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Abstract

Dynamic contrast-enhancement (DCE) modality of MRI is typically considered secondary
in prostate cancer (PCa) diagnostics, due to the common interpretation that its diagnostic
power is lower than that of other modalities like T2-weighted (T2W) or diffusion-weighted
imaging (DWI). To challenge this paradigm, this study introduces a novel concept of a
difference map, which relies exclusively on DCE-MRI for the localization of peripheral zone
prostate cancer using functional data analysis-based (FDA) signal processing. The proposed
workflow uses discrete voxel-level DCE time-signal curves that are transformed into a
continuous functional form. First-order derivatives are then used to determine patient-
specific time points of greatest enhancement change that adapt to the intrinsic characteristics
of each patient, producing diffmaps that highlight regions with pronounced enhancement
dynamics, indicative of malignancy. A subsequent normalization step accounts for inter-
patient variability, enabling consistent interpretation across subjects and probabilistic PCa
localization. The approach is validated on a curated dataset of 20 patients. Evaluation of
eight workflow variants is performed using weighted log loss, the best variant achieving
a mean log loss of 0.578. This study demonstrates the feasibility and effectiveness of a
single-modality, automated, and interpretable approach for peripheral prostate cancer
localization based solely on DCE-MRI.

Keywords: cancer localization; dynamic contrast enhancement; functional data analysis;
image processing; image subtraction; MRI; peripheral zone; prostate cancer

1. Introduction

Prostate cancer (PCa) is among the most frequently diagnosed malignancies glob-
ally [1]. It ranks fourth in cancer incidence across the whole population, with 1.5 million
new cases reported in 2022. Among males, PCa is the second most commonly diagnosed
cancer, affecting almost a third of the population. Although the mortality rates are rela-
tively lower compared to other cancer types, it is still critical to ensure accurate and timely
diagnosis of prostate cancer.

Currently, the diagnostic process is guided by the Prostate Imaging Reporting and Data
System (PI-RADS), which provides a standardized framework for image acquisition and
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interpretation of prostate MRI [2,3]. It is based on multiparametric MRI (mpMRI), which
incorporates several imaging sequences: T2-weighted (T2W), diffusion-weighted imaging
(DWI), and dynamic contrast enhancement (DCE). T2W imaging provides high-resolution
anatomic detail and depicts prostate cancer as areas of hypointensity due to increased
cellularity and reduced water content, although its performance is limited in the transition
zone. DWI assesses tissue cellularity by measuring water molecule motion, which is more
restricted in cancer, making DWI particularly valuable in the transition zone and improving
diagnostic specificity when combined with T2-weighted imaging. DCE imaging evaluates
differences in contrast uptake kinetics between malignant and benign tissue, reflecting
tumor angiogenesis, though overlap may occur with benign inflammatory processes such
as prostatitis [4]. While all three sequences are used in clinical evaluation, only T2W and
DWI are classified as primary modalities. DCE is regarded as secondary and is typically
used for diagnostic validation or as a “back-up” when primary modalities are degraded [2].
Motivated by this clinical gap, we investigate whether DCE contains sufficient diagnostic
signal for tumor localization when analyzed as voxel-wise enhancement dynamics, rather
than as a supportive sequence.

Due to a limited role of DCE in diagnostics, several studies have explored biparametric
MRI (bpMRI), which excludes the DCE modality based on bpMRI requiring reduced
examination time, elimination of contrast agent administration, and comparable diagnostic
performance relative to mpMRI [5]. Several literature reviews have examined comparative
studies between mpMRI and bpMRI, generally concluding that the diagnostic accuracy is
similar between the two approaches [6,7]. These conclusions have also been criticized for
methodological heterogeneity and under-reporting of clinical details, casting doubt on the
reliability of those findings [8].

An important part of the PI-RADS assessment is determining the lesion’s location
within the prostate—whether in the peripheral zone (PZ) or the transition zone (TZ)—as
there are biological and epidemiological differences between these regions [9]. The majority
of PCa cases originate in PZ rather than TZ [2,10]. Furthermore, lesions located in PZ are
associated with poorer clinical outcomes and higher levels of malignancy compared to
those in TZ [11]. It is also important to consider zone-specific benign abnormalities that
may mimic malignancy, leading to false-positive findings—benign prostatic hyperplasia
(BPH), commonly occurring in TZ, and prostatitis, mostly affecting PZ [2].

This study demonstrates an application of functional data analysis (FDA), a subfield of
statistics for analysis of data in the form of functions (or curves) [12]. FDA has been applied
in a broad range of domains [13], including biomedical science. For instance, forecasting of
breast cancer mortality rates [14], analysis of corneal curvature maps [15], modeling of heart
rate dynamics [16], denoising of functional MRI (fMRI) signals through smoothing [17],
and functional embedding in genomics [18]. To the best knowledge of the authors, there
are no known studies involving FDA methods applied in the domain of prostate cancer.

According to PI-RADS, dynamic contrast curves can be categorized into three types
as follows: type 1 (progressive), characterized by a continuous increase in enhancement
level over time; type 2 (plateau), when enhancement level stabilizes after an initial rise; and
type 3 (wash-in and wash-out), characterized by a decline in enhancement level after an
initial rise [2,19]. The DCE curve characteristics assist in differentiating PCa from benign
tissue—type 3 curves are typically associated with malignancy. Due to the heterogeneous
nature of enhancement patterns in PCa, there is no strong evidence supporting curve type
analysis for definitive diagnosis.

Prostate cancer exhibits pronounced biological and imaging heterogeneity, which
substantially complicates diagnostic accuracy. Systematic biopsy remains an important
complement to targeted approaches, as it can partially mitigate sampling bias caused by
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spatial and multifocal tumor heterogeneity [20]. Among mpMRI features, apparent diffu-
sion coefficient (ADC) heterogeneity shows the strongest clinical relevance, particularly in
the TZ, whereas heterogeneity on T2ZW and DCE imaging appears to reflect generalized
tissue complexity rather than directly affecting cancer detection. At the molecular level,
PCa demonstrates significant clinical, spatial, and morphological heterogeneity, leading
to biopsy undersampling, grading variability, and discordance between histopathology
and the true genomic landscape of the tumor [21]. Zonal differences further complicate
diagnostics: approximately 80% of PCa appears in the PZ and 15% in the TZ, yet TZ
cancers contribute disproportionately to mortality due to confounding benign prostatic
hyperplasia [22]. Age-related tissue characteristics and prostatitis may additionally mimic
malignant imaging features, increasing the risk of PI-RADS misclassification [23]. Inter-
pretation of mpMRlI is further limited by inter-reader variability, with reported PI-RADS
agreement ranging from 33% to 86% and only moderate overall concordance with a kappa
of 0.53 [24]. Moreover, PI-RADS three lesions account for approximately 17% of exam-
inations, while only 15-20% represent clinically significant PCa, highlighting persistent
diagnostic uncertainty in equivocal cases [25].

Current literature on prostate cancer diagnosis is predominantly aimed at lesion
classification, which generally requires manually outlined regions of interest (ROI) [26-32].
In contrast, our study eliminates this dependency and is aimed at doing lesion localization,
thereby identifying ROIs without manual intervention. Some works have investigated
localization, such as [33], where pharmacokinetic parameters are derived from the DCE
modality for tumor identification, and [34], where prostate gland segmentation is done from
ROI-based radiomic features derived from DCE subtraction maps. In contrast, our method
operates directly on the raw DCE time-signal data and dynamically adapts subtraction time
moments to each patient. In addition, our approach challenges the prevailing assumption
that effective diagnostic performance requires data from multiple MRI sequences or that
dynamic contrast imaging lacks diagnostic power. The purpose of our research is to
maximize the diagnostic utility of exclusively DCE MRI. Finally, a methodological novelty
is also introduced by using functional data analysis for the processing of DCE time-signal
curves in a manner that automatically adapts to patient-specific enhancement patterns.

This study presents a workflow for analyzing DCE MRI of the prostate’s peripheral
zone, without reliance on other mpMRI modalities such as T2ZW or DWI. Time-signal
intensity curves are generated voxel-wise across all slices and transformed into continuous
functional form, from which first-order derivatives are calculated. These derivatives are
aggregated per slice, and the resulting curves are combined to identify optimal time points
for image subtraction. Subtraction produces difference maps (or diffmaps) that quantify the
magnitude of enhancement change. Following inter-slice normalization, the normalized
diffmaps highlight regions with enhancement patterns indicative of malignancy.

2. Materials and Methods

The proposed method uses three inputs: MRI-DCE imaging sequence, peripheral zone
(PZ) masks, and cancer masks. The latter is used as the ground truth for performance
evaluation. PZ masks are used for spatial filtering and are obtained using a combination
of expert manual annotations by two radiologists with 10 and 15 years of experience, and
automated neural network-based segmentation [35]. All automatically generated masks
were subsequently validated by radiologists to ensure clinically reliable delineations. An
overlay of a sample of data of a single DCE slice with PZ and PCa contours is shown in
Figure 1. The dataset within the scope of our research was provided by the Lithuanian
National Cancer Institute (NVI) under the terms of the bioethical agreement 2020/5-1229-
714. It comprises a total of 144 patients from 11 distinct clinical centers and includes scans
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acquired on MRI systems from three different vendors. The clinical study was conducted
at NVI, where MRI-guided targeted biopsies were performed for all patients. However, the
proposed methodology requires the availability of PZ masks. Consequently, only a subset
of 20 patients met all the necessary criteria for further analysis.

Figure 1. Overlay of a DCE image of a select patient, slice, and time moment with contours for
peripheral zone (blue) and cancer lesion (red) masks.

This research proposes a workflow for processing DCE data of a patient to generate
regions of suspicion for malignancy. The diagram of the workflow is shown in Figure 2,
which consists of 11 transformational steps and one additional step for evaluation. Transfor-
mational steps can be grouped into three stages: time point calculation, image subtraction,
and distribution normalization. More detailed descriptions for each step are provided in
the following sections.
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Figure 2. Workflow diagram. Three stages consisting of 11 steps to process and evaluate a single patient.
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While the workflow requires a PZ mask as input, all subsequent processing steps are
fully automated and do not require manual lesion delineation or user interaction.

Notation use in the article: patient identifier p, representing a specific patient in the
dataset; slice index s, referring to a particular slice in patient’s MRI volume; time index
t, referring to the discrete time moment of DCE image acquisition; MRI-DCE imaging

https://doi.org/10.3390/ electronics15030507


https://doi.org/10.3390/electronics15030507

Electronics 2026, 15, 507

50f 15

E(p,s, t), ampMRI modality representing contrast enhancement over time consisting of a
set of grayscale images for patient p, slice s, and time moment t; PZ mask Z(p,s), a binary
mask indicating the peripheral zone region; cancer mask C(p,s), a binary mask indicating
the ground truth PCa region.

2.1. Time Point Calculation

The main purpose of this stage is to use voxel intensity in the peripheral zone of DCE
imaging of a patient to determine specific time points that indicate a temporal interval with
the most significant change in enhancement level.

Voxel-level time series. Given a patient p, only the peripheral zone is considered
from each DCE slice: E(p,s,t) N Z(p,s). Discrete time series of DCE intensities (or time—
signal curves) are then constructed at a voxel level. Each curve represents the enhancement
level at a specific coordinate of the slice s at different time indices . An example output is
shown in Figure 3a, where a random sample of 10 curves shows the DCE signal value at
31 time moments.
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Figure 3. Example output from each step of the first stage (time point calculation) of the workflow.
(a) Example of a random sample of 10 curves (original, discrete DCE time-signal) from patient
028, slice 23. (b) Functional form of the curve sample in (a). (c) Functional derivative of the curve
sample in (b). Blue and light blue shaded areas indicate the 25th-75th and 5th-95th percentile ranges,
respectively. (d) Average derivative curve for the slice. Red points represent slice-level time points
to(p,s) and t1(p, s). (e) Average derivative curves for all slices. Red dashed lines represent median,
patient-level time points ty(p) and 1 (p).
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Functional representation. The discrete curves are transformed into a functional
form—a continuous curve representing interpolated movement of dynamic contrast. Func-
tional forms are constructed with 14 B-spline basis functions of order 4 using the scikit-fda
package (version 0.10.1). An example is shown in Figure 3b, where the same sample of
10 curves is represented as continuous functions (approximated by 501 time moments).
The parameters of functional smoothing were determined using the Root Mean Square
Error (RMSE) as a quantitative measure of the deviation between the functional curve
and the original discrete curve. To ensure dimensional consistency, the original curve was
upsampled via linear interpolation. Figure 4 shows an RMSE contour map, indicating
which combinations of parameters have the lowest deviation. The green dot represents the
minimum point of RMSE and our spline parameter choice.
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Figure 4. Contour plot of the parameter space used for functional transformation, where contours
represent global average deviation between the original DCE signal curve and its functional represen-
tation measured in Root Mean Square Error (RMSE). The green dot represents the minimum RMSE
point of 14 basis functions of order 4.

Functional derivative. Each functional curve is further converted into its first-order
derivative to capture the rate of change in signal intensity over time. An example output is
shown in Figure 3¢, where each curve of the corresponding color from the previous graph
represents the rate of signal change of the continuous function.

Time point selection. Two specific time points fo(p), t1(p) are chosen for the purpose
of DCE slice subtraction in the next stage of the workflow. These time points are chosen
to correspond to the period of greatest contrast change, enabling identification of regions
exhibiting the most pronounced dynamic behavior.

The process for time point selection is as follows: (1) derivative curves are averaged
across all voxels within each slice, yielding a single average derivative curve per slice
(example shown in Figure 3d) ; (2) initial slice-level time points ty(p,s), t1 (p, s) are identified
based on the set of average derivative curves; and (3) patient-level time points ty(p), t1(p)
are determined by taking the median across all slice-level time points (see example in
Figure 3e) for each respective time point, as shown in the following Equation (1):

to(p) = med(Lsto(P/S)) ti(p) = med(LSJtl(P,S)) (1)

Two variants for determining time moments ty(p,s), t1(p, s) are considered as follows:

https://doi.org/10.3390/ electronics15030507


https://doi.org/10.3390/electronics15030507

Electronics 2026, 15, 507

7 of 15

e “peak-drop”: the time point corresponding to the maximum value of the derivative
curve is selected as t1 (p, s) and the first preceding local minimum (“valley”) is selected
as to(p,s);

e  “peak-start”: the time points corresponding to the maximum derivative value are
selected as t1(p, s) and the earliest available DCE time moment is selected as to(p, s).

A visual comparison of the two variants is demonstrated in Figure 5.

(a) 40 (b) 40

30 30
2 2

g 20 § 20

g 10 < 10
w w
v}

8 0 8 o

-10 -10

0 100 200 300 400 500 0 100 200 300 400 500
Time Time

Figure 5. Examples of slice-level time point selection variants for a selected slice and patient.
Red points indicate t1(p,s) (rightmost) and ty(p,s) (leftmost). (a) Peak-drop variant. (b) Peak-
start variant.

Due to potential instability at the boundaries of functional derivatives, the first and
last 10% of each curve are excluded from consideration of time point selection (except for
to(p, s) in the “peak-start” variant).

Such a time point selection algorithm is fully automated and adapts to the enhance-
ment dynamics specific to each patient, irrespective of the time scale or magnitude of the
enhancement signal. It requires no manual intervention or parameter tuning.

2.2. Image Subtraction

Image subtraction is a technique in which the pixel intensity values of one image
are subtracted from the corresponding pixels of another image. This method has been
employed in various domains, including medical imaging [26,36], to accentuate changes
between images.

This technique is used to generate a difference map D(p, s), or diffmap, which high-
lights the magnitude of change in enhancement levels between the two DCE slices on a
voxel level. Image subtraction is performed on each slice of the patient between time points
to(p) and t1(p) as follows:

D(p,s) = E(p,s,t1(p)) — E(p,s, to(p))-

The diffmap D(p, s) may contain both positive and negative values, as the DCE signal
of some voxels may have a decreasing trend. Two variants are considered for handling
negative values as follows:

e “clipping”: all negative values in D(p, s) are substituted with a zero as follows:
D'(p,s) = max(0,D(p,s))
*  “non-clipping”: all values remain as-is as follows:

D'(p,s) = D(p,s).

https://doi.org/10.3390/ electronics15030507


https://doi.org/10.3390/electronics15030507

Electronics 2026, 15, 507

8 of 15

2.3. Distribution Normalization

It is hypothesized that malignancies are associated with more pronounced fluctuations
in contrast enhancement. Since the diffmap D(p,s) captures the most significant changes
in enhancement levels, higher values in the diffmap are assumed to correlate with a higher
likelihood of cancerous tissue.

By constructing a combined statistical distribution of D’(p, s) voxel values within
the peripheral zone (PZ) across an entire patient volume, it can be observed that higher
values—those located near the upper tail of the distribution—are more likely to represent
PCa, whereas lower values—closer to the lower tail—are more indicative of healthy tissue.
An illustrative example of such distributions is provided in Figure 6.

Slice 16 Slice 18 Slice 20 Slice 23 Slice 25 All slices

CLEE,

~2500 50 100150 0 50 100150 0 50 100150 0 50 160150 0 50 160150 O 500 1000
Time

DCE difference
o o ©O

o

Figure 6. Histogram of voxel value distributions from selected slices of a patient and a histogram for
the entire patient volume. Malignant voxels (red), benign voxels (blue).

To facilitate the comparison of diffmap values across patients—particularly given
inter-patient variability in dynamic contrast-enhanced signal scales—distribution normal-
ization is applied at the patient level to generate a normalized distribution D" (p). This
normalization harmonizes the dynamic range of enhancement variations and allows for
consistent interpretation across subjects. Two normalization variants are considered:

e Min-max normalization: the distribution is rescaled to a range [0,1]. Intermediate

values are linearly adjusted as follows:

D'(p,s) — min(UD'(p))

D"(p,s) = max(UD'(p) ~ min(UD'(p))

¢ Percentile ranking: all values are ranked based on their value within the distribution.
Ranks are then normalized by dividing by the total number of values as follows:

_ rank,(D'(p,s)) — 1'

"
D (P’S) N—1

The min-max approach preserves relative spacing between values of the distribution,
but it is sensitive to outliers, which may distort the distribution. The percentile ranking
approach is robust to outliers, as it relies on the relative positioning of the values in the
distribution, rather than absolute magnitude.

2.4. Evaluation

To quantitatively estimate the performance of our proposed approach and select the
best workflow variants, logarithmic loss (or log loss) is used as the primary evaluation
metric. It is often used in machine learning to quantify the divergence between predicted
probabilities and actual binary labels. In this study, ground truth is a binary outcome of
overlap with the cancer mask C(p, s), while the predicted probabilities correspond to the
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normalized distribution values of D" (p). This metric is particularly suitable in our context,
as the objective is to evaluate the degree of separation between benign and malignant
regions and ensure that the model concentrates voxels overlapping with C(p, s) closer to
the top tail of the distribution and voxels not overlapping with C(p, s)—near the bottom
tail of the distribution. Strongly incorrect predictions (e.g., assigning a very low probability
to a PCa voxel) are more heavily penalized.

The standard log loss is defined in Equation (2), where N is the number of samples
(i.e., voxels), y; € {0,1}—true label, and §; € [0, 1] is the predicted probability of positive
class (i.e., malignancy).

N
Z yilog(9;) + (1 —y;)log(1 — §;)] (2)

=

—_

wL =

i[yi log(7:) + (1 —y;) log(1 — ;)] 3)

HMz Z\H

1
N :

Voxels overlapping with the PCa mask constitute only a small minority. Due to
the substantial class imbalance, a weighted version of the log loss is used to ensure that
misclassifying malignancy has a larger penalty despite significant under-representation in
the dataset, and both classes contribute equally to the evaluation. The weighted log loss is
defined in Equation (3), where w; is the weight assigned to the i-th sample. These weights
are inversely proportional to the frequency of each class within a patient’s volume. For
instance, if PCa voxels comprise 5% of all voxels for a patient, then each PCa prediction is
weighted 20 times more than a non-cancerous voxel. Summary statistics on class imbalance
and the corresponding weight ratios are presented in Table 1.

Table 1. Summary statistics of the number of voxels overlapping and not overlapping with the
cancer mask.

Min Mean Max
Cancer voxels 80 1987 10,131
Non-cancer voxels 7507 45,995 145,360
Cancer voxel ratio, % 0.2 4.7 26.3

3. Results

The proposed workflow comprises three modular components, each with two possible
variants, resulting in a total of eight experimental configurations, which are shown in
Table 2.

Log loss values are computed for each individual patient. To summarize overall accuracy
over the whole dataset, the mean log loss and standard deviation of log loss are calculated,
reflecting average performance and variability of performance estimates, respectively.

The resulting log loss values associated with each experimental configuration are
presented in Table 2. The peak-start time point selection variant produces both a lower log
loss mean and a lower log loss variance compared to analogous workflows of the peak-drop
variants, likely due to a bigger enhancement level difference and a more significant wash-in
change. The optimal set of variants consists of peak-start for time point selection, image
subtraction without clipping, and min-max distribution normalization.
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Table 2. Summary of performance evaluation for all 8 workflow experiment iterations. Best-
performing results (lowest log loss mean and standard deviation) are marked in bold.

Time Point Selection Variant

Distribution Normalization

Image Subtraction Variant LogLossu LogLoss o

Variant
L. Min-max norm. 3.504 5.136
Clipping
P il . 71 241
Peak-drop ercentile rank 0.713 0.240
L. Min-max norm. 0.609 0.143
Non-clipping
Percentile rank. 0.767 0.353
L. Min-max norm. 1.600 2.697
Clipping
Percentile rank. 0.641 0.165
Peak-start
.. Min-max norm. 0.578 0.112
Non-clipping
Percentile rank. 0.647 0.180

Given the optimal workflow configuration, log loss values are calculated for each
patient in the dataset to assess predictive performance at the individual level. For each
patient, workflow predictions are compared with the corresponding ground truth by com-
puting a voxel-wise weighted log loss over the entire patient volume, including all slices.
The resulting patient-level loss is obtained by averaging the voxel-wise log loss values
across the full volume. The resulting distribution is presented in Figure 7. Such a relative
comparison of performance among patients is used for the qualitative analysis below.

Patient 026 shows the lowest log loss, indicating the highest prediction accuracy using
the proposed approach. In contrast, patients 108 and 107 show the highest log losses,
corresponding to the poorest performance among the patients.

0.8

0.6

0.4

Log loss

0.2

0.0

0O ~N~No N o™~ O I MANSS OO On O N N OV

O O 1 O O OO0 ¥ OO0 O St N>~ A M~ N

- 4 4 O 4 4 O O O O O O O O OO o -d o o
Patient

Figure 7. Log loss distribution among patients.

In addition, decision threshold-based metrics, Dice score, sensitivity, and specificity are
calculated to assess localization accuracy and illustrate the trade-off between false positive
and false negative voxel classification given a particular decision boundary. The results are
shown in Figure 8. The highest Dice score is achieved with a threshold of 0.6, while the
highest combined sensitivity and specificity is achieved with a threshold of 0.5. It should
be noted that the Dice score measures only strict spatial overlap with the ground truth
and does not account for proximity /near-miss predictions, which may still be clinically
informative for radiologists; as a result, the metric can be overly penalizing in this context.
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Figure 8. Additional quantitative metrics dependent on the decision threshold. (a) Dice score,
(b) sensitivity and specificity.

Furthermore, a qualitative evaluation was also conducted. Figure 9 displays diffmaps
for selected slices from two patients—one of high predictive power, and one of low. In these
diffmaps, yellow and orange regions correspond to the upper tail of the distribution D(p)
(indicating high suspicion for malignancy), whereas green regions indicate areas closer to
the lower tail of the distribution (low suspicion).

In the first case (Figure 9a), the lesion is located at the border of the peripheral and
transition zones on the right side. The predicted high-suspicion region from our proposed
model is entirely contained within the ground truth cancer mask, as indicated by dark
yellow and orange regions. In the second case (Figure 9b), multiple lesions are present,
one located entirely within the peripheral zone, and another primarily in the transition
zone with minor extension into the peripheral zone. The model’s predicted high-suspicion
regions partially overlap with the PCa mask in the top two slices, while the overlap is
minimal in the bottom two slices.

Patient 028 Patient 107
(@) Log loss 0.384 (b) Log loss 0.752

@

Figure 9. Qualitative evaluation of two patient cases—one with the lowest log loss value, and another

with one of the highest—on select slices. Overlays indicate cancer (red) and peripheral zone (blue)
contours. Heatmap colors range from green (low D(p)) to orange (highest values). (a) Patient 028,
high accuracy case with log loss of 0.384. (b) Patient 107, low accuracy case with a log loss of 0.752.

These qualitative observations are consistent with the corresponding patient-level log
loss values (0.384 for patient 028 vs. 0.752 for patient 107), where tighter spatial alignment
between high-suspicion regions and ground truth masks results in lower penalization by
the weighted log loss metric.
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4. Discussion and Conclusions

This study introduces a diffmap, a novel method for localizing suspicious regions
in the peripheral zone for prostate cancer lesion detection using only dynamic contrast-
enhanced MRI data in conjunction with functional data analysis (FDA). Unlike traditional
approaches that rely on multiparametric MRI, particularly T2-weighted and diffusion-
weighted sequences, this method uses DCE data exclusively and eliminates the require-
ment for manually annotated ROIs. The approach demonstrates that meaningful lesion
localization can be achieved through analysis of enhancement dynamics alone.

Diffmaps are generated through functional transformation of voxel time-signal curves,
derivative-based time point selection, image subtraction, and distribution normalization.
They highlight high-suspicion areas that align closely with annotated cancer masks and act
as an instrument for localizing zones potentially associated with PCa.

Unlike most prostate MRI studies that rely on manually delineated ROIs [26-32] and
models requiring multiparametric MRI inputs [5-7], the proposed approach performs voxel-
wise localization without manual lesion annotation and uses DCE-MRI as the sole imaging
modality. This contrasts with pharmacokinetic modeling approaches [33], which require
physiological assumptions, whereas the present method leverages FDA to adaptively
identify patient-specific enhancement dynamics.

Several methodological variants were explored. The optimal workflow variant (peak-
start time point selection, non-clipped subtraction, and min-max normalization) achieved
the lowest log loss values, both in terms of mean and standard deviation, which reflects con-
sistent predictive accuracy across the patient cohort. Qualitative evaluation revealed that
high-suspicion regions overlap with cancer masks and exhibit spatial coherence between
adjacent slices. Even in cases of partial overlap with ground truth, highlighted regions
were typically located in proximity to cancer masks, which suggests that the method is
sensitive to tumor-adjacent tissue with atypical enhancement patterns.

The effectiveness of the proposed approach supports the hypothesis that temporal
dynamics of contrast enhancement (rather than absolute signal intensity) carry meaningful
information about microvascular behavior in peripheral zone prostate cancer. By focusing
on derivative-based enhancement changes, the method captures early response patterns of
the contrast enhancement.

Despite promising results, there are certain limitations. The inherent nature of a nor-
malized distribution ensures that every diffmap contains both low- and high-suspicion
regions, regardless of the actual presence of malignancy. This may lead to false positive
detections in patients with no PCa lesions. Another limitation is that each voxel is analyzed
independently, losing potentially valuable spatial context, which may increase thte work-
flow’s robustness to imaging noise and inter-slice misalignment. The third limitation is
the modest size of the dataset. Expanding the cohort, especially with cases from multiple
institutions, would improve generalizability and reduce dataset-specific bias.

In addition, a set of potential improvement points is proposed for future development
of this methodology as follows:

*  Spatial context. The current approach treats individual voxels independently, without
explicitly modeling spatial relationships between neighboring voxels or adjacent slices.
Since adjacent voxels are often spatially and functionally connected, incorporating
spatial context, such as neighborhood-based features or slice-wise dependencies, may
improve robustness to noise and enhance the accuracy of PCa localization.

e  Pharmacokinetic analysis. Other types of information can be derived from MRI-
DCE, which may provide additional diagnostic value. For instance, pharmacokinetic
parametric maps: K" (volume transfer between blood plasma and extracellular-
extravascular space), kep (transfer rate between extracellular-extravascular space and
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blood plasma), v, (volume fraction of extracellular-extravascular space), v, (volume
fraction of plasma in the tissue).

*  Other MRI data. The present model utilizes a single input of the dynamic contrast-
enhanced MRI sequence. Augmenting the model with additional MRI modali-
ties, such as T2-weighted or diffusion-weighted imaging (DWI), may increase the
diagnostic power.

* Image registration. Patient motion during MRI acquisition can lead to misalignment
and distortion between image data, particularly in DCE-MRI. As the proposed method
relies on voxel-level precision, such discrepancies may reduce its predictive perfor-
mance. Implementing image registration techniques to spatially align the images
across time points could mitigate this issue.

¢ Sample size. Although the full dataset included 144 patients, expert-validated periph-
eral zone annotations were available for only 20 cases at the time of analysis. This
study, therefore, represents a methodological validation on a curated subset, which
limits statistical power and generalizability.

This work is not intended to replace mpMRI-based localization strategies, but to inves-
tigate whether DCE-MRI contains sufficient information for meaningful lesion localization
under the aforementioned constraints. Direct comparison with existing mpMRI-based
or ROI-driven methods is not straightforward due to differences in available diagnostic
information. Future work will focus on evaluating the proposed approach in conjunction
with, or alongside, mpMRI methods.

In summary, the results suggest that an FDA-based workflow for processing DCE-MRI
is capable of accurately localizing PCa lesions within the peripheral zone, even in isolation
from other MRI sequences. The findings support the potential of DCE-centric functional
curve-based diagnostic tools for prostate imaging. Extended validation and methodological
improvements may unlock clinical adoption of the proposed approach.
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