanuri

Bertolino et 
al. (2005)

Italy 82.4% 
(n = 17 in 
2000) and 
36.4% 
(n = 11 in 
2002)

64–
100% 
and
8–65%

 Leishmania 
infantum

Azami-
Conesa et al. 
(2023)

Spain 0% (n = 1)

1These publications are based on experimental infection trials, no 
prevalences are given.
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Fig. 3  Overview of the search strategy for viruses, bacteria, and protozoa in garden dormice and the results of the literature research, PRISMA 
flowchart adapted from Page et al. (2021)

 

Fig. 2  Results of the literature search are presented as the number of 
publications per year, within a defined time period. The results are 
presented in their entirety, with those dealing with the topics of inter-

est (viruses, bacteria, protozoa in garden dormice) in black, and those 
which were excluded in light grey
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addition Chlamydia psittaci, Pasteurella multocida, Entero-
bacter hormaechei and E. kobei, which are known opportu-
nistic agents in animals (Seriki et al. 2025; Smallman et al. 
2024; Wang et al. 2024), were detected in kidney derived 

Fig. 4). Cutibacterium acnes was the only bacterial patho-
gen detected in the hypothalamus samples; however, this 
species has been previously reported as a contaminant in 
certain laboratory reagents and kits (Liu et al. 2022). In 

Fig. 4  Log-transformed heatmap of microbial species abundance 
across garden dormouse samples. The species were profiled using 
MetaPhlAn4 (Blanco-Míguez et al. 2023). The analysis included gar-
den dormouse kidney samples sequenced in this study and the gar-
den dormouse sequence read archive (SRA) datasets, and abundance 
values are expressed as log-transformed relative abundances. Warmer 

colors (e.g. yellow) indicate higher log-abundance values, while colder 
colors (e.g. blue) indicate lower or absent microbial presence in that 
tissue. MetaPhlAn4 screen results were combined by sequenced tis-
sue type (feces; hypothalamus; kidney; gut, liver, muscle, and other 
unidentified tissue), and average relative abundance was determined 
for each tissue type for each microbial species detected
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from bovine blood likely reflects the common environmen-
tal source of genomviruses, which are commonly detected 
in diverse vertebrate and non-vertebrate samples (Kazlaus-
kas et al. 2019). In contrast, multiple genomovirus-related 
sequences were recovered from pooled kidney samples, 
highlighting diverse circular single stranded (ss) DNA 
viruses in the dormouse-associated virome.

Discussion

As part of this study, we conducted an extensive literature 
review, which shows that prior to 2010, the number of 
publications concerning pathogens of garden dormice was 
minimal, with even fewer addressing the bacteria, viruses 
and protozoa that are present in these animals. This low 
level of research interest in pathogens in garden dormice is 
in line with the overall decline in research and publications 
on garden dormice in general between 2000 and 2017 com-
pared to the period 1950 to 1999, with an apparent increase 
only in 2017 (Lang et al. 2022). With regard to publications 
on pathogens in garden dormice, the annual publications 
increased since 2011. This may be because emerging zoo-
notic diseases have become a focal point in research, with 

samples. In other tissue samples, opportunistic and environ-
mental bacteria such as Hafnia paralvei, Mycobacteroides 
franklinii, Porphyromonas canoris, Morganella morganii, 
and Erwinia rhapontici were detected at low abundance. 
Investigation for viral sequences, with Cenote-Taker3, iden-
tified 129 viral contigs of at least 300 nt in length in 54 of 
the sequenced samples (, revealing the presence of viruses 
of multiple DNA-virus families, including Parvoviridae, 
Adenoviridae, Circoviridae, Polyomaviridae, Anelloviri-
dae and Genomoviridae (Online Resource 5). Parvovirus-
related sequences belonging to diverse representatives of the 
family Parvoviridae were present in five out of ten kidney 
sequencing libraries prepared, and in at least four analyses 
of SRA datasets. Complete genome sequences of 13 circu-
lar viruses were assembled (12 without perviously identi-
fied polyomavirus, Table 4, Online Resource 6). Assembled 
viral sequences had very low to no similarity to each other 
on the nucleotide sequence level, however, some resembled 
previously identified sequences. For example, a circular 
gemykrogvirus genome (Genomoviridae) extracted from a 
pooled kidney sample of garden dormice, showed almost 
99% identity to the sequence LK931484.1, previously iden-
tified in a sample of healthy bovine blood. The near-identical 
dormouse-derived gemykrogvirus sequence to one reported 

Table 4  Complete viral genomes recovered from garden dormouse kidney samples or sample pools. Summary of complete viral genomes identi-
fied using Cenote-Taker3 and screened with NCBI BLAST. Sequences were classified into viral families using top NCBI BLAST results, with 
percent identity and accession numbers shown. Genomes were considered complete based on full-length alignment to reference genomes and the 
presence of terminal repeats (DTRs)
GenBank 
accession

Length, 
nucleotides

Virus family NCBI 
blast

Description Query 
Cover

%Identity Acc. 
Length

Accession

PV685787 1901 Circoviridae blastn MAG: ssDNA virus sp. isolate 
164Circo-2, complete genome

64% 96.76% 1898 OM892393.1

PV685788 2146 Genomoviridae blastn MAG: Genomoviridae sp. isolate 
ctdb80, complete genome

52% 92.07% 2153 NC_076323.1

PV685792 2202 Genomoviridae blastn Chicken genomovirus mg4_1196, com-
plete genome

100% 79.91% 2191 MN379606.1

PV685789 2158 Genomoviridae blastn MAG: Genomoviridae sp. isolate 
GenomoviridaeDogfe418C1 genomic 
sequence

97% 91.56% 2156 OQ198078.1

PV685791 2125 Genomoviridae blastn Sorex coronatus feces associated gemy-
circularvirus 11, complete genome

98% 91.01% 2126 PQ576940.1

PV685794 2204 Genomoviridae blastn Red panda feces-associated gemycir-
cularvirus isolate AliP03geno09-2015 
genomic sequence

57% 91.18% 2205 MZ556140.1

PV685796 2034 N/A1 blastn Dulem virus 22 isolate Duke43_SS_313, 
complete genome

91% 93.40% 2046 PP498712.1

PV685795 2254 Genomoviridae blastn MAG: Genomoviridae sp. isolate 
6537_278, complete genome

47% 73.75% 2191 MT309841.1

PV685790 2881 Circoviridae blastx MAG: hypothetical protein [Cirlivirales 
sp.]

35% 57.18% 342 XOF03152.1

PV685797 2191 Genomoviridae blastn MAG: Genomoviridae sp. isolate 
210Gen-2, complete genome

17% 77.25% 2196 OM892312.1

PV685793 2121 Genomoviridae blastn HCBI9.212 virus complete sequence 99% 98.72% 2121 LK931484.1
PV685798 2748 N/A1 blastx - 23% 56.94% 234 XOE94280.1
N/A not available, MAG Metagenome-Assembled Genome
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samples. This confirms the role of the garden dormouse 
as the main reservoir host of B. spielmanii, as persistent 
infectivity of B. spielmanii in garden dormice for ticks has 
been experimentally demonstrated (Richter et al. 2011) and 
observed in the field (Richter et al. 2004 and manuscript in 
preparation).

Non-vector-borne pathogens

Of particular zoonotic relevance, here, is the first detection 
of L. borgpetersenii (serogroup Sejroe, ST 197) in the gar-
den dormouse. This species has previously been found in 
the yellow-necked mouse (Apodemus flavicollis) and bank 
vole (Myodes glareolus) (Fischer et al. 2018b). Both spe-
cies are widespread in Europe and Germany and, like the 
garden dormouse, inhabit broadleaf and mixed forests, as 
well as structurally rich gardens and hedges. It is therefore 
possible that the Leptospira were aquired from an environ-
ment contaminated by these two rodent species. The trans-
mission of pathogens from other rodents to garden dormice 
must always be considered. This is illustrated by outbreaks 
of Yersinia pseudotuberculosis infections, and associated 
deaths, in two enclosure populations of garden dormice in 
1991 (Meinig unpublished data) and in 2023 (Pöhle and 
Ulber unpublished data). In both cases, it was subsequently 
shown that the bacterium had been introduced by house 
mice, leading to fatal diseases in the affected animals.

The absence of hantavirus detection in garden dormice, 
in contrast to findings in edible dormice (Stanojevic et al. 
2015), may reflect several contributing factors. Firstly, 
hantaviruses show a high level of host specificity and spill-
over infections are detected only very rarely (Schlegel et 
al. 2014), suggesting that the garden dormouse may not 
serve as a natural reservoir in the way the edible dormouse 
does (Plyusnin et al. 2014). Additionally, the transmission 
and maintenance of a hantavirus within rodent host popula-
tions require a minimum host density, which may not be 
present for the garden dormouse, and certain demographic 
structures; below these thresholds, viral persistence may fail 
(Tian et al. 2019).

Like the edible dormouse (Ehlers et al. 2019), the gar-
den dormouse has been shown to harbour an associated 
polyomavirus (Vasiliūnaitė et al. 2024), however respective 
viruses belong to different genera of the family Polyoma-
viridae. Both garden dormice in which the polyomavirus 
was detected showed signs of hepatic changes and a whitish 
substance was identified in the abdominal cavity of one of 
the two animals. In this animal, an infectious disease had 
been suspected as the cause of death (Vasiliūnaitė et al. 
2024). However, none of the other tested pathogens were 
detected in these animals. Antibodies against the new poly-
omavirus were not detected in either of the two animals, 

rodents being identified as reservoirs of many zoonotic 
pathogens (Karesh et al. 2012; Wu et al. 2018). Additional 
drivers, such as climate change and its associated alteration 
of the distribution of arthropods and arthropod-borne patho-
gens may influence the presence of pathogens in rodents 
(Caminade et al. 2019). Another aspect that may explain 
the increase in research on pathogens in garden dormice is 
the development and improvement of diagnostic methods 
(Liu et al. 2023). A novel polyomavirus detected in garden 
dormice by Vasiliūnaitė et al. (2024) serves as a notable 
illustration. Another factor might be the establishment 
and ivolvement of the network “Rodent-borne pathogens” 
(Ulrich et al. 2025 in press).

The samples analysed in this study were collected as part 
of an extensive research project carried out in Germany over 
a period of six years (Büchner et al. 2024). A major focus of 
this project was to investigate the causes of the decline of the 
garden dormouse in Germany. It is likely that this extensive 
project has helped to bring the garden dormouse back into 
the focus of research, resulting in a significant increase in 
annual publications since 2021. Because some of these pub-
lications also come from other European countries, such as 
Spain (Azami-Conesa et al. 2023; Couso-Pérez et al. 2023), 
it may be assumed that such extensive research initiatives in 
one country have also led to an increase in research on the 
garden dormouse in other countries. Furthermore, species 
are brought to public interest and the attention of financial 
supporters only in cases where they are listed as endangered 
or where negative population trends are observed. This in 
turn leads to increased research and, consequently, more 
publications (Jarić et al. 2017; Davies et al. 2018).

While numerous studies on endoparasites were identified 
in the literature (Makarikov 2017; Mas-Coma et al. 1977a, 
(1977b), (1982); Miquel et al. 1996), they were excluded 
from this review due to our selection criteria. Since these, 
like ectoparasites, were neglected in our own investiga-
tions as well, this represents a major limitation in our study. 
Notably, cestodes of the family Hymenolepididae have been 
reported in garden dormice but appear to have no impact on 
garden dormouse health (Makarikov and Georgiev 2020).

Vector-borne pathogens

In the past, a number of studies have focused on vector-
borne pathogens such as Rickettsia prowazeki (Perez Gal-
lardo et al. 1951), Coxiella burnetii (Perez Gallardo et al. 
1952) and Borrelia spp. (Matuschka et al. 1999; Richter et 
al. 2004, 2011) in garden dormice. Even in our own inves-
tigations, representatives of Borrelia spp. were detected. 
Although B. afzelii has been detected in a related host, the 
edible dormouse (Fietz et al. 2014), we mainly detected 
B. spielmanii with only one instance of B. afzelii in our 
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garden dormouse feces datasets and in 5 out of 10 kidney 
sequencing libraries with relatively high abundance. Oth-
ers (e.g., C. acnes, Mammaliicoccus sciuri) may represent 
low-virulence commensals or environmental contaminants. 
It should be noted that the publicly available SRA datas-
ets and our kidney-derived libraries were generated using 
different protocols, enrichment strategies, and sequencing 
approaches (metagenomic, genomic, and transcriptomic), 
reflecting differing study aims. Therefore, these results are 
exploratory and require confirmation in dedicated follow-up 
studies.

Metagenomic sequencing revealed viruses from multiple 
DNA-virus families, including Parvoviridae, Adenoviridae, 
Circoviridae, Polyomaviridae, Anelloviridae, and Genomo-
viridae. With the exception of Polyomaviridae, previously 
reported in garden dormice (Vasiliūnaitė et al. 2024), rep-
resentatives of all other virus families are reported here 
in garden dormice for the first time. The majority of viral 
sequences from this study, particularly those from small cir-
cular DNA viruses, were highly divergent from previously 
published sequences and likely represent novel rodent-asso-
ciated lineages. Notably, all 12 complete circular genomes 
assembled here were derived from our kidney libraries 
that were enriched for circular molecules (both pooled and 
individual samples); none of the publicly available SRA 
datasets used such enrichment, which likely explains why 
substantially more circular DNA viruses were recovered in 
our dataset. Parvovirus sequences were found in five of ten 
kidney libraries and several SRA datasets; the longest frag-
ment (3056 nt) closely matched a rat-associated parvovirus 
(98.57% identity), while others were more divergent, sug-
gesting multiple parvovirus lineages. Because many viral 
detections originate from pooled samples and sequencing 
strategies varied widely between datasets, abundance sig-
nals are exploratory and cannot confirm systemic infection 
or individual prevalence. Nonetheless, the consistent detec-
tion of diverse circular DNA viruses sequences in kidney 
tissue raises the possibility of active or persistent infections 
in dormice, warranting targeted follow-up studies to clarify 
host range and pathogenic potential.

Zoonotic risk and decline of the garden dormouse

The garden dormouse often inhabits areas in close prox-
imity to human settlements, which could facilitate contact 
between wildlife, humans, and ectoparasites. According to 
our findings, to date, the results indicate that – apart from 
B. spielmanii and B. afzelii –zoonotic pathogens can only 
be detected in garden dormice in rare cases. Nevertheless, 
their frequent association with tick populations, capable of 
feeding on both garden dormice and humans, underscores a 
potential indirect public health risk, as infected ticks may be 

whereas antibodies were found in samples of 12 other gar-
den dormice (Vasiliūnaitė et al. 2024). Although viral DNA 
and antibodies were detected in different individuals, phylo-
genetic analysis supports garden dormice as the natural host 
rather than incidental environmental exposure. The absence 
of antibodies in DNA‑positive animals may reflect an acute 
infection prior to seroconversion or possible persistence in 
renal tissue, although the kidney has not yet been confirmed 
as a reservoir for this virus (Vasiliūnaitė et al. 2024).

Rodent-specific and wildlife-relevant pathogens

Staphylococcus aureus was detected at a high prevalence 
(29%) in the garden dormouse samples. Staphylococcus 
aureus is an opportunistic pathogen in many small mam-
mals, including mice, shrews, voles, rats and squirrels 
(Mrochen et al. 2018; Raafat et al. 2020; Yebra et al. 2024). 
The predominant S. aureus lineages that we detected in the 
garden dormice are also common in other wild small mam-
mals. For instance, CC121/CC1956 is common in mice, 
shrews and voles (Mrochen et al. 2018), and CC49 is the 
dominant lineage in wild small rodents (voles and mice), 
but rare in humans. CC188 is common in laboratory rats and 
other rodents, but rare in humans. This suggests that certain 
rodent-adapted S. aureus lineages are circulating among dif-
ferent small mammal species, with some overlap between 
the species. The absence of typical human or livestock CCs, 
such as CC398-MRSA, in this wild rodent S. aureus popu-
lation, as well as the lack of antibiotic resistances, suggest 
limited interaction of the garden dormouse population with 
the human or livestock S. aureus population. The lack of 
typical signs of S. aureus infections (i.e. purulent skin infec-
tions, abscesses) in the analysed garden dormice, and the 
high genetic diversity of the S. aureus isolates, suggest a 
commensal relationship rather than active infection, unlike 
in British red squirrels (Simpson et al. 2013).

Metagenomic sequencing

MetPhlAn analysis revealed a variety of bacterial patho-
gens. Some of the pathogens were reported in previous 
studies, such as Enterococcus feacium and E. faecalis, in 
garden dormouse feces (Silva et al. 2012), however, to our 
knowledge, the majority were identified here for the first 
time. Several of these species, like Chlamydia psittaci, 
Pasteurella multocida and E. hormaechei, are recognized 
zoonotic pathogens, and their detection in dormouse kid-
neys, a normally sterile site, could be relevant. The pres-
ence of P. multocida may also be attributable to contact with 
domestic cats, as some of the garden dormice were bitten 
or even predated on by domestic cats (Famira-Parcsetich 
et al. 2024). Furthermore, E. hormaechei was detected in 
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recent years has created a growing body of research that may 
help identify the causes of the garden dormouse’s decline or, 
as in the case of pathogens, rule them out as possible factors. 
Future research should therefore integrate ecological, envi-
ronmental, and anthropogenic factors to better understand its 
population dynamics and conservation needs.
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transmitted between wildlife reservoirs and people. Moni-
toring tick-borne pathogens in these habitats remains impor-
tant to assess and manage local zoonotic risk. Furthermore, 
the samples examined exhibited a limited presence of patho-
gens. This finding suggests that infectious diseases may not 
be the primary factor contributing to the observed decline 
in the population of garden dormice under the prevailing 
conditions. In case that a single pathogen is responsible for 
the observed decline, a higher detection rate than observed 
in this study should be assumed.

Limitations

Due to the suboptimal quality of the samples, as the animals 
examined were already undergoing auto- and heterolysis 
and had been deep-frozen prior to the examination, which 
made it difficult to detect minor pathological abnormalities 
or to carry out histopathological examinations, it was not 
possible to carry out targeted tests for specific pathogens. 
Given that all garden dormice were found to be deceased, 
and the majority of these died as a result of predation, it 
is likely that deaths due to pathogens are underrepresented, 
and there is also a bias in the detected prevalences. The 
presence of negative results and low prevalences neces-
sitates careful interpretation, as the sample sizes were too 
small in some cases to draw reliable conclusions. Further-
more, due to constrained financial resources and laboratory 
capacity, pathogens such as fungi or helminths, which could 
also contribute to the decline of the garden dormouse, were 
not investigated.

Conclusion

Our investigations suggest that, with exception of B. spielma-
nii, B. afzelii and L. borgpetersenii, no other pathogens with 
zoonotic potential were present to any significant extent in 
the garden dormice investigated from Germany. A more thor-
ough analysis, encorporating NGS of RNA viruses, should 
be done since there might be even more unknown pathogens 
infecting garden dormice that were missed so far. The novel 
polyomavirus, that was detected in a previous study, is a good 
example. Moreover, further investigation into the viruses 
detected is recommended, as they may potentially be a con-
tributing factor to the observed decline. The literature review 
revealed that the garden dormouse, and the pathogens affect-
ing this species, have been understudied in the past. Although 
this study provides valuable data on infectious agents, patho-
gens alone are unlikely to explain the decline of E. quercinus. 
However, the increasing number of studies on this topic in 
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