

6TH EUROCC VILNIUS WORKSHOP ON USING HPC

Abstract book

January 22, 2026

Vilnius, Lithuania

Copyright © 2026 Jevgenij Chmeliov, Mindaugas Mačernis.

Published by Vilnius University Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

<https://doi.org/10.15388/EUROCC.2026.6>

eISSN 2669-0233

Vilnius University Proceedings

A Tuneable Framework for Vibronic Dynamics: Generalized Nonlinear Exciton Equations

Arunyoti Baidya, Vytautas Bubilaitis, Darius Abramavicius

Institute of Chemical Physics, Physics Faculty, Vilnius University

E-mail: arunyoti.baidya@ff.vu.lt

Accurately modeling coupled electronic–vibrational dynamics in molecular aggregates is essential for interpreting energy transfer and nonlinear optical signals. We present a non-perturbative framework based on Generalized Nonlinear Exciton Equations (NEE) derived from the Heisenberg equation for a Frenkel-exciton Hamiltonian. A central feature is a generalized commutation scheme introducing a single parameter η that continuously interpolates between bosonic and paulionic statistics, enabling flexible descriptions beyond either limit. The formalism rigorously treats a linearly coupled harmonic bath, yielding a closed hierarchy for exciton populations or coherences and mixed exciton–phonon correlations.

We position two practical closures within this hierarchy. First, the Mean-Field Approximation (MFA)—a full factorization of exciton–phonon averages—recovers a limit in which quantum excitons evolve in an effectively classical bath; we quantify regimes where MFA is accurate and where it breaks down. Second, the 1-Quantum Approximation (1QA) retains only single-quantum vibrational excitations and the leading exciton–phonon coherences; we use 1QA as a controlled reduction that preserves vibronic resonances at moderate cost.

As an application, we provide preliminaries for the bacterial reaction center (BRC): site-based Hamiltonian construction for the special pair and accessory pigments and the transition-dipole orientations taken from structure.

REFERENCES

- [1] Vytautas Bubilaitis, Darius Abramavicius, Compact modeling of highly excited linear aggregates using generalized quantum particles, *Chem. Phys.* 588, 112445 (2025).
- [2] Vytautas Bubilaitis; Olga Rancova; Darius Abramavicius, Vibration-mediated energy transport in bacterial reaction center: Simulation study, *J. Chem. Phys.* 154, 214115 (2021)