

16th Conference on

DATA ANALYSIS METHODS for Software Systems

November 27–29, 2025

Druskininkai, Lithuania,
Hotel "Europa Royale"

LITHUANIAN COMPUTER SOCIETY

VILNIUS UNIVERSITY, INSTITUTE OF DATA SCIENCE AND DIGITAL TECHNOLOGIES

LITHUANIAN ACADEMY OF SCIENCES

16th Conference on

DATA ANALYSIS METHODS for Software Systems

November 27–29, 2025

Druskininkai, Lithuania, Hotel "Europa Royale"

<https://www.mii.lt/DAMSS>

VILNIUS UNIVERSITY PRESS

Vilnius, 2025

Co-Chairs:

Dr. Saulius Maskeliūnas (Lithuanian Computer Society)

Prof. Gintautas Dzemyda (Vilnius University, Lithuanian Academy of Sciences)

Programme Committee:

Dr. Jolita Bernatavičienė (Lithuania)

Prof. Juris Borzovs (Latvia)

Prof. Janusz Kacprzyk (Poland)

Prof. Ignacy Kaliszewski (Poland)

Prof. Božena Kostek (Poland)

Prof. Tomas Krilavičius (Lithuania)

Prof. Olga Kurasova (Lithuania)

Assoc. Prof. Tatiana Tchemisova (Portugal)

Assoc. Prof. Gintautas Tamulevičius (Lithuania)

Prof. Julius Žiliškas (Lithuania)

Organizing Committee:

Dr. Jolita Bernatavičienė

Prof. Olga Kurasova

Assoc. Prof. Viktor Medvedev

Laima Paliulionienė

Assoc. Prof. Martynas Sabaliauskas

Prof. Povilas Treigys

Contacts:

Dr. Jolita Bernatavičienė

jolita.bernataviciene@mif.vu.lt

Prof. Olga Kurasova

olga.kurasova@mif.vu.lt

Tel. (+370 5) 2109 315

Copyright © 2025 Authors. Published by Vilnius University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

<https://doi.org/10.15388/DAMSS.16.2025>

ISBN 978-609-07-1200-9 (digital PDF)

© Vilnius University, 2025

Evolution of Artificial Intelligence in Radiological Detection of Lumbar Disc Hernias: Emphasising Trustworthiness and Explainability

Jolanta Miliauskaitė¹, Asta Slotkienė¹, Susana Moleirinho²,
António Fernandes², Luís Mendes Gomes^{3,4}, José Machado³

¹ Institute of Data Science and Digital Technologies
Vilnius University

² SliceD Group Research Center, Portugal

³ Informatics Department, ALGORITMI, LASI
University of Minho, Braga, Portugal

⁴ Informatics Department, Faculty of Sciences and Technology
University of the Azores

jolanta.miliauskaitė@mif.vu.lt

It is widely recognised that artificial intelligence (AI) is profoundly transforming medical imaging, particularly in the radiological detection of lumbar disc hernias [1-2]. This study presents a comprehensive bibliometric analysis based on global research articles extracted from the Web of Science database, aiming to map out the advances made in radiology concerning lumbar disc hernia detection, with an emphasis on trustworthiness and explainability [3-4]. The main contributions and findings have been identified, systematised, and visualised through keyword mapping of relevant AI techniques applied to this domain. These methods primarily facilitate diagnostic accuracy enhancement, automated segmentation, and classification of lumbar spine structures, thereby addressing clinical challenges such as subjective image interpretation and inter-observer variability. A critical focus is placed on the evolution of frameworks ensuring AI trustworthiness, including robustness, fairness, privacy compliance, and clinical reliability, alongside approaches to explainable AI (XAI) that promote transparency by visualising model decision-making processes, such as heatmaps highlighting key anatomical regions on MRI scans. These features are vital for promoting clinician confidence and ensuring ethical, safe AI deployment in clinical workflows.

The present study reveals main trends indicating progressive integration of multimodal data, including clinical, imaging, and genomic information, to enhance diagnostic precision and patient stratification. Additionally, it underscores the challenges faced, such as heterogeneous imaging protocols, limited availability of high-quality annotated datasets, and the need for standardised validation practices. The results support researchers and clinicians by providing valuable insights into AI applications in lumbar disc hernia radiology, guiding future investigations focused on developing robust, interpretable, and clinically relevant AI systems. This work underlines the indispensable role of explainability and trustworthiness as complementary pillars underpinning the responsible adoption of AI technologies, ultimately advancing patient care and resource efficiency in modern radiology.

References

- [1] Wang, H., Jin, Q., Li, S., Liu, S., Wang, M., & Song, Z. (2024). A comprehensive survey on deep active learning in medical image analysis. *Medical Image Analysis*, 95, 103201.
- [2] Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. *Zeitschrift fuer medizinische Physik*, 29(2), 102-127.
- [3] Donthu N, et al. How to conduct a bibliometric analysis: an overview and guidelines. *J Bus Res*. 2021;133:285–296.
- [4] Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. *Journal of informetrics*, 11(4), 959-975.