

6TH EUROCC VILNIUS WORKSHOP ON USING HPC

Abstract book

January 22, 2026

Vilnius, Lithuania

Copyright © 2026 Jevgenij Chmeliov, Mindaugas Mačernis.

Published by Vilnius University Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

<https://doi.org/10.15388/EUROCC.2026.6>

eISSN 2669-0233

Vilnius University Proceedings

Protein-Controlled Electronic Energy Transfer in PSI

Gabriėlė Rankelytė¹, Jevgenij Chmeliov^{1,2}, Andrius Gelzinis^{1,2}, Leonas Valkunas^{1,2}

¹*Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Vilnius, Lithuania*

²*Institute of Chemical Physics, Faculty of Physics, Vilnius University, Lithuania*

E-mail: gabriele.rankelyte@ftmc.lt

Photosystem I (PSI) is the most efficient light-to-energy conversion apparatus. To reach and maintain high quantum yield, all processes in PSI, including electronic energy transfer (EET) between the pigments, must be exceptionally rapid. After the absorption, excitation energy can be transferred to the nearby pigment over tens of angstroms. Such dynamics is determined by inter-pigment couplings J_{mn} , described in terms of the electronic transition densities [1], that can be replaced by the atomic transition charges [2]. We have investigated the excitation dynamics in four complexes of PSI light-harvesting antenna LHCl (see Fig. 1). The structure of the antenna was obtained from the PDB (PDB ID: 5L8R) [3]. We used the aforementioned approach to obtain the chlorophyll-chlorophyll coupling energies in vacuum and in protein environment. For accounting for the protein environment, we used similar approach to our previous research [4]. We have also accounted for the solvent screening effect [5] and compared the properties of EET with the effects of protein and solvent screening and without (vacuum).

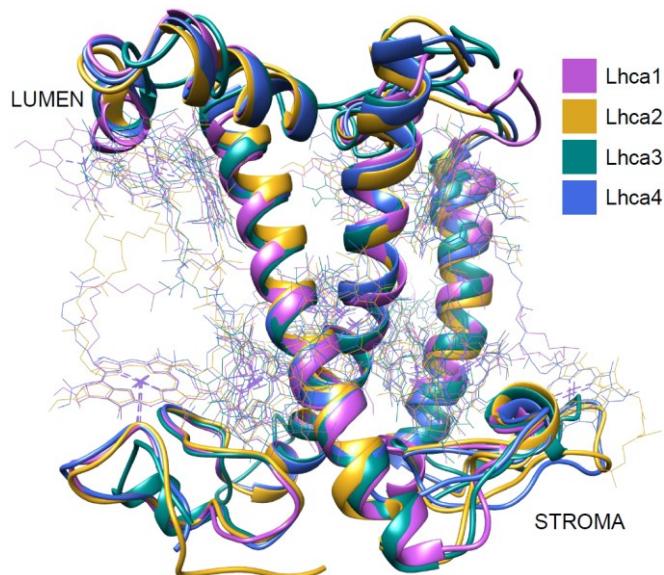


Fig. 1. Lhca1-4 complex structures mapped on top of each other.

REFERENCES

- [1] G. D. Scholes, Long-range resonance energy transfer in molecular systems, *Annu. Rev. Phys. Chem.*, **54**, 57-87 (2003).
- [2] M. E. Madjet, A. Abdurahman, T. Renger, Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers, *J. Phys. Chem. B.*, **110**, 17268-17281 (2006).
- [3] Y. Mazor, A. Borovikova, I. Caspy, N. Nelson, Structure of the plant photosystem I supercomplex at 2.6 Å resolution, *Nat. Plants*, **3**, 1-9 (2017).
- [4] G. Rankelytė, A. Gelzinis, B. Robert, L. Valkunas, J. Chmeliov, Environment-dependent chlorophyll–chlorophyll charge transfer states in Lhca4 pigment–protein complex, *Front. Plant Sci.*, **15**, 1412750 (2024).
- [5] G. D. Scholes, C. Curutchet, B. Mennucci, R. Cammi, J. Tomasi, How solvent controls electronic energy transfer and light harvesting, *J. Phys. Chem. B.*, **111**, 6978-6982 (2007).