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1 Neurotechnology, Laisvės av. 125A, 06118 Vilnius, Lithuania
2 Research Institute of Natural and Technological Sciences, Vytautas Magnus University, Universiteto Str. 10,

Akademija, 53361 Kaunas, Lithuania
3 Institute of Data Science and Digital Technologies, Vilnius University, Akademijos Str. 4,

08412 Vilnius, Lithuania
* Correspondence: povilas.daniusis@vdu.lt

Abstract

We study statistical dependence in the frequency domain using the integral probability
metric (IPM) framework. We propose the uniform Fourier dependence measure (UFDM)
defined as the uniform norm of the difference between the joint and product-marginal
characteristic functions. We provide a theoretical analysis, highlighting key properties,
such as invariances, monotonicity in linear dimension reduction, and a concentration
bound. For the estimation of the UFDM, we propose a gradient-based algorithm with
singular value decomposition (SVD) warm-up and show that this warm-up is essential
for stable performance. The empirical estimator of UFDM is differentiable, and it can be
integrated into modern machine learning pipelines. In experiments with synthetic and
real-world data, we compare UFDM with distance correlation (DCOR), Hilbert–Schmidt
independence criterion (HSIC), and matrix-based Rényi’s α-entropy functional (MEF)
in permutation-based statistical independence testing and supervised feature extraction.
Independence test experiments showed the effectiveness of UFDM at detecting some sparse
geometric dependencies in a diverse set of patterns that span different linear and nonlinear
interactions, including copulas and geometric structures. In feature extraction experiments
across 16 OpenML datasets, we conducted 160 pairwise comparisons: UFDM statistically
significantly outperformed other baselines in 20 cases and was outperformed in 13.

Keywords: statistical dependence; IPM; characteristic functions; uniform norm; independence
testing; supervised feature extraction

1. Introduction
The estimation of statistical dependence plays an important role in various statis-

tical and machine learning methods (e.g., hypothesis testing [1], feature selection and
extraction [2,3], causal inference [4], self-supervised learning [5], representation learn-
ing [6], interpretation of neural models [7], among others). In recent years, various authors
(e.g., [1,8–14]) have suggested different approaches to measuring statistical dependence.

In this paper, we focus on the estimation of statistical dependence using characteristic
functions (CFs) and integral probability metric (IPM) framework. We propose and investi-
gate a novel IPM-based statistical dependence measure, defined as the uniform norm of the
difference between the joint and product-marginal CFs. After introducing core concepts,
we conduct a short review of the previous work (Section 2). In Section 3, we formulate
the proposed measure and its empirical estimator and perform their theoretical analysis.
Section 4 is devoted to empirical investigation. Finally, in Section 5 we discuss results,
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limitations, and future work. Appendix A contains technical details, such as mathematical
proofs, and auxiliary tables. The main contributions of this paper are the following:

• Theoretical and methodological contributions. We propose a new IPM-based statisti-
cal dependence measure (UFDM) and derive its properties. The main theoretical result
of this paper is the structural characterisation of UFDM, which includes invariance
under linear transformations and augmentation with independent noise, monotonicity
under linear dimension reduction, vanishing under independence, and a concentra-
tion bound for its empirical estimator. We additionally propose a gradient-based
estimation algorithm with an SVD warm-up to ensure numerical stability.

• Empirical analysis. We conduct an empirical study demonstrating the practical
effectiveness of UFDM in permutation-based independence testing across diverse
linear, nonlinear, and geometrically structured patterns, as well as in supervised
feature-extraction tasks on real datasets.

In addition, we provide the accompanying code repository https://github.com/
povidanius/UFDM (accessed on 4 December 2025).

1.1. IPM Framework

In the context of estimation of statistical dependence, the IPM is a class of metrics
between two probability distributions PX,Y and PXPY, defined for a function class F :

IPM(PX,Y, PXPY|F ) = sup
f∈F
|EU f (U)−EV f (V)|, (1)

where U ∼ PX,Y, and V ∼ PXPY [15].

1.2. Characteristic Functions

Let X ∈ RdX , Y ∈ RdY , and (XT , YT)T ∈ RdX+dY be random vectors defined on a
common probability space (Ω,F ,P). Let us recall that their characteristic functions are
given by

ϕ(α) := EXeiαT X , ϕ(β) := EYeiβTY, and ϕ(α, β) := EX,Yei(αT X+βTY), (2)

where i2 = −1, α ∈ RdX , and β ∈ RdY . Having n i.i.d. realisations (xi, yi)
n
i=1, the corre-

sponding empirical characteristic functions (ECFs) are given by

ϕn(α) :=
1
n

n

∑
j=1

eiαT xj , ϕn(β) :=
1
n

n

∑
j=1

eiβTyj , and ϕn(α, β) :=
1
n

n

∑
j=1

ei(αT xj+βTyj). (3)

The uniqueness theorem states that X and Y have the same distribution if and only if their
CFs are identical [16]. Therefore, CFs can be considered a description of a distribution.
Alternatively, a CF ϕ can be represented as a real vector (ℜϕ, ℑϕ) ∈ R2, where ℜ and ℑ
denote real and imaginary components [17]. This viewpoint avoids explicit reliance on the
imaginary unit i and makes the geometric structure of CFs more transparent.

For convenience, let us define γ = (αT , βT)T , ψ(γ) = ϕ(α)ϕ(β) and let ψn(γ) = ψn(α, β)

be its empirical counterpart. In our study, we will utilise IPM framework for investigation
of the statistical dependence via

∆(γ) = ϕ(γ)− ψ(γ) (4)

and its empirical counterpart

∆n(γ) = ϕn(γ)− ψn(γ). (5)

https://github.com/povidanius/UFDM
https://github.com/povidanius/UFDM
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2. Previous Work
Various theoretical instruments have been employed for statistical dependence esti-

mation. For example, weighted L2 spaces and CFs (e.g., distance correlation, [13]), repro-
ducing kernel Hilbert spaces (RKHS) (HSIC [1], DIME [18]), information theory (mutual
information [19], and generalisations such as MEF [20,21]) and copula theory ([10,22]),
among others. Since our work is rooted in the CF-based line of research and IPM frame-
work, and it is empirically evaluated for independence testing and representation learning,
let us consider DCOR, HSIC, and MEF, because these three measures form the compact
set of high-performing baselines that span CFs, IPMs, and information-theoretic methods,
which are widely used in representation learning tasks.
Distance correlation. DCOR [13] is defined as

DCOR(X, Y) =
DCOV(X, Y)√

DCOV(X, X)DCOV(Y, Y)
,

where the distance covariance (DCOV) is given by

DCOV2(X, Y) =
∫
RdX+dY

|∆(γ)|2w(γ)dγ, (6)

with weighting function w(γ) = w(α, β) = (cdX cdY ||α||
1+dX ||β||1+dY )−1, where cdX =

π(1+dX)/2/Γ((1 + dX)/2), and cdY = π(1+dY)/2/Γ((1 + dY)/2), and Γ(.) is the gamma
function. This weighting function allows one to avoid the direct estimation of the integral,
expressing it in terms of the covariance of distances between data points [13]. The later
result of [23] generalises the distance correlation to multiple random vectors. Given the
i.i.d. sample pairs (xi, yi), i = 1, . . . , n, the empirical unbiased estimator of the squared
distance covariances [24] is defined as

DCOV2
n(X, Y) =

1
n(n− 3) ∑

i ̸=j
AijBij, (7)

where matrices A = (Aij), B = (Bij) are given by

Aij = aij −
1

n− 2

n

∑
k=1

aik −
1

n− 2

n

∑
k=1

akj +
1

(n− 1)(n− 2)

n

∑
k,ℓ=1

akℓ,

with Euclidean distance aij = ∥xi− xj∥. The matrix B is defined analogously using distances
bij = ∥yi − yj∥. The empirical DCOR is then obtained as follows:

DCORn(X, Y) =
DCOVn(X, Y)√

DCOVn(X, X)DCOVn(Y, Y)
.

Note that the biased version of the empirical distance-based estimator Equation (7) is
equivalent to the ECF-based estimator of Equation (6) (Theorem 1, [13]). While consistency
is established for the biased estimator under the moment condition E(∥X∥+ ∥Y∥) < ∞
(Theorem 2, [13]), the unbiased estimator Equation (7) differs only by a finite-sample
correction and converges to the same population quantity Equation (6) [24], implying
consistency under the same moment condition.
HSIC. For reproducing kernel Hilbert spaces (RKHS) F and G with kernels k and l, it is
defined as

HSIC(X, Y) = ∥EXYk(X, ·)⊗ l(Y, ·)−EXk(X, ·)⊗EY l(Y, ·)∥2
HS,
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where ∥ · ∥HS denotes the Hilbert–Schmidt norm, and ⊗ is the tensor product [1]. Taking a
product kernel κ((x, y), (x′, y′)) = k(x, x′)l(y, y′), HSIC is equal to the squared maximum
mean discrepancy, which is an instance of an IPM with function class F = { f : || f ||Hκ ≤ 1},
where Hκ is RKHS generated by κ [25]. Having a sample of paired n i.i.d. observations,
the empirical estimator is

HSICn(X, Y) =
1

(n− 1)2 tr(KHLH)

with kernel matrices Kij = k(xi, xj), Lij = l(yi, yj), and centering matrix H = I − 1
n 11T .

When both kernels k and l are translation-invariant (i.e., k(x, x′) = k0(x − x′) on RdX

and l(y, y′) = l0(y− y′) on RdY , with k0, l0 positive definite functions such as the Gaus-
sian k0(v) = exp(−∥v∥2/(2σ2)) with σ > 0), the product kernel κ((x, y), (x′, y′)) =

k(x, x′)l(y, y′) = k0(x− x′)l0(y− y′) is also translation-invariant on RdX+dY . In this case,
κ(u, v) = κ0(u − v) for some positive definite function κ0 on RdX+dY , and HSIC can be
expressed in the frequency domain as

HSIC(X, Y) =
∫
RdX+dY

|∆(γ)|2 F−1κ0(γ) dγ, (8)

where γ = (αT , βT)T , and F−1κ0 denotes the inverse Fourier transform of κ0. Therefore,
for translation-invariant kernels, HSIC is structurally analogous to distance covariance,
since it also corresponds to the squared L2 norm of ∆ (Equation (4)), with weighting
determined by κ.
MEF. Shannon mutual information is defined by MI(X, Y) = EX,Y log p(X,Y)

p(X)p(Y) [19].
The neural estimation of mutual information (MINE, [26]) uses its variational (Donsker–
Varadhan) representation MI(X, Y) ≈ maxθEX,Y f (x, y|θ)− log(EXEYe f (x,y|θ)), since it al-
lows avoiding density estimation (here f (x, y|θ) is a neural network with parameters θ).
In this case, the optimisation is performed over the space of neural network parameters,
which often leads to unstable training and biased estimates due to the unboundedness
of the objective and the difficulty of balancing the exponential term. The matrix-based
Rényi’s α-order entropy functional (MEF) [20,21,27] provides a kernel version of mutual
information that avoids both density estimation and neural optimization. For random
variables X and Y with distributions PX , PY, and PXY, it is defined as

MEFα(X, Y) = Sα(PX) + Sα(PY)− Sα(PXY), (9)

where Sα(PX) = 1
1−α log2(tr(T

α
X)) and TX is the normalised kernel integral operator on

L2(PX) [27]. Given i.i.d. samples {(xi, yi)}n
i=1 with Gram matrices Kij = k(xi, xj) and

Lij = l(yi, yj), the empirical estimator is

MEFα,n(X, Y) = Sα,n

(
K

tr(K)

)
+ Sα,n

(
L

tr(L)

)
− Sα,n

(
K⊙L

tr(K⊙L)

)
, (10)

where ⊙ denotes the element-wise product, Sα,n(A) = 1
1−α log2(∑i λi(A)α), and λi are

eigenvalues of n× n matrix A.
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Motivation

The motivation of our work stems from the theoretical observation that applying the
L∞ norm to ∆ Equation (4) yields a novel, structurally simple IPM with some advantageous
properties, such as the ability to detect arbitrary statistical dependencies, invariance under
full-rank linear transformations and coordinate augmentation with independent noise,
and monotonicity under linear dimension reduction (Theorem 1).

Since the L∞ norm isolates the most informative frequencies where dependence con-
centrates, we hypothesise that its empirical estimator could extract important structure
from ∆ that may be diluted by weighted L2 or other global approaches such as DCOV,
HSIC, and MEF.

3. Proposed Measure
Given two random vectors X and Y of dimensions dX and dY, and assuming possibly

unknown joint distribution PX,Y, we define our measure via IPM with function class
F = { f : f (z) = eiγTz; γ, z ∈ RdX+dY , i2 = −1}, which corresponds to the following.

Definition 1. Uniform Fourier Dependence Measure.

UFDM(X, Y) = ||∆||L∞ = sup
γ
|∆(γ)|. (11)

Since CF is a Fourier transform of a probability distribution, and the norm in L∞ is
called a uniform norm, we refer to it as Uniform Fourier Dependence Measure (UFDM).

Theorem 1. UFDM has the following properties:

1. 0 ≤ UFDM(X, Y) ≤ 1.
2. UFDM(X, Y) = UFDM(Y, X).
3. UFDM(X, Y) = 0 if and only if X ⊥ Y (⊥ denotes statistical independence).
4. For Gaussian random vectors X ∼ N(0, ΣX), Y ∼ N(0, ΣY) with cross-covariance matrix

ΣX,Y we have UFDM(X, Y) = supα,β e−
1
2 (α

TΣXα+βTΣY β)|e−αTΣX,Y β − 1|.
5. Invariance under full-rank linear transformation: UFDM(AX+ a, BY+ b) = UFDM(X, Y)

for any full-rank matrices A ∈ RdX×dX , B ∈ RdY×dY and vectors a ∈ RdX , b ∈ RdY .
6. Linear dimension reduction does not increase UFDM(X, Y).
7. If X ⊥ E , for any continuous function f : RdX → RdY , limλ→∞ UFDM(X, f (X) + λE) =

0, if E has a density.
8. If X and Y have densities, then UFDM(X, Y) ≤ min{1,

√
2MI(X, Y)}, where MI(X, Y) is

mutual information.
9. Invariance to augmentation with independent noise: let X, Y, Z be random vectors such that

Z ⊥ (X⊤, Y⊤)⊤. Then UFDM((X⊤, Z⊤)⊤, Y) = UFDM(X, Y).

Proof. See Appendix A.1.

Interpretation of UFDM via canonical correlation analysis (CCA). In the Gaussian
case, the UFDM objective reduces analytically to CCA via a closed-form expression
(Theorem 1, Property 4): after whitening (setting u = Σ1/2

X α and v = Σ1/2
Y β), it becomes

maxu,v e−
1
2 (|u|

2+|v|2)(1− e−u⊤Kv), where K = Σ−1/2
X ΣXYΣ−1/2

Y . By von Neumann’s inequal-
ity, the maximizers (u, v) align with the leading singular vectors of K, corresponding to
the top CCA pair. Note that since Gaussian independence is equivalent to the vanishing
of the leading canonical correlation ρ1 (as all remaining correlations 0 ≤ ρj ≤ ρ1, j > 1
must also vanish), UFDM’s focus on the leading canonical correlation entails no loss of
discriminatory power.
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Interpretation of UFDM via cumulants. Let us recall that γ = (αT , βT)T , ϕ(γ) = ϕ(α, β),
ψ(γ) = ϕ(α)ϕ(β). For general distributions, writing ∆(γ) = ψ(γ)(exp(C(γ))− 1) offers a
cumulant-series factorization, with C(γ) = log ϕ(γ)

ψ(γ)
= ∑p,q≥1

ip+q

p!q! ⟨κp,q, α⊗p ⊗ β⊗q⟩, where

κp,q are cross-cumulants and α⊗p ⊗ β⊗q are the (p + q)-order tensors formed by the tensor
product of p copies of α and q copies of β. The leading term, corresponding to p = q = 1, is

i2
1!,1! ⟨κ1,1, α⊗ β⟩ = −α⊤ΣXY β (with κ1,1 = ΣXY for centered variables), which aligns with
the CCA interpretation, while higher-order κp,q terms capture non-Gaussian deviations,
interpreting UFDM as a frequency-domain approach that aligns (α, β) with cross-cumulant
directions under marginal damping by ψ(γ).
Remark on the representations of CFs. Since UFDM(X, Y) = supγ ∥(ℜ∆(γ), ℑ∆(γ))∥2,
the UFDM objective naturally operates on the real two-dimensional vector formed by the
real and imaginary parts of ∆(γ). This aligns with recent work on real-vector representa-
tions of characteristic functions [17] and shows that UFDM does not rely on any special
algebraic role of the imaginary unit.

3.1. Estimation

Having i.i.d. observations (Xn, Yn) = (xj, yj) ∼ PX,Y, j = 1, 2, . . . , n, we define
and discuss empirical estimators of UFDM. Recall that (Section 1.2) that γ = (αT , βT)T

and let ϕ(α), ϕ(β), and ϕ(γ) be CFs of X, Y, and (X, Y), respectively (α ∈ RdX , β ∈
RdY , and γ ∈ RdX+dY ). Let us also denote norms || f ||tL∞

= sup||τ||<t | f (τ)|, || f ||L∞ =

supτ | f (τ)|, for t > 0 and multivariate τ.
Empirical estimator. Let us define the empirical estimator of UFDM for a fixed t > 0:

UFDMt
n(Xn, Yn) = ||∆n||tL∞

. (12)

3.2. Estimator Convergence

The ECF is a uniformly consistent estimator of CF in each bounded subset [28] (i.e.,
limn→∞ sup||γ||<t |ϕ(γ)− ϕn(γ)| = 0 almost surely for any fixed t > 0) [28]. By the triangle
inequality, this implies the following:

Proposition 1. For a fixed t > 0, limn→∞ ||∆n − ∆||tL∞
= 0, almost surely.

Theorem 2 ([29]). If tn → ∞ and log tn
n → 0, as n → ∞, then limn→∞ sup||γ||<tn

|ξ(γ) −
ξn(γ)| = 0 almost surely for any CF ξ(γ) and corresponding ECF ξn(γ).

This implies the convergence of the empirical estimator Equation (12):

Proposition 2. If tn → ∞ and log tn
n → 0, as n → ∞, then limn→∞ ||∆n||tn

L∞
= UFDM(X, Y),

almost surely.

Proof. See Appendix A.1.

Note that ECF does not converge to CF [28,29] uniformly in the entire space. There-
fore, to ensure the convergence of the empirical estimator of UFDM, we need to bound
the norm by slowly growing balls as in Theorem 2. The finite–sample analysis of the
convergence of empirical UFDM Equation (12) to its truncated population counterpart
(UFDMt(X, Y) = ||∆||tL∞

) yields the following concentration inequality.
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Theorem 3. Let us assume that E||X||2 < ∞, E||Y||2 < ∞. Let us define d = dX + dY,
Z = (XT , YT)T , and W = ||X||+ ||Y||+ ||Z||. Then there exists a constant C, such that for
every fixed ε > 1

n , t > 0:

Pr( |UFDMt
n(Xn, Yn)−UFDMt(X, Y)| > ε) ≤ 2

(
Ct
ε

)d
exp
(
− n

18 (
ε
2 −

1
n )

2
)
+

σ2

nL2 ,

where L = EW, and σ2 = E(W − L)2.

Proof. See Appendix A.2.

3.3. Estimator Computation

In practice, UFDM can be estimated iteratively using Algorithm 1. Since it depends on
initial parameters α and β, the complementary Algorithm 2 is designed for their data-driven
initialisation. According to our experience with UFDM applications, Algorithm 2 is very
important, since without it we often encountered stability issues, and initially had to rely on
various heuristics, such as parameter normalisation to the unit sphere. In our opinion, this
is because ∆n is a highly nonlinear optimisation surface (especially in larger dimensions),
which complicates the finding of the corresponding maxima.

Algorithm 1 UFDM estimation

Require: Number of iterations N, batch size nb, initial α ∈ RdX , β ∈ RdY .
for iteration = 1 to N do

Sample batch (Xnb , Ynb) = (xi, yi)
nb
i=1.

Standardise (Xnb , Ynb) to zero mean and unit variance.
α, β← AdamW([α, β],−|∆nb(α, β)|).

end for
return ∆(α, β), α, β

Algorithm 2 SVD warm-up

Require: Batch size nb.
Sample batch (Xnb , Ynb) = (xi, yi)

nb
i=1.

Compute cross-covariance C = (Xnb)⊤Ynb /nb.
Decompose: [U, Σ, VH ] = SVD(C).
α← U:,1, β← VH,⊤

1,: .
return α, β

The computational complexity of Algorithm 2 consists of cross-covariance computa-
tion and finding its SVD a complexity of O(nbdXdY + dXdY min(dX, dY)). Having initial-
isation of α and β, the complexity of Algorithm 1 is O(N nb (dX + dY)). Hence, the total
computational complexity of the sequential application of Algorithm 2 and Algorithm 1
is O(nbdXdY + dXdY min(dX , dY) + N nb (dX + dY)). Finally, having the optimal α∗ and β∗

computed by Algorithm 1, the evaluation of empirical UFDM has computational complex-
ity linear in sample size.

4. Experiments
For UFDM, we used SVD warm-up (Algorithm 2) for parameter initialisation and fixed

truncation parameter t to 25.0. For kernel measures, HSIC and MEF, we used Gaussian
kernels for both X and Y, with a bandwidth selected using median heuristics [30]. For MEF
measure α was set to 1.01, as in [21].
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4.1. Permutation Tests

Permutation tests with UFDM. We compared UFDM, DCOR, HSIC, and MEF in
permutation-based statistical independence testing (H0 : X ⊥ Y versus the alternative
H1 : X ̸⊥ Y) using a set of multivariate distributions. We investigated scenarios with a
sample size of n = 750 and data dimensions d ∈ {5, 15, 25} (dX = dY = d). To ensure valid
finite-sample calibration, permutation p-values were computed with the Phipson–Smyth
correction [31].
Hyperparameters. We used 500 permutations per p-value. The number of iterations in
UFDM estimation Algorithm 1 was set to 100. The batch size equaled the sample size
(n = 750). We used a learning rate of 0.025. Due to the high computation time (permutation
tests took ≈ 6.3 days on five machines with Intel i7 CPU, 16GB of RAM, and Nvidia
GeForce RTX 2060 12 GB GPU), we relied on 500 p-values for each test in the H0 scenario
and on 100 p-values for each test in the H1 scenario.
Distributions analysed. In the H0 case, X was sampled from multivariate uniform, Gaus-
sian, and Student t(3) distributions (corresponding to no-tail, light-tail, and heavy-tail
scenarios, respectively), and Y was independently sampled from the same set of distribu-
tions. Afterwards, we examined the uniformity of the p-values obtained from permutation
tests using different statistical measures, through QQ-plots and Kolmogorov–Smirnov
(KS) tests.

In the H1 case, X and Y were related through statistical dependencies described in
Table A2. These dependencies include structured dependence patterns, where X was
sampled from the same set of distributions (multivariate uniform, Gaussian, and Student
t(3)), and Y was generated as Y = f (X) + 0.1ϵ, with ϵ denoting additive Gaussian noise
independent of X. We also examined more complex dependencies (Table A2), where the
relationship between X and Y was modeled using copulas, bimodal, circular, and other
nonlinear patterns. Using this setup, we evaluated the empirical power of the permutation
tests based on the same collection of statistical measures.
Results for H0. As shown in Figure 1, UFDM, DCOR, HSIC, and MEF exhibited ap-
proximately uniform permutation p-values across all distribution pairs and dimensions,
with empirical false rejection rates (FRR) remaining close to the nominal 0.05 level. Isolated
low KS p-values below 0.05 occurred in only two cases: one for MEF in the Gaussian/Gaus-
sian pair at dimension 5 (p-value of 0.01) and one for UFDM in the Gaussian/Student-t
pair at dimension 5 (p-value of 0.03), suggesting minor sampling variability rather than sys-
tematic deviations from uniformity. These results show that UFDM remained comparably
stable to DCOR, HSIC and MEF, in terms of type-I error control under H0.

U/U, d=25

UFDM FRR 0.06 [0.04,0.09], KS_p 0.15
DCOR FRR 0.06 [0.04,0.09], KS_p 0.58
HSIC FRR 0.06 [0.04,0.08], KS_p 0.80
MEF FRR 0.05 [0.04,0.08], KS_p 0.44

U/G, d=25

UFDM FRR 0.05 [0.03,0.07], KS_p 0.58
DCOR FRR 0.06 [0.04,0.08], KS_p 0.09
HSIC FRR 0.06 [0.04,0.08], KS_p 0.21
MEF FRR 0.06 [0.04,0.08], KS_p 0.61

U/S_t(3), d=25

UFDM FRR 0.07 [0.05,0.09], KS_p 0.62
DCOR FRR 0.05 [0.03,0.07], KS_p 0.55
HSIC FRR 0.04 [0.03,0.07], KS_p 0.55
MEF FRR 0.05 [0.03,0.07], KS_p 0.62

G/G, d=25

UFDM FRR 0.05 [0.03,0.07], KS_p 0.24
DCOR FRR 0.06 [0.05,0.09], KS_p 0.58
HSIC FRR 0.06 [0.04,0.08], KS_p 0.65
MEF FRR 0.06 [0.04,0.08], KS_p 0.19

G/S_t(3), d=25

UFDM FRR 0.07 [0.05,0.09], KS_p 0.55
DCOR FRR 0.04 [0.03,0.07], KS_p 0.17
HSIC FRR 0.04 [0.03,0.06], KS_p 0.12
MEF FRR 0.05 [0.03,0.07], KS_p 0.32

S_t(3)/S_t(3), d=25

UFDM FRR 0.06 [0.04,0.08], KS_p 0.95
DCOR FRR 0.05 [0.04,0.08], KS_p 0.11
HSIC FRR 0.05 [0.04,0.08], KS_p 0.06
MEF FRR 0.07 [0.05,0.09], KS_p 0.79

Figure 1. Cont.
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U/U, d=15

UFDM FRR 0.04 [0.03,0.07], KS_p 0.68
DCOR FRR 0.04 [0.03,0.06], KS_p 0.62
HSIC FRR 0.05 [0.03,0.07], KS_p 0.84
MEF FRR 0.04 [0.03,0.07], KS_p 0.80

U/G, d=15

UFDM FRR 0.05 [0.04,0.08], KS_p 0.38
DCOR FRR 0.05 [0.04,0.08], KS_p 0.42
HSIC FRR 0.05 [0.03,0.07], KS_p 0.43
MEF FRR 0.05 [0.03,0.07], KS_p 0.64

U/S_t(3), d=15

UFDM FRR 0.05 [0.03,0.07], KS_p 0.48
DCOR FRR 0.09 [0.06,0.11], KS_p 0.39
HSIC FRR 0.08 [0.06,0.11], KS_p 0.27
MEF FRR 0.04 [0.03,0.06], KS_p 0.47

G/G, d=15

UFDM FRR 0.08 [0.06,0.10], KS_p 0.68
DCOR FRR 0.06 [0.04,0.08], KS_p 0.57
HSIC FRR 0.06 [0.04,0.08], KS_p 0.31
MEF FRR 0.06 [0.04,0.08], KS_p 0.43

G/S_t(3), d=15

UFDM FRR 0.06 [0.04,0.08], KS_p 0.72
DCOR FRR 0.03 [0.02,0.05], KS_p 0.29
HSIC FRR 0.05 [0.03,0.07], KS_p 0.34
MEF FRR 0.07 [0.05,0.09], KS_p 0.15

S_t(3)/S_t(3), d=15

UFDM FRR 0.05 [0.03,0.07], KS_p 0.09
DCOR FRR 0.05 [0.04,0.08], KS_p 0.82
HSIC FRR 0.06 [0.05,0.09], KS_p 0.43
MEF FRR 0.06 [0.04,0.08], KS_p 0.73

U/U, d=5

UFDM FRR 0.04 [0.03,0.06], KS_p 0.18
DCOR FRR 0.04 [0.02,0.06], KS_p 0.83
HSIC FRR 0.04 [0.03,0.06], KS_p 0.97
MEF FRR 0.06 [0.05,0.09], KS_p 0.50

U/G, d=5

UFDM FRR 0.05 [0.03,0.07], KS_p 0.37
DCOR FRR 0.06 [0.04,0.08], KS_p 0.90
HSIC FRR 0.05 [0.04,0.08], KS_p 0.65
MEF FRR 0.07 [0.05,0.10], KS_p 0.19

U/S_t(3), d=5

UFDM FRR 0.05 [0.03,0.07], KS_p 0.83
DCOR FRR 0.06 [0.05,0.09], KS_p 0.77
HSIC FRR 0.06 [0.04,0.08], KS_p 0.83
MEF FRR 0.04 [0.03,0.07], KS_p 0.55

G/G, d=5

UFDM FRR 0.03 [0.02,0.05], KS_p 0.48
DCOR FRR 0.07 [0.05,0.09], KS_p 0.71
HSIC FRR 0.06 [0.04,0.08], KS_p 0.91
MEF FRR 0.07 [0.05,0.10], KS_p 0.01

G/S_t(3), d=5

UFDM FRR 0.06 [0.04,0.08], KS_p 0.03
DCOR FRR 0.07 [0.05,0.09], KS_p 0.42
HSIC FRR 0.06 [0.04,0.08], KS_p 0.73
MEF FRR 0.06 [0.05,0.09], KS_p 0.51

S_t(3)/S_t(3), d=5

UFDM FRR 0.05 [0.03,0.07], KS_p 0.48
DCOR FRR 0.05 [0.03,0.07], KS_p 0.40
HSIC FRR 0.05 [0.03,0.07], KS_p 0.30
MEF FRR 0.06 [0.04,0.08], KS_p 0.29

Figure 1. Empirical QQ-plots of p-values under H0. The dashed vertical line corresponds to the
nominal significance level 0.05. The empirical FRR and its Wilson confidence interval, p-values of KS
test are reported in the legend.

Results for H1. The empirical power and its 0.95-Wilson confidence intervals (CIs) are
presented in Tables 1 and 2. These results show that, in most cases, the empirical power of
UFDM, DCOR, HSIC, and MEF was approximately equal to 1.00. However, Table 2 also
reveals that for the sparse Circular and Interleaved Moons patterns (d ≥ 15), MEF exhibited
a noticeable decrease in empirical power. We conjecture that this reduction may stem from
MEF’s comparatively higher sensitivity to kernel bandwidth selection in these specific,
geometrically structured patterns. On the other hand, UFDM’s robustness in these settings
may also be explained by its invariance to augmentation with independent noise (Theorem 1,
Property 9), which helps to preserve the detectability of sparse geometric dependencies
embedded within high-dimensional noise coordinates.
Ablation experiment. The necessity of the SVD warm-up (Algorithm 2) is empirically
demonstrated in Table A1, where the p-values obtained without SVD warm-up systemati-
cally fail to reveal dependence in many nonlinear patterns.
Remark on the stability of the estimator. Since the UFDM objective is non-convex, dif-
ferent random initialisations may potentially lead to distinct local optima. To assess the
impact of this issue, we investigated the numerical stability of the UFDM estimator. We
computed the mean and standard deviation of the statistic across 50 independent runs for
each distribution pattern and dimension (Tables 1 and 2), as well as for the corresponding
permuted patterns in which dependence is destroyed, as reported in Table 3. The obtained
results align with the permutation test findings. While a slight upward shift is observed
under independent (permuted) data, the proposed estimator retained consistent separa-
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tion between dependent and independent settings and exhibited stable behaviour across
random restarts.

Table 1. Empirical power and Wilson CIs for the dependent data (structured dependence patterns) at
α = 0.05.

Distribution of Y UFDM DCOR HSIC MEF

d
=

5

X
∼

U
[0

,1
]d

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

15

Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

25

Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

5

X
∼
N
(0

,I
d)

Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
d
=

15
Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

25

Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 0.97 [0.92, 0.99] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
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Table 1. Cont.

Distribution of Y UFDM DCOR HSIC MEF

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

5

X
∼

St
ud

en
t’s

t(
3)

Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 0.98 [0.93, 0.99] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 0.96 [0.90, 0.98] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

15

Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 0.98 [0.93, 0.99] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 0.99 [0.95, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 0.99 [0.95, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Linear (1.0) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

25

Linear (0.3) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Logarithmic 0.97 [0.92, 0.99] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Quadratic 0.98 [0.93, 0.99] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Polynomial 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
LRSO (0.05) 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Heteroscedastic 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Table 2. Empirical power with 95% Wilson confidence intervals for dependent data (complex
dependence patterns) at α = 0.05.

Pattern UFDM DCOR HSIC MEF

d
=

5

Mixture Bimodal Marginal 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Mixture Bimodal 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Circular 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Gaussian Copula 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Clayton Copula 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Interleaved Moons 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

Mixture Bimodal Marginal 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

15
Mixture Bimodal 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Circular 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 0.87 [0.79, 0.92]
Gaussian Copula 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Clayton Copula 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Interleaved Moons 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 0.49 [0.39, 0.59]

Mixture Bimodal Marginal 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]

d
=

25

Mixture Bimodal 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Circular 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 0.52 [0.42, 0.62]
Gaussian Copula 0.98 [0.93, 0.99] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Clayton Copula 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00] 1.00 [0.96, 1.00]
Interleaved Moons 1.00 [0.96, 1.00] 0.97 [0.92, 0.99] 0.96 [0.90, 0.98] 0.27 [0.19, 0.36]
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Table 3. UFDM statistic (mean ± std) under true dependence/permuted independence.

Dependence Pattern d = 5 d = 15 d = 25

Linear (strong) 0.191± 0.035/0.023± 0.010 0.208± 0.012/0.045± 0.009 0.231± 0.011/0.083± 0.015

X
∼

U
[0

,1
]dLinear (weak) 0.123± 0.035/0.023± 0.009 0.143± 0.014/0.044± 0.011 0.166± 0.012/0.081± 0.015

Logarithmic 0.172± 0.048/0.023± 0.009 0.189± 0.022/0.042± 0.008 0.195± 0.014/0.087± 0.015
Quadratic 0.199± 0.048/0.025± 0.013 0.200± 0.020/0.045± 0.009 0.212± 0.017/0.082± 0.017
Polynomial 0.185± 0.047/0.023± 0.010 0.195± 0.026/0.047± 0.013 0.208± 0.015/0.083± 0.016
Contaminated sine 0.059± 0.009/0.006± 0.002 0.080± 0.008/0.009± 0.004 0.116± 0.007/0.015± 0.006
Conditional variance 0.102± 0.024/0.023± 0.010 0.142± 0.016/0.043± 0.010 0.173± 0.015/0.080± 0.016

Linear (strong) 0.240± 0.013/0.042± 0.011 0.239± 0.011/0.077± 0.014 0.250± 0.010/0.101± 0.009

X
∼
N
(0

,I
d)Linear (weak) 0.230± 0.011/0.044± 0.014 0.235± 0.013/0.077± 0.013 0.244± 0.012/0.104± 0.013

Logarithmic 0.254± 0.031/0.034± 0.010 0.184± 0.031/0.051± 0.013 0.136± 0.023/0.079± 0.014
Quadratic 0.212± 0.035/0.028± 0.013 0.176± 0.025/0.049± 0.010 0.146± 0.022/0.080± 0.014
Polynomial 0.190± 0.041/0.027± 0.009 0.176± 0.027/0.048± 0.011 0.174± 0.020/0.073± 0.009
Contaminated sine 0.059± 0.009/0.006± 0.002 0.082± 0.010/0.011± 0.005 0.114± 0.009/0.014± 0.005
Conditional variance 0.184± 0.014/0.038± 0.012 0.208± 0.013/0.077± 0.012 0.218± 0.012/0.102± 0.013

Linear (strong) 0.173± 0.016/0.031± 0.013 0.181± 0.017/0.053± 0.012 0.207± 0.013/0.080± 0.013

X
∼

St
ud

en
t’s

t(
3)Linear (weak) 0.165± 0.018/0.030± 0.012 0.182± 0.018/0.059± 0.014 0.205± 0.013/0.082± 0.012

Logarithmic 0.150± 0.041/0.024± 0.011 0.096± 0.019/0.041± 0.011 0.121± 0.026/0.064± 0.014
Quadratic 0.082± 0.037/0.014± 0.007 0.078± 0.020/0.029± 0.010 0.097± 0.022/0.048± 0.012
Polynomial 0.037± 0.022/0.009± 0.004 0.050± 0.023/0.016± 0.008 0.085± 0.020/0.033± 0.012
Contaminated sine 0.057± 0.008/0.006± 0.002 0.078± 0.009/0.011± 0.004 0.115± 0.008/0.014± 0.004
Conditional variance 0.124± 0.018/0.027± 0.009 0.158± 0.014/0.054± 0.011 0.180± 0.011/0.079± 0.013

Mixture bimodal marginal 0.496± 0.007/0.048± 0.011 0.500± 0.008/0.083± 0.012 0.500± 0.008/0.101± 0.012

C
om

pl
ex

pa
tt

er
nsMixture bimodal 0.883± 0.006/0.036± 0.013 0.935± 0.006/0.047± 0.016 0.972± 0.005/0.058± 0.016

Circular 0.277± 0.023/0.048± 0.010 0.259± 0.022/0.089± 0.012 0.231± 0.032/0.114± 0.011
Gaussian copula 0.241± 0.011/0.038± 0.016 0.248± 0.013/0.049± 0.013 0.254± 0.010/0.056± 0.013
Clayton copula 0.284± 0.013/0.038± 0.013 0.287± 0.013/0.047± 0.014 0.290± 0.015/0.060± 0.014
Interleaved moons 0.418± 0.017/0.020± 0.008 0.384± 0.024/0.052± 0.013 0.339± 0.041/0.095± 0.014

4.2. Supervised Feature Extraction

Feature construction is often a key initial step in machine learning with tabular data.
These methods can be roughly classified into feature selection and feature extraction. Fea-
ture selection identifies a subset of relevant inputs, either incrementally (e.g., via univariate
filters) or through other strategies, and feature extraction transforms inputs into lower-
dimensional, informative representations. In our experiments, we used the latter approach
because of its computational effectiveness. The total computational time for these experi-
ments was ≈ 94.3 h on single Intel i7 CPU, 16GB of RAM, and Nvidia GeForce RTX 2060
12 GB GPU machine.

Let (xi, yi)
n
i=1 be a classification dataset consisting of n pairs of dX-dimensional in-

puts xi, and dY-dimensional one-hot encoded outputs yi. In our experiments, we used
a collection of OpenML classification datasets [32], which cover different domains, in-
put and output dimensionalities. We randomly split the data into training, validation,
and test sets using the proportions (0.5, 0.1, 0.4), respectively. We followed the dependence
maximisation scheme (e.g., [3,33]) by seeking

W∗ = arg max
W

DEP(Wx, y)− λtr((WTW − I)T(WTW − I)), (13)

where DEP ∈ {UFDM, DCOR, HSIC, MEF}. To evaluate the obtained features f (x) = W∗x,
we used logistic regression’s [34] accuracy, measured on the test set. For each baseline
method, we selected the dimensions of the features that correspond to the maximal vali-
dation accuracy of the investigated method, checking all dimensions starting from 1 with
a step of 10% of dX. Similarly, we selected λ ∈ {0.1, 1.0, 10.0}. The feature extraction
loss Equation (13) was optimised via Algorithm 1 for 100 epochs, with the learning rate set
to 0.025, as in permutation testing experiments (Section 4.1).
Baselines. We compared the following baselines: unmodified inputs (denoted as RAW);
and Equation (13) scheme with dependence measures: UFDM, DCOR, MEF, and HSIC.
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We also included the neighbourhood component analysis (NCA) [35] baseline, which is
specially tailored for classification.
Evaluation metrics. Let us denote ar,p(b, b′|d) = 1, if for r runs on the dataset d the
average test set accuracy of baseline b is statistically significantly higher than that of b′ with
p-value threshold p. For statistical significance assessment, we used Wilcoxon’s signed-rank
test [36]. We computed the win ranking (WR) and loss ranking (LR) as

WR(b) = ∑
d

∑
b′ ̸=b

a25,0.05(b, b′|d) and LR(b) = ∑
d

∑
b′ ̸=b

a25,0.05(b′, b|d). (14)

Based on these metrics, Table 4 includes full information on how many cases each baseline
method statistically significantly outperformed the other method.
Results. Using 18 datasets, we conducted 80 feature efficiency evaluations (excluding the
RAW baseline) and 160 feature efficiency comparisons, of which 97 (∼60%) were statistically
different. The results of the feature extraction experiments are presented in Tables 4 and 5.
They reveal that, although MEF showed best WR, UFDM also performed comparable to
other measures: it statistically significantly outperformed them in 6 + 4 + 5 + 5 = 20 cases
(listed in Table 6), and was outperformed in 2 + 4 + 2 + 5 = 13 cases (Table 4).

In addition to pairwise statistical comparisons using Wilcoxon’s test, we also con-
ducted statistical analysis to clarify whether some method is globally better or worse
over multiple datasets using the methodology described in [37]. In this analysis,
the Friedman/Iman–Davenport test (α = 0.05) showed a global significant difference
between the five methods. The Nemenyi post hoc test (α = 0.05, critical difference 1.884)
revealed that RAW was significantly outperformed by the other methods; however, it also
showed the absence of a global best-performing method.

Table 4. Pairwise wins matrix: entry (i, j) is the number of cases where the method in row i
outperformed the method in column j (Wilcoxon’s signed-rank test, 25 runs, p-value threshold 0.05).

UFDM DCOR MEF HSIC NCA

UFDM 0 6 4 5 5
DCOR 2 0 3 4 3
MEF 4 8 0 9 7
HSIC 2 4 2 0 3
NCA 5 7 6 8 0

Table 5. Classification accuracy comparison. n denotes dataset size, dX is input dimensionality,
and nc is the number of classes. Best-performing method that is also statistically significant when
compared with all other methods (Wilcoxon’s signed-rank test, 25 runs, p-value threshold 0.05) is
indicated in bold (otherwise, best-performing method is underlined).

Dataset (n, dX , nc) RAW UFDM DCOR MEF HSIC NCA

Australian (690, 14, 2) 0.710 0.853 0.846 0.850 0.824 0.844
Collins (500, 22, 2) 0.840 0.926 0.906 0.941 0.927 0.949
Heart-statlog (270, 13, 2) 0.621 0.824 0.823 0.826 0.816 0.817
Mfeat-factors (2000, 216, 10) 0.783 0.968 0.970 0.968 0.968 0.969
Mfeat-pixel (2000, 240, 10) 0.946 0.956 0.948 0.957 0.951 0.959
Mfeat-zernike (2000, 47, 10) 0.741 0.812 0.810 0.814 0.811 0.804
Micro-mass (360, 1300, 10) 0.874 0.925 0.919 0.931 0.923 0.882
Optdigits (5620, 64, 10) 0.949 0.964 0.961 0.960 0.957 0.963
Parkinsons (195, 22, 2) 0.756 0.827 0.828 0.850 0.836 0.837
Scene (2407, 299, 2) 0.886 0.987 0.988 0.953 0.988 0.962
Segment (2310, 19, 7) 0.760 0.912 0.911 0.943 0.936 0.941
Sonar (208, 60, 2) 0.685 0.745 0.733 0.757 0.734 0.770
Spectf (349, 44, 2) 0.729 0.737 0.739 0.738 0.739 0.750
USPS (9298, 256, 10) 0.924 0.944 0.941 0.934 0.936 0.940
Wdbc (569, 30, 2) 0.699 0.948 0.951 0.938 0.900 0.968
Wine (178, 13, 3) 0.552 0.945 0.917 0.954 0.947 0.936

WR(b) 20 12 28 11 26

LR(b) 13 25 15 26 18
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Table 6. Twenty cases (Measures Outperformed) where UFDM outperformed the other baselines.

Dataset n dX Measures Outperformed

Australian 690 14 DCOR, HSIC, NCA
Collins 500 22 DCOR
Micro-mass 360 1300 NCA
Mfeat-pixel 2000 240 DCOR, HSIC
Mfeat-zernike 2000 47 NCA
Optdigits 5620 64 DCOR, MEF, HSIC
Scene 2407 299 MEF, NCA
USPS 9298 256 DCOR, MEF, HSIC, NCA
Wdbc 569 30 MEF, HSIC
Wine 178 13 DCOR

5. Conclusions
Results. We proposed and analysed an IPM-based statistical dependence measure, UFDM,
defined as the L∞ norm of the difference between the joint and product-marginal character-
istic functions. UFDM applies to pairs of random vectors of possibly different dimensions
and can be integrated into modern machine learning pipelines. In contrast to global mea-
sures (e.g., DCOR, HSIC, MEF), which aggregate information across the entire frequency
domain, UFDM identifies spectrally localised dependencies by highlighting frequencies
where the discrepancy is maximised, thereby offering potentially interpretable insights into
the structure of dependence. We theoretically established key properties of UFDM, such as
invariance under linear transformations and augmentation with independent noise, mono-
tonicity under dimension reduction, and vanishing under independence. We also showed
that UFDM’s objective aligns with the vectorial representation of CFs. In addition, we inves-
tigated the consistency of the empirical estimator and derived a finite-sample concentration
bound. For practical estimation, we proposed a gradient-based estimation algorithm with
SVD warm-up, and this warm-up was found to be essential for stable convergence.

We evaluated UFDM on simulated and real data in permutation-based independence
testing and supervised feature extraction. The permutation test experiments (n = 750,
d ∈ {5, 15, 25}) indicated that in this regime UFDM performed comparably to established
baseline measures, exhibiting similar empirical power and calibration across diverse depen-
dence structures. Notably, UFDM maintained high power on the Circular and Interleaved
Moons datasets, where some other measures displayed reduced sensitivity under these
geometrically structured dependencies. These findings suggest that UFDM provides a
complementary addition to the family of widely used dependence measures (DCOR, HSIC,
and MEF).

Further experiments with real data demonstrated that, in dependence-based super-
vised feature extraction, UFDM often performed on par with the well-established alterna-
tives (HSIC, DCOR, MEF) and with NCA, which is specifically designed for classification.
Across 16 datasets and 160 pairwise comparisons, UFDM statistically significantly outper-
formed other baselines in 20 cases and was outperformed in 13. To facilitate reproducibility,
we provide an open-source repository.
Limitations. Computing UFDM requires maximising a highly nonlinear objective, which
makes the estimator sensitive to initialisation and optimisation settings. Although the
proposed SVD warm-up substantially improves numerical stability, estimation may still be-
come more challenging as dimensionality d increases or sample size n decreases. From the
perspective of the effective (n, d), our empirical evaluation covers two different tasks. First,
in independence testing with synthetic data and n = 750 and d ∈ {5, 15, 25}, UFDM main-
tained effectiveness across diverse dependence structures. Our preliminary experiments
with n = 375, d ∈ {5, 15, 25}, and n = 750, d = 50 indicate a reduction in power for several
dependency patterns, whereas DCOR, HSIC, and MEF remained comparatively stable.
Nonetheless, UFDM preserved its performance for sparse geometrically structured depen-
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dencies (e.g., Interleaved Moons), where alternative measures often show more pronounced
loss of sensitivity. Due to the high computational cost of UFDM permutation tests, we
omitted systematic exploration of these regimes, leaving it to future work. On the other
hand, in supervised feature extraction on real datasets, we examined substantially broader
(n, d) ranges, including high-dimensional settings such as USPS (n = 9298, d = 256),
MICRO-MASS (n = 360, d = 1300), and SCENE (n = 2407, d = 299). UFDM outperformed
one or more baselines on several such datasets (Table 6), suggesting that it may be effective
in some larger-dimensional machine learning tasks.
Future work and potential applications. Identifying the limit distribution of the empirical
UFDM could enable faster alternatives to permutation-based statistical tests, which would
also facilitate the systematic analysis of previously mentioned (n, d) settings. However,
since the empirical UFDM is not a U- or V-statistic like HSIC or distance correlation,
this would require a non-trivial analysis of the extrema of empirical processes. Possible
extensions of UFDM include multivariate generalisations [23] and weighted or normalised
variants to enhance empirical stability. From an application perspective, UFDM may prove
useful in causality, regularisation, representation learning, and other areas of modern
machine learning where statistical dependence serves as an optimisation criterion.
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Appendix A
Appendix A.1. Proofs

In the proofs, we interchangeably abbreviate ϕX(α) with ϕ(α), ϕY(β) with ϕ(β),
and ϕX,Y(α, β) with ϕ(γ), where γ = (αT , βT)T .

Proof of Theorem 1. Property 1. By Cauchy–Schwarz inequality.

|∆(α, β)|2 = |EX,Y(eiαT X − ϕX(α))(eiβTY − ϕY(β))|2 ≤

≤ EX |(eiαT X − ϕX(α))|2EY|(eiβTY − ϕY(β))|2. (A1)

https://www.openml.org
https://github.com/povidanius/UFDM
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Recall that for complex numbers z and z′ we have |z− z′|2 = |z|2− z z′ − z z′ + |z′|2, where
z is complex conjugate of z. Therefore by plugging z = eiαT X and z′ = ϕX(α) from the
definition of CF we obtain

EX |eiαT X − ϕX(α)|2 = 1 − ϕX(α)ϕX(α) − ϕX(α)ϕX(α) + |ϕX(α)|2 = 1 − |ϕX(α)|2,

and similarly EY|(eiβTY − ϕY(β))|2 = 1 − |ϕY(β)|2. Since the absolute value of CF is
bounded by 1, we have that Equation (A1) is also bounded by 1.

Property 2.

UFDM(X, Y) = sup
α,β
|EX,Yei(αT X+βTY) −EXeiαT XEYeiβTY|

= sup
β,α
|EY,Xei(βTY+αT X) −EYeiβTYEXeiαT X | = UFDM(Y, X).

Property 3. Let us assume that X ⊥ Y. Then ϕX,Y(α, β) = EX,Yei(αT X+βTY) =

EXEYei(αT X+βTY) = ϕX(α)ϕY(β). Therefore, UFDM(X, Y) = 0. On the other hand,
if UFDM(X, Y) = 0 then ϕX,Y(α, β) = ϕX(α)ϕY(β) for all α ∈ RdX ,β ∈ RdY . Let X̃ and Ỹ
be two independent random vectors, having the same distributions as X and Y, respec-
tively. Therefore ϕX,Y(α, β) = ϕX(α)ϕY(β) = ϕX̃(α)ϕỸ(β) = ϕX̃,Ỹ(α, β). The uniqueness of
CF [16] implies that distributions of (X, Y) and (X̃, Ỹ) coincide, from what directly follows
that X ⊥ Y.

Property 4. Let ΣX,Y be cross-covariance matrix of X and Y. Since X and Y are Gaus-
sian, we have ϕX(α) = e−

1
2 αTΣXα, ϕY(β) = e−

1
2 βTΣY β, ϕX,Y(α, β) = e−

1
2 (α

TΣXα+βTΣY β+2αTΣX,Y β).
Therefore, by Equation (11)

UFDM(X, Y) = sup
α,β

e−
1
2 (α

TΣXα+βTΣY β)|e−αTΣX,Y β − 1|. (A2)

Property 5. Since ϕAX+a,BY+b(α, β) = eiαT a+iβTbϕX,Y(ATα, BT β), and ϕAX+a(α) =

eiαT aϕX(ATα), ϕBY+b(β) = eiβTbϕY(BT β), we have

UFDM(AX + a, BY + b) = sup
α,β
|ϕAX+a,BY+b(α, β)− ϕAx+a(α)ϕBY+b(β)| =

= sup
α,β
|eiαT a+iβTb||∆(ATα, BT β)| = sup

α,β
|∆(ATα, BT β)|.

Since both A and B are full-rank matrices, and A ∈ RdX×dX , B ∈ RdY×dY , the max-
imization of the last equation is equivalent to the maximization of |∆(α, β)|, which by
definition is UFDM(X, Y).

Property 6. If A′ ∈ RdX′×dX , B′ ∈ RdY′×dY , a′ ∈ RdX′ , b′ ∈ RdY′ are parameters of linear
dimension reduction, where dX′ < dX , and dY′ < dY, we have

UFDM(A′X + a′, B′Y + b′) ≤ UFDM(AX + a, BY + b), (A3)

for any A, B, a, b of the same dimensions (defined as in Property 5), because maximisation
of LHS is conducted in smaller space than that of RHS. By Property 5, it follows that
UFDM(AX + a, BY + b) = UFDM(X, Y).
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Property 7. The independence of X and E implies that

UFDM(X, f (X) + λE) = sup
α,β
|Eei(αT X+βT f (X))ϕE (λβ) − ϕX(α)ϕ f (X)(β)ϕE (λβ)|,

which converges to 0, since by multivariate Riemann–Lebesgue lemma [39] the common
term |ϕE (λβ)| → 0, when λ → ∞. The multivariate Riemann–Lebesgue lemma can be
applied since E has a density.

Property 8. Recall that the total variation distance between joint probability measure
PX,Y and product measure PXPY is given by

TV(PX,Y, PXPY) =
1
2

∫
|pX,Y(x, y)− pX(x)pY(y)|dxdy,

where pX,Y(x, y) is joint density, and pX(x), pY(y) are marginal ones. Recall that Pinsker’s

inequality for total variation states that TV(PX,Y, PXPY) ≤
√

1
2 MI(X, Y), where MI(X, Y) is

mutual information between X and Y. Therefore,

|∆(α, β)| =
∣∣∣∣∫ ei(αT x+βTy)(pX,Y(x, y)− pX(x)pY(y))dxdy

∣∣∣∣
≤
∫
|pX,Y(x, y)− pX(x)pY(y)|dxdy = 2TV(PX,Y, PXPY).

By taking the supremum we have UFDM(X, Y) ≤ min{1, 2TV(PX,Y, PXPY)} ≤
min{1,

√
2MI(X, Y)} by Property 1 and Pinsker’s inequality.

Property 9. Independence condition Z ⊥ (X⊤, Y⊤)⊤ gives

∆(X⊤ ,Z⊤)⊤ ,Y(αX , αZ, β) = φZ(αZ)∆X,Y(αX , β).

Since |φZ(αZ)| ≤ 1 and |φZ(0)| = 1, we have supαX ,αZ ,β
∣∣∆(X⊤ ,Z⊤)⊤ ,Y

∣∣ = supαX ,β |∆X,Y(αX , β)|.
Therefore, UFDM((X⊤, Z⊤)⊤, Y) = UFDM(X, Y).

Proof of Proposition 2. Let ϵ > 0. Since ECF is CF, and a product of two CFs also
is CF, by Theorem 2 and triangle inequality, we can find natural number n0 such
that ∀n > n0: ||∆ − ∆n||tn

L∞
= sup||γ||<tn

|∆(γ) − ∆n(γ)| = sup||γ||<tn
|ϕ(γ) − ψ(γ) −

ϕn(γ)+ψn(γ)| = sup||γ||<tn
|ϕ(γ)− ϕn(γ)+ψn(γ)−ψ(γ)| ≤ sup||γ||<tn

|ϕ(γ)− ϕn(γ)|+
sup||γ||<tn

|ψ(γ) − ψn(γ)| ≤ ϵ, almost surely. From the inverse triangle inequality for

norms we have |||∆||tn
L∞
− ||∆n||tn

L∞
| ≤ ||∆ − ∆n||tn

L∞
≤ ϵ, almost surely. On the other

hand, along with the definition of UFDM(X, Y) = limn→∞ ||∆(γ)||tn
L∞

, this implies that
|UFDM(X, Y)− ||∆n||tn

L∞
| ≤ |UFDM(X, Y)− ||∆||tn

L∞
|+ |||∆||tn

L∞
− ||∆n||tn

L∞
|will be arbitrar-

ily small almost surely, when n is sufficiently large.

Appendix A.2. Proof of Theorem 3

Proof of Theorem 3. Recall that Z = (XT , YT)T , γ = (αT , βT)T ∈ Rd with d = dX + dY

and
∆(γ) = ϕ(γ)− ψ(γ), ∆n(γ) = ϕn(γ)− ψn(γ).

Step 1. Lipschitz continuity. First, we will prove that ∆(γ) and ∆n(γ) are Lipschitz
continuous. For the population version, consider

|∆(γ)− ∆(γ′)| ≤ |ϕ(γ)− ϕ(γ′)|+ |ψ(γ)− ψ(γ′)|.
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Since ϕ(γ) = E exp(iγTZ), by inequality |eia − eib| ≤ |a− b|, a, b ∈ R

|ϕ(γ)− ϕ(γ′)| ≤ E| exp(iγTZ)− exp(iγ′TZ)| ≤ E|(γ− γ′)TZ| ≤ ∥γ− γ′∥E∥Z∥.

Similarly,

∣∣ψ(γ)− ψ(γ′)
∣∣ = ∣∣ϕ(α)ϕ(β)− ϕ(α′)ϕ(β′)

∣∣ = ∣∣ϕ(α)∣∣∣∣ϕ(β)− ϕ(β′)
∣∣+ ∣∣ϕ(β′)

∣∣∣∣(ϕ(α)− ϕ(α′)
∣∣

≤ |ϕ(α)− ϕ(α′)|+ |ϕ(β)− ϕ(β′)|,

since |ϕ(α)| ≤ 1, |ϕ(β)| ≤ 1. Therefore,

|ϕ(α)− ϕ(α′)| ≤ E∥X∥∥α− α′∥, |ϕ(β)− ϕ(β′)| ≤ E∥Y∥∥β− β′∥.

Thus,
|ψ(γ)− ψ(γ′)| ≤ (E∥X∥+E∥Y∥)∥γ− γ′∥,

so ∆(γ) is Lipschitz with constant L = E∥Z∥ + E∥X∥ + E∥Y∥ < ∞. For the empirical
version,

|∆n(γ)− ∆n(γ
′)| ≤ |ϕn(γ)− ϕn(γ

′)|+ |ψn(γ)− ψn(γ
′)|,

where

|ϕn(γ)− ϕn(γ
′)| ≤ 1

n

n

∑
j=1
|γTZj − γ′TZj| ≤

(
1
n

n

∑
j=1
∥Zj∥

)
∥γ− γ′∥,

and

|ψn(γ)− ψn(γ
′)| ≤ |ϕn(α)− ϕn(α

′)|+ |ϕn(β)− ϕn(β′)| ≤ 1
n

(
n

∑
j=1
∥Xj∥+

n

∑
j=1
∥Yj∥

)
∥γ− γ′∥.

Define Ln = 1
n ∑n

j=1(∥Zj∥+ ∥Xj∥+ ∥Yj∥), so ∆n(γ) is Lipschitz with random constant Ln.
Recall that ELn = L, E(Ln − L)2 = σ2/n are finite because of bounded second moment
assumption. Ln concentrates around L, and by Cantelli’s inequality, we have

Pr(Ln ≥ 2L) = Pr(Ln − L ≥ L) ≤ 1
1 + n(L/σ)2 ≤

σ2

nL2 . (A4)

Step 2. Construct a δ-net and bound the deviation on the δ-net. For Bt = {γ : ∥γ∥ < t},
construct a δ-net {γ1, . . . , γN(t,δ)} such that every γ ∈ Bt is within δ of some γk. The cardi-
nality satisfies N(t, δ) ≤ (3t/δ)d [40].

For fixed γk, bound |∆n(γk) − ∆(γk)|. Changing one Zj to Z′j alters ϕn(γk) by at
most 2/n, ϕn(αk) and ϕn(βk) by at most 2/n each, and ψn(γk) by at most 4/n. Thus,
|∆n(γk)− ∆′n(γk)| ≤ 6/n. By McDiarmid’s inequality,

Pr(|∆n(γk)−E∆n(γk)| > u) ≤ 2 exp
(
−nu2

18

)
.

Compute the bias: Eϕn(γk) = ϕ(γk), and Eψn(γk) =
1
n ϕ(γk) +

(
1− 1

n

)
ψ(γk), so

E∆n(γk) =

(
1− 1

n

)
∆(γk), |E∆n(γk)− ∆(γk)| ≤

1
n

.

Thus,

Pr(|∆n(γk)− ∆(γk)| > ε) ≤ 2 exp

(
− n

18

(
ε− 1

n

)2
)

, ε >
1
n

.
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Step 3. Extend to the entire frequency ball. For any γ ∈ Bt, choose γk with ∥γ− γk∥ ≤ δ.
Then we have

|∆n(γ)− ∆(γ)| ≤ |∆n(γ)− ∆n(γk)|+ |∆n(γk)− ∆(γk)|+ |∆(γk)− ∆(γ)| (A5)

≤ Lnδ + |∆n(γk)− ∆(γk)|+ Lδ. (A6)

Thus, supγ∈Bt
|∆n(γ)−∆(γ)| ≤ (Ln + L)δ+maxk |∆n(γk)−∆(γk)|. Then by union bound

Pr
(

sup
γ∈Bt

|∆n(γ)− ∆(γ)| > ε
)
≤ Pr

(
(Ln + L)δ >

ε

2

)
+ Pr

(
max

k
|∆n(γk)− ∆(γk)| >

ε

2

)
. (A7)

Recall that in Equation (A4) we showed that Pr(Ln > 2L) ≤ σ2

nL2 . Choosing δ = ε
6L implies

Pr((Ln + L)δ >
ε

2
) = Pr(Ln > 2L) ≤ σ2

nL2 . (A8)

For the max term, by the union bound,

Pr(max
k
|∆n(γk)− ∆(γk)| >

ε

2
) ≤ 2N(t, δ) exp

(
− n

18

(
ε

2
− 1

n

)2
)

, (A9)

where N(t, δ) ≤ (3t/δ)d =
(

18tL
ε

)d
.

Step 4: Final bound. Plugging Equation (A8) and Equation (A9) into Equation (A7) we have

Pr(sup
γ∈Bt

|∆n(γ)− ∆(γ)| > ε) ≤ 2
(

Ct
ε

)d
exp

(
− n

18

(
ε

2
− 1

n

)2
)
+

σ2

nL2 .

Finally, the stated bound follows from the inverse triangle inequality for norms.

Appendix A.3. Ablation Experiment on SVD Warm-Up

Table A1. p-value means and standard deviations of the analysed dependence patterns in permutation
tests for UFDM without SVD warm-up (Algorithm 2), uniformly initialising parameters α and β from
[−1, 1] interval. Here X ∼ N (0, Id).

Distribution of Y d = 5 d = 15 d = 25

Linear (1.0) 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000
Linear (0.3) 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000
Logarithmic 0.035 ± 0.097 0.192 ± 0.251 0.387 ± 0.297
Quadratic 0.023 ± 0.061 0.298 ± 0.291 0.285 ± 0.145
Polynomial 0.002 ± 0.000 0.062 ± 0.134 0.056 ± 0.078
LRSO (0.05) 0.002 ± 0.001 0.041 ± 0.066 0.026 ± 0.040
Heteroscedastic 0.004 ± 0.006 0.002 ± 0.001 0.003∗ ± 0.003
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Appendix A.4. Dependency Patterns

Table A2. Dependence structures. Lin[a, b] denotes uniform linear spacing over given interval [a, b],
a < b, X ⊥ E ∼ N (0, I), and d is dimension. Fixed parameters k = 6, ρ = 0.85, θ = 5.0. By ⊙ we
denote element-wise product.

Type Formula

Structured dependence patterns (X ∼ {N (0, Id), U[0, 1]d, Student t3(0, Id)})
Linear(p) Y = pWX + 0.1E , p ∈ R
Logarithmic Y = log(1.0 + WX⊙WX) + 0.1E
Quadratic Y = WX⊙WX + 0.1E
Cubic Y = 0.5(WX⊙WX⊙WX)−WX⊙WX + 0.1E

LRSO(p)
X0 ∼ PX , Y0 = sin(k(wT X0))1d + 0.1E (proportion 1−p)

X1 ⊥ Y1 ∼ N (0, 252 Id) (proportion p),
(X, Y) = random-shuffle(X0 ∪ X1, Y0 ∪Y1)

Heteroscedastic Y = (1.0 + E1)WX + 0.1E , E1 ∼ N (0, I)

Complex dependence patterns

Bimodal
S ∼ Uniform({−1, 1})
µX = 21dX , µY = 21dY

X ∼ N (SµX , IdX )

Y ∼ N (SµY , IdY )
Sparse bimodal X ∼ 0.5N (µ, Id) + 0.5N (−µ, Id), µ = (2, 0, . . . , 0)

Sparse circular
T ∼ Lin[0, 2π], R ∼ N (1, 0.22)

X = (R cos T, R sin T, η), η ∼ N (0, Id−2)

Y = (R cos(T + δ), R sin(T + δ), ζ) + 0.1E , δ ∼ N (0, 1), ζ ∼ N (0, Id−2)
Gaussian copula Marginals ∼ N (0, ρ1d×d + (1− ρ)Id).
Clayton copula Parameter θ and standard normal marginals for each component.

Interleaved
Moons

(X0, LX) = make_moons(), (Y0, LY) = make_moons()
For each sample i:

X(1,2)
i = (X0)i

Y(1,2)
i ∼ Uniform{(Y0)j | (LY)j ̸= (LX)i}

X(3:d)
i , Y(3:d)

i ∼ N (0, Id−2)

We used sklearn.datasets.make_moons.
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