

LITHUANIAN COMPUTER SOCIETY

VILNIUS UNIVERSITY, INSTITUTE OF DATA SCIENCE AND DIGITAL TECHNOLOGIES

LITHUANIAN ACADEMY OF SCIENCES

16th Conference on

DATA ANALYSIS METHODS for Software Systems

November 27–29, 2025

Druskininkai, Lithuania, Hotel "Europa Royale"

<https://www.mii.lt/DAMSS>

VILNIUS UNIVERSITY PRESS

Vilnius, 2025

Co-Chairs:

Dr. Saulius Maskeliūnas (Lithuanian Computer Society)

Prof. Gintautas Dzemyda (Vilnius University, Lithuanian Academy of Sciences)

Programme Committee:

Dr. Jolita Bernatavičienė (Lithuania)

Prof. Juris Borzovs (Latvia)

Prof. Janusz Kacprzyk (Poland)

Prof. Ignacy Kaliszewski (Poland)

Prof. Božena Kostek (Poland)

Prof. Tomas Krilavičius (Lithuania)

Prof. Olga Kurasova (Lithuania)

Assoc. Prof. Tatiana Tchemisova (Portugal)

Assoc. Prof. Gintautas Tamulevičius (Lithuania)

Prof. Julius Žiliškas (Lithuania)

Organizing Committee:

Dr. Jolita Bernatavičienė

Prof. Olga Kurasova

Assoc. Prof. Viktor Medvedev

Laima Paliulionienė

Assoc. Prof. Martynas Sabaliauskas

Prof. Povilas Treigys

Contacts:

Dr. Jolita Bernatavičienė

jolita.bernataviciene@mif.vu.lt

Prof. Olga Kurasova

olga.kurasova@mif.vu.lt

Tel. (+370 5) 2109 315

Copyright © 2025 Authors. Published by Vilnius University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

<https://doi.org/10.15388/DAMSS.16.2025>

ISBN 978-609-07-1200-9 (digital PDF)

© Vilnius University, 2025

Feature Stability Index (FSI): A Multi-Axis Metric for Assessing Robustness of Features in Imbalanced Fraud Detection

Dalia Breskuvienė, Gintautas Dzemyda

Institute of Data Science and Digital Technologies
Vilnius University

dalia.breskuviene@mif.vu.lt

In highly imbalanced domains such as credit card fraud detection, model explanations are often dominated by a few seemingly influential features. However, the importance of these features can vary considerably when data distribution, model architecture, or random initialization changes, raising concerns about reproducibility and trustworthiness. To address this, we introduce the Feature Stability Index (FSI), a unified metric that quantifies the robustness of feature importance patterns across different experimental conditions.

FSI is not a feature selection method but a diagnostic measure that evaluates how consistently a feature set maintains its relevance under three axes of variation: model choice, random seed, and temporal data window. The metric aggregates axis-specific stability components S_{model} , S_{window} , and S_{seed} into a single interpretable score, weighted by parameters α , β , and γ . Two complementary formulations are proposed: FSI-CV, which measures numerical consistency of feature importance magnitudes, and FSI-IE, which assesses the stability of feature set inclusion frequencies through entropy analysis.

Experiments using credit card transaction data demonstrate that FSI effectively distinguishes stable from unstable importance signals. Features with high FSI values exhibit consistent relevance across models and resampling, while unstable features fluctuate significantly, indicating potential sensitivity to model design or data drift.

Unlike traditional overlap-based stability indices such as Jaccard or Kuncheva, FSI captures both numeric and inclusion stability and attri-

butes instability to specific axes, providing a deeper understanding of model behavior. The proposed FSI framework supports robustness auditing of feature importance results and contributes to more reliable model interpretation in dynamic, high-risk environments such as financial fraud detection.