

6TH EUROCC VILNIUS WORKSHOP ON USING HPC

Abstract book

January 22, 2026

Vilnius, Lithuania

Copyright © 2026 Jevgenij Chmeliov, Mindaugas Mačernis.

Published by Vilnius University Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

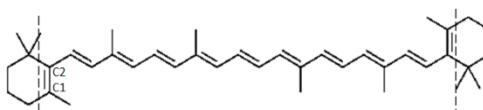
<https://doi.org/10.15388/EUROCC.2026.6>

eISSN 2669-0233

Vilnius University Proceedings

Carotenoids: from ground-state modelling to access to excited manifold

Bruno Robert¹, Manuel Llansola Portoles¹, Juan Jose Romero¹, Roxanne Bercy¹,
Mindaugas Macernis², Leonas Valkunas²


¹*Institute of integrative Biology of the Cell, CEA Saclay, 91191 Gif sur Yvette. France*

²*Institute of Chemical Physics, Faculty of Physics, Vilnius University, 10222, Vilnius, Lithuania*

³*Molecular Compounds Physics Department, Center for Physical Sciences and Technology, 10257, Vilnius, Lithuania*

E-mail: bruno.robert@cea.fr

Carotenoid molecules are linear, highly conjugated molecules, with many roles in biology ranging from light-harvesting and photoprotection in photosynthesis, to signaling in fruits and flowers, precursors of plant growth hormones and vitamin A (retinal) or retinol, an essential driver of fetal development.

Structure of β -carotene

Despite their apparent simplicity, carotenoid molecules turn out to be difficult to model with precision, and they actually can be used to benchmark modelling approaches as their electronic and vibrational properties can be easily characterized in detail^{1,2}. We are now able to predict with accuracy the properties of quite complex molecules from the carotenoid family^{3,4}.

Our next goal now resides in modelling carotenoid excited states. Here again, it turns out that the photochemistry of these molecules is much more complex than initially predicted. Only last year were we able to determine with precision the cascade of energy transfers following the photon absorption by these molecules, and we could as well characterize the vibronic properties of each electronic state involved⁵. We aim now to use this information to build-up a comprehensive model of carotenoid electronic properties and photochemistry.

REFERENCES

- [1] Mendes-Pinto, MM *et al.*, Electronic Absorption and Ground State Structure of Carotenoid Molecules. *J. Phys. Chem. B* **2013**, *117*, 11015-11021.
- [3] Llansola-Portoles, M *et al.*, Electronic and Vibrational Properties of Carotenoids: From in Vitro to in Vivo. *Journal of The Royal Society Interface* **2017**, *14*.
- [3] Macernis, M *et al*, Resonance Raman Spectra and Electronic Transitions in Carotenoids: A Density Functional Theory Study. *J. Phys. Chem. A*, **2014**, *118*, 1817-1825.
- [4] Streckaite, S *et al* Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution. *J. Phys. Chem. A* **2020**, *124*, 2792-2801.
- [5] Bercy, R *et al* Reassessing carotenoid photophysics – new light on dark states *arXiv:2601.00316* 2026.