

ABSTRACTS

Symposium Proceedings of the international symposium ACUTE LEUKEMIAS XIX (ISALXIX), Munich March 16–19, 2025

Published online: 6 March 2025
© The Author(s) 2025, corrected publication 2025

ACUTE LEUKEMIAS XIX Biology and Treatment Strategies Munich, Germany, March 16–19, 2025

Sponsorship: Publication of the supplement was sponsored by Verein für Leukämforschung und -Therapie e.V.

Free Contributions

Poster Session

CLINICAL STUDIES IN AML AND ALL (P001–P025)

P001. Survival analysis of GIMEMA AML1718, a Safety Run-in and Phase 2 Open-Label Study of Venetoclax, Fludarabine, Idarubicin and Cytarabine (V-FLAI) in the Induction Therapy of non Low-Risk Acute Myeloid Leukemia

¹*Giovanni Marconi, ²Alfonso Piciochi, ³Ernesto Audisio, ⁴Cristina Papayannidis, ⁵Fabio Guolo, ³Marco Cerrano, ²Valentina Arena, ⁶Save-
ria Capria, ⁷Michela Rondoni, ⁸Matteo Giovanni Della Porta, ⁹Ger-
mania Beltrami, ¹⁰Monica Bocchia, ¹¹Albana Lico, ¹²Luisa Giaccone,
¹³Marianna Rossi, ¹⁴Catello Califano, ¹⁵Matteo G. Carrabba, ¹⁶Chiara Cattaneo, ¹⁷Marco Frigeni, ¹⁸Maria Chiara Di Chio, ¹⁹Bianca Serio,
³Roberto Freilone, ⁴Antonio Curti, ⁵Paola Minetto, ²Giovanni Marsili,
⁶Clara Minotti, ⁷Beatrice Anna Zannetti, ²Francesca Cotugno, ⁴Jacopo Nanni, ¹Giorgia Simonetti, ¹Maria Teresa Bochicchio, ²⁰Sara Rosellini,
²⁰Elisabetta Tedone, ²¹Adriano Venditti, ⁵Roberto M. Lemoli, ²Marco Vignetti, ²Paola Fazi, ¹Giovanni Martinelli

¹IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST S.r.l., Meldola, Italy; ²Fondazione GIMEMA, Rome, Italy; ³ Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy; ⁴Institute of Hematology "L. & A. Seragnoli", University of Bologna, Bologna, Italy; ⁵Division of Hematology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; ⁶Division of Hematology, Azienda Ospedaliera Sant'Andrea, University of Rome "La Sapienza", Rome, Italy; ⁷Hematology Unit, Azienda Ospedaliero-Universitaria S. Maria delle Croci, Ravenna, Italy; ⁸Hematology and Stem Cell Transplant Unit, Humanitas Research Hospital, Milan, Italy; ⁹Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹⁰Division of Hematology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy; ¹¹Hematology Unit, Ospedale di Vicenza, Vicenza, Italy; ¹²Department of Oncology and Hematology, University of Turin, Turin, Italy; ¹³IRCSS S. Matteo, Pavia, Italy; ¹⁴UO di Ematologia, Ospedale di Pagan, Salerno, Italy; ¹⁵Hematology Unit, IRCCS S. Raffaele, Milan, Italy; ¹⁶Hematology Unit, ASST Spedali Civili, Brescia, Italy; ¹⁷Department of Hematology, AO Papa Giovanni XXIII,

Bergamo, Italy; ¹⁸Division of Hematology, IRCCS Istituto Nazionale Tumori, Milano, Italy; ¹⁹Hematology and transplant unit, Ospedale Giovanni Ruggi, Salerno, Italy; ²⁰Biology laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy;
²¹Department of Biomedicine and Prevention, University 'Tor Vergata.

Background: Despite therapeutic advances, the prognosis for intermediate- and high-risk acute myeloid leukemia (AML) remains poor, with an estimated 2-year overall survival (OS) of 30–40% in younger patients. The GIMEMA AML1718 trial investigated the combination of venetoclax with fludarabine, idarubicin, and cytarabine (V-FLAI) as induction therapy to improve outcomes for these patients. Primary endpoint analysis demonstrated a high rate of complete remission (CR) and measurable residual disease (MRD) negativity (79% and 64%, respectively). Here, we present mature data on overall survival (OS) and disease-free survival (DFS).

Methods: The GIMEMA AML1718 trial (NCT03455504) is a Phase 1/2 multicenter study that enrolled newly diagnosed adult patients with ELN 2017 intermediate- or high-risk AML. The trial followed a modified Simon's two-stage design. Safety was established in a run-in phase with venetoclax dosages of 400 mg or 600 mg, with no significant difference between the dosages. Part 2 included 67 patients treated with 400 mg V-FLAI. Induction cycles and consolidation treatments were tailored, with allogeneic hematopoietic stem cell transplantation (HSCT) performed when feasible. MRD was centrally assessed in Part 2. A 91-gene panel is under investigation for further characterization of patients.

Results: A total of 124 patients were enrolled, with a median age of 55 years (range 18–66), 56% male. At baseline, 54% were classified as intermediate risk, and 46% as high-risk, primarily based on cytogenetics and FLT3/NPM1 status. FLT3 mutations were present in 15.3% of patients, while 14% had secondary AML. After induction, 74 patients (59.6%) proceeded to consolidation, and 71 (57.2%) received HSCT (93% in first CR). With a median follow-up of 22 months, the 1- and 2-year OS were 61% and 48%, respectively, while DFS was 60% and 46%. The survival curves suggest a plateau after 2 years, with 48% of longterm survivors (figure). Safety analysis confirmed low treatment-related mortality (4%) and no severe late effects, graft failures, or elevated incidence of graft-versus-host disease.

Conclusions: V-FLAI demonstrates durable survival benefits in intermediate- and high-risk AML, with a favorable safety profile. These results suggest that V-FLAI may be a superior induction strategy for fit, non-low-risk AML patients, supporting the need for randomized trials comparing it to standard of care.

Disclosures: Abbvie: Consultancy, Research Funding, Speakers Bureau, Astellas: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, AstraZeneca: Research Funding, Speakers Bureau, Daiichi Sankyo: Research

MINIMAL RESIDUAL DISEASE (P052–P062)

P052. Retrospective validation of computational measurable residual disease assessment in acute myeloid leukemia in the HOVON-SAKK-132 trial

^{1,2*}Tim R. Mocking, ^{1,2}Lukas H. Haaksma, ^{1,2}Tom Reuvekamp, ^{1,2}Angèle Kelder, ^{1,2}Lok Lam Ngai, Dimitri ³A. Breems, ⁴Thomas Fischer, ⁵Björn T. Gjertsen, ⁶Laimonas Griskevičius, ⁷Gunnar Juliusson, ⁸Johan A. Maertens, ^{9,10}Markus G. Manz, ^{10,11}Thomas Pabst, ^{10,12}Jakob R. Passweg, ¹³Kimmo Porkka, ¹⁴Peter J.M. Valk, ^{14,15}Patrycja Gradowska, ¹⁴Bob Löwenberg, ^{1,2}David C. de Leeuw, ^{1,2,16}Jeroen J.W.M. Janssen, ^{1,2}Gert J. Ossenkoppele, ^{1,2}Arjan A. van de Loosdrecht, ^{1,2}Jacqueline Cloos, ^{1,2}Costa Bachas

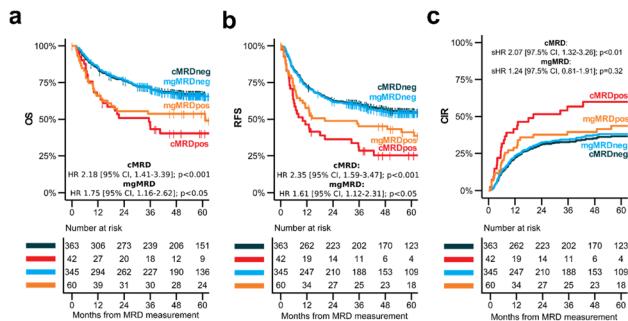
¹Amsterdam UMC, Amsterdam, The Netherlands; ²Cancer Center Amsterdam, Amsterdam, The Netherlands; ³Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium; ⁴Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany; ⁵Haukeland University Hospital, Bergen, Norway; ⁶Vilnius University Hospital Santaros Klinikos and Vilnius University, Vilnius, Lithuania; ⁷Skanes University Hospital, Lund, Sweden; ⁸University Hospital Gasthuisberg, Leuven, Belgium; ⁹University Hospital, Zurich, Switzerland; ¹⁰Swiss Group for Clinical Cancer Research, Bern, Switzerland; ¹¹University Hospital of Bern, Switzerland; ¹²University Hospital, Basel, Switzerland; ¹³Helsinki University Hospital Cancer Center, Helsinki, Finland; ¹⁴Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands; ¹⁵HOVON Foundation, Rotterdam, The Netherlands; ¹⁶Radboud University Medical Center, Nijmegen, The Netherlands.

Introduction: Flow cytometry is recommended for measurable residual disease (MRD) assessment in acute myeloid leukemia (AML). While flow cytometry is widely applicable and cost-effective, manual gating-based MRD (mgMRD) analysis is time-consuming (~30 minutes per sample) and faces challenges in consistency and standardization, particularly in resource-limited settings. To address these issues, we previously developed a fast (~3 seconds) and interpretable computational MRD (cMRD) pipeline using machine learning. This algorithm first automatically detects healthy and leukemic immature myeloid cells, after which a statistical model detects and quantifies cells with aberrant marker expression.

Methods: To assess the prognostic relevance of cMRD, we retrospectively analyzed the HOVON-SAKK132 trial using our pipeline. cMRD assessment was performed for all bone marrow aspirates collected from AML patients in remission after two cycles of chemotherapy measured at the central laboratory at Amsterdam UMC according to MRD guidelines. Survival outcomes were evaluated based on overall survival (OS), relapse-free survival (RFS), and cumulative incidence of relapse (CIR).

Results: We included 405 patients and identified an optimal cMRD cutoff at 0.56% of WBCs. By applying this cutoff, 10.4% (42/405) of patients were classified as cMRD+, compared to 14.8% (60/405) using the recommended 0.1% cutoff for mgMRD. cMRD and mgMRD status were concordant in 85.2% (345/405) of patients. In the mgMRD-/cMRD+ group (n=21), the 5-year CIR was 54.0%, whereas in the mgMRD+/cMRD- group (n=39) it was 31.5%, comparable to the mgMRD-/cMRD- group (37.1%, n=324).

The 5-year OS, RFS, and CIR was similar for the MRD negative groups regardless of method (Figure 1). The 5-year RFS of cMRD+ patients was 25.3% (CI: 14.7%–43.6%) while it was 41% for mgMRD+ patients (CI: 30.0% - 56.2%). For CIR, a significant survival difference for cMRD (sHR: 2.07; p<0.01) was found, whereas this effect was absent for mgMRD (sHR: 1.24; p=0.32).


Conclusion: Computational MRD assessment using our newly developed pipeline delivers a fast and objective MRD assessment with clinically relevant survival associations compared to manual gating. Ongoing expert re-evaluation of discrepant cases may reveal whether computational analysis can enhance the characterization of leukemia-associated immunophenotypes associated with relapse.

Keywords: acute myeloid leukemia, measurable residual disease, flow cytometry, machine learning

Disclosures: Gjertsen: BerGenBio: Consultancy; GreinDX: Consultancy; Immedica: Consultancy; InCyte: Consultancy; Mendus AB: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Otsuka: Consultancy; Pfizer: Consultancy, Research Funding; Sanofi: Consultancy; in Alden Cancer Therapy AS: Current holder of stock options in a privately-held company; KinN Therapeutics AS: Current holder of stock options in a privately-held company; Coegin: Consultancy. Griskevičius: Miltenyi Biomedicine: Membership on an entity's Board of Directors or advisory committees. Juliusson: AbbVie: Honoraria; Jazz: Honoraria; Laboratoire Delbert: Other: Research cooperation; Novartis: Honoraria; Servier: Honoraria. Löwenberg: F.Hoffmann La Roche: Membership on an entity's Board of Directors or advisory committees; Clear Creek Bio: Consultancy, Honoraria; Celgene: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Catamaran Bio Inc: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees. de Leeuw: Takeda: Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy; Roche: Consultancy; Servier: Consultancy, Membership on an entity's Board of Directors or advisory committees; Ellipses Pharma: Research Funding. van de Loosdrecht: BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Research Funding. Ossenkoppele: Servier: Consultancy; Abbvie: Consultancy; Roche: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Honoraria; Gilead: Consultancy; Amgen: Consultancy; AGIOS: Consultancy, Honoraria; Janssen: Novartis and Bristol Myers Squibb: research funding; Incyte: speaker's fee; AbbVie, Novartis, Pfizer, and Incyte: honoraria (all to institute); president of nonprofit Apps for Care and Science foundation which received unrestricted educational grants from AbbVie, Alexion, Amgen, Astellas, Astra Zeneca, Bristol Myers Squibb, Daiichi Sankyo, Janssen-Cilag, Novartis, Novo-Nordisk, Incyte, Sanofi Genzyme, Servier, Sobi, Jazz, and Takeda; Cloos: Navigate: Consultancy, Patents & Royalties: Royalties MRD assay; BD Biosciences: Patents & Royalties: Royalties LSC tube; Takeda: Research Funding; Novartis: Consultancy, Research Funding.

Corresponding Author: Tim Mocking <https://orcid.org/0000-0001-9170-4131>

Fig P052-1 A, B, C. Prognostic value of computational MRD assessment (cMRD) in AML. (A) Kaplan-Meier curve for OS. (B) Kaplan-Meier curve for RFS. (C) Kaplan-Meier curve for CIR. Hazard ratios were calculated by Cox proportional hazards (OS, RFS) or by proportional subdistribution hazards (CIR)

P053. Primitive marker-based measurable residual disease in acute myeloid leukemia in the context of hemodilution

^{1,2}Lukas H. Haaksma, ^{1,2}Tom Reuvekamp, ^{1,2}Angèle Kelde, ^{1,2}Willemijn J. Scholten, ^{1,2}Glenn Fransen, ^{1,2}Daphne den Hartog, ^{1,2}Andie M. Sullivan, ^{3,4}Patrycja Gradowska, ^{4,5}Bob Löwenber, ^{1,2}Gert J. Ossenkoppele, ^{1,2}David C. de Leeuw, ^{1,2}Costa Bacha, ⁶Francesco Buccisano, ^{1,2}Jacqueline Cloos

¹Amsterdam UMC, Amsterdam, The Netherlands; ²Cancer Center Amsterdam, Amsterdam, The Netherlands; ³HOVON Foundation, Rotterdam, The Netherlands; ⁴Erasmus MC Cancer Institute, Rotterdam, The Netherlands; ⁵Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands; ⁶University of Rome “Tor Vergata”, Rome, Italy.

Background: Measurable residual disease (MRD) detected by multiparameter flow cytometry (MFC) is a validated biomarker for relapse prediction in acute myeloid leukemia (AML) after two cycles of chemotherapy. MRD is traditionally defined as the proportion of leukemia-associated immunophenotype (LAIP) positive cells within the white blood cell (WBC) compartment. Hemodilution during bone marrow aspiration may therefore lead to false negative MRD results when using this WBC-MRD approach. Primitive marker MRD (PM-MRD), defined as the proportion of LAIP-positive cells within the primitive cell compartment (CD34+, CD117+, or CD133+ cells), is, theoretically, less sensitive to hemodilution. This study aimed to validate the prognostic value of PM-MRD in a large cohort and investigate its relevance in the context of hemodilution.

Methods: We included patients in complete morphologic remission after two cycles of intensive chemotherapy from six HOVON trials (H42A, H81, H92, H102, H103, H132). Patients with PM-MRD $\geq 10\%$ were considered positive, provided the primitive cell count exceeded our assay’s background level (0.03% of total WBC). To assess the

prevalence of hemodilution, we examined 250 randomly selected samples from the H132 trial measured at Amsterdam UMC. Hemodilution was defined based on mast cell percentage (CD117 bright) below 0.002% (1) of $\geq 500,000$ WBC.

Results: Of the 857 patients, 152 (18%) were PM-MRD positive. PM-MRD $\geq 10\%$ was associated with significantly worse overall survival (HR: 1.44, 1.12–1.84 [Figure 1A]) and relapse-free survival (HR: 1.32, 1.05–1.66) compared to PM-MRD $<10\%$. However, a combined model of WBC-MRD and PM-MRD demonstrated that WBC-MRD appears to have stronger prognostic value [Figure 1B]. Mast cell-based analysis revealed that 52% of the 234 valid samples were hemodiluted [Figure 1C]. Hemodiluted samples had a significantly lower median WBC-MRD percentage than non-hemodiluted samples, while PM-MRD remained stable across both groups [Figure 1D].

Conclusion: This study aimed to validate PM-MRD as a prognostic biomarker in AML. However, PM-MRD did not seem to improve risk stratification compared to conventional WBC-MRD. The finding that 52% of cases were hemodiluted, suggests that the prevalence of hemodilution might generally be underestimated, while its ultimate impact on the prognostic relevance of standard WBC-MRD might be limited. Our data must be confirmed by other centers and warrant further research on the effect of hemodilution on the prognostic value of MRD.

Keywords: acute myeloid leukemia, measurable residual disease, flow cytometry, hemodilution

Disclosures: Löwenberg: La Roche: Membership on an entity’s Board of Directors or advisory committees; Clear Creek Bio: Consultancy, Honoraria; Celgene: Membership on an entity’s Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity’s Board of Directors or advisory committees; Catamaran Bio Inc: Membership on an entity’s Board of Directors or advisory committees; Astellas: Membership on an entity’s Board of Directors or advisory committees; Abbvie: Membership on an entity’s Board of Directors or advisory committees. de Leeuw: Takeda: Membership on an entity’s Board of Directors or advisory committees; Abbvie: Consultancy; Roche: Consultancy; Servier: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Ellipses Pharma: Research Funding. Ossenkoppele: Servier: Consultancy; Abbvie: Consultancy; Roche: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Astellas: Consultancy, Honoraria; Gilead: Consultancy; Amgen: Consultancy; AGIOS: Consultancy, Honoraria; Janssen: Consultancy; BMS/Celgene: Consultancy, Honoraria; Pfizer: Research Funding; Novartis: Consultancy, Honoraria, Research Funding; JazzPharmaceuticals: Consultancy. Buccisano: Servier: Honoraria and Speakers Bureau; Delbert Pharma: Honoraria; Jazz Pharmaceuticals: Honoraria and Speakers Bureau; Novartis: Honoraria

Cloos: Navigate: Consultancy, Patents & Royalties: Royalties MRD assay; BD Biosciences: Patents & Royalties: Royalties LSC tube; Takeda: Research Funding; Novartis: Consultancy, Research Funding.

Corresponding author: Lukas H. Haaksma, l.haaksma@amsterdamumc.nl, <https://orcid.org/0009-0008-2179-4870>

References

1. Tettero JM, et al. Impact of hemodilution on flow cytometry based measurable residual disease assessment in acute myeloid leukemia. Leukemia. 2024. <https://doi.org/10.1038/s41375-024-02158-1>