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1. INTRODUCTION

Cardiovascular disease (CVD), including coronary heart disease (CHD), stroke 
and peripheral arterial disease (PAD), is the most important cause of premature 
death worldwide as well as disability-adjusted life years in Europe [1,2]. About 
600,000 people die each year of CVD in the USA – that is 1 in every 4 deaths [3]. 
CHD is the most common type of CVD and is responsible for the death of almost 
380,000 people annually [4]. By the year 2020, it is expected that almost 25 million 
deaths worldwide will be caused by CVD each year [5]. The structure of the causes 
of death among the Lithuanian population has remained unchanged for many years. 
It is important to note that in 2013, over half (56.3%) of all deaths in Lithuania were 
caused by CVD [6]. Although the cost of CVD in the European Union costs 192 bil-
lion Euros annually [7], in the USA, CHD alone reaches a cost of 88 billion Euros 
($108.9 billion) annually [8]. 

There are several risk factors for CVD. The INTERHEART study assessed the 
importance of risk factors for coronary artery disease (CAD) worldwide [9]. Nine 
measured and potentially modifiable risk factors accounted for over 90% of the 
proportion of the risk for acute myocardial infarction (AMI). Smoking, history of 
hypertension or diabetes, waist hip ratio, dietary pattern, physical activity, alcohol 
consumption, blood lipoproteins and psychosocial factors were identified as the key 
risk factors. The effect of these risk factors was consistent in men and women across 
different geographic regions and by ethnic group. The British Regional Heart Study 
also found that smoking, blood pressure (BP), and cholesterol accounted for 90% of 
the attributable risk for CHD [10]. There was a need to consider the likely impact 
of all risk factors in a reproducible and quantifiable manner before making clinical 
management decisions.

Over the past 30 years, several CVD risk-scoring systems have been developed; 
however, the majority of these are based on the American population from the 1970s 
and 1980s when lifestyle choices, eating habits, and stress levels, were quite different 
from what they are now. Today, almost one quarter of the world’s adult population 
have metabolic syndrome (MetS), which increases the risk of CVD by two-fold and 
the risk of developing type 2 diabetes mellitus (T2DM) by five-fold. Additionally, 
the ever-growing population is too often being assessed using the metabolic syn-
drome score, which is based on the number of risk factors, without considering the 
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synergistic effects between the components. However, evidence for this group and 
relevant risk-assessment methods, and their sensitivity and specificity, is lacking.

Despite previous studies of CVD risk scoring systems across various patient 
types, there remains a lack of personalization and specificity. Advancing risk assess-
ment to include subclinical atherosclerosis will accelerate patients’ access to preven-
tive strategies that may delay or avert the onset of CVD outcomes such as T2DM. 

Knowing, that the early subclinical changes start sometimes as early, as in their 
twenties, means of detecting any early changes in endothelial function, arterial stiff-
ness or arterial structure, some of which are directly related to CVD outcomes, 
might be of huge significance, enabling us not only to highlight subjects at a very 
early stage of a disease, but in addition, monitor the effect of the preventative mea-
sures, applied for each subject. This is especially important when the classical CVD 
risk-assessment tool, based on risk factors, fail. 

Besides the need for early detection of a disease, with increasing list of preventa-
tive means and different pharmaceutical options, the ability to follow and adjust a 
patient’s risk of developing the disease or its outcomes, should not be understated. 
Therefore, the hypothesis which were raised as part of this doctoral thesis were:

1. Widely used CVD risk-assessment tools are inaccurate for patients with MetS 
2. Arterial stiffness is related to CVD outcomes in patients with MetS and could 

be used for further personalizing risk assessment
3. T2DM onset in patients with MetS can be predicted with high accuracy using 

a combination of biochemical biomarkers, and is related to aortic pulse wave 
velocity (AoPWV) 

4. MicroRNAs (miRs) could be a reproducible, standardized CVD biomarker, 
indicating early atherosclerosis

Goals:
1. Assess the validated or widely used CV risk-assessment tools in a group of 

patients with MetS 
2. Assess additive value of arterial and biochemical biomarkers in CVD and 

T2DM risk prediction in the group of patients with MetS 
3. Assess the applicability of epigenetic biomarkers for CVD risk prediction, as 

an early atherosclerosis indicator
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Objectives:
1. Compare the real CVD outcomes with the predicted ones for patients with 

MetS
2. Investigate the association between CVD outcomes and aortic stiffness, based 

on AoPWV
3. Identify the most significant biomarkers indicative of the onset of T2DM in 

patients with MetS 
4. Investigate the association of miRs with biomarkers of early atherosclerosis 

(AoPWV, carotid intima-media thickness [CIMT], flow-mediated dilatation 
[FMD]). 
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2. CARDIOVASCULAR DISEASE RISK 
MODELS IN PATIENTS WITH  
METABOLIC SYNDROME 

The concept of risk assessment and reduction forms the cornerstone of preventive 
cardiology. Risk factor assessment determines the therapeutic strategy, because the 
intensity of preventive intervention is tailored to the patient’s risk of coronary heart 
disease [11]. Risk estimates can theoretically be used to raise population awareness 
of diseases such as CVD that cause a significant burden of morbidity and mortality, 
and to communicate knowledge about that risk to individuals and subgroups, also 
to motivate adherence to recommended lifestyle changes or therapies. In clinical 
practice, risk prediction algorithms are mostly used to identify individuals with high 
risk for developing CVD in the short term and to select those individuals for more 
intensive preventive interventions [12,13]. Therefore, risk evaluation and prediction 
of possible events initiate life prolonging concept and disability free aging.

Aim

To investigate whether commonly used and internationally verified risk assess-
ment tools are accurate for MetS patients.

Literature review

Some pre-existing conditions that patients present with can interfere with risk 
prediction. Several studies have shown that patients with diabetes had significantly 
elevated risk for CV outcomes, in spite of CVD risk prediction models prognosis 
[14]. At the same time, there is concern over others diseases and syndromes. Evi-
dence and clinical practice suggest that current widely used risk assessment tools 
are not adjusted to increasing proportion of population, such as MetS, and therefore 
might be a misguiding risk assessment tool.

MetS is a multiplex risk factor that is associated with increased risk for CVD, 
T2DM, and their associated complications. MetS consists of five risk factors, includ-
ing elevated BP, hyperglycemia, dyslipidemia, a prothrombotic state, and a proin-
flammatory state. In most countries, MetS is common, affecting at least one-quarter 
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of adults [15,16]. This prevalence appears to be increasing because of a parallel rise 
in the incidence of obesity and physical inactivity [16]. MetS is not an absolute risk 
indicator; nonetheless, persons with MetS are at twice the risk for CVD years as in-
dividuals without MetS [17].  It is not surprising that almost all models had good risk 
prediction in the cohort that they were developed in. However, it does raise doubt 
about limitations of relying on such models that have not been externally validated. 
Cohorts in North America and Europe show the strongest evidence of external vali-
dation. These cohorts had the same outcome measure used in both development and 
validation studies.

However, there is still an uncertainty as to whether this exponentially increasing 
part of the population with comorbidities, such as MetS, estimate their risk correctly, 
using common and widespread risk prediction algorithms, which were frequently 
developed on the basis of isolated populations. Moreover, the most widely used ones, 
such as the Framingham, were developed over 20 years ago when obesity and other 
components of MetS were significantly less common than they are today, and newer, 
more novel CV risk factors haven’t been identified. 

Using European cohorts with matched outcomes to externally validate American 
risk models provided mixed results. Several studies having matched outcomes an-
nounced reasonable risk model performance. However, source population, includ-
ing all-diabetic and elderly cohorts, in most cases was at lower risk than European 
cohorts [18,19]. Risk models under predicted the outcomes in some of the stud-
ies, but these under predictions occurred almost only in high-risk patient cohorts. 
Such cohorts included patients with poor access to health care, poorly controlled 
hypertension, advanced age, organ transplants, or diabetes [19,20–23].  Nonethe-
less, most external validations of American risk models across European cohorts 
identified that models over predicted the risk [16,18,20,24–28]. This over prediction 
was mainly because underlying outcome event rates between evaluation and model 
cohorts were not the same.

Methodology

Populat ion.  A cross-sectional study was performed among 3194 subjects with 
MetS. Mean age of the population was 54.1 (SD 6.2) years, including 2042 females 
and 3089 individuals with hypertension. All patients were recruited fro mthe Lithu-
anian High Cardiovascular Risk (LitHiR) primary prevention programme between 
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2006 and 2014. This long-term programme focused on women (aged 50–65) and 
men (aged 40–55) without overt CVD, as described previously [29,30].

Patients were diagnosed with MetS if they met three or more criteria of the revised 
National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII). 
Hypertension was defined as an elevation of BP (>140 mmHg systolic and/or  >90 
mmHg diastolic) obtained on at least three separate measurements performed on 
different days. Dyslipidemia was defined as TC >5 mmol/L, or LDL-C >3 mmol/L, 
or HDL-C <1.0 mmol/L in men, or <1.2 mmol/L in women, or TG >1.7 mmol/L. 
Diabetes was defined according to past medical history, if the patient received phar-
macologic treatment, or if the FPG level was ≥7 mmol/L. Smoking was classified as 
never, former, or current smoking.

All patients underwent a physical examination, risk profile (smoking, dietary 
patterns) analysis, anthropometry [height, weight, waist circumference (WC) and 
body mass index (BMI), defined as weight in kilograms divided by height (in me-
ters squared)], BP, and pulse determination. Twelve-lead electrocardiogram (ECG) 
was registered. After a 12-hour fast, serum total cholesterol (TC), high-density lipo-
protein cholesterol (HDL-C), triglycerides (TG), low-density lipoprotein cholesterol 
(LDL-C), fasting plasma glucose (FPG), and high sensitivity C-reactive protein (hs-
CRP) levels were assessed. 

Each patient also underwent thorough investigation protocol and was followed 
up for up to 7 years, with mean follow-up 3.9 years.

Risk-assessment  tools .  A literature review was performed to identify the 
risk-assessment tools for inclusion. Studies that were not in English, were published 
over 10 years ago, did not provide information on the key question, had less than 200 
participants, or were not original studies, were excluded.

Search components were developed using input from previous systematic stud-
ies. An iterative refinement method was employed using approximately 50 relevant 
researches, which were previously identified as a quasi-validation set, to estimate the 
research iterations if the search picked or missed known items of interest [31–33]. 
The risk prediction models that were included for further analysis were based on 
external validity (at least 10 times) and a primary patient group:

1. 1991 Framingham risk score(FRS) model(FRS1)  for CVD (26 evaluations)
2. 1998 FRS model(FRS2) for total coronary heart disease (CHD) (24 evalua-

tions)
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3. FRS Adult Treatment Panel III (ATPIII) model(FRS3) for hard CHD (16 eval-
uations)

4. Prospective Cardiovascular Münster (PROCAM) model for hard CHD (11 
evaluations)

5. Systematic Coronary Risk Evaluation (SCORE) model for CVD mortality (11 
evaluations).

However, it is important to note that the FRS ATPIII model excludes patients 
with diabetes, and the PROCAM model excludes women.

Additionally, two risk-prediction models that are widely used but are without 
external validation were included. The first one is the Swiss coronary risk calculator 
[IAS-AGLA; Working Group on Lipids and Atherosclerosis (AGLA) of the Swiss So-
ciety of Cardiology (SGK) published guidelines for the prevention of atherosclero-
sis]. It is a recalibrated PROCAM version for Switzerland and calculates the 10-year 
risk of myocardial infarction (MI). According to the Swiss guidelines (2005), this 
score is recommended for lipid lowering guidelines and risk stratification. Moreover, 
it has high specificity (around 90%), but low sensitivity (around 30%) [34]. The sec-
ond risk prediction model is the Reynolds risk score (RRS), which is a risk equation 
that includes traditional risk factors and two novel risk markers – hs-CRP and a fam-
ily history of premature CAD. Studies have shown that, compared to the FRS model, 
RRS significantly improves global CV risk prediction, especially for those who have 
previously had a perceived moderate risk [35,36]. Table 1 provides an overview of 
the CVD risk assessment models. 
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Statistical analyses

The 10-year risks were calculated according to risk score models. For each pa-
tient with fewer than 10 years of follow-up, risk score was lowered proportionally. 
The c-statistic was calculated to examine the discriminative ability of each risk score 
model. The Hosmer-Lemeshow (H-L) test was used to compare agreement between 
the observed and predicted numbers of CV events in groups of patients stratified in 
deciles of predicted risk. Statistical analyses were performed using STATISTICA 10 
and SPSS v17.0.   

Results

Mo del  des crib e d outcomes

Discr iminat ion.  All seven CV risk models had comparable discriminatory 
abilities. In general, discriminative ability was poor with c-statistic scores of 0.684 
(95% CI 0.627 to 0.740), 0.650 (95% CI 0.624 to 0.676), 0.623 (95% CI 0.593 to 
0.652), 0.680 (95% CI 0.595 to 0.764), 0.661 (95% CI 0.572 to 0.750), 0.643 (95% CI 
0.561 to 0.725), 0.707 (95% CI 0.613 to 0.801) for the FRS1, FRS2, FRS3, PROCAM, 
SCORE, IAS-AGLA and RRS respectively. Related receiver operating characteristic 
(ROC) curves are presented in Figure 1.

Calibrat ion.  The observed and predicted numbers of CV events for all seven 
algorithms had many inconsistencies across deciles of predicted CV risk (Figure 2). 

Observed CV risk appeared to diverge from the CV risk predictions calculated 
using the RRS in almost all deciles. The H-L test indicated low model fit with a P-
value of 0.072. The number of CV events predicted by the FRS2 varied less from the 
observed number of CV events, but showed differences in all deciles. The H-L test 
also indicated no model fit with a P-value of 0.011. CV risk as predicted by IAS-
AGLA showed deviation in all deciles, especially top ones; however, a P-value of 
0.265 of the H-L test indicating moderate model fit. The observed numbers of CV 
events and predicted by PROCAM and FRS III showed different disparities in dif-
ferent deciles; however, the H-L test result indicated a good model fit with P-values 
of 0.570 and 0.487. The expected number of CV events using FRS1 was much higher 
in bottom deciles and lower in top deciles in comparison to observed number of CV 
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Figure 1. Receiver operating characteris-
tic curves for the different risk algorithms 
when evaluating model described outcomes. 
AUC, area under the curve; FRS, Framing-
ham risk score; IAS-AGLA, Working Group 
on Lipids and Atherosclerosis (AGLA) of the 
Swiss Society of Cardiology (SGK) published 
guidelines for the prevention of atheroscle-
rosis; PROCAM, Prospective Cardiovascu-
lar Münster; Reynolds, Reynolds risk score; 
SCORE, Systemic Coronary Risk Evaluation.
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Figure 2. Observed versus predicted car-
diovascular events (%) in deciles of pre-
dicted risk for the different risk algori-
thms when evaluating model described 
outcomes. FRS, Framingham risk score; 
IAS-AGLA, Working Group on Lipids and 
Atherosclerosis (AGLA) of the Swiss So-
ciety of Cardiology (SGK) published gui-
delines for the prevention of atherosclero-
sis; PROCAM, Prospective Cardiovascular 
Münster; Reynolds, Reynolds risk score; 
SCORE, Systemic Coronary Risk Evalua-
tion.
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events. The H-L test indicated moderate model fit for SCORE with a p value of 0.301. 
Overall, the expected CV risk calculated by these algorithms appeared to inaccu-
rately predict an estimate of observed CV events in patients with MetS. 

FRS2 des crib e d outcomes

Discr iminat ion.  All seven CV risk models had average discriminative ability 
with c-statistic scores of 0.629 (95% CI 0.599 to 0.659), 0.645 (95% CI 0.616 to 0.675), 
0.616 (95% CI 0.586 to 0.646), 0.623 (95% CI 0.592 to 0.655), 0.625 (95% CI 0.595 
to 0.656), 0.627 (95% CI 0.596 to 0.658), and 0.608 (95% CI 0.578 to 0.639) for the 
RRS, FRS1, FRS2, FRS3, IAS-AGLA, PROCAM and SCORE, respectively (Figure 3).

Figure 3. Receiver operating characteristic curves for the different risk algorithms when eva-
luating the Framingham risk score model 2(FRS2) described outcomes. IAS-AGLA, Working 
Group on Lipids and Atherosclerosis (AGLA) of the Swiss Society of Cardiology (SGK) pub-
lished guidelines for the prevention of atherosclerosis; PROCAM, Prospective Cardiovascular 
Münster; Reynolds, Reynolds risk score; SCORE, Systemic Coronary Risk Evaluation.

�

�

Calibrat ion.  There were many mismatches between the observed and predict-
ed numbers of CV events for all seven algorithms across deciles of predicted CV risk 
(Figure 4).
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Figure 4. Observed versus predicted 
cardiovascular events (%) in deciles of 
predicted risk for the different risk algo-
rithms when evaluating the Framingham 
risk score (FRS) model 2 described out-
comes. IAS-AGLA, Working Group on 
Lipids and Atherosclerosis (AGLA) of the 
Swiss Society of Cardiology (SGK) publis-
hed guidelines for the prevention of athe-
rosclerosis; PROCAM, Prospective Car-
diovascular Münster; Reynolds, Reynolds 
risk score; SCORE, Systemic Coronary 
Risk Evaluation.
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The observed and predicted number of CV events using RRS differ significantly 
in all deciles both under- and overestimating CV risk. The H-L test yielded a P-value 
of 0.004 indicating no model fit. The number of CV events predicted by the FRS2 di-
verged from the observed number of CV events, but the difference did not show any 
strict tendency across deciles. The H-L test indicated a no model fit with a P-value 
of 0.011. CV risk as predicted by IAS-AGLA showed discrepancies in all deciles and 
had best predictions in top ones. A P-value of 0.007 of the H-L test indicated no 
model fit. The numbers of CV events predicted by PROCAM and the observed num-
bers were also inconsistent overestimating the risk in lower and underestimating in 
middle deciles. The result of H-L test indicated a moderate model fit with a P-value 
of 0.346. The observed numbers of CV events and numbers predicted by FRS1 and 
SCORE showed lack of similarity in lower and top deciles over- and underestimating 
the CV risk and looked most promising in middle deciles, however H-L test result 
showed a P-value of <0,001 indicating no model fit. FRS III showed best calibration 
with P-value of 0.961. In general, almost any of these algorithms did not manage to 
accurately predict an estimate of observed CV events in patients with MetS.

Discussion

Some of the risk models analyzed here proved to be better at predicting outcomes 
than the models that were designed to assess CV risk and predict outcome. Impor-
tantly, none of the models were adequate in predicting risk in the MetS group, even 
though they were developed, and considered appropriate, as a risk assessment tool.

Unstable way of life, variable diet and stress leads to changes in anthropometric 
parameters. This further leads to an increase of sickness rate of various diseases such 
as diabetes mellitus (DM), MetS, etc. These conditions have a negative effect on risk 
prediction. For example, DM has a significantly increased risk of CV outcomes com-
pared to those predicted by various risk models. It is considered that other diseases 
also affect risk prediction therefore such patients are not suited for risk prediction 
models.

Due to lifestyle peculiarities, more and more people have an increased count of 
risk factors at a younger age. The prevalence of MetS is also increasing constantly. 
MetS is a multi-componential risk factor associated with an increased risk of CVD. 
Subjects with T2DM and MetS have twice as high risk than subjects without MetS. 
However, it is still not clear if such part of population causes correct prediction of 
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risk, using widely known risk prediction algorithms designed on the basis of sepa-
rate populations. What is more, majority of these algorithms were developed more 
than 20 years ago when obesity and other components of MetS were not as widely 
spread, large part of other risk factors were not identified yet. 

Nowadays data of general examination and anthropometric parameters are used 
in risk prediction, which are easy to measure, but can personalize an individual only 
on a very small basis. Such data does not represent person’s genotype, way of life, etc. 
and this causes a lack of reliability in risk assessment.

Conclusion

-
ture risk among the vulnerable population of patients with MetS

risk in patients with MetS

patients better than the FRS2 model itself.
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3. PERSONALISING CARDIOVASCULAR  
AND TYPE 2 DIABETES MELLITUS RISK  
ASSESSMENT WITH ADDITIONAL 
BIOMARKERS 

Several risk scoring systems for CHD and CVD have been designed specifically 
for use in clinical practice, the majority of which are based on the American Fram-
ingham study [37,38]. The FRS equations are the most widely accepted method for 
projecting CVD/CHD risks, and are used in the British, European, and New Zealand 
guidelines.

A large systematic review of CV risk assessment in primary prevention has 
shown that the performance of FRS models varies considerably between popula-
tions and that accuracy relates to the background risk of the population to which it 
has been applied [39]. Framingham-based scoring systems tend to overestimate risk 
in low- and medium-risk groups, and underestimate risk for certain subgroups in-
cluding British Asians and those with type 1 DM, T2DM and nephropathy, familial 
hypercholesterolemia, a strong family history of premature CHD, left ventricular 
hypertrophy on electrocardiography, and chronic renal disease [40]. Moreover, the 
work conducted in the current study confirms that this variable risk estimation also 
applies to patients with MetS.

For many health professionals, the calculation of absolute CV risk is the start-
ing point for the development of CVD prevention strategies; however, there is an 
obvious and growing need for further personalization of CVD risk assessment. At 
present, patients at high risk of CVD are detected on the basis of the risk caused by 
the combination of their risk factors. This is calculated using risk estimation sys-
tems (SCORE, FRS). Another approach to detecting those at high risk is to look for 
the presence of subclinical atherosclerosis. Examples include ultrasound scanning 
of the carotid vessels (CIMT), aortic stiffness (AoPWV), and FMD for the presence 
of atherosclerosis. Advantages of AoPWV, CIMT and FMD are that they are non-
invasive, and involve no exposure to radiation. AoPWV was selected for investiga-
tion as a potential biomarker for further personalising CVD risk and as a predictor 
of outcome in patients with MetS. We also aimed to investigate which of the more 
common potential biochemical biomarkers had the greatest predictive role in T2DM 
risk within the same sample.
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3A. AORTIC PULSE WAVE VELOCITY IS AN INDEPENDENT  
CARDIOVASCULAR EVENT PREDICTOR IN A HIGH  
CARDIOMETABOLIC RISK GROUP

Literature review

MetS is a complex of atherosclerotic risk factors such as IGT, high BP, dyslipid-
emia and abdominal obesity [41,42]. Almost one-quarter of the world’s adult pop-
ulation already has MetS [43] and many more remain, as yet, undiagnosed [44]. 
Patients with these components also frequently manifest a prothrombotic state and 
a proinflammatory state [45]; thus, MetS is considered to be a chronic inflamma-
tory condition [46]. Moreover, MetS is assumed to be an indicator of long-term CV 
risk [47] and it is strongly associated with CVD development [48]. It is estimated 
that MetS provides a 2-fold increase in the risk of developing CVD [47]. Delineat-
ing those patients with MetS who are most vulnerable to the development of CVD 
would greatly aid disease prevention strategies. 

Some risk prediction tools are applicable to patients with MetS, such as the FRS 
or the SCORE [49]; however, these are limited. The FRS algorithm evaluates the 
short-term (typically 5–10 years) risk of CVD [47] and, despite attempts to improve 
this risk-scoring system by adding components of MetS, such as central obesity, tri-
glycerides, or IFG, no significant increase in predictive power for CVD has been 
found [45]. MetS score, defined as the number of MetS components, may also be 
inaccurate in predicting CVD because each component acts synergistically in CVD 
development [50]. Valuable efforts to improve risk assessment for CVD by adding 
new risk factors with an independent predictive value are ongoing. 

AoPWV, a measure of arterial stiffness, represents a novel risk factor pathway 
under investigation. Arterial stiffness is measured either locally e.g. carotid, radial, 
brachial or femoral using ultrasound images of arterial changes in diameter or area 
and local distending pressure or regionally by measuring PWV along an arterial 
segment [51]. Impaired arterial stiffness, and precisely aortic PWV, is considered 
to be a well-recognized risk factor for CVD [52–54]. AoPWV, a direct measure of 
arterial stiffness, may enable the recognition of patients at low versus high risk of 
CV events [55]. In addition, aortic PWV may enhance risk prediction when added 
to classical risk factors [52] and, consequently, may provide better identification of 
high-risk groups [53]. Moreover, measurement of arterial stiffness may be useful in 
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clinical practice as it is a simple, noninvasive and reproducible method in CVD risk 
evaluation [56]. To date, any association of impaired arterial stiffness and CV risk in 
patients with MetS remains to be determined.

Aim

To assess whether arterial stiffness, as measured by AoPWV, is a viable predictor 
of CVD risk in patients with MetS.

Methodology
Study p opu lation

All 4259 patients included in the study were recruited from a single speciality 
cardiology centre participating in the Lithuanian High Cardiovascular Risk (LitHiR) 
primary prevention programme, which involves employable aged men (aged 40-55) 
and women (aged 50-65). Outcome follow-up data were derived from the national 
death registry and national healthcare fund disease and services databases. The co-
hort was divided into two groups: event group (EG) and event-free group (EFG), 
depending on whether they had an event recoded during the follow-up time.

High CV risk was defined as having one or more of the following conditions: 1) a 
SCORE risk assessment of >11; 2) diabetes; 3) MetS; 4) positive family history of 
CVD; and/or 4) severe dyslipidemia.

Informe d cons ent

The local ethics committee approved the study without written informed patient 
consent due to retrospective design and large number of patients.

MetS

MetS was defined according to the revised NCEP ATPIII criteria, meeting three 
or more of the following:
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Ar teria l  st i f fness

Parameters of arterial stiffness and wave reflection were assessed by applanation 
tonometry (SphygmoCor, AtCor Medical, v. 8.0, Sydney, Australia). Radial, carot-
id and femoral artery pressure waveforms were recorded for 20 seconds each with 
single transducer synchronized with electrocardiogram (ECG) R wave, after obtain-
ing high quality waveform. Distance between carotid and femoral arterial sites was 
determined using a tape measure. Carotid�femoral PWV, the ‘gold standard’ pa-
rameter of aortic stiffness, was calculated using subtraction method. Augmentation 
index (AIx), calculated from aortic pressure waveform, and adjusted for the heart 
rate, was automatically derived from the radial pressure waveform using previously 
validated transfer function.

Bas el ine  measurements

All patients underwent a baseline examination including medical history, physi-
cal examination risk profile and lifestyle assessment, evaluation of CV family history, 
12-lead ECG, laboratory blood tests, and non-invasive assessment of arterial mark-
ers of subclinical atherosclerosis. Weight, height, and waist circumference were mea-
sured with the subject wearing light clothing and without shoes. BMI was calculated 
as weight in kilograms divided by the square of height in meters. BP was measured 
after the patient rested at least five minutes, using an oscillometric semiautomatic 
device (Schiller Argus VCM) with a standard bladder (12–13 cm long and 35 cm 
wide), validated according to standardized mercury sphygmomanometer - at least 
one measurement per arm with additional measurements if the first two differed sig-
nificantly. The reference value was the highest value or the average of the two highest 
values, if measured more than twice. Assessment of arterial stiffness was carried out 
by applanation tonometry (Sphygmocor v.7.01, AtCor Medical). Information about 
smoking and drug use was collected by a questionnaire. Current smoking was re-
corded if the subject smoked at least one cigarette per day. Positive CV family history 
was recorded if first-degree relatives of the patient had any CV events at a young age 
(men ≤45 years, women ≤55 years old).
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Statistic a l  analys es

Statistical analysis was performed using the SAS package for Windows (9.1 Ver-
sion Cary, NC, USA). Means were compared using ANOVA followed by Bonferroni 
test. ANCOVA analysis was used to calculate least square means (±standard error 
of the mean, SEM) for comparison of PWV, after controlling for covariates (age, 
sex, non-HDL-C levels, current smoking, presence of DM, and study site for PWV). 
Multivariable logistic regression analysis was used to explore whether AoPWV in-
dependently predicted CV events. A two-sided P-value <0.05 indicated statistical 
significance. 

Results

In total, 4259 high-risk subjects with MetS were followed up for a mean of 
1389.3±625.73 days. On average, participants had 3.49±1.05 components of MetS as 
per the NCEP ATPIII criteria, and 18% of the group had five risk factors. 

Bas el ine  characteristics

The mean age in the EFG was 54 years versus 55 in the EG. There were 34 diabetic 
patients in the EG; however, there was no significant difference compared with the 
EFG (P<0.05). Baseline BMI (EFG 31.7; EG 31.6) and waist circumference (EFG 
105 cm; EG 106 cm) were similar between the groups. Detailed baseline and clinical 
characteristics of the studied population, according to the presence or absence of the 
CVD events, are summarized in the Table 2.

CVD e vents

CVD events during the follow-up included fatal or non-fatal MI or stroke. No 
significant difference between the EFG and the EG with at least one CVD event 
during follow up. In the follow-up period, there were a total of 129 CVD events reg-
istered within the EG. 

Ass o ciation b etwe en ar teria l  prop er ties  and CVD e vents 

Comparing the two groups, aortic PWV was significantly lower in the EFG group 
8.8±1.6 (EFG) vs. 9.41±2 (EG), P<0.001. Mean aortic pulse pressure (Ao_PP) was 
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significantly lower in the EFG group, measured 43.28±11.02 (EFG) vs. 46.25±12.32 
(EG), P=0.003, mean aortic BP (meanBP_Ao) 106.69±12.45 (EFG) vs. 111.07±16.6 
(EG), P<0.001.

In the unadjusted logistic regression model, aorticPWV remained a strong CVD 
event predictor (Table 2). Odds ratios (OR) for a CV event, as shown in the Table 3 
illustrate that CV risk increases with the change of various arterial and hemody-
namic parameters by one standard deviation (SD). 

Four selected variables were divided into 3 tertiles, comparing cumulative pro-
portion survival rate, aortic PWV remained a strong survival predictor, P=0.001 
(Figure 5), comparing 3rd tertile vs. 1st tertile for CVD event, aortic PWV OR was 
1.748 (95% CI 1.135; 2.691, P=0.011).

1st tertile 2nd tertile 3rd tertile
AoPWV <8 8-9.3 ≥9.3
AIx@75 <21 21−29 ≥29

MeanBP_Ao <101 101−111 ≥111
Ao_PP <38 38-47 ≥47

AIx@75, aortic augmentation index adjusted for a heart rate of 75 beats per minute; Ao_PP, aortic 
pulse pressure; AoPWV, aortic pulse wave velocity; MeanBP_Ao, mean aortic blood pressure; PWV, 
pulse wave velocity.

Figure 5. Cumulative proportion surviving curve (AoPWV).
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Discussion

The main finding of this study was that, using a logistic regression model, AoPWV 
remained a strong independent CVD event predictor, indicating higher CVD risk 
with increasing AoPWV. In addition, survival analysis confirmed it is a viable CVD 
prediction indicator. These findings highlight the importance of including AoPWV 
into widely used CVD risk assessment tools, especially for high CVD risk groups.

The role of aortic PWV in CVD risk evaluation has been widely investigated. 
AoPWV has been assumed as the ‘gold standard’ for measuring aortic stiffness [51] 
and may represent a predictor of CV events because of its involvement in pathophys-
iological CV outcomes [57]. For example, arterial stiffness is linked to left ventricular 
hypertrophy, which is known as a risk factor for CV complications in hypertensive 
and normotensive patients [58]. As PWV reflects the long-term effect of CVD risk 
factors on the arterial wall, it may have a better predictive value than traditional risk 
factors [56]. Furthermore, a significant proportion of patients at intermediate risk 
after arterial stiffness measurement could be reclassified into a higher or lower CVD 
risk [59]. It is recognized that aortic stiffness has an independent predictive value for 
all-cause mortality [56]. In addition, an independent influence of arterial stiffness on 
survival has been demonstrated in patients with end-stage renal disease who are at 
high risk of mortality [60].

When assessing arterial stiffness, it is important to take into account that this 
parameter increases with aging [59,61]. This is induced by an increase in arterial wall 
thickness because of hyperplasia of the intima and also by reduction of elastin and its 
replacement with collagen in the media [62]. Therefore, it is not always clear whether 
this parameter must be determined as a function of age [63].

The impact of individual components of MetS on arterial stiffness should be dis-
cussed. Firstly, arterial stiffness strongly depends on high BP [64] and has an indepen-
dent predictive value for fatal and nonfatal CVD outcomes in patients with hyperten-
sion [59]. This is because of elevated SBP, which increases left ventricular afterload, 
and because of lower DBP, which changes coronary perfusion [58]. Moreover, es-
sential hypertension is often associated with various metabolic abnormalities such as 
dyslipidemia, elevated glucose levels, insulin resistance and abdominal obesity [65].

Secondly, arterial stiffness is also increased in people with IGT and DM24. Diabe-
tes may increase arterial stiffness through pathological mechanisms, including low 
nitric oxide bioavailability, enhanced oxidative stress, chronic inflammation, activat-
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ed sympathetic nervous system and changes in the arterial wall [66]. Furthermore, 
hyperglycemia might cause the glycation of matrix proteins and the accumulation of 
advanced glycation end products on collagen and elastin [41].

Another important cardiometabolic risk is abdominal adiposity. Central adipos-
ity may induce the secretion of several peptides such as leptin, which may change 
arterial wall motion [67]. Obesity, and especially elevated leptin, has been associated 
with lower arterial distensibility [65]. Consequently, weight loss has been demon-
strated to improve arterial stiffness [68]. On the contrary, most of the studies related 
to AoPWV and dyslipidemia found minimal or incompatible correlations among 
these factors [65]. In addition, people with obesity and DM are more likely to show 
increased AoPWV than people with hyperlipidemia [69]. 

It is important to measure arterial stiffness at different sites, as stiffness is not 
equal along the arterial system [70]; more elastic arteries are closer to the heart and 
therefore stiffness increases gradually from the ascending aorta to the peripheral 
arteries [71]. The estimation of local arterial wall stiffness is mostly performed using 
superficial arteries such as the carotid where atherosclerosis is often located [57]. 
Although PWV can be measured on any artery, only carotid−femoral PWV has been 
recognized to have predictive value for morbidity and mortality [71]. Stiffness at 
other arterial sites has lower or no ability to predict CV events [72].

There are some controversies surrounding the role of arterial stiffness in CV risk 
assessment. It has been demonstrated that carotid�femoral PWV reflects both elas-
tic and muscular elements of the arterial system and that these may be differentially 
associated with CVD events and mortality [51]. In contrast to the study, the Ath-
erosclerosis Risk In Communities (ARIC) study has reported that carotid stiffness 
is more strongly associated with cerebrovascular disease than with CVD, because 
stiffening of this artery may lead to a pressure overload on the brain [73]. Moreover, 
another study has demonstrated that increased carotid stiffness is more strongly as-
sociated with all-cause mortality than with CV outcomes [70].

Nevertheless, the use of arterial stiffness is advantageous in terms of CVD prog-
nosis, especially in patients at high risk of cardiometabolic disease [74]. Addition-
ally, this parameter may enhance the evaluation of the individual CVD risk in hyper-
tensive patients who regularly attend the outpatient clinic [58]. Furthermore, arterial 
stiffness is a potential goal of treatment34 and BP lowering drugs can promote re-
gression of intima-media thickness [75]. It is of interest that angiotensin-converting 
enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARBs) independently 
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reduce arterial stiffness without any association of BP reduction by blocking the 
renin�angiotensin system (RAS) which may impair arterial stiffness through the 
strong vasoconstrictor, angiotensin II [76].

Finally, it is important to prevent and reduce the presence of MetS in order to re-
duce CVD and to prolong life in adults [48]. These data support the concept of using 
arterial stiffness as a predictor of future CV health among the population with MetS 
and to aid primary prevention.

Conclusion

AoPWV remained a strong independent CVD event predictor, indicating 
higher CVD risk with increasing AoPWV

be particularly useful in the assessment of high CVD risk groups.

3B. PREDICTIVE MODELS TO IDENTIFY BIOMARKERS FOR  
PROGRESSION FROM METABOLIC SYNDROME TO TYPE 2  
DIABETES MELLITUS

Literature review

MetS is a cluster of serious CV risk factors including abdominal obesity, high 
cholesterol and high BP that is prevalent in a large proportion of the world’s popula-
tion. Individuals presenting with this cluster of risk factors are three times as likely 
to have, and twice as likely to die from, a heart attack or stroke, compared to people 
without the syndrome [77]. Several population-based studies have shown that MetS 
is a risk factor for the future development of T2DM [78–82]. Importantly, a meta-
analysis of prospective studies showed that people with MetS have a five-fold greater 
risk of developing T2DM than individuals without the syndrome [83]. The cluster of 
risk factors that typify MetS is driving an epidemic of CVD and DM. 

Predicting the likelihood of T2DM among patients with MetS is a clinical chal-
lenge. In this era of personalized and patient-centric care comes the desire to predict 
the likely progression of a pre-diabetic state and prevent the associated risk of pre-
mature illness and death. Elements of MetS such as impaired fasting glucose (IFG) 
and IGT are shown to be strong predictors of T2DM in many studies [84–86], while 
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waist circumference, BMI, and TG have shown associations with the incidence of 
T2DM in subjects with high post-prandial glucose [87] and in the general popula-
tion [88]. When atherosclerosis is already present, the presence of a high waist cir-
cumference alone is associated with an increased risk of developing T2DM, as is the 
presence of ≥3 metabolic risk factors [89]. Together, the presence of ≥3 metabolic 
risk factors and a high waist circumference is associated with a 10-fold increased risk 
of T2DM in this atherosclerotic population [89]. Many of these studies are associa-
tive in nature, and analysis of the predictive and cumulative value of these factors is 
warranted. Furthermore, the scale of risk among patients with MetS who do not yet 
show overt atherosclerotic disease is, as yet, undetermined. 

Aim
To determine the predictive value of clinical biomarkers for the incidence of 

T2DM in patients with MetS who do not yet show atherosclerotic disease. 

Methodology

Study design

A prospective study of 525 non-diabetic, middle-aged Lithuanian men (n=187, 
36%) and women (n=338, 64%) with MetS but without overt atherosclerotic disease 
from the Lithuanian High Cardiovascular Risk (LitHiR) primary prevention pro-
gramme was conducted between 2007 and 2011. This programme includes patients 
from primary and secondary care settings and they were followed up for a median 
period of 3.3 years, for identifying the new T2DM cases. 

Definition of  MetS

MetS was diagnosed if a patient presented with three or more of the revised 
NCEP ATPIII criteria [90, 91]:

The metabolic syndrome score was calculated as the sum of MetS components 
present.
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Ass essments

Baseline assessments were recorded for medical history, physical examination, 
risk profile, and lifestyle parameters, evaluation of CV family history, 12-lead electro-
cardiogram, laboratory blood tests, and non-invasive assessment of arterial markers 
of subclinical atherosclerosis, weight, height, waist circumference, body mass index 
(BMI), BP, and arterial stiffness. 

Fasting venous blood samples were collected for estimation of serum TC, TG, 
glucose, HDL-C, LDL-C, hs-CRP, HbA1c and insulin. A standard 75-g oral glucose 
tolerance test (OGTT) was carried out after patients completed a 12-hour overnight 
fast. Plasma glucose and insulin concentrations were measured at 0 and 120 minutes. 

Subjects were classified into various categories of glucose tolerance using the 
WHO criteria [92]. Normal glucose tolerance was defined by fasting glucose <6.1 
mmol/L and 2-h OGTT glucose <7.8 mmol/L. IFG was defined by fasting glucose 
≥6.1 mmol/L and <7.0 mmol/L and 2-h OGTT glucose <7.8 mmol/L. IGT was de-
fined by fasting glucose <7.0 mmol/L and 2-h OGTT glucose between 7.8 and 11.0 
mmol/L. Diabetes was defined by fasting glucose ≥7.0 mmol/L and/or 2-h OGTT 
glucose ≥11.1 mmol/L.

Four surrogate indices of insulin resistance or insulin sensitivity were calculated: 
the homeostasis model assessment insulin resistance (HOMA-IR) index [93] was 
calculated as fasting insulin [μU/mL] × FPG [mmol/l] / 22.5; the quantitative in-
sulin-sensitivity check index (QUICKI) index [94] was calculated as 1/[log(fasting 
insulin [μU/mL]) + log(FPG [mg/dL])]; the Cederholm insulin sensitivity index 
(ISI) [95], representing peripheral insulin sensitivity, was calculated as ISICederholm =  
75000 + (G0-G120) × 1.15 × 180 × 0.19 × weight/120 × Gmean × log (Imean), where G0 
and G120 are plasma glucose (mmol/L) concentrations at 0 and 120 minutes. The Mat-
suda insulin sensitivity index [96,97], reflecting a composite estimate of hepatic and 
muscle insulin sensitivity, was calculated as ISIMatsuda = 10,000 / √(G0 × I0 × G120 ×  
I120), where G0, G120, and I0, I120 are the plasma glucose (mg/dL) and the plasma 
insulin (μU/mL) concentrations respectively at time 0 and 120 minutes. 

Statistic a l  analys es

Descriptive analyses were applied to the baseline measures: mean and SD for the 
continuous variables and the frequency, and proportion for the categorical variables. 
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Logistic regression was used to develop predictive models for incident cases and 
to investigate the association between various markers and the onset of T2DM. Gen-
der-adjusted odds ratios (ORs) were calculated and p values (Bonferroni corrected) 
were based on two-sided tests with a cutoff for statistical significance of 0.05. Little’s 
method was applied to control for bias due to missing data [98–100]. 

A stepwise, multivariate logistic regression model was developed to determine 
which factors predicted progression to T2DM most strongly. Bayesian Informa-
tion Criterion (BIC) was used to assess model fit based on a log likelihood function 
[101]. The model with the lowest BIC value was preferred. A “forward” approach was 
taken, starting with the gender variable, then adding one variable at each step that 
maximally reduced the BIC statistic and terminated when the BIC statistic stopped 
decreasing. Model accuracy was estimated by using each subject as a validation set, 
and the remaining subjects to generate the model. ROC curves with area under the 
curve (AUC) values were calculated for predicting T2DM. Statistical and modeling 
analyses employed MATLAB 7.13 (R2011b) and SPSS Statistics 19.0.0.

Results

Baseline characteristics of the cohort who progressed to diabetes and those who 
did not are shown in Table 4. As would be expected, many of the baseline parameters 
were higher among the group of later progressors. 

Table 5 presents the odds-ratio results for all variables after they were adjusted 
for gender. In the first iteration, 12 significant predictors (presented in decreasing 
order of their association) were identified: FPG, BMI, waist circumference, OGTT 
glucose, HbA1c, QUICKI, metabolic syndrome score, weight, ISIMatsuda, OGTT in-
sulin, HOMA-IR, and fasting insulin. In the second iteration, after adjusting for FPG 
and gender, the BMI showed the most significant association. After the selection of 
BMI (third iteration), only HbA1c remained a significant predictor. The final set in-
cluded: gender, FPG, BMI, and HbA1c. The selected variables: FPG, BMI, and HbA1c 
each showed a significant cumulative effect in the final model (FPG: P=0.000001;  
BMI: 0.00001; HbA1c: P=0.0004).

Figure 6 shows the predictive power of FPG, BMI, and HbA1c, in the stepwise 
multivariate logistic regression model. It also shows the improvement in the predic-
tion for the combined, gender-adjusted score of these three variables, by plotting 
the ROC curves of the corresponding models. The model showed a high level of 
accuracy (AUC=0.91).
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Figure 6. Comparison of predic-
tion models. Receiver operating 
characteristic curves of four dia-
betes onset prediction models: 
Fasting plasma glucose (FPG)-
model, body mass index (BMI)-
model, glycosylated haemoglobin 
(HbA1c)-model, and a FPG-BMI-
HbA1c-model. All models were 
adjusted for gender. �

Using the model to test the cumulative value of the obesity measures, BMI had 
the most significant cumulative effect (P=0.003, odds ratio test), compared to weight 
(P=0.03, odds ratio test), or waist circumference (P>0.1, odds ratio test). 

FPG was superior to OGTT glucose in predicting T2DM, showing a very signifi-
cant cumulative effect (P<0.00001, odds-ratio test), while OGTT glucose showed a 
milder cumulative effect in the gender-adjusted model (P=0.007, odds-ratio test), 
and no significant effect when BMI and HbA1c were added to the model (P>0.1, 
odds-ratio test). 

Measures of arterial stiffness - aortic augmentation index adjusted for a heart rate 
of 75 beats per minute (AIx@75) and radial PWV - showed no significant associa-
tion with either progression to diabetes or IGT/IFG pre-diabetic conditions. Inter-
estingly, another measure, aortic PWV, was significantly associated with progression 
to diabetes (P=0.04; odds ratio test). 

Discussion

In this study, the combination of FPG, BMI, and HbA1c was shown to be a power-
ful predictor for the development of T2DM in subjects with MetS. FPG was shown 
to be superior to OGTT glucose in predicting T2DM, with OGTT glucose showing 
no cumulative value to FPG. These findings are consistent with general population 
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studies showing that IGT and IFG are similarly associated with an increased risk of 
diabetes, and that risks are higher when IGT and IFG coexist [102]. The OGTT find-
ings, however, differ from previous studies [103,104]. The higher predictive value 
of FPG presented herein may be explained by the high prevalence of elevated FPG 
observed. However, performing a 2-h OGTT should be considered superfluous to 
the prediction of candidates for future diabetes, as supported by previous authors 
[105–107]. 

BMI and HbA1c were also evaluated as predictors of diabetes in previous studies 
[88,104]. The risk of T2DM increased exponentially with HbA1c in both genders 
[108]. In another large study, a model including both FPG and HbA1c was more 
effective for T2DM prediction than models including FPG alone or HbA1c alone 
[109]. Recently, a study confirmed that HbA1c of ≥5.6% had an increased risk for 
progression to T2DM, independent of other confounding factors [110]. These prior 
studies support the current finding on the cumulative effect of HbA1c with respect to 
FPG and HbA1c. Four common insulin resistance/sensitivity indices were less pre-
dictive for T2DM than FPG and OGTT glucose, which is consistent with previous 
findings [105,111].

The applanation tonometry results correspond with previous studies, suggesting 
an association between aortic PWV and diabetes, and a lack of association between 
elevated augmentation index and the presence of diabetes [112]. Similar to previous 
reports [113], this study demonstrated that the association between increased aortic 
stiffness and glucose metabolism abnormalities (IGT) is already found in pre-diabetic 
stages, and that IGT is more strongly associated with CV risk than IFG. The increased 
aortic PWV in the current study cannot be explained by the elevation of CRP, and is 
predominantly associated with elevated 2h-OGTT glucose measurements.

To my knowledge, no previous study has established a predictive model for new 
onset diabetes in subjects with MetS. This study focused on middle-aged metabolic-
syndrome subjects in Lithuania; thus, the findings are limited in their generalizabil-
ity to subjects without MetS or to race/ethnicity populations that are differentially 
affected by diabetes. Additional limitations are the small dataset (525 subjects) and 
short duration of follow-up (2-4 years), resulting in only 32 participants who devel-
oped diabetes during the study. Subsequently, there is uncertainty in assessing the 
level of the risk estimate. Another drawback of the study design is the lack of infor-
mation on diabetes familial history, which has been shown to be a strong predictor 
for T2DM in the general population as well as in subjects with MetS [88]. 
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T2DM onset in middle-aged subjects with MetS can be predicted with remark-
able accuracy using the combination of FPG, BMI, and HbA1c, and is related to el-
evated aortic PWV measurements. As previous authors have noted, complicated 
predictive modeling and clinical biomarker measurements may not enhance clinical 
practice to the same degree as a few simple routine clinical measures to identify 
diabetes risk [114]. This study shows that simple measures, such as BMI, FPG, and 
HbA1c, can accurately predict the development of T2DM in subjects with MetS. Ap-
plication of these predictors in real-life practice may provide great value in delineat-
ing those patients at greatest risk of progression to T2DM. Meta-analysis of data 
from many population-based studies has shown that MetS, regardless of how it is 
defined, is a significant predictor of incident diabetes in many different populations 
[83]. The current study adds to the current knowledge that for subjects who already 
have MetS: fasting plasma glucose is the strongest predictor, with BMI and glycosyl-
ated hemoglobin having cumulative value.

Conclusion

-
markable accuracy using a combination of FPG, BMI, and HbA1c, and is re-
lated to elevated AoPWV measurements

MetS subjects.
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4. CIRCULATING MICRORNAS  
AS BIOMARKERS OF EARLY  
ATHEROSCLEROSIS 

MicroRNAs (miRs) are endogenous, non-coding, small (18–22 nucleotides) RNA 
molecules. They negatively regulate gene expression at the posttranscriptional level 
by imperfect base pairing with the 3c-untranslated region of target mRNA, leading 
to miR degradation or translation repression [115]. This mechanism of controlling 
gene expression by miRs plays a crucial role in normal physiology and development, 
regulating several cellular processes such as differentiation, growth, proliferation 
and apoptosis. miRs are present in cells, such as endothelial cells, monocytes and 
macrophages, vascular smooth cells, and in platelets and plasma. miRs in plasma 
avoid degradation by being packaged in microparticles (exosomes, microvesicles 
and apoptotic bodies) or bound with proteins or high-density lipoproteins (HDL) 
[116–118].

In addition to their physiological functions, miRs are indicated in the pathogen-
esis of metabolic diseases. They participate in the control of cholesterol, lipoprotein, 
glucose and hormone (e.g. estrogen) metabolism, as well as affecting the produc-
tion of adipokines; thus, miRs represent critical regulators of metabolic homeosta-
sis. When these pathways are disrupted, miRs have a potential pathological role in 
obesity, insulin resistance, MetS and T2DM (which contributes to the development 
of vessel wall inflammation and atherosclerosis) and cardiac injury/remodeling after 
MI [119]. Certain miRs in plasma or serum are already elevated or decreased in asso-
ciation with metabolic diseases prior to CAD, PAD, HF, ACS, and stroke; others ap-
pear to be related to CV complications [120–132]. The enormous burden of CVDs –  
contributing to 48% of global deaths due to non-communicable diseases [133] – has 
prompted the search for prognostic markers that may serve to guide intervention to 
prevent illness. Detection of circulating miRs – these guides of metabolic homeo-
stasis – generated much interest in their potential as biomarkers or predictors of 
disease that would be accessible by routine diagnostic methods. Owing to the lim-
ited follow-up times of the investigated subjects, correlations between the miRs and 
the wide research on early atherosclerosis markers were therefore relied on. Those 
include arterial stiffness (AoPWV), as previously described, but also extending to 
endothelial function tests (FMD) and CIMT measurements.
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FMD is an endothelium-dependent, NO-mediated process that uses high-res-
olution ultrasound in the brachial artery. The method is completely non-invasive 
and safe, easy to use, reliable and repeatable in expert laboratories. FMD is limited 
by technical difficulties and methodological shortcomings (for example, FMD mea-
surements require significant technical expertise; guidelines propose a minimum 
number of 100 supervised scans prior to scanning independently and at least 100 
scans/year to maintain competency) [134]. Extensive training of the operator is 
needed resulting in a long learning curve, and image analysis may be labor-intensive. 
Potential environmental/physiological influences (e.g. food, caffeine, temperature, 
stress) need to be controlled for. Methodological standardization is needed (cuff po-
sitioning, timing of response, edge detection, software analysis, stereotactic probe-
holding devices) to reduce operator-dependence, improve reproducibility and allow 
comparison among laboratories [135]. 

AoPWV, CIMT and FMD are already used in daily clinical practice. They are 
useful in determining the degree of subclinical carotid atherosclerosis or endothelial 
dysfunction, and have the advantage of being noninvasive and safe. However, their 
applicability in routine screening for risk determination is limited because they are 
operator dependent, time-consuming and relatively expensive (requirement of spe-
cific equipment, well trained staff and specially prepared patient). Moreover, it is 
difficult to reproduce. Because of this there is a need of simpler, less time consuming 
biomarkers, which would correlate with AoPWV, CIMT and FMD.

Literature review

Narrowing the search for miRs responsible for CVDs presents many challeng-
es. miRs are known to regulate multiple target genes and in turn, one gene can be 
regulated by several miRs, making an assessment of the specific effects of any miRs 
cumbersome. Moreover, deriving the pathophysiological program that is changed 
by a set of differentially expressed miRs and their target genes requires a reduction-
ist approach that extracts the essential features of the miRs regulation pattern in a 
structured and scientifically logical manner. A systems biology approach may assist 
in the identification of patterns of miR effects relevant to CV and metabolic diseases. 
These patterns can then be used as a basis for further functional investigation. A 
systematic literature review was conducted with the aim of reviewing the existing 
literature on miRs as biomarkers of CVDs – atherosclerosis, CAD, and ACS – with 
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the aim of selecting the 10 most promising miRs for further research in the current 
study’s patient group. 

Information res ources ,  s earch and study s ele ction 

The PubMed database for English-language articles related to miRs as biomark-
ers of CV and metabolic diseases were searched. The key search terms in relation 
to CVDs were (miR) AND (atherosclerosis OR cardiovascular OR cerebrovascular 
OR acute coronary syndrome OR heart failure OR stroke). The key search terms in 
relation to metabolic diseases were (miR) AND (biomarker) AND (overweight OR 
obesity OR type 2 diabetes OR insulin resistance OR hypertension OR dyslipidemia 
OR metabolic syndrome). Based on the abstracts, experimental studies in preclini-
cal models were excluded. Only original research papers were included for the final 
assessment. No lower date limit was used.

The initial literature search identified 164 articles. A total of 101 reviews, which 
cited other research papers, were excluded. Overall, 63 original, full-text research 
papers were included for analysis. The summary of the literature search and selec-
tion is depicted in Figure 7. The different miR groups and the key features of the 
included studies are summarized in Table 6.

C ardiovas cu lar  dis eas es

Atherosclerosis .  Six experimental studies related to miRs in atherosclero-
sis were identified. Three of them concentrated on CAD. Fichtlscherer et al. [120] 
examined plasma miR profiles of 67 stable CAD patients and 31 healthy subjects. 
The two groups differed significantly in hypertension and diabetes status, as well 
as levels of total and low-density lipoprotein (LDL) cholesterol, but no adjustments 
were made for these differences. Caenorhabditis elegans miR-39 was used for nor-
malization of the RNA preparation. Circulating levels of miR-126, miR-17, miR-92a, 
smooth muscle-enriched miR-145 and the inflammation-associated miR-155 were 
significantly reduced in patients with CAD, whereas cardiac muscle-enriched miRs 
(miR-133a, miR-208a) tended to be higher in patients with CAD [120]. Weber et al. 
[122] identified 11 miRs (miR-150, miR-584, miR-19a, miR-145, miR-155, miR-222, 
miR-378, miR-29a, miR-30e-5p, miR-342, miR-181d) that were significantly down-
regulated in whole blood of CAD patients (n=10) compared to age-matched healthy 
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controls (n=15). Both studies suggested that significantly dysregulated miRs could 
serve as diagnostic markers for CAD. However, the metabolic profiles of CAD pa-
tients and healthy controls were found to be very different [122]. 

Li et al. [121] focused on atherosclerosis in peripheral arteries. This group ex-
amined 104 patients with atherosclerosis obliterans or PAD and 105 age-matched 
healthy controls. They identified three miRs (miR-130a, miR-27b, miR-210) that 
were significantly upregulated in the serum of patients with atherosclerosis oblit-
erans or PAD. U6 snRNA was used as the housekeeping gene. They also found a 
significant difference in the levels of miR-130a between patients with atherosclerosis 
obliterans stage Fontaine I and stage Fontaine III, suggesting that miR-130 might 
reflect the progression of atherosclerosis obliterans [121]. Stather et al. [136] ex-
amined 15 PAD patients and compared their miR expression profiles to those of 16 
healthy controls. Twelve miRs (let-7e, miR-15b, miR-16, miR-20b, miR-25, miR-26b, 
miR-27b, miR-28-5p, miR-126, miR-195, miR-335, and miR-363) were significantly 
different between the two groups. The geometric mean of mammU6 and RNU48 ex-
pression levels was used as normalization factor in all miR qRT-PCR data. Based on 
the receiver operating characteristic (ROC) curves, miR-16, miR-363, and miR-15b 
had the best predictive value with an area under the curve >0.92 (P<0.001) [136]. 
However, no adjustments were made for eventual differences in metabolic factors. 

Fan et al. [137] investigated 63 patients with non-calcified plaques, 62 patients 
with calcified plaques and 61 healthy controls. Cel-miR-39, cel-miR-54 and cel-
miR-238 were used as housekeeping miR. The level of serum miR-21 was significant-
ly lower and MMP-9 was significantly higher in patients with non-calcified coronary 
artery lesions, compared with the control and calcified plaque groups. This finding 
suggests that miR-21 could be a biomarker for plaque instability by suppressing tar-
get gene RECK to promote the expression and secretion of MMP-9 in macrophages, 
which lead to fibrous cap thinning and plaque rupture [137].

In summary, miR-1, miR-126, miR-485-3p, and miR133a were confirmed to be 
associated with CAD. In addition, miR-122, miR-133b, miR-145 and miR-155 were 
found to be dysregulated in atherosclerosis and might therefore be used as biomark-
ers. However, in most studies, no adjustments were made for differences in meta-
bolic factors. 

Acute  coronar y syndrome.  D’Alessandra et al. [138] examined the plasma 
of 19 troponin-negative patients with unstable angina (UA), 34 patients with stable 
angina (SA) and 20 healthy control subjects (n=20), matched for sex, age, smoking 
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habit, hypertension, and diabetes, and without a history of CAD or inflammatory 
disorders. Two miRs (miR-16 and miR-17-5p) were used as internal controls. The 
levels of 10 miRs were measured: miR-337-5p, miR-433, miR-485-3p, miR-1, miR-
122, miR-126, miR-133a, miR-133b, miR-199a, and miR-145. Only three of these 
showed a statistically significant (P<0.05) up-regulation, when compared to con-
trols: miR-337-5p, -433, and -485-3p. In addition, the investigators measured the ex-
pression of literature-selected miRs (miR-17-5p, -92a, -126, -133a, -145, -155, -199a, 
and -208a, and STEMI-related miR-1, -122, -133a, -133b, -375, and -499-5p). The 
expression of six of these miRs was increased in both SA and UA patients: miR-1, 
miR-122, miR-126, miR-133a, miR-133b, and miR-199a. The authors concluded that 
particular miRs could detect, with high efficacy, stable (miR-1, miR-126, miR-485-
3p) or unstable (miR-1, miR-126, miR133a) CAD when compared with matched 
controls. However, the ability of plasmatic miRs to discriminate between SA and 
UA was found to be low [138]. Nevertheless, there were significant differences in 
the metabolic profiles of patients and controls. Wang et al. [139] measured muscle-
enriched miRs (miR-1, miR-133a, and miR-499) and cardiac-specific miR-208 in 33 
patients with AMI, 33 non-AMI patients, and 30 healthy controls. All of the tested 
miRs were elevated in the plasma of AMI patients compared with the non-AMI 
groups. Notably, miR-208a was able to differentiate AMI from non-AMI patients 
with a high sensitivity and specificity. The authors concluded that miR-208a is el-
evated in a cardiac-specific fashion, suggesting that the circulating level of miR-208a 
is minimally affected by non-cardiac tissue injury [139]. 

Wang et al [140] measured miR-133a in the plasma of 13 AMI patients, 176 stable 
CAD patients, and 127 healthy controls. U6 was measured as an endogenous con-
trol for normalizing the data of experimental qRT-PCR. miR-133a was significantly 
upregulated in the plasma of AMI patients compared with controls. Moreover, miR-
133a positively correlated with the severity of coronary artery stenosis in CHD pa-
tients with single left anterior descending coronary artery atherosclerosis, and was 
also more informative in CHD diagnosis than troponin I in non-AMI CHD patients 
with single stenotic LAD lesion [140]. 

Adachi et al. [141] measured plasma concentrations of miR-499 in 14 ACS pa-
tients, 15 patients with CHF, and 10 healthy controls. miR expression was normal-
ized to that of the small RNA 5’-GTC GTA TCC AGT GCA GGG TCC GAG GTA 
TTC GCA CTG GAT ACG ACA ACT CA-3’. miR-499 was significantly upregu-
lated in all patients with AMI, but failed to detect possible myocardial micronecrosis 
caused by CHF [141]. 



– 50 –

Vogel et al. [142] performed a whole-genome miR kinetic study in 18 STEMI 
patients and 21 healthy controls. miR expression levels were measured at multiple 
time points (0, 2, 4, 12, 24 h after initial presentation) in STEMI patients. The small 
RNA RNU-6b served as a reference. Seventeen miR markers, of which two were 
upregulated and 15 were downregulated in AMI patients, showed a high consis-
tency between the different time points. Seven miRs (miR-636, miR-7-1, miR-380, 
miR- 1254, miR-455-3p, miR-566, and miR-1291) were downregulated at all time 
points. These seven miRs were investigated in additional cohorts, and only miR-
1291 did not reach statistical significance. In addition to 6 significantly downregu-
lated miRminas, miR-1915 (downregulated) and miR-181c (upregulated) were also 
significantly deregulated in early AMI [142]. 

Wang et al. [143] recruited 51 patients with AMI and 28 healthy controls, which 
differed significantly when comparing their total and LDL cholesterol. The plasma 
levels of miR-133 and miR-328 were measured. U6 was used as an internal control. 
They were both found to be upregulated in AMI patients when compared to the 
healthy cohort. Moreover, elevated levels of both miR-133 and miR-328 correlated 
with cardiac trooping I levels and presented no significant differences between pa-
tients with or without arrhythmias [143]. Meder et al. [144] enrolled 20 AMI pa-
tients and 20 healthy controls. Out of 121 significantly deregulated mIRminas in 
AMI patients, miR-1291 and miR-636 were the most predictive ones with AUC val-
ues of up to 0.94. MiR-145 and miR-30c levels significantly correlated with Troop-
ing T levels. The small nuclear RNA RNU6B-2 served as reference. Furthermore, 
the study concluded a unique mIRmina signature of 19 mIRminas (miR-142-5p, 
miR-498, miR-492, miR-1281, miR-497, miR-151-5p, miR-802, miR-23b, miR-455-
3p, miR-1250, miR-380, miR-135b, miR-345, miR-566, miR-631, miR-1254, miR-
139-5p, miR-892b, and miR-146b-3p) with AUC of 0.99, which proved to effectively 
differentiate AMI patients from the healthy ones [144]. Hsu et al. [145] examined 
39 AMI patients and 39 age- and gender-matched normal controls. They found 25 
significantly deregulated miRs (miR-193a-5p, miR-147b, miR-497-5p, miR-542-5p, 
miR-885-3p, miR-150-3p, miR-877-5p, miR-31-5p, miR-760, miR-17-3p, miR-486-
3p, miR-124-3p, miR-20a-5p, miR-18a-5p, miR-26a-5p, miR-17-5p, miR-106a-5p, 
let-7d-5p, miR-191-5p, miR-26b-3p, miR-126-3p, miR-487b, miR-127-3p, miR-
199a-3p, and miR-29c-5p) in AMI patients. A subsequent validation study (synthet-
ic spiked-in miR was used for normalization) confirmed that serum miR-486-3p 
and miR-150-3p were upregulated while miR-126-3p, miR-26a-5p, and miR-191-5p 



– 51 –

were significantly downregulated in the sera of AMI patients compared to healthy 
controls [145]. Peng et al. [146] included 76 AMI patients and 110 healthy controls. 
Expression of the target mIRminas in plasma was normalized to endogenous control 
miR-16. The study demonstrated that miR-133, miR-1291 and miR-663b were sig-
nificantly upregulated in AMI patients. The three mIRminas confirmed to be possi-
ble diagnostic biomarkers for AMI [146]. Olivier et al.  [147] focused on geriatric pa-
tients and recruited 92 NSTEMI patients, 81 acute CHF patients without AMI, and 
99 age-matched healthy controls. All mIRminas were normalized to miR-17. Out 
of 5 mIRminas (miR-1, miR-21, miR-133a, miR-208a, miR-423-5p, and miR-499-
5p), only miR-499-5p and miR-21 were elevated in NSTEMI patients compared to 
controls and could distinguish NSTEMI patients from patients with acute heart fail-
ure. MiR-499-5p showed the highest increase in NSTEMI patients and significantly 
correlated with the levels of cardiac Trooping T in NSTEMI patients, CHF patients 
and controls [147]. Li et al. [148] collected plasma samples of 67 patients with AMI 
and 32 age- and sex-matched healthy volunteers. Plasma levels of miR-1, miR-133a, 
miR-208b, and miR-499 were significantly higher in AMI patients than in healthy 
controls. But they were not superior to cardiac trooping T for the diagnosis of AMI 
[148]. Long et al. [149] analyzed plasma samples of 18 AMI patients with AMI and 
30 healthy controls. MiR-30a was higher at 4 h, 8 h and 12 h after onset of AMI, and 
miR-195 was higher at 8 h and 12 h, while let-7b was lower in AMI patients than 
in controls. MIRs were normalized to U6. Interestingly, in plasma of AMI patients, 
miR-30a, miR-195 and let-7b all reached their peak levels at 8 h, which is similar 
to the peak time of cTnI [149]. Long et al. [150] investigated the plasma of 17 AMI 
patients and 25 healthy adult volunteers. miR-1 was increased and miR-126 was de-
creased in AMI patients. miRMyrna expression was normalized to U6 [150]. Devaux 
et al. [151] examined 510 AMI and 87 healthy controls. They found that miR-208b 
and miR-499 were highly increased in plasma of AMI patients, but they were nearly 
undetectable in healthy controls, when normalizing to 3 synthetic C. elegans miRs. 
Patients with STEMI had higher miR concentrations than patients with NSTEMI. 
Both miRs correlated with peak concentrations of creatine kinase and Troponin T 
[151]. Ai et al. [152] examined 93 AMI patients and 66 healthy subjects for quan-
tification of miR-1 level in plasma, using U6 as reference. miR-1 was significantly 
higher in plasma of AMI patients compared with non-AMI subjects and the level 
dropped to normal on discharge following medication. Their study results revealed 
that circulating miR-1 may be a novel, independent biomarker for diagnosis of AMI 
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[152]. Nabiałek et al. [153] recruited 17 AMI, 4 stable CAD, 5 healthy controls and 
measured plasma levels miR-423-5p, miR-1 and miR-208, normalizing to miR-39. 
miR-423-5p was significantly increased early in AMI with subsequent normalization 
within 6 hours [153]. Li et al. [154] recruited 117 AMI patients, 182 angina pectoris 
(AP) patients, and 100 age-and gender-matched controls. The results showed that 
six miRs (miR-1, miR-134, miR-186, miR-208, miR-223, and miR-499) were sig-
nificantly elevated in the sera of AMI patients and presented significant differences 
between the AMI and AP patients. Two miRs (miR-208 and miR-499) were lower in 
AMI than in AP patients, suggesting that they are more sensitive in diagnosing AP. 
The authors commented that since U6 and 5S rRNA are degraded in serum samples 
and there is no current consensus on housekeeping miRs for qRT-PCR analysis of 
serum miRs, the expression levels of miRs were directly normalized to serum vol-
ume in this study [154].

Oerlemans et al. [155] measured serum levels of circulating miR-1, miR-208a, 
miR-499, miR-21, and miR-146a in 332 patients with chest pain. Expressions were 
also normalized all RT-PCR data to U6. Levels of all miRs were increased in 106 
patients with ACS. The most important three miRs (miR-1, miR-499, and miR-21) 
significantly increased the prognostic value when added to hs-troponin T (AUC 
0.90) [155]. Eitel et al. [156] measured the level of serum miR-133 in 216 STEMI 
patients. miR expressions were normalized to that of cel-miR-39. miR-133a levels 
higher than the median value were associated with decreased myocardial salvage, 
larger infarcts, more pronounced reperfusion injury, and left ventricular dysfunc-
tion as assessed by cardiovascular magnetic resonance (CMR) [156]. Widera et al.  
[157] selected 6 cardiomyocyte-enriched miRs and measured their levels in 444 pa-
tients with acute coronary syndrome. Patients with NSTEMI or STEMI had higher 
levels of miR-1, miR-133a, and miR-208b than UA patients. miR-133a and miR-208b 
were also associated with all cause mortality at 6 months [157]. Goretti et al. [158] 
followed a cohort of 510 AMI patients for 6 years. miR-208b and miR-499 were 
significantly upregulated in AMI patients. Furthermore, significant associations be-
tween miR-208b, age and BMI were observed [158]. Corsten et al. [159] included 32 
AMI and 36 normal coronary angiography patients. Plasma levels of miR-1, miR-
133a, miR-208b, miR-499, miR-21, miR-29b, miR-146, miR-155, and miR-223 were 
subsequently assessed. miR levels were normalized to a mix of 3 spiked-in synthetic 
Caenorhabditis elegans miRs. miR-208b and miR-499 were highly elevated in AMI 
patients and showed significant association with plasma troponin T [159]. Gidlöf 
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et al. [160] examined the plasma of 424 patients with suspected AMI. They found 
that circulating miR-208b and miR-499-5p specifically reflected myocardial damage. 
Moreover, upregulated miR-208b and miR-499-5p strongly correlated with troponin 
levels. MIRs were normalized to miR-17. This established an association of increased 
miR-208b and miR-499-5p levels with reduced systolic function after MI and risk of 
death or heart failure [160]. Zampetaki et al. [161] performed a prospective study 
including 820 participants. miR-126 was positively whereas miR-223 and miR-197 
were inversely associated with risk of incident AMI. miRs were normalized to U6 
[161]. 

Two studies focusing on left ventricular remodeling after MI were identified. 
Devaux et al. [162] measured plasma levels of miR-150 in 90 patients after AMI. 
miR-150 was downregulated in patients with left ventricle remodeling after AMI, 
normalizing for spiked-in synthetic C. elegans miRs. miR-150 may also have addi-
tive predictive value for left ventricle (LV) remodeling to either N-terminal prohor-
mone of brain natriuretic peptide (NT-proBNP) alone or a multi-parameter model, 
including serum markers of troponin I, creatine kinase and NT-proBNP at admis-
sion, age and sex [162]. Lv et al. [163] recruited 359 post-AMI patients and divided 
them into LV-remodeling (n=116) and non-LV-remodeling (n=243) based on the 
echocardiographic parameters of left ventricle. miR-208b and miR-34a, normalized 
to spiked-in SV40, were higher in plasma of patients with left ventricle remodeling. 
miR-208b and miR-34a were also associated with increased risk of mortality or heart 
failure within six months. miR levels were normalized using spiked-in SV40. The 
two miRs may be potential diagnostic markers of left ventricle remodeling in post-
MI patients [163]. 

The study by D’Alessandra et al. [138] appears to give the most reliable data on 
diagnosis unstable angina, as the study used miR references and included controls, 
matched for sex, age, smoking habit, hypertension, and diabetes, and without a his-
tory of CAD or inflammatory disorders. Of 26 studies that investigated ACS and 
miR association, 4 studies identified miR-499, miR-1 and miR-208b as potential di-
agnostic markers of ACS. Furhtermore, miR-133a and miR-133b may also be po-
tential biomarkers as they were found to be dysregulated in ACS by Wang et al. 
[139,140], Eitel et al. [156], Widera et al. [157], and Peng et al. [146].

Hear t  fai lure.  Bauters et al. [164] measured miR-133a and miR-423-5p in 
plasma of 246 patients with a first anterior Q-wave MI during a 1-year follow-up. 
Cel-miR-39 was used as normalization control. miR-133a and miR-423-5p, nor-
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malized to Cel-miR-39, were not associated with indices of left ventricle function 
and remodeling or with B-type natriuretic peptide. They concluded that circulating 
levels of miR-133a and miR-423-5p are not useful as biomarkers of left ventricular 
remodeling after MI [164]. 

Zhao et al. [165] examined serum of 22 heart failure (HF) patients, 18 healthy 
controls, and the umbilical venous blood of 9 fetuses from 9 independent parturi-
tions. Synthetic Arabidopsis thaliana miR solution was used for normalization. Nine 
miRs (miR-210, miR-27a, miR-30a, miR-21, miR-29a, miR-19a, miR-27b, miR-24, 
and miR-19b), normalized to Synthetic Arabidopsis thaliana miRs, were markedly 
upregulated in the HF and fetus groups, compared to controls. miR-210 and miR-
30a were significantly upregulated both in HF patients and in umbilical cord blood. 
The latter also showed high diagnostic accuracy and positive correlation with NT-
proBNP levels, suggesting that they may be potential biomarkers for HF [165].

Matsumoto et al. [166] investigated 21 AMI patients who developed HF within 
one year after AMI and 65 matched controls without subsequent CV events (score-
based matching of age, sex, diabetes, hypertension, dyslipidemia, smoking, previ-
ous MI, Killip class >II at AMI onset, infarction size, reperfusion therapy rates, and 
medication at the time of serum collection to adjust for potential baseline differences 
between the two groups). The expression level of each miR was normalized to that 
of U6 snRNA, miR-766 or let-7d using the calculated mean control of each sample. 
The p53-responsive miR-192 was significantly upregulated in HF group. miR-194 
and miR-34a also positively correlated with left ventricular diastolic dimension and 
left ventricle ejection fraction [166].

Qiang et al. [167] investigated 106 patients with chronic HF (55 with ischemic 
cardiomyopathy and 51 with non-ischemic cardiomyopathy) and 30 age-matched 
controls. Sixteen miRs (miR-126, miR-508-5p, miR-34a, miR-210, miR-490-3p, 
miR-513-5p, miR-517c, miR-518e, miR-589, miR-220c, miR-200a, miR-186, miR-7i, 
miR-200b, miR-595, and miR-662) were differentially expressed between ICM and 
NICM patients, normalizing their expression to that of U6. The study concluded that 
decreased miR-126 and elevated miR-508-5p levels in endothelial progenitor cells 
were independent prognostic factors for the outcome of ICM or NICM patients with 
chronic heart failure [167].

A study by Fan et al. [168] examined the plasma miR in 45 dilated cardiomyopa-
thy patients and 39 age- and sex- matched healthy controls. miR-423-5p, normalized 
to cel-miR-39, was significantly upregulated in patients with DCM. Furthermore, 
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the plasma levels of miR-423-5p positively correlated with NT-proBNP and had a 
high diagnostic accuracy [168].

Goren et al. [169] found elevated levels of circulating miR-423-5p, miR-320a, 
miR-22, miR-92b in sera from patients with stable chronic heart failure (n=30) com-
pared to age-, gender- and ethnically matched healthy controls (n=30). Data were 
normalized by scaling with the mean control of the samples. Combination of the 
four miRs resulted in a threshold score of 1.98 with a high sensitivity and specificity 
for the significant detection of HF patients. A high score correlated with serum BNP 
levels, increased left ventricular end-diastolic dimension and increased left atrial di-
mension [169].

Fukushima et al. [170] investigated 33 patients with ischemic heart disease and 
17 healthy controls. They found that plasma concentrations of miR-126, normalized 
to the small RNA, negatively correlated with brain natriuretic peptide, with age and 
New York Heart Association (NYHA) class, suggesting that miR-126 may be able to 
be a useful biomarker for heart failure [170].

Tijsen et al. [171] selected 12 patients with heart failure and 12 healthy controls. 
They identified six miRs (miR-18b, miR-129-5p, miR-1254, miR-675, HS_202.1, and 
miR-622) that are elevated in patients with heart failure, normalizing for miR-1249, 
a miR that was found to be unchanged in the arrays were used for normalization. 
MiR-423-5p was most strongly related to the clinical diagnosis of HF as well as re-
lated to NT-proBNP levels and NYHA class [171].

Vogel et al. [172] examined whole blood of 53 patients with non-ischemic HF 
with reduced ejection fraction and 39 healthy subjects. The study found over 20 
miRs that were deregulated in HF patients compared to controls. However, there 
was no stable house-keeping miR to normalize miR expressions. The AUC of the 
combination of 8 miRs (miR-558, miR-122, miR-520d-5p, miR-200b, miR-622, miR-
519e, miR-1231, and miR-1228) was 0.81, representing a significant improvement 
in diagnosing HF compared to each single miR marker (miR-520-d-5p AC=0.71, 
miR-558 AUC=0.7, miR-122 AUC=0.7). In addition, miR-622, miR-520d-5p, miR-
519e, miR-200b, miR-122, and miR-558 also showed positive correlation with left 
ventricular ejection fraction [172].

Endo et al. [173] selected 39 patients with HF. miR-210 expression levels in mono-
nuclear cells were significantly higher in patients with NYHA III and IV HF than 
those with NYHA II or healthy controls. No significant correlation between plasma 
BNP and miR-210 levels in patients with NYHA II heart failure was observed [173].
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Ellis et al. [174] collected plasma samples of 135 dyspnea patients and 15 healthy 
volunteers. They identified 17 significantly dysregulated miRs, normalizing for four 
reference miRs (miR-20a, miR-106b, miR-363, and miR-140-3p). Seven miRs (miR-
103, miR-142-3p, miR-199a-3p, miR-23a, miR-27b, miR-324-5p, and miR-342-3p) 
were associated with HF in multivariate regression and receiver operating character-
istic (ROC) analyses. Another four miRs (miR-103, miR-142-3p, miR-30b, and miR-
342-3p) were all significantly downregulated in HF patients compared with non-HF 
dyspnea and healthy control groups [174].

Zhang et al. [175] examined miR-1 levels in the plasma of 49 patients with AMI. 
They first compared the relationship between miR-1 level and ejection fraction and 
found that miR-1 levels negatively correlated with EF. The author states that circulat-
ing miR-1 may be a novel biomarker for predicting the onset of heart failure in AMI 
patients with high level of miR-1 [175].  

Several miRs were found to be abundantly expressed in HF patients. Among 
them, miR-423-5p was one of the most studied ones (showed significant dysregula-
tion in heart failure in studies by Fan et al. [168], Goren et al. [169], and Tijsen et al. 
[171]). Matsumoto et al. [166] and Fan et al. [168] examined adjusted control groups 
and used miR reference, which makes their results more reliable. They found that 
miR-192, miR-194, miR-34a, as well as miR-423-5p were significantly dysregulated 
in heart failure. Qiang et al. [167] investigated the largest number of patients and 
identified miR-126 and miR-508-5p dysregulation in HF.

Stroke.  Long et al. [176] recruited 197 patients with ischemic stroke and col-
lected their blood samples at 24 h, 1 week, 4 weeks, 24 weeks and 48 weeks after 
symptoms onset. The results were compared with 50 healthy volunteers. The re-
searchers found that circulating miR-30a and miR-126, normalized to snU6, were 
downregulated in ischemic stroke patients at 24 h, 1 w, 4 w and 24 weeks. Let-7b 
was lower than in controls in large-vessel atherosclerosis, while in other subtypes of 
ischemic stroke (small artery stroke, cardio-embolic stroke and stroke due to unde-
termined causes) let-7b was upregulated [176]. Gan et al. [130] found miR-145 to be 
significantly upregulated in ischemic stroke patients (n=32), compared 14 healthy 
control subjects, normalizing miR expressions to Ribosomal 18s rRNA [130]. Tan 
et al. [131] investigated a cohort of 19 young ischemic stroke patients aged between 
18–49 years and compared their miR profiling with 5 healthy controls. Data were 
analyzed by first subtracting the background and then normalizing the signals using 
a LOWESS filter. The study found that 8 miRs (hsa-let-7f, miR-126, miR-1259, miR-
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142-3p, miR-15b, miR-186, miR-519e, and miR-768-5p) were downregulated across 
the three subtypes of stroke (large artery stroke, small artery stroke, and cardioem-
bolic stroke); in contrast, 17 miRs (hsa-let-7e, miR-1184, miR-1246, miR-1261, miR-
1275, miR-1285, miR-1290, miR-181a, miR-25, miR-513a-5p, miR-550, miR-602, 
miR-665, miR-891a, miR-933, miR-939, miR-923) were upregulated in the subtypes. 
79 miRs were also able to distinguish SA and LA subtypes of ischemic stroke [131]. 
Tsai et al. [177] enrolled 167 subjects with ischemic stroke, 66 atherosclerosis sub-
jects with any carotid plaque score and 157 healthy controls. miR-21 was found to be 
significantly higher and miR-221 significantly lower in serum of ischemic stroke and 
atherosclerosis patients than in healthy controls, normalizing to miR-16 [177]. Zeng 
et al. [178] measured miR-210 at 3, 7 and 14 days after stroke in 60 patients. miR-
210, normalized to sn U6, was significantly decreased in stroke patients compared to 
112 healthy controls, especially at 7 days and 14 days of stroke onset [178]. 

The most reliable of the miRs in diagnosing acute cerebral ischemia were consid-
ered to be miR-126, let-7b, miR-145, miR-21, and miR-210. Interestingly, miR-126 
and miR-145 were also found to be significantly associated with coronary atheroscle-
rosis by Fichtlscherer et al. [120] and D’Alessandra et al. [138] miR-21 was also found 
to be downregulated in unstable coronary plaques in a study by Fan et al. [137].

Metab olic  dis eas es

Obesity.  Ortega et al. [179] compared miR profiles in plasma of 49 non-obese 
patients, 19 obese patients and 12 morbidly obese patients. Three miRs (miR-15a, 
miR-520c-3p and miR-423-5p, normalizing to miR-106a, miR-146a, miR-19b, 
miR-223, miR-186, and miR-199a-3p) were significantly downregulated in mor-
bidly obese patients. The discriminant function of these three miRs was specific for 
morbid obesity with an accuracy of 93.5% [179]. Wang et al. [180] found elevat-
ed levels of circulating miR-130b in sera from obese patients (n=23) compared to 
healthy controls (n=21), normalizing to miR-223. Moreover, the circulating level 
of miR-130b positively correlated with body mass index and could be a diagnostic 
biomarker reflecting the degree of obesity [180]. Wang R et al. [181] observed 34 cir-
culating miRs that were expressed differently in obese patients compared with con-
trols. In particular, miR-122 was significantly upregulated in obese patients (n=123) 
compared with controls (n=107) and was found to be an independent risk factor 
of insulin resistance after controlling for confounding factors [181]. Pescador et al. 
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[182] selected thirteen patients with T2DM, 20 obese patients, 16 obese patients 
with T2DM, and 20 healthy controls. miR-138 and miR-376a, normalized to miR-
30c, miR-103, miR-191 and miR-423-3p, were significantly downregulated in serum 
of obese subjects. In contrast, serum miR-15b level was significantly higher when 
compared to controls, diabetic and obese diabetic patients [182]. Heneghan et al. 
[183] examined whole blood of 30 obese and 20 non-obese patients. The controls 
consisted of age-matched healthy volunteers with BMI less than 25kg/m2 as well as 
the non-obese surgical patients who donated a whole-blood sample in addition to 
omental and subcutaneous fat samples at the time of elective abdominal surgery. 
miR-16 was used as an endogenous control, given its stable expression in all samples 
in the profiling experiment. Two miRs (miR-17–5p and miR-132) were found to 
be significantly downregulated in blood of obese patients compared to non-obese 
subjects [183]. 

Among four studies focusing on obesity, Haneghan et al. [183] were the only 
researchers who used adjustment of controls and miR reference, which makes these 
results the most reliable. The study identified miR-17-5p and miR-132 as being sig-
nificantly downregulated in obesity. The remainder of the reviewed studies found 
miR-15a, miR-15b, miR-520c-3p, miR-423-5p, miR-130b, miR-138, and miR-376a 
to be significantly deregulated in obese patients compared with controls. 

T2DM. T2DM is another important risk factor for CVD. Although the litera-
ture search identified a wide spectrum of studies investigating miR pattern changes 
in T2DM, only five significant experimental studies were selected. Karolina et al. 
[126] examined the whole blood of 6 patients with IFG, 8 patients with T2DM and 
7 healthy controls. Eight important miRs (upregulated miR-144, miR-150, miR-182, 
miR-192, miR-29a, miR-320, and downregulated miR-146a, miR-30d in diabetes pa-
tients) were found to be related to different stages of diabetes progression [126]. miR 
expressions were normalized to U6 snRNA. Another study by Zampetaki et al. [127] 
included 80 patients with T2DM and 80 healthy controls. The study found reduced 
miR-15a, miR-29b, miR-126, miR-223, and elevated miR-28-3p levels in plasma of 
diabetic patients compared to healthy subjects, normalizing to miR-454 and RNU6b. 
These five miRs are necessary and sufficient for a non-redundant classification of 
DM and might antedate the manifestation of disease [127]. The third study by Kong 
et al. [128] recruited 18 newly diagnosed T2DM patients, 19 pre-diabetes patients 
and 19 T2DM-susceptible individuals with normal glucose tolerance. Seven miRs 
(miR-9, miR-29a, miR-30d, miR-34a, miR-124a, miR-146a and miR-375, normal-
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ized to RUN6B) showed significant up-regulation in sera from newly diagnosed 
T2DM group compared with the T2DM susceptible individuals with normal glucose 
tolerance group. However, T2DM-susceptible individuals with normal glucose tol-
erance and pre-diabetes patients showed no significant difference in levels of these 7 
miRs, suggesting that expression patterns of diabetes-related miRs had not changed 
dramatically in pre-diabetic stage [128]. Párrizas et al. [184] screened sera from 17 
healthy patients, 10 IFG, 9 IGT, and 10 T2D patients. Three miR (miR-150, miR-192, 
and miR-193b), normalizing for let-7b, let-7g and let-7i, were significantly increased 
in IFG and IGT groups, but remained unchanged in T2D subjects. This suggests, 
that circulating miR-150, miR-192 and miR-193b may act as a common signature 
for pre-diabetes [184]. Finally, Liu et al. [185] examined 82 IGT patients, 75 IFG 
patients, 160 n-T2D patients, and 138 healthy controls. Serum miR-126 concentra-
tion was significantly lower in IGT/IFG and T2DM patients than in healthy controls, 
normalizing to cel-miR-39. Moreover, significantly lower serum miR-126 concen-
tration was detected in T2DM patients than in the IGT/IFG subjects. Further ROC 
analysis showed that serum miR-126 may be able to distinguish IFG/IGT and T2DM 
patients from healthy individuals [185].

In conclusion, three miRs (miR-29a, miR-30d, and miR-146a) were found to be 
significantly deregulated in T2DM. The studies of Liu et al. [185] and Zampetaki et 
al. [127] highlighted miR-126 as a potential biomarker of T2DM, which was already 
regulated years before manifestation of the disease and therefore could be useful for 
risk prediction.

Hyper tension. Li et al. [125] studied the miR profile changes in essential hy-
pertension. They examined the plasma of 13 hypertensive patients and 5 healthy 
controls. The relative expression of 20 miRs was normalized to expression of the 
internal control (small nuclear U6). Three miRs were significantly deregulated 
in hypertensive patients compared to healthy controls – human cytomegalovirus 
(HCMV)-encoded miR, hcmv-miR-UL112, and let-7e were upregulated, whereas 
miR-296-5p was downregulated. The authors state they are first to report a link be-
tween HCMV replication and essential hypertension [125].

Hyperl ipidemia. Gao et al. [124] compared hyperlipidemia patients (n=255) 
with controls (n=100), using synthetic C. elegans for normalization. Plasma levels 
of miR-122 and miR-370 were significantly increased in hyperlipidemia patients. 
Therefore, it was concluded that miR-122 and miR-370 may be associated with hy-
perlipidemia and severity of CAD [124].
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MetS.  Karolina et al. [132] examined whole blood of 46 healthy controls, 50 
MetS, 50 T2DM, 89 hypercholesterolemia, and 30 hypertension patients. Three clus-
ters of miRs could characterize different metabolic disorders that potentially con-
tribute to the pathogenesis of MetS. Expression of miR-197, miR-23a, and miR-509-
5p were identified as potential contributors of dyslipidemia in MetS and miR-130a 
and miR-195 as contributors of hypertension. A plausible association of miR-27a 
and miR-320a with MetS and T2DM patients has also been found because these 
miRs remained dysregulated in both cases [132]. Raitoharju et al. [186] examined 72 
patients from the Young Finns Study. The expression data was processed using non-
parametric background correction, followed by quintile normalization with control 
and expression probes. As a result they found nine miRs that correlated with MetS 
components. miR-144-5p correlated with glucose levels, hsa-1207-5p with glyco-
sylated hemoglobin and hsa-miR-484 with metabolites related to insulin resistance. 
Hsa-miR-625-3p correlated with cholesterol levels, hsa-miR-1237-3p and hsa-miR-
331-3p expression with certain fatty acids levels and hsa-miR-129-1-3p, -129-2-3p, 
and -1288-3p with glycerol levels [186]. 

Both studies investigated only correlations between miRs and specific compo-
nents of MetS. Interestingly, miR-197, associated with dyslipidemia in this group, 
in coronary heart disease group was also significantly dysregulated. miR-130a and 
miR-195 in MetS group associated with hypertension, was also significantly deregu-
lated in atherosclerotic patients in other previously described studies, miR-195, also 
highlighted in obesity, smoking and acute coronary syndrome groups. miR-27a, as-
sociated between MetS and DM Type 2, has been highlighted in smoking, athero-
sclerosis and heart failure patient groups. It is difficult to highlight particular miRs 
that could potentially be used for diagnosis of MetS, because of its association with 
so many different factors.

L iterature  re v ie w conclusion

Published studies have reported the promising role of miRs as early diagnostic 
biomarkers in CVD. Indeed, the results of this systematic revi ew demonstrate that 
many miRs are significantly up- or downregulated in numerous metabolic and CV 
diseases, including obesity, MetS, T2DM, hypertension, dyslipidemia, CAD, PAD, 
HF, ACS, and stroke. With appropriate biomarkers, the latter diseases could be diag-
nosed before the clinical symptoms arise and measures to prevent disease progres-
sion could be initiated. 
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Since this work was completed, another review has corroborated some of these 
findings, supporting the role of miRs as biomarkers of metabolic and CV diseases 
[187] miR-122 has received particular focus in studies to date, due to its abundance 
in the liver and its tissue specificity. This miR has been suggested to play a central 
role in the maintenance of lipid and glucose homeostasis and may represent a novel 
biomarker for CV and metabolic diseases [188]. Features of miRs that predispose 
them to be potentially useful biomarkers include their tissue- and cell-type specific 
expression, the essential roles they play in many biological and pathological pro-
cesses and their disease-specific release patterns into peripheral blood [189,190]. 

The current systematic literature review has some limitations. Due to the novelty 
of this topic in cardiology, most of the selected studies enrolled small numbers of 
subjects and included no follow up of the patients. Another limitation was the in-
ability to conduct any meta-analysis on the datasets due to their heterogeneity. There 
is also inherent bias in the selection of the miRs examined in the original studies be-
cause only a few of the known miRs have been studied to date in this emerging field. 
It should also be noted that the clinical applicability of the miRs as early diagnostic 
biomarkers is, as yet, unclear. Most of the studies selected in the review state the 
potential prognostic function of the miRs based on the miRs detected in the disease 
state (e.g. coronary artery disease, hypertension or T2DM). Therefore, it is not possi-
ble to confirm whether particular miRs are significantly deregulated prior to the on-
set of the disease. However, the source studies do show strong connections between 
deregulated miR expression and risk factors of CVD. Thus, miRs could potentially 
lead to earlier identification of at-risk patients and better control of their metabolic 
and CV risk profile. This aspect does warrant further research in order to determine 
whether miRs posited as biomarkers for CVD have already been deregulated prior 
to disease onset. In order to study this effectively, large-scale, high-quality studies 
with longer patient follow-up periods are required. Biobanks may provide a useful 
resource of blood samples representative of both healthy and diseased populations. 

In conclusion, miRs measured in plasma or bodily fluids may represent poten-
tially useful disease biomarkers and predictors of metabolic disease and associated 
CV complications. An urgent need exists for novel biomarkers that can distinguish 
patients with obesity or MetS who are most likely to develop future metabolic and 
CV complications. Such markers could greatly assist in reducing the burden of dia-
betes to healthcare systems and society. Further elucidation of miR-mediated path-
ways in cardiometabolic disease shows promise to provide such biomarkers and this 
review provides guidance on potentially valuable areas of research. 
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Aim

To identify miR that may be used as a biomarker for the early atherosclerosis 
diagnosis.

Methodology

Based on the literature review, described above, the following miRs were selected 
for further investigations: miR-1, miR-122, miR-126, miR-132, miR-133a, miR-133b, 
miR-370, miR-145, miR-155, miR-195.

Patients included in this part of the study were recruited between 2007 and 
2011 from the Lithuanian High Cardiovascular Risk (LitHiR) primary prevention 
program. This long-term program has focused on employable-aged women (aged 
50–65) and men (aged 40–55) without overt CVD. CVD was defined as stable AP, 
CAD, AMI, coronary artery bypass grafting, percutaneous coronary intervention, 
transient ischemic attack or stroke, and PAD. As part of the program, a two-level 
approach involving primary healthcare institutions (PHCI) and specialized CV pre-
vention units (CVPU) was applied. Participants of the first level of the program were 
recruited in three ways. The first group consisted of people registered in PHCI and 
invited by general practitioners to participate in the program. The second group 
consisted of people who visited PHCIs for reasons other than CV problems. The 
third group included people who found out about the program via local mass me-
dia. Only participants matching the program criteria were recruited. After CV risk 
evaluation at the PHCI level, subjects with high CV risk were directed to the CVPUs 
(secondary level) for further examination and treatment. High CV risk was defined 
as having one or more of the following conditions: 1) SCORE risk score of ≥11; 2) 
diabetes; 3) MetS; 4) positive family history of CVD; and/or 4) severe dyslipidemia.

S ele cting p atients  w ith MetS

From 2006 to 2010, 266,391 patients were examined at the PHCIs. Of these pa-
tients, the current study included 2891 [1072 (37%) men and 1819 (63%) women] 
patients who were diagnosed with MetS and referred to the CVPU at the Vilnius 
University Hospital Santariškių Klinikos for additional assessment, risk stratifica-
tion, and creating an individual prevention plan.
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MetS was diagnosed if three or more criteria of the revised NCEP ATPIII were 
met:

Waist circumference ≥102 cm in men, ≥88 cm in women
TG ≥1.7 mmol/L
HDL-C <1.03 mmol/L in men, <1.29 mmol/L in women
BP ≥130/85 mmHg
FPG ≥5.6 mmol/L

Sample  col le ction and miR dete ction

Venous blood samples (three ethylenediaminetetraacetic acid tubes, two tubes 
containing clot activator and gel for serum separation, 1 tube containing sodium 
citrate and liquid density medium) were collected after patients completed a 12-hour 
fast. All blood samples were transported with 30 minutes, under room temperature. 

If the sample does not meet the requirements, the sample is not registered and in-
vestigated. All samples are noticed in a register paper. Each sample and each sample 
position in the freezer was identified by a code. Registered and coded samples were 
delivered to the sample preparation room.

C el l  sample  prep aration

EDTA blood was diluted in EL buffer with ratio 1:5, incubated on ice for 10-15 
minutes and centrifuged (400 × g for 10 min, 4°C). After withdrawing supernatant 
pellet was resuspended in EL buffer (1:2) and centrifuged (400 × g for 10 min, 4°C). 
After withdrawing supernatant pellet was stored under -80°C.

Serum sample preparation

Blood with clot activators war placed in vertical position for 30 minutes, centri-
fuged (1100−1300 × g, 10–15 min). Supernatant containing serum was stored under 
-80°C. Of 2891 initially screened patients, after a 3-year follow-up period, randomly 
selected 182 returning patients were prospectively selected for this study.  
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Statistic a l  analys es

C orrelat ion coef f ic ient .  Pearson correlation coefficient was used to mea-
sure the linear dependence between micro RNA and medical tests. Correlation coef-
ficient between two variables �`���^ �� Q[[[[ �  and �`���^ �� Q\\\\ �  was calcu-
lated using formula:

(1)

where ZKHUHݔ�ҧǡ ��ݕ��DQGݔ�ത�DUH�DYHUDJHV�RIݕ DUH�6'V�RIݔ��DQGݕ��DQG�݊�GHQRWHV�WKH�VDPSOH�VL]H���\[VVare averages of x and y, ZKHUHݔ�ҧǡ ��ݕ��DQGݔ�ത�DUH�DYHUDJHV�RIݕ DUH�6'V�RIݔ��DQGݕ��DQG�݊�GHQRWHV�WKH�VDPSOH�VL]H���\[VV are SDs of x and y and n denotes the sample 
size. Coefficient values are between -1 and 1. The closer the absolute value of rxy gets 
to 1, the stronger linear relationship between the variables is. The null hypothesis is 
tested to determine whether this relationship is significant:

(2)

It was done by comparing the P-value to the selected significance level (in this 
case D = 0,05). 

To examine whether the linear relationship exists between continuous and cat-
egorical variables, a simple linear regression and test on the slope of the regression 
line were performed. 

L inear  regress ion.  Linear regression assumes that explanatory variables and 
a response variable are systematically linked by a linear relationship:

(3)

where x1, ���, xn are the input variables, y is the response (predicted) variable, β0, ..., βn  
are model parameters, and ε is a random error. Usually least squares method [191] 
is used for estimating the unknown model parameters β0, ..., βn given a set of ob-
servations x1, ..., xn, y . The t tests [191] are used to conduct hypothesis tests on the 
regression coefficients obtained in simple linear regression. The statements for the 
hypothesis test are expressed as: 

(4)
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The null hypothesis is rejected when the P-value is less than the level of signifi-
cance (D = 0,05) and when no linear relationship exists between xi and y. In order to 
choose the most appropriate regression model, a stepwise selection procedure based 
on test criteria was used. 

Binar y  logist ic  regress ion.  Binary logistic regression [192] is a special type 
of regression where the dependent variable is a categorical variable having two cat-
egories. This model is used to estimate the probability of a binary response based 
on one or more predictor (or independent) variables. Formally, the model can be 
written as

(5)

where y is a binary response variable, x1, ���, xn a set of explanatory variable, β0, ..., βn  
are model parameters and P(y = 1|x1, ..., xn ) is interpreted as the probability of an 
event y = 1. The regression coefficients are estimated using maximum likelihood es-
timation [192]. The Wald statistic [192], analogous to the t-test in linear regression, 
is used to assess the significance of coefficients. Model selection can be performed 
using stepwise selection procedure.

Evaluat ion of  per formance.  Two different measures were used to evaluate 
the performance of the linear regression models:

1. Mean absolute error (MAE) [193], i.e. the average difference between pre-
dicted value ��� ൌ ͳ
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and real observation yi: 

(6)

This measure was selected due to its simplicity – easy to understand and calculate.
2. Mean absolute percentage error (MAPE) [193], i.e. the average value of the 

unsigned percentage error:

(7)

MAPE was selected because this measure provides the answer in percentage terms, 
making it easy to interpret, especially, when the item’s demand volume is unknown. 

ܲሺݕ ൌ ͳȁݔଵǡڮ ǡ ௡ሻݔ ൌ
�ఉబାఉభ௫భାఉమ௫మାڮାఉ೙௫೙

ͳ ൅ �ఉబାఉభ௫భାఉమ௫మାڮାఉ೙௫೙ǡ�
�

�

��� ൌ ͳ
݊෍ȁݕො௜ െ ௜ȁݕ

௡

௜ୀଵ
Ǥ� �

�

��� ൌ ͳ
݊෍

ͳͲͲȁݕො௜ െ ௜ȁݕ
௜ݕ

௡

௜ୀଵ
Ǥ� �

�



– 66 –

Binary logistic regression model is evaluated using a confusion matrix, i.e. a table 
with two rows and two columns that reports the frequency of each possible case:

These values can be used to calculate statistical measures of the performance of a 
binary classification [191]:

(8)

(9)

(10)

Results

C orrelation analysis

A Pearson correlation coefficient (if both variables are continuous) and a linear 
regression -test (in case one variable is continuous and other categorical variable) 
were used to determine whether a significant linear relationship exists between miR 
and selected arterial markers. Analysis results showed that there is some weak linear 
relationship (7). Cardio-ankle vascular index (CAVI) was associated with miR-1, 
miR-122, miR-133a, miR-133b results, and augmentation index (AIx) normalized 
to a heart rate of 75 beats per minute (AIx@75) was associated with miR-1, miR-
145, miR-133a, miR-133b. AoPWV had a linear relationship with single miR-122. 
Carotid artery stiffness, measured on the right and left carotid arteries, was only as-
sociated with miR-1, and only limited to the left side measurements. 

Results of a linear regression -test for categorical values are provided in Klaida! 
Nerastas nuorodos šaltinis.8, highlighting significant correlation between miR-370 
and plaques in the right carotid artery as well as miR-132 and plaques in the left 
carotid artery. On both occasions, the relationship existed only on one side of the 
carotid artery, but not the other. 
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There was statistical significance miR and AoPWV, as categorical value (cut off 
9.6 m/s); however, logistic regression models for AoPWV suggested that the cut-off 
value for the selected intermediate CV risk patient group of 9.6 m/s was inaccurate, 
and might need to be reconsidered for future research (Table 9). 

Linear regression models demonstrated an association between the investigated 
arterial markers and miRs with promising forecasting results (Table 10). 

Figure 7. Summary of literature search and selection.
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Table 6. MicroRNA (miR) groups and key features and findings of included studies. 

Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

Athero-
sclerosis

miR-1 (+)

Plasma Array
67 stable 
CAD, 31 
healthy

Diagnostic 
or disease 

monitoring

Fichtl-
scherer et 
al., 2010 

[120]

miR-133a 
(P>0.05) (+)

miR-133b (+)
miR-208a 
(P>0.05) (+)

miR-208b (+)
miR-499-3p (+)
miR-499-5p (+)

miR-126 (-)
miR-17 (-)
miR-20a (-)
miR-92a (-)
miR-221 (-)

miR-199a-5p (-)
miR-27a (-)

miR-130a (-)
let-7d (-)

miR-21 (-)
miR-155 (-)
miR-143 (-)
miR-145 (-)
miR - 21 (+)

Serum 
(stored 

at -80ºC)
Array

104 ASO/
PAD, 105 
healthy

Risk or 
diagnostic 

markers for 
ASO 

Li et al., 
2010 
[121]

miR-130a (+)
miR-27b (+)

let-7f (+)
miR-210 (+)
miR-221 (-)
miR-222 (-)
miR-150 (-)

Whole 
blood Array 10 CAD, 

15 healthy

Diagnostic 
or disease 

monitoring

Weber et 
al., 2011 

[122]

miR-584 (-)
miR-21 (-)
miR-24 (-)

miR-126 (-)
miR-92a (-)
miR-34a (-)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-19a (-)
miR-145 (-)
miR-155 (-)
miR-222 (-)
miR-378 (-)
miR-29a (-)

miR-30e-5p (-)
miR-342 (-)

miR-181d (-)
let 7e (-)

Whole 
blood qRT-PCR 15 PAD, 16 

healthy
Potential 

biomarkers 
for PAD

Stather et 
al., 2013 

[136]

miR-15b (-)
miR-16 (-)

miR-20b (-)
miR-25 (-)

miR-26b (-)
miR-27b (-)

miR-28-5p (-)
miR-126 (-)
miR-195 (-)
miR-335 (-)
miR-363 (-)
miR-720 (+)

miR-1274A (+)
miR-337-5p (+)

Plasma 
(stored 

at -80ºC) 
qRT-PCR

19 UA, 
34 SA, 20 
healthy

Potential 
biomarkers 

for CAD

D’Ales-
sandra et 
al., 2013 

[138]

miR-433 (+)
miR-485-3p (+)

miR-1 (+)
miR-122 (+)
miR-126 (+)
miR-133a (+)
miR-133b (+)
miR-199a (+)
miR-145 (+)

miR-17-5p (+)
miR-92a (+)
miR-155 (+)
miR-208a (+)
miR-375 (+)

miR-499-5p (+)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-21
(-) non-
calcified 
plaque

Serum Array

63 non-
calcified 

plaque, 62 
calcified 

plaque, 61 
controls

Diagnostic 
marker for 
coronary 

atheroscle-
rotic plaque 
instability

Fan et 
al., 2014 

[137]

Hyperli-
pidemia

miR-122 (+)

Plasma 
(stored 

at -80ºC) 
qRT-PCR

255 hyper-
lipidemia, 

100 healthy 

Diagnostic 
or disease 

monitoring

Gao et 
al., 2012 

[124]

miR-370 (+)

miR-33a unde-
tectable

miR-33b unde-
tectable

Hyper-
tension

miR-605 (+)

Plasma Array
13 hyper-
tensive, 5 
healthy

Disease moni-
toring

Li et al., 
2011 
[125]

miR-1252 (+)
miR-600 (+)

miR-516b (+)
miR-623 (+)
miR-602 (+)

kshv-miR-
K12-6-3p (+)

HCMV-miR-
UL112 (+)

let-7e (+)
miR-625 (-)

miR-486--5p (-)
ebv-miR-

BART17-3p (-)

kshv-miR-
K12-10b (-)

miR-664 (-)
ebv-miR-

BART19-5p (-)

miR-615-5p (-)
miR-18b (-)
miR-1249 (-)
miR-30d (-)

miR-324-3p (-)
kshv-miR-
K12-10a (-)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-296-5p (-)
miR-518b (-)
miR-1236 (-)
miR-133b (-)
miR-634 (-)

miR-1227 (-)

T2DM

miR-144 (+)

Whole 
blood qRT-PCR

6 IFG, 8 
T2D, 7 
healthy

Disease moni-
toring

Karolina 
DS et al., 

2011 
[126]

miR-146a (-)
miR-150 (+)
miR-182 (+)
miR-192 (+)
miR-29a (+)
miR-30d (-)
miR-320a (+)

miR-24 (-)

Plasma Array 80 DM, 80 
healthy

Disease moni-
toring

Zam-
petaki et 
al., 2010 

[127]

miR-21 (-)
miR-20b (-)
miR-15a (-)
miR-126 (-)
miR-191 (-)
miR-197 (-)
miR-223 (-)
miR-320 (-)

miR-28-3p (+)
miR-486 (-)
miR-150 (-)
miR-29b (-)

miR-9 (+)

Serum 
(stored 

at -80°C)
qRT-PCR

18 n-T2D, 
19 pre-
T2D, 19 
s-NGT

Disease moni-
toring

Kong et 
al., 2011 

[128]

miR-29a (+)
miR-30d (+)
miR-34a (+)

miR-124a (+)
miR-146a (+)
miR-375 (+)

miR-191 (+)
Serum qRT-PCR

17 healthy, 
10 IFG, 

9 IGT, 10 
T2D

New bio-
markers for 
pre-diabetes

Párrizas 
et al., 
2014 
[184]miR-193b (+)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-126 (-) Serum qRT-PCR

82 IGT, 75 
IFG, 160 n-
T2DM, 138 

healthy

Potential 
biomarker for 
pre-diabetes 

and DM

Liu et 
al., 2014 

[185]

MetS

miR-197

Whole 
blood qRT-PCR

46 healthy, 
50 MetS, 

50 T2DM, 
89 hyper-
cholester-
olemia, 30 
hyperten-

sion

Correlate with 
dyslipidemia 

in MetS

Karolina 
DS et al., 

2012 
[132]

miR-23a

miR-509-5p
miR-130a

Correlate with 
hypertension

miR-195
miR-27a

Correlate with 
MetS and 

T2DM

miR-320a
miR-103

No correla-
tion

miR-17
miR-183
miR-584
miR-652
miR-92a
miR-150
miR-192

hsa-miR-129-
1-3p

Whole 
blood 

(stored 
at -80ºC)

qRT-PCR

72 patients 
from 

Young 
Finns 
Study

Correlates 
with glycerol 

levels

Raito-
harju et 
al., 2014 

[186]

miR-129-2-3p
miR-1288-3p

miR-144-5p
Correlates 

with glucose 
levels

miR-484

Correlates 
with metabo-
lites related 
to insulin 
resistance
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-625-3p
Correlates 

with choles-
terol levels

miR-1207-5p Correlates 
with HbA1c 

miR-1237-3p Correlates 
with certain 
fatty acids 

levels
miR-331-3p

Obesity miR-142-3p (+) Plasma qRT-PCR

49 non-
obese, 19 
obese, 12 
morbidly 

obese

Potential 
biomarkers 
for risk esti-
mation and 

classification 
of morbidly 

obese patients

Ortega et 
al., 2013 

[179]

miR-140-5p (+)
miR-221 (-)
miR-15a (-)

miR-520c-3p (-)
miR-130b (-)

miR-532-5p (-)
miR-125b (-)

miR-423-5p (-)

miR-130b (+) Serum qRT-
PCR

23 over-
weight/

obese, 21 
healthy

Potential 
biomarker for 

overweight

Wang et 
al., 2013 

[180]

miR-138 (-)
Serum 
(stored 

at -80ºC) 

qRT-
PCR

13 T2D, 
20 obese, 
16 obese 

with T2D, 
20 healthy

Potential 
biomarkers 
for obesity 
prediction

Pescador 
et al., 
2013 
[182]

miR15b (+)

miR-376a (-)

miR-122 (~)/(+) Whole 
blood

qRT-
PCR

30 obese, 
20 non-
obese

Potential 
biomarkers 
for obesity

Hene-
ghan et 
al., 2011 

[183]
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-17-5p (-)
miR-132 (-)
miR-143 (+)
miR-145 (-)
miR-34a (-)
miR-99a (-)
miR-195 (-)

miR-122 (+)
Serum 
(stored 

at -80ºC) 

qRT-
PCR

56 obese, 
56 healthy

Potential 
biomarker 
of obesity 

and insulin 
resistance

Wang et 
al., 2015 

[181] 

ACS

miR-499 (+)

Plasma 
(stored 

at -80ºC) 

qRT-
PCR

33 AMI, 
33 non-
AMI, 30 
healthy

Potential 
biomarker 
for early 

detection of 
myocardial 

injury

Wang et 
al., 2010 

[139]

miR-208a (+)
miR-1 (+)

miR-133a (+)

miR-133a (+)
Plasma 
(stored 

at -80ºC) 

qRT-
PCR

 13 AMI 
patients, 
176 CHD 
and 127 
healthy

New poten-
tial biomark-
er for AMI

Wang et 
al., 2013 

[140]

miR-1 (+)
Serum 
(stored 

at -80ºC) 

qRT-
PCR

332 
patients 

with chest 
pain

Potential 
biomarkers 

for ACS

Oer-
lemans et 
al., 2012 

[155]

miR-208a (+)
miR-499 (+)
miR-21 (+)

miR-133a (+)
Serum 
(stored 

at -80ºC) 

qRT-
PCR

216 
STEMI

Potential 
prognostic 
biomarker 
in STEMI 
patients

Eitel et 
al., 2012 

[156]

miR-1 (+)

Serum qRT-
PCR

117 UAP, 
131 

NSTEMI, 
196 

STEMI

Diagnostic 
and prognos-
tic markers in 

ACS

Widera et 
al., 2011 

[157]

miR-133a (+)
miR-133b (+)
miR-208a (+)
miR-208b (+)

miR-499 (+)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-499 (+) Plasma qRT-
PCR

14 ACS, 
15 CHF, 

10 healthy

Biomarker 
of MI

Adachi et 
al., 2010 

[141]

miR-150 (-) Plasma qRT-
PCR 90 AMI

Biomarker of 
LV remodel-
ing post-AMI

Devaux 
et al., 
2013 
[162]

miR-1254 (-)

Whole 
blood

qRT-
PCR

18 STEMI, 
21 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Vogel et 
al., 2013 

[142]

miR-380 (-)
miR-455-3p (-)

miR-566 (-)
miR-636 (-)
miR-7-1 (-)

miR-1291 (-)
miR-1915 (-)
miR-181c (+)
miR-133 (+)

Plasma 
(stored 

at -80ºC) 

qRT-
PCR

51 AMI, 
28 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Wang 
R et al., 

2011 
[143]

miR-328 (+)

miR-1291 (-)

Whole 
blood

qRT-
PCR

20 STEMI, 
20 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Meder et 
al., 2010 

[144]miR-663b (-)

miR-193a-5p (+)

Serum 
(stored 

at -80ºC) 

qRT-
PCR

39 STEMI, 
39 healthy

Potential 
diagnostic 
biomarkers 
for STEMI

Hsu et 
al., 2014 

[145]

miR-147b (+)
miR-497-5p (+)
miR-542-5p (+)
miR-885-3p (+)
miR-150-3p (+)
miR-877-5p (+)
miR-31-5p (+)
miR-760 (+)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-17-3p (+)
miR-486-3p (+)
miR-124-3p (+)
miR-20a-5p (-)
miR-18a-5p (-)
miR-26a-5p (-)
miR-17-5p (-)

miR-106a-5p (-)
let-7d-5p (-)

miR-191-5p (-)
miR-26b-3p (-)
miR-126-3p (-)
miR-487b (-)

miR-127-3p (-)
miR-199a-3p (-)
miR-29c-5p (-)

miR-133 (+)
Plasma qRT-

PCR

76 AMI, 
110 

healthy

Potential 
biomarkers 

for AMI

Peng et 
al., 2014 

[146]
miR-1291 (+)
miR-663b (+)
miR-208b (+)

Plasma 
(stored 

at -80ºC)

qRT-
PCR

116 
remodel-
ing, 243 
non-re-

modeling

Biomarker of 
LV remodel-
ing after AMI

Lv et al., 
2014 
[163]miR-34a (+)

miR-208b (+)
Plasma qRT-

PCR 510 AMI
Potential 

biomarkers 
for AMI

Goretti et 
al., 2013 

[158]miR-499 (+)

miR-1 (+)

Plasma qRT-
PCR

 92 NSTE-
MI, 81 

acute CHF 
without 
AMI, 99 
healthy

Potential 
biomarker for 

NSTEMI

Olivieri 
et al., 
2013 
[147]

miR-21 (+)
miR-133a (+)
miR-208a (+)

miR-423-5p (+)
miR-499-5p (+)

miR-1 (+)
Serum 
(stored 

at -80ºC)

qRT-
PCR

117 AMI, 
182 AP, 

100 
healthy

Potential 
biomarkers 

for AMI

Li et al., 
2013 
[148]
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-134 (+)
miR-186 (+)
miR-208 (+)
miR-223 (+)
miR-499 (+)

miR-1 (+)

Plasma 
(stored 

at -80ºC)

q-RT-
PCR

32 AMI, 
36 normal 
coronary 
angiogra-

phy

Possible 
biomarkers 
for cardiac 

damage

Corsten 
et al., 
2010 
[159]

miR-133a (+)
miR-208b (+)
miR-499 (+)
miR-223 (-)

miR-1 (+) Plasma 
(stored 

at -80°C)

qRT-
PCR

424 pa-
tients with 
suspected 

ACS

Potential 
diagnostic 
biomarkers 

for AMI

Gidlöf et 
al., 2013 

[160]
miR-208b (+)

miR-499-5p (+)

miR-1 (+)

Plasma qRT-
PCR

67 AMI, 
32 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Li et al., 
2013 
[154] 

miR-133a (+)
miR-208b (+)
miR-499 (+)
miR-30a (+)

Plasma 
(stored 

at -80°C)

qRT-
PCR

18 AMI, 
30 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Long et 
al., 2012 

[149]
miR-195 (+)

let-7b (-)

miR-126 (+)

Plasma qRT-
PCR

820 from 
Bruneck 

Study

Potential 
diagnostic 
biomarkers 

for AMI

Zam-
petaki et 
al., 2012 

[161]

miR-223 (+)

miR-197 (+)

miR-1 (+)

Plasma qRT-
PCR

17 AMI, 
25 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Long et 
al., 2012 

[150]miR-126 (-)

miR-208b (+)
Plasma 
(stored 

at -80°C)

qRT-
PCR

510 AMI, 
87 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Devaux 
et al., 
2013 
[151]

miR-499 (+)

miR-1 (+) Plasma qRT-
PCR

93 AMI, 
66 healthy

Potential 
diagnostic 
biomarkers 

for AMI

Ai et al., 
2010 
[152]
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-423-5p (+)
Plasma 
(stored 

at -80°C)

qRT-
PCR

17 AMI, 
4 stable 
CAD, 5 
healthy

Potential 
early marker 
of myocardial 

necrosis 

Nabiałek 
et al., 
2013 
[153]

miR-208a (+)

miR-1 (+)

HF

miR-125a-5p (-)

Serum Array 21 HF, 65 
controls

Potential 
predictors of 
ischemic HF 

after AMI

Matsu-
moto et 
al., 2013 

[166]

miR-15b (+)
miR-20a (+)
miR-30b (+)
miR-146a (-)
miR-192 (+)
miR-19a (+)

miR-200c (-)
miR-345 (-)

miR-374b (-)
miR-485-3p (-)

miR-518d-3p (-)
miR-125a-5p (-)

miR-215 (+)
miR-532-5p (+)

miR-194 (+)
miR-34a (+)
miR-210 (+)

Serum qRT-
PCR

22 HF, 18 
healthy 

controls, 9 
fetuses

Possible 
biomarkers 

of HF

Zhao et 
al., 2013 

[165]

miR-27a (+)
miR-30a (+)
miR-21 (+)
miR-29a (+)
miR-19a (+)
miR-27b (+)
miR-24 (+)

miR-19b (+)
hsa-let-7i (-)

Whole 
blood Array

CHF (55 
ICM + 51 
NICM), 

30 healthy

Novel targets 
for diagnosis, 

prevention 
and treat-

ment of CHF

Qiang et 
al., 2013 

[167]

hsa-miR-508-
5p (+)

hsa-miR-589 (-)

hsa-miR-518e (-)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

hsa-miR-662 (-)

hsa-miR-200b (+)

hsa-miR-517c (+)

hsa-miR-126 (-)
hsa-miR-210 (-)
hsa-miR-513-

5p (+)

hsa-miR-34a (+)
hsa-miR-490-

3p (+)

hsa-miR-186 (+)

hsa-miR-220c (-)

hsa-miR-595 (+)
miR-200a (+)

miR-423-5p (+)

Plasma qRT-
PCR

45 DCM, 
39 healthy

Diagnostic 
biomarker for 
HF caused by 

DCM

Fan et 
al., 2013 

[168]

miR-126 (+)
miR-361-5p (+)

miR-155 (-)
miR-146a (+)

miR-423-5p (+)

Serum 
(stored 

at -80ºC)

qRT-
PCR

30 CHF, 
30 healthy

Diagnostic 
and prognos-
tic markers 

for HF

Goren et 
al., 2012 

[169]

miR-320a (+)
miR-22 (+)

miR-92b (+)
miR-17 (+)

miR-532-3p (+)
miR-92a (+)
miR-30a (+)
miR-21 (+)

miR-101 (+)

miR-126 (+) Plasma qRT-
PCR

33 isch-
emic heart 
disease, 17 

healthy

New bio-
marker for 

CHF

Fuku-
shima et 
al., 2011 

[170]
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-423-5p (+)

Plasma Array
30 HF, 20 
non-HF, 

39 healthy

Potential 
biomarkers 

for HF

Tijsen et 
al., 2010 

[171]

miR-129-5p (+)
miR-675 (+)
miR-18b (+)
HS_202.1 (+)
miR-1254 (+)
miR-622 (+)

miR-302d (+)
miR-654-3p (+)

miR-346 (+)
miR-1301 (+)
miR-24-2 (-)
miR-15b (+)

miR-142-3p (+)
HS_239 (-)

so-
lexa3927-221 (-)

miR-520d-5p (+)

Serum 
(stored 

at -80ºC)

qRT-
PCR

 53 HF-
REF, 39 
healthy

Potential bio-
markers for 
systolic HF

Vogel et 
al., 2013 

[172]

miR-122 (+)
miR-643 (+)
miR-548i (+)
miR-718 (+)
miR-935 (+)

let-7e (+)
miR-376a (+)

miR-1225-5p (+)
miR-675 (+)
miR-622 (+)

miR-582-3p (+)
miR-551b (+)
miR-224 (+)
miR-670 (+)

miR-331-5p (+)
miR-369-3p (+)

miR-944 (+)
miR-200b (+)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-519e (+)
miR-558 (-)

miR-1302 (-)
miR-146b-3p (-)

miR-345 (-)
miR-760 (-)
miR-218 (-)

miR-1301 (-)
miR-604 (-)
miR-370 (-)
miR-144 (-)

miR-574-5p (-)
miR-566 (-)

miR-1321 (-)
miR-143 (-)

miR-551b (-)
miR-20b (-)
miR-1914 (-)
miR-597 (-)
miR-623 (-)
miR-421 (-)

miR-1231 (+)
miR-1228 (+)

let-7b (+)

Plasma qRT-
PCR

135 dys-
pnea, 15 
healthy

Potential 
biomarkers 

for HF

Ellis et 
al., 2013 

[174]

miR-103 (-)
miR-142-3p (-)

miR-150 (-)
miR-185 (+)

miR-1909 (-)
miR-199a-3p (-)

miR-2110 (+)
miR-23a (-)
miR-27b (-)
miR-29a (-)
miR-30b (-)
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Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-324-5p (-)
miR-342-3p (-)
miR-423-5p (+)

miR-598 (-)
miR-940 (-)

miR-210 (+)

Plasma 
+ mono-
nuclear 

cells

qRT-
PCR

39 CHF 
[plasma] 
/ 13 CHF, 
6 healthy 
[mono-
nuclear 
cells]

Potential 
biomarker for 

CHF

Endo et 
al., 2013 

[173]

miR-1 (+) Plasma qRT-
PCR 49 AMI

Potential 
diagnostic 
biomarkers 

for AMI

Zhang et 
al., 2013 

[175]

Stroke

miR-30 (-)
Plasma 
(stored 

at -80ºC)

qRT-
PCR

197 
ischemic 
stroke, 50 

healthy

Potential 
biomarkers 
for ischemic 

stroke

Long et 
al., 2013 

[176]
miR-126 (+)

let-7b (+/-)

miR-145 (+) Whole 
blood

qRT-
PCR

32 
ischemic 
stroke, 14 

healthy

Potential 
biomarkers 
for ischemic 

stroke

Gan et 
al., 2012 

[130]

miR-21 (+)

Serum 
(stored 

at -80ºC)

qRT-
PCR

167 
ischemic 
stroke, 66 

athero-
sclerosis, 

157 
healthy

Potential 
biomarkers 
for ischemic 

stroke

Tsai et 
al., 2013 

[177]miR-221 (-)

miR-210 (-) Whole 
blood

qRT-
PCR

112 
ischemic 
stroke, 60 

healthy

Potential 
biomarkers 
for ischemic 

stroke

Zeng et 
al., 2011 

[178]

hsa-let-7f (-)

Whole 
blood

qRT-
PCR

19 
ischemic 

stroke

Potential 
biomarkers 
for ischemic 

stroke

Tan et 
al., 2009 

[131]

miR-126 (-)
miR-1259 (-)

miR-142-3p (-)
miR-15b (-)



– 83 –

Disease miR Regula-
tion Source Method Number  

of samples

Potential 
clinical ap-
plicability

Reference

miR-186 (-)
miR-519e (-)

miR-768-5p (-)
hsa-let-7e (+)
miR-1184 (+)
miR-1246 (+)
miR-1261 (+)
miR-1275 (+)
miR-1285 (+)
miR-1290 (+)
miR-181a (+)

miR-25 (+)
miR-513a-5p (+)

miR-550 (+)
miR-602 (+)
miR-665 (+)
miR-891a (+)
miR-933 (+)
miR-939 (+)
miR-923 (+)

miRs shaded with green were statistically significantly upregulated (+) or downregulated (-) and might 
be potentially applicable.
ACS, acute coronary syndrome; ASO, arteriosclerosis obliterans; CAD, coronary artery disease; DM, 
diabetes mellitus; HF, heart failure; IFG, impaired fasting glucose; n-T2DM, newly diagnosed type 2 
diabetes mellitus; PAD, peripheral artery disease; qRT-PCR, quantitative real-time polymerase chain 
reaction; s-NGT, susceptible individuals with normal glucose tolerance; T2DM, type 2 diabetes mel-
litus; pre-T2DM, pre type 2 diabetes mellitus.
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Table 8. P-values from a linear regression -test for an association between microRNAs and carotid arterial plaques.

miR-1 miR-126 miR-145 miR-155 miR-122 miR-370 miR-133a miR-133b miR-195 miR-132

Right carotid plague 0.629 0.382 0.811 0.953 0.244 0.005 0.712 0.855 0.104 0.257

Left carotid plaque 0.789 0.306 0.74 0.834 0.512 0.636 0.699 0.835 0.537 0.04

Table 7. Pearson correlation analysis between microRNAs (miRs) and selected arterial markers.

miR-1 miR-126 miR-145 miR-155 miR-122 miR-370 miR-133a miR-133b miR-195 miR-132

r p r p r p r p r p r p r p r p r p

FMD, % -0.086 0.264 -0.03 0.695 -0.066 0.392 -0.074 0.34 0.002 0.98 -0.004 0.964 -0.067 0.389 -0.073 0.347 -0.068 0.382 0.091 0.24

AoPWV 3.7∙10-5 0.99 -0.003 0.972 0.005 0.944 -0.064 0.393 -0.15 0.049 0.094 0.213 -0.003 0.964 -0.09 0.233 0.075 0.317 0.057 0.453

AIx@75 -0.201 0.005 -0.041 0.585 -0.151 0.044 -0.126 0.095 0.032 0.671 9∙10-4 0.99 -0.235 0.002 -0.242 0.001 -0.012 0.873 0.008 0.92

MAP -0.076 0.315 -0.009 0.907 -0.039 0.603 0.041 0.589 -0.1 0.188 0.068 0.369 -0.071 0.345 -0.066 0.385 -0.124 0.101 0.011 0.889

CAVImean -0.218 0.004 -0.054 0.479 0.037 0.629 -0.136 0.073 0.152 0.046 -0.058 0.449 -0.177 0.02 -0.221 0.003 0.065 0.398 0.025 0.747

MMI 0.08 0.294 0.036 0.643 0.125 0.1 -0.011 0.882 0.088 0.251 -0.005 0.946 0.056 0.465 0.095 0.215 -0.048 0.53 0.01 0.898

Stiffness right 
carotid artery -0.024 0.754 0.119 0.116 0.038 0.615 -0.032 0.679 0.102 0.181 0.095 0.209 0.014 0.858 0.024 0.757 0.103 0.173 0.165 0.029

Stiffness left 
carotid artery 0.154 0.042 -0.002 0.985 0.001 0.986 -0.035 0.642 0.036 0.639 0.026 0.729 0.053 0.482 0.109 0.151 0.047 0.536 0.018 0.818

Stiffness carotid 
artery 0.075 0.324 0.067 0.382 0.022 0.769 -0.038 0.616 0.078 0.306 0.069 0.364 0.039 0.613 0.076 0.318 0.085 0.261 0.103 0.174

AIx@75; augmentation index normalized to a heart rate of 75 beats per minute; AoPWV, aortic pulse wave velocity; CAVImean, mean cardio-ankle vascular index; FMD, 
flow-mediated dilatation; MAP, mean arterial pressure; MMI, myocardial mass index ; r, correlation coefficient.
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Table 9. Logistic regression models for aortic pulse wave velocity.

Cut off Precision Recall F-score
8.6 (median) – – –

8.7 0.509 0.785 0.593
8.8 0.518 0.835 0.623
8.9 0.598 0.88 0.697
9 0.615 0.908 0.719

9.1 0.633 0.926 0.74
9.2 0.656 0.935 0.76
9.3 0.662 0.936 0.763
9.4 – – –
9.5 0.725 0.967 0.821
9.6 0.749 0.974 0.839
9.7 0.784 0.994 0.871
9.8 0.796 1 0.881
9.9 0.812 0.986 0.886
10 0.848 1 0.914

10.1 0.864 0.982 0.915
10.2 0.864 0.982 0.915
10.3 0.87 0.988 0.922
10.4 0.87 0.988 0.922
10.5 0.88 0.988 0.929
10.6 0.887 0.988 0.932

Table 10. Linear regression models.

Model MAE MAPE
FMD – – –

AoPWV 8.34 +0.32 miR-1-0.37 miR-133b 1.34 15.09
AIx@75 38.55-3.14 miR-133b 9.87 145.89

MAP 98.82-1.63miR-122 10.7 34.92
CAVImean 10.51- 0.28 miR-133b + 0.27miR-122 

-0.25miR-155
1.09 16.63

Stiffness right carotid artery 1.61+0.46miR-126 + 0.33miR-132 1.39 40.35
Stiffness left carotid artery – – –

Stiffness carotid artery 3.07+0.27miR-132 1.16 30.69
MMI 91.8+5.15miR-145 18.67 23.97

AoPWV, aortic pulse wave velocity; CAV MAE, mean absolute error; FMD, flow-mediated dilatation; 
MAP, mean arterial pressure; MMI, myocardial mass index ; MAPE, mean absolute percentage error.
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Discussion

Although accumulating evidence suggests that miRs may be potential biomark-
ers for atherosclerosis, hypertension, and CAD, little is known about the circulating 
levels of miRs and their association with arterial biomarkers, such as AoPWV, CAVI, 
carotid artery stiffness, and others. In the present study, to our knowledge, a rela-
tionship between miR-1 and AIx@75, CAVI, and carotid artery stiffness, as well as 
between miR-133a/b and AIx@75, and CAVI, have been demonstrated for the first 
time. These findings indicate a link between miRs and vascular stiffness. Addition-
ally, miR-122 demonstrated a linear relationship with AoPWV, the most extensively 
investigated arterial marker. However, miR-122 was the only miR tested that dem-
onstrated this relationship. Thus, further research is required. 

Despite the statistically significant findings of linear relationships between arte-
rial markers and miR-1, miR-122, miR-133a, and miR-133b, the relationships were 
weak, possibly due to insufficient numbers of patients. Moreover, no linear relation-
ship was observed between arterial markers and miR-126, miR-155, and miR-195.

Considering that CVDs are usually multifactorial diseases, caused by various 
mechanisms, it is likely that a combination of miRs will have a stronger predictive or 
diagnostic power, as demonstrated in the present study. To further clarify these find-
ings, the current linear regression models need to be tested on wider populations. 

The miRs tested here were not associated with outcomes, as the follow-up time 
from collection of blood samples was too short. Therefore, the associations are lim-
ited to other test results, rather than to CV outcomes. However, this would be an 
invaluable aspect to study in longer-term studies.

Conclusion

arterial marker, AoPWV
Demonstrated relationships between miR-1 and arterial markers such as 
AIx@75/CAVI/carotid artery stiffness, as well as between miR-133a/b and 
AIx@75/CAVI, suggests some association between the miRs and vascular 
stiffness, as measured by several different methods

disease biomarkers and predictors of metabolic disease and associated CV 
complications.
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5. CLINICAL IMPLICATIONS 

Clinical practitioners must consider the adaption of current risk prediction tools 
to encompass wider arterial and molecular indicators. These studies on the MetS pa-
tient group suggest that assessment of CVD risk as well as potential for progression 
to T2DM are inadequately assessed based solely on the traditional risk assessment 
tools. The current observations confirm the insufficiency of FRS assessment among 
the important subgroup of people with metabolic disease. This should be considered 
when applying FRS in clinical practice. The research described herein demonstrates 
that AoPWV is a viable risk stratification biomarker, directly related to CVD out-
comes. It would be valuable to incorporate this or other measures of arterial stiffness 
in the assessment of patients with metabolic disease. Also demonstrated was an as-
sociation of miR with early atherosclerosis, suggesting that it could be a biomarker 
of subclinical atherosclerosis in the foreseeable future. As the timing and intensity 
of preventive intervention are dependent on the outcomes of a patient’s risk assess-
ment, it is imperative that the most accurate and specific risk prediction tools are 
applied. 
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6. NOVELTY

This is the largest study, to my knowledge, of exploring CVD risk assessment 
among patients with MetS. The breadth of these studies across several potential av-
enues for enhancing current risk prediction makes this a valuable body of research. 
The quality of the investigations and their potential to improve risk prediction for 
large numbers of patients makes them a valuable addition to this field. Also provided 
is original research demonstrating an association between early atherosclerosis and 
multiple miRs, highlighting the potential of miRs to be used as early biomarkers. 
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7. SUMMARIZED DISCUSSIONS

This series of studies was conducted with the principal aim of investigating vari-
ous arterial and molecular biomarkers for their usefulness as predictors of T2DM 
and CVD risk. T2DM and CVD are both leading causes of morbidity and mortal-
ity worldwide. Primary and secondary prevention approaches are crucial to avoid 
the associated burden and impact on the patient and society. It is well established 
that CVD is a life-long condition that begins with risk factors that predispose to the 
development of subclinical atherosclerosis, which in turn contributes to the occur-
rence of overt CVD [194,195]. MetS is a cluster of CV risk factors that can progress 
to diabetes without appropriate intervention and management. 

As CVD remains the leading cause of death worldwide, and the associated mor-
tality is estimated to reach more than 23.6 million deaths per year by 2030 [196], 
CVD risk assessment and early prevention remain important priorities in daily 
medical practice. In adults, it is recommended to assess the traditional atheroscle-
rotic CVD risk factors every 4-6 years between the ages of 20-79 years. Several risk 
screening models have been developed for major CV events; for example, the FRS, 
PROCAM, QRISK, EURO-SCORE, QRISK2, the RRS, and the ASSIGN score [197]. 

The FRS is one of the most widely utilized methods for predicting CV risk. It can 
be used to predict 10- and 30-year mortality based on age, diabetes, smoking status, 
SBP, TC, and HDL-C (male sex and use of antihypertensive treatment included for 
30-year risk prediction) [198]. However, this model is not suitable for all patient 
groups and may under- or overestimate overall CV risk, particularly in high-risk 
groups. With the advent of more personalized medicine, it is hoped that the accu-
racy of this, and other risk models, can be improved by adding novel risk markers 
and biomarkers into the risk prediction algorithm. Biomarkers may assist with both 
primary and secondary prevention by identifying high-risk individuals, by enabling 
early and accurate diagnosis, and by predicting the future evolution of the disease. 
The research undertaken here, therefore, focussed on biomarkers and explored po-
tential candidate markers from several different angles.

In the first series of investigations, studies were undertaken to assess whether 
AoPWV, as a measure of arterial stiffness, can improve risk stratification in patients 
with MetS. Although it is known that arterial wall function contributes to CVD risk 
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[199], relatively few studies to date have investigated subjects at high risk of CVD, 
such as those with MetS - the population examined herein. AoPWV was significant-
ly higher among those who later experienced a CVD event (fatal or non-fatal MI or 
stroke) during the follow-up period (9.41±2 vs 8.8±1.6, P<0.001). In an unadjusted 
logistic regression model, AoPWV remained a strong predictor of a CVD event. 
These findings are of interest because AoPWV appears to be a true predictor, inde-
pendent of confounding factors such as age or BP. Furthermore, it a simple, accurate 
marker, measured using non-invasive ultrasound methods that are highly reproduc-
ible [200]. Arterial stiffness may, therefore, represent one important pathway linking 
MetS/diabetes to the increased CV risk observed in these patients. Indeed, increased 
arterial stiffness predicts the development of CV illnesses and mortality in the gen-
eral population and in those with T2DM. These data support the hypothesis of in-
creased arterial stiffness in MetS, which may explain, at least in part, the increased 
CV risk in these individuals, and emphasize the importance of primary prevention. 

In the second series of investigations, predictive models for diabetes were devel-
oped and a range of variables was assessed for their prognostic value among middle-
aged subjects with MetS. Importantly, it was found that T2DM in middle-aged MetS 
subjects could be predicted with a good level of accuracy. Routine measures such as 
FPG, BMI, and HbA1c provided a solid foundation for risk assessment. FPG was the 
strongest predictor for the development of T2DM in subjects with MetS, with BMI 
and HbA1c having cumulative value. Furthermore, risk was also related to elevated 
AoPWV measurements. These are important findings because markers that can 
identify those patients most at risk of progressing to T2DM might enable prevention 
and management programs to be targeted appropriately. A proportion of the 3.2 mil-
lion deaths that result from complications associated with diabetes each year [201], 
could, therefore, be averted. Thus, the predictive value of clinical biomarkers for the 
development of T2DM in patients with MetS, who do not yet show atherosclerotic 
disease, may prove useful in clinical practice. 

In the final series of investigations, the potential of miRs to diagnose or pre-
dict the prognosis for patients with CVD was examined. A systematic review of 
published literature on miRs to date was performed, allowing us to select the most 
promising miRs for further research. From the 19 selected studies, 52 distinct miRs 
were investigated and several were identified as potentially useful diagnostic and/
or prognostic markers across different CVD progression stages, for example, miR-
133a/b, miR-208a/b, miR-499, miR-1, and miR-145b. Functional data on these miRs 
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were also derived from the published literature to explore their potential mecha-
nisms for contributing to atherosclerosis or CV risk. These miRs were implicated in 
diverse CV functions such angiogenesis, apoptosis, cardiac myocyte differentiation, 
and communication between vascular smooth muscle and endothelial cells. Thus, 
miR-mediated pathways may be implicated in the development of cardiometabolic 
disease. This literature review provides guidance on the potential direction of future 
investigations relating to miRs as biomarkers of CVD, which was the basis for the 
10 selected miRs for the current research. The study demonstrated the association 
between some of the investigated miRs and early atherosclerosis, suggesting it as 
a possible standardized replacement for the diagnostic purposes in the foreseeable 
future, contributing to personalized CVD risk assessment. 

Overall, these studies contribute significantly to our understanding of predictive 
biomarkers in CV medicine and their potential utility in enhancing the prevention, 
diagnosis, and management of CV risk factors, thereby improving the lives of pa-
tients. This knowledge should be incorporated into routine clinical practice in pri-
mary and secondary care to ensure efficiency and effective patient care. 
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8. CONCLUSIONS

1. Commonly used risk prediction tools are inaccurate for use among patients 
with MetS

2. Even the FRS2 model itself proved inadequate to predict FRS2 outcomes for 
patients with MetS 

3. AoPWV is an independent CVD event predictor that may provide additive 
value when used concomitantly with traditional risk prediction tools

4. Progression to T2DM among middle-aged subjects with MetS can be accu-
rately predicted using the combination of easily accessible parameters such as 
FPG, BMI, and HbA1c, and is related to elevated AoPWV measurements

5. OGTT is less useful than FPG in predicting T2DM in patients with MetS
6. MiRs may represent potential early atherosclerosis biomarkers:

a) miR-122 showed a linear relationship with arterial stiffness, as measured 
by AoPWV

b) miR-1 showed associations with Aix@75, CAVI, and carotid artery stiff-
ness, while miR-133a/b showed associations with Aix@75 and CAVI
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