

LITHUANIAN COMPUTER SOCIETY

VILNIUS UNIVERSITY, INSTITUTE OF DATA SCIENCE AND DIGITAL TECHNOLOGIES

LITHUANIAN ACADEMY OF SCIENCES

16th Conference on

DATA ANALYSIS METHODS for Software Systems

November 27–29, 2025

Druskininkai, Lithuania, Hotel "Europa Royale"

<https://www.mii.lt/DAMSS>

VILNIUS UNIVERSITY PRESS

Vilnius, 2025

Co-Chairs:

Dr. Saulius Maskeliūnas (Lithuanian Computer Society)

Prof. Gintautas Dzemyda (Vilnius University, Lithuanian Academy of Sciences)

Programme Committee:

Dr. Jolita Bernatavičienė (Lithuania)

Prof. Juris Borzovs (Latvia)

Prof. Janusz Kacprzyk (Poland)

Prof. Ignacy Kaliszewski (Poland)

Prof. Božena Kostek (Poland)

Prof. Tomas Krilavičius (Lithuania)

Prof. Olga Kurasova (Lithuania)

Assoc. Prof. Tatiana Tchemisova (Portugal)

Assoc. Prof. Gintautas Tamulevičius (Lithuania)

Prof. Julius Žiliškas (Lithuania)

Organizing Committee:

Dr. Jolita Bernatavičienė

Prof. Olga Kurasova

Assoc. Prof. Viktor Medvedev

Laima Paliulionienė

Assoc. Prof. Martynas Sabaliauskas

Prof. Povilas Treigys

Contacts:

Dr. Jolita Bernatavičienė

jolita.bernataviciene@mif.vu.lt

Prof. Olga Kurasova

olga.kurasova@mif.vu.lt

Tel. (+370 5) 2109 315

Copyright © 2025 Authors. Published by Vilnius University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

<https://doi.org/10.15388/DAMSS.16.2025>

ISBN 978-609-07-1200-9 (digital PDF)

© Vilnius University, 2025

Modelling Pattern Formations of Bacteria: Influence of Gravity

Boleslovas Dapkūnas, Romas Baronas, Remigijus Šimkus

Vilnius University

boleslovas.dapkunas@mif.vu.lt

In microcontainers, growing bacterial colonies of various species, such as *Escherichia coli* and *Bacillus subtilis*, self-organise and form patterns. One of the phenomena that can be observed in patterns during physical experiments is the formation of plumes: vertical structures descending from the larger aggregate of bacteria near the top of the microcontainer. The mechanism of plume formation is still poorly understood. The use of mathematical modelling can help fill the gaps in knowledge.

Studies of mathematical models for bacterial pattern formation have intensified since the introduction of Keller–Segel partial differential equations model for chemotaxis in 1971 [1]. When modelling *Escherichia coli*, experiments have shown that the dynamics of oxygen have to be taken into account [2]. Hillesdon et al. [3] have shown that by coupling the Keller–Segel model with the fluid flow equation, plume formation can be modelled in colonies of *Bacillus subtilis*.

By coupling Keller–Segel model involving oxygen dynamics with Navier–Stokes incompressible fluid flow equations, we investigate the effects of gravity on the modelled *Escherichia coli* plume formation. The model consists of partial differential equations describing the dynamics of bacteria density, self-excreted chemoattractant concentration, oxygen concentration, and fluid dynamics. We also investigate the influence of these dimensionless model parameters: Schmidt number, Rayleigh number, and oxygen cut-off threshold. The numerical simulation was carried out using the finite difference technique.

References

- [1] E.F. Keller, L.A. Segel, Model for chemotaxis, *J. Theor. Biol.*, 30(2):225–234, 1971
- [2] R. Šimkus, R. Baronas, Ž. Ledas, A multi-cellular network of metabolically active *E. coli* as a weak gel of living Janus particles, *Soft Matter*, 9(17):4489–4500, 2013.
- [3] A.J. Hillesdon, T.J. Pedley, O. Kessler, The development of concentration gradients in a suspension of chemotactic bacteria, *Bull. Math. Biol.*, 57:299–344, 1995.