ŠIAULIŲ UNIVERSITETAS INŽINERIJOS KATEDRA

Mindaugas Klimas

ALBATROSO (*DIOMEDEA EXULANS*) SKRYDŽIO MODELIAVIMAS IR OPTIMALIŲ SKRIEJIMO TRAJEKTORIJŲ OPTIMIZAVIMAS

Magistro baigiamasis darbas

Šiauliai, 2018

ŠIAULIŲ UNIVERSITETAS INŽINERIJOS KATEDRA

ALBATROSO (*DIOMEDEA EXULANS*) SKRYDŽIO MODELIAVIMAS IR OPTIMALIŲ SKRIEJIMO TRAJEKTORIJŲ OPTIMIZAVIMAS

Magistro baigiamasis darbas

Autorius – Mindaugas Klimas (MM-16 gr.)

Vadovas – doc. dr. Alfredas Lankauskas

Recenzentas – doc. dr. Sergėjus Rimovskis

Katedros vedėja – dr. Ramunė Klevaitytė

TVIRTINU Mechanikos ir statybos inžinerijos katedros vedėja

____ Loreta Kelpšienė

2017 m. vasario mėn. 6 d.

MAGISTRO DARBO UŽDUOTIS

Išduota magistrantui (-ei) MINDAUGUI KLIMUI

Darbo tema <u>ALBATROSO (*DIOMEDEA EXULANS*) SKRYDŽIO MODELIAVIMAS IR</u> <u>OPTIMALIŲ SKRIEJIMO TRAJEKTORIJŲ OPTIMIZAVIMAS</u>

Galutinai patvirtinta 2018 m. kovo 7 d. katedros posėdžio protokolu Nr. INZK-3-3.

1. Darbo tikslas

Išnagrinėti klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*) dinaminio skriejimo (angl. *Dynamic soaring*) ypatumus ir jų priklausomybę nuo sklandmens konfigūracijos aerodinaminių charakteristikų.

2. Darbo struktūra

Įvadas

- 1. Mokslinės literatūros apžvalga klajojantis albatrosas (diomedea exulans).
- 2. Albatroso (diomedea exulans) sklandmens modeliavimas.

2.1. Albatroso sparno modeliavimas.

2.2. Albatroso liemens modeliavimas.

2.3. Albatroso sklandmens modeliavimas.

3. Tyrimo metodika.

4. Albatroso (*diomedea exulans*) dinaminio skriejimo modelio aerodinaminės charakteristikos.

4.1. Albatroso sparno profilio aerodinaminės charakteristikos.

4.2. Albatroso sklandmens aerodinaminių charakteristikų tyrimas.

5. Albatroso (*diomedea exulans*) matematinis modelis.
5.1. Albatroso dinaminio skriejimo trajektorijos.
5.2. Skaičiavimo ir modeliavimo rezultatai.
Lyginamosios išvados.
Literatūros sąrašas.
Priedai

Darbo pateikimo terminas 2018 m. birželio mėn. 1 d.

Užduotį gavau	Mindaugas Klimas	2017-02-06
	(magistranto vardas, pavardė)	(parašas, data)
Vadovas	doc.dr. A. Lankauskas	2017-02-06
	(pareigos, vardas, pavardė)	(parašas, data)

ŠIAULIŲ UNIVERSITETAS INŽINERIJOS KATEDRA

Mindaugas Klimas. ALBATROSO (*DIOMEDEA EXULANS*) SKRYDŽIO MODELIAVIMAS IR OPTIMALIŲ SKRIEJIMO TRAJEKTORIJŲ OPTIMIZAVIMAS. Magistro baigiamasis darbas / vadovas doc.dr. A. Lankauskas.

SANTRAUKA

Baigiamojo magistro darbo tikslas - išnagrinėti klajojančio albatroso (angl. Wandering albatross, lot. *Diomedea exulans*) dinaminio skriejimo (angl. *Dynamic soaring*) ypatumus ir jų priklausomybę nuo sklandmens konfigūracijos aerodinaminių charakteristikų.

Pasinaudodami mokslinės literatūros šaltiniais ir publikacijomis, atkūrėme klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*) 3D modelį skaitinės analizės programomis *AutoCAD* ir *SolidWorks*: a) sparną su kintama geometrija, kurio mostas 3 metrai; b) liemenį su kintama geometrija, kurio ilgis 1,2 metrai. Atlikome albatroso dinaminio skriejimo modelio aerodinaminių charakteristikų analizę. Taip pat aprašėme albatroso dinaminio skriejimo matematinį modelį, nubraižėme dinaminio skriejimo trajektorijas ir atlikome skriejimo skaitinę analizę trajektorijos ekstremumo ir faziniuose taškuose.

Atliktas sumodeliuoto albatroso sparno profilio aerodinaminių charakteristikų tyrimas atakos kampų imtyje $\alpha \in [0^{\circ}; 25^{\circ}]$, taip pat albatroso sklandmens aerodinaminių charakteristikų tyrimas, kai užsparnių padėtis kinta $AoA=0^{\circ}\div6^{\circ}$, albatroso judėjimo greitis oro srauto atžvilgiu lygus $V_x = 15$ m/s, bei tyrimą, kai užsparnių padėtis $AoA=-2^{\circ}\div0^{\circ}$, albatroso judėjimo greitis oro srauto atžvilgiu lygus $V_x = 25$ m/s. Taip pat atliktas albatroso sklandmens aerodinaminių charakteristikų tyrimas, kai sparno profilio atakos kampas kinta $AoA=0^{\circ}\div10^{\circ}$. Keičiamas viso sparno profilio atakos kampas ir klajojančio albatroso skrydis modeliuojamas, kai paukštis skrydžio trajektorijos kiltinėje ir grįžtinėje siekia išlaikyti skrydžio greitį oro srauto atžvilgiu $V_x = 20$ m/s, greičio prieaugis dėl galimai veikiančių vėjo gūsių, kurių stiprumas siekia 5 m/s, įtaka nebuvo įvertinta, nes oro srauto gūsių veikimas reliatyvus.

Reikšminiai žodžiai: Klajojantis, albatrosas, diomedea, exulans, aerodinamika, sklandmuo, skrydis, sklendimas, matematinis, modelis.

ŠIAULIAI UNIVERSITY DEPARTMENT OF ENGINEERING

Mindaugas Klimas. FLIGHT SIMULATION OF ALBATROSS (*DIOMEDEA EXULANS*) AND OPTIMIZATION OF OPTIMAL SOARING TRAJECTORIES. Master final work / research advisor Assoc. Prof. Dr. A. Lankauskas.

SUMMARY

The purpose of this thesis is to develop and implement a computational process to enable the swift design of different wandering albatross 3D structure wing profile configurations and their aerodynamic analysis.

Wandering albatrosses are known for their capability to soar excessive distances without flapping their wings. Several theories have been proposed in order to explain how albatross extract energy from wind. The first one is that albatross gains prominence using wind-shear, that increase in wind speed with height above ocean surface to gain energy. This type of soaring technique is known as wind-shear soaring. The second theory of wave-slope soaring claims that albatross uses updrafts caused by wind blowing over waves to gain energy.

To develop albatross 3D structure various types of CAD tools were adopted. To recreate and define external shape of albatross we implemented software *AutoCAD*. Recreated 3D structure later was imported into widely spread computational software *SolidWorks* where aerodynamic analysis using *Flow Simulation* was performed. Test case consisted of aerodynamic wing profile studies where wing profile angle of attack changes in the range of $\alpha \in [0^\circ; 25^\circ]$; albatross 3D structure analysis when flaps change in the range of $AoA=0^\circ \div 6^\circ$, with albatross true air speed of $V_x = 15$ m/s and flaps $AoA=-2^\circ \div 0^\circ$, when true air speed reached $V_x = 25$ m/s. To enchant performance of albatross model and its aerodynamic characteristics series of parametric optimizations were performed.

Keywords: Wandering, albatross, diomedea, exulans, aerodynamics, dynamic, soaring, optimal, flight, trajectories.

SANTRUMPŲ SĄRAŠAS

С	-	profilio styga
Cr	-	sparno pagrindo styga
C_t	-	sparno galo styga
Т	-	profilio storis
t	-	santykinis profilio storis
X_T	-	didžiausia profilio storio vieta
X_t	-	santykinė didžiausio storio vieta
F	-	profilio gaubtumas
f	-	santykinis profilio gaubtumas
X_F	-	didžiausia profilio gaubtumo vieta
χ_{f}	-	santykinė didžiausio gaubtumo vieta
R_{LE}	-	įbrėžto apskritimo apskritimo spindulys
r _{LE}	-	santykinis profilio noselės kreivumo spindulys
$\Delta \theta_{TE}$	-	galinės briaunos viršutinio ir apatinio kontūro kampas
Λ	-	sparno strėliškumo kampas
Р	-	slėgis (angl. Pressure)
ρ	-	tankis (angl. <i>Density</i>)
Т	-	temperatūra (angl. Temperature)
а	-	garso greitis (angl. Speed of Sound)
μ	-	klampumas (angl. Viscosity)
v	-	kinematinis klampumas (angl. Kinematic viscosity)
k	-	šilumos laidumas (angl. Thermal conductivity)
R	-	dujų konstanta (angl. Gas constant)
C_p	-	savitoji kūno šiluma (angl. Specific heat)
C_v	-	kūno šilumos talpa (angl. Specific heat)
γ	-	šilumos perdavimo koeficientas (angl. Ratio of Specific Heats)
g	-	laisvojo kritimo pagreitis (angl. Gravitational acceleration)
AoA	-	atakos kampas (angl. Angle of attack)
α_{kr}	-	kritinis sparno profilio atakos kampas
GS	-	tiriamojo objekto greitis žemės paviršiaus atžvilgiu (angl. Ground Speed)

- greitis skrendantį tiriamąjį objektą supančio oro srauto atžvilgiu (angl. True TAS _ Air Speed) l sklendimo nuotolis -Hsklendimo aukštis -K aerodinaminės kokybės koeficientas -L sparno profilio keliamoji jėga _ D sparno profilio pasipriešinimo jėga sparno profilio keliamosios jėgos koeficientas C_L sparno profilio pasipriešinimo jėgos koeficientas C_D sklendimo greitis V_{skl} - V_y žemėjimo sparta θ kokybės kampas sparno profilinio pasipriešinimo jėga D_{ap} - D_{ai} sparno indukcinio pasipriešinimo jėga -Voro srauto greitis sparno plotas S -
- θ kokybės kampas

LENTELIŲ SĄRAŠAS

1 lentelė. Albatroso sparno profilio charakteristika.

2 lentelė. Sparno profilio stygos diferencijavimas sparno ilgiu.

3 lentelė. ISA aplinkos sąlygos jūros lygyje.

4 lentelė. Sparno profilio aerodinaminės charakteristikos YZ plokštumoje. $AoA=0^{\circ}$. $R_e=403274$.

5 lentelė. Sparno profilio paviršiaus plotas apribotoje skaičiuotinėje erdvėje $AoA=0^{\circ}\div 25^{\circ}$. $R_e=403274$.

6 lentelė. Sparno profilio keliamosios jėgos koeficientas C_L. $AoA=0^{\circ}\div 25^{\circ}$. $R_e=403274$.

7 lentelė. Sparno profilio pasipriešinimo jėgos koeficientas C_D. AoA=0°÷25°. R_e=403274.

8 lentelė. Sparno profilio pilnutinės aerodinaminės jėgos koeficientas C_R. $AoA=0^{\circ}\div 25^{\circ}$. $R_e=403274$.

9 lentelė. C_L priklausomybė nuo atakos kampo α , R_e .

10 lentelė. C_D priklausomybė nuo atakos kampo α , R_e .

11 lentelė. C_R priklausomybė nuo atakos kampo α , R_e .

12 lentelė. C_L/C_D priklausomybė nuo atakos kampo α , R_e .

13 lentelė. C_L ir C_D priklausomybė nuo atakos kampo α , R_e .

14 lentelė. Albatroso sklandmens paviršiaus plotas apribotoje skaičiuotinėje erdvėje. $AoA = -2^{\circ} \div 6^{\circ}$.

15 lentelė. Klajojančio albatroso skrydžio charakteristikos [22].

16 lentelė. Albatroso sklandmens keliamosios jėgos koeficientas C_L. AoA=0°÷6°.

17 lentelė. Albatroso sklandmens pasipriešinimo jėgos koeficientas C_D. AoA=0°÷6°.

18 lentelė. Albatroso sklandmens pilnutinės jėgos koeficientas C_R. AoA=0°÷6°.

19 lentelė. Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybė nuo atakos kampo $\alpha \in [0^\circ; 6^\circ]$. V_x = 15 m/s.

20 lentelė. Albatroso sklandmens keliamosios jėgos koeficientas C_L. $AoA=-2^{\circ}\div0^{\circ}$.

21 lentelė. Albatroso sklandmens pasipriešinimo jėgos koeficientas C_D. AoA=-2°÷0°.

22 lentelė. Albatroso sklandmens pilnutinės jėgos koeficientas C_R. AoA=-2°÷0°.

23 lentelė. Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybė nuo atakos kampo $\alpha \in [-2^{\circ}; 0^{\circ}]$. V_x = 25 m/s.

24 lentelė. Albatroso sklandmens keliamosios jėgos koeficientas C_L. AoA=0°÷10°.

25 lentelė. Albatroso sklandmens pasipriešinimo jėgos koeficientas C_D . $AoA = 10^\circ$. $V_x = 20$ m/s.

26 lentelė. Albatroso sklandmens pilnutinės jėgos koeficientas C_R. $AoA=0^{\circ} \div 10^{\circ}$. V_x = 20 m/s.

27 lentelė. Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybė nuo atakos kampo $\alpha \in [0^{\circ}; 10^{\circ}]$. V_x = 20 m/s.

28 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=1^\circ$, $R_e=403274$.

29 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=2^\circ$, $R_e=403274$.

30 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=3^\circ$, $R_e=403274$.

31 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=4^\circ$, $R_e=403274$.

32 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=5^{\circ}$, $R_e=403274$.

33 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=6^\circ$, $R_e=403274$.

34 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=7^{\circ}$, $R_e=403274$.

35 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=8^\circ$, $R_e=403274$.

36 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=9^\circ$, $R_e=403274$.

37 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=10^{\circ}$, $R_e=403274$.

38 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=11^\circ$, $R_e=403274$.

39 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=12^{\circ}$, $R_e=403274$.

40 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=13^\circ$, $R_e=403274$.

41 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=14^\circ$, $R_e=403274$.

42 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=15°, *Re*=403274.

43 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=16^\circ$, $R_e=403274$.

44 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=17^{\circ}$, $R_e=403274$.

45 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=18^{\circ}$, $R_e=403274$.

46 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=19°, *Re*=403274.

47 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=20^\circ$, $R_e=403274$.

48 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 0^\circ$, $V_x = 15$ m/s.

49 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 1^{\circ}$, $V_x = 15$ m/s.

50 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 2^{\circ}$, $V_x = 15$ m/s.

51 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 3^{\circ}$, $V_x = 15$ m/s.

52 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 4^{\circ}$, $V_x = 15$ m/s.

53 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 5^{\circ}$, $V_x = 15$ m/s.

54 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 6^{\circ}$, $V_x = 15$ m/s.

55 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 0^{\circ}$, $V_x = 25$ m/s.

56 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = -1^{\circ}$, $V_x = 25$ m/s.

57 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = -2^{\circ}$, $V_x = 25$ m/s.

58 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=0°.

59 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=1°.

60 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=2°.

61 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=3°.

62 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=4°.

63 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=5°.

64 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=6°.

65 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=7°.

66 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=8°.

67 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=9°.

68 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=10°.

PAVEIKSLŲ SĄRAŠAS

1 pav. Klajojantis albatrosas (angl. Wandering albatross, lot. Diomedea exulans) [6].

2 pav. Klajojančio albatroso (lot. *Diomedea exulans*) migracijos zonos ir buveinės vasaros ir žiemos metų laiku [5].

3 pav. Didžiųjų vandenyno srovių srautų struktūra [7].

4 pav. Albatroso dinaminio sklendimo (angl. *dynamic soaring*) trajektorijos ir pagrindiniai principai [8].

5 pav. Albatroso, gandro, erelio ir vanago nesimetrinių sparno profilių ilgiai [9].

6 pav. Albatroso sparno profilio dalijimas horizontaliai - vertikaliais pjūviais.

7 pav. Albatroso sparno profilio charakteristika.

8 pav. Albatroso projekcijų horizontalieji ir vertikalieji pjūviai.

9 pav. Albatroso kairiojo sparno vertikalių pjūvių matmenys.

10 pav. Albatroso sparno geometrinis kreivumas.

11 pav. Kintamos geometrijos albatroso sparno išklotinė.

12 pav. Albatroso sparno aksonometrinis modelis.

13 pav. Albatroso projekcijų horizontalieji pjūviai.

14 pav. Albatroso liemens projekcijos x ir y ašyse.

15 pav. Albatroso liemens konstrukcijos skersinių profilių kontūrai.

16 pav. Kintamos geometrijos albatroso aksonometrinis vaizdas x, y ir z ašyse.

17 pav. Albatroso 3 dimensijų modelis su x, y, z ašimis.

18 pav. Albatroso 3 dimensijų modelis su matmenimis.

19 pav. Kreiserinių skrydžio greičių diagrama [19].

20 pav. Sparno profilį veikiančios jėgos (20 a); Aerodinaminės jėgos (20 b) [21].

21 pav. Sparno profilio aerodinaminių charakteristikų tyrimo skaičiuotinė erdvė.

22 pav. Sparno profili aptekančio oro srauto linijos YZ plokštumoje. AoA=0°. Re=403274.

23 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=0°. Re=403274.

24 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=0°. R_e=403274.

25 pav. Koeficientų C_L , C_D ir C_R priklausomybė nuo atakos kampo. $\alpha = 0^{\circ} \div 25^{\circ}$. $R_e = 403274$.

26 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=0°. Re=403274.

27 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=6°. Re=403274.

28 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=16°. Re=403274.

29 pav. Albatroso skriejimo trajektorija jūros paviršiuje [22].

30 pav. Ideali albatroso skriejimo trajektorijos ciklo schema jūros paviršiuje [22].

32 pav. Albatroso sparno aksonometrinis modelis su užsparniais.

33 pav. Albatroso sparno 3D modelis su užsparniais.

34 pav. Albatroso sparno aksonometrinis modelis su užsparniais.

36 pav. Albatroso sparno profilio oro srauto greičių pasiskirstymo spektras pjūvio vietoje.

AoA= 6° . V_x = 15 m/s.

37 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=6^{\circ}$. V_x = 15 m/s.

38 pav. Albatroso sklandmens greičio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=6^{\circ}$. V_x = 15 m/s.

39 pav. Albatroso 3D modelio koeficientų C_L , C_D ir C_R priklausomybė nuo užsparnių atakos kampo.

40 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje. $AoA=6^{\circ}$. V_x=15m/s.

41 pav. Koeficientų C_L ir C_D priklausomybę nuo atakos kampo $AoA=0.6^{\circ}$. V_x = 15 m/s.

42 pav. Albatroso sklandmens turbulentinių oro srovių spektras. $AoA=6^{\circ}$. V_x=15 m/s.

43 pav. Albatroso sparno profilio oro srauto greičių pasiskirstymo spektras pjūvio vietoje.

 $AoA = -2^{\circ}$. V_x = 25 m/s.

44 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. AoA=-2°. V_x = 25 m/s.

45 pav. Albatroso sklandmens greičio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. AoA=-2°. V_x = 25 m/s.

46 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje. AoA=-2°. V_x = 25 m/s.

47 pav. Albatroso sklandmens turbulentinių oro srovių spektras. $AoA=-2^{\circ}$. V_x = 25 m/s.

48 pav. Albatroso skalndmens koeficientų C_L , C_D ir C_R priklausomybė nuo užsparnių atakos kampo. $\alpha = -2^{\circ} \div 0^{\circ}$.

49 pav. Koeficientų C_L ir C_D priklausomybę nuo atakos kampo $AoA=-2\div0^\circ$. V_x = 25 m/s.

50 pav. Albatroso sparno ir liemens skeleto vaizdas iš apačios [15].

51 pav. Albatroso sparno profilio oro srauto greičių pasiskirstymo spektras pjūvio vietoje. $AoA=10^{\circ}$. V_x = 20 m/s.

52 pav. Albatroso sklandmens oro srauto greičių pasiskirstymo spektras. $AoA=10^{\circ}$. V_x = 20 m/s.

53 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=10^{\circ}$. V_x = 20 m/s.

54 pav. Albatroso sklandmens greičio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=0^{\circ}\div10^{\circ}$. V_x = 20 m/s.

55 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje. $AoA=10^{\circ}$. V_x = 20 m/s.

56 pav. Albatroso 3D modelio koeficientų C_L , C_D ir C_R priklausomybė nuo atakos kampo. $\alpha=0^{\circ}\div10^{\circ}$.

57 pav. Koeficientų C_L ir C_D priklausomybę nuo atakos kampo $\alpha = 0^{\circ} \div 10^{\circ}$. V_x = 20 m/s.

58 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje ašyse YZ. $AoA=10^{\circ}$. V_x = 20 m/s.

59 pav. Albatroso sklandmens turbulentinių oro srovių spektras. $AoA=10^{\circ}$. V_x = 20 m/s.

60 pav. Optimizuotas albatroso sklandmens dinaminio skriejimo matematinis modelis.

61 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

62 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

63 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

64 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

65 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

66 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

67 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

68 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

69 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=1^{\circ}$. $R_e=403274$.

70 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=2^{\circ}$. $R_e=403274$.

71 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. AoA=3°. R_e=403274.

72 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=2^{\circ}$. $R_e=403274$.

73 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=5^{\circ}$. $R_e=403274$. 74 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=6^{\circ}$. $R_e=403274$.

75 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=7^{\circ}$. $R_e=403274$.

76 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=8^{\circ}$. $R_e=403274$.

77 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=9^{\circ}$. $R_e=403274$.

78 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=10^{\circ}$. $R_e=403274$.

79 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=11^{\circ}$. $R_e=403274$.

80 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=12^{\circ}$. $R_e=403274$.

81 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=13^{\circ}$. $R_e=403274$.

82 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=14^{\circ}$. $R_e=403274$.

83 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=15^{\circ}$. $R_e=403274$.

84 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. AoA=16°. R_e=403274.

85 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=16^{\circ}$. $R_e=403274$.

86 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=17^{\circ}$. $R_e=403274$.

87 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=18^{\circ}$. $R_e=403274$.

88 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=19^{\circ}$. $R_e=403274$.

89 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. $AoA=20^{\circ}$. $R_e=403274$. 90 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=0^{\circ}$. V_x = 15 m/s.

91 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=0^{\circ}$. V_x = 15 m/s.

92 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=1^{\circ}$. V_x = 15 m/s.

93 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=1^{\circ}$. V_x = 15 m/s.

94 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=2^{\circ}$. V_x = 15 m/s.

95 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=2^{\circ}$. V_x = 15 m/s.

96 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=3^{\circ}$. V_x = 15 m/s.

97 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=3^{\circ}$. V_x = 15 m/s.

98 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis *AoA*=4°. V_x = 15 m/s.

99 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis *AoA*=4°. V_x = 15 m/s.

100 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=5^{\circ}$. V_x = 15 m/s.

101 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=5^{\circ}$. V_x = 15 m/s.

102 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=6^{\circ}$. V_x = 15 m/s.

103 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=6^{\circ}$. V_x = 15 m/s.

104 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=0^{\circ}$. V_x = 25 m/s.

105 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=0^{\circ}$. V_x = 25 m/s.

106 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis AoA=-1°. V_x = 25 m/s.

107 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis AoA=-1°. V_x = 25 m/s.

108 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis AoA=-2°. V_x = 25 m/s.

109 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Užsparnių padėtis $AoA=-2^{\circ}$. V_x = 25 m/s.

110 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

111 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

112 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

113 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

114 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

115 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

116 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks.

117 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=1^\circ$. V_x = 20 m/s.

118 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=2^{\circ}$. V_x = 20 m/s.

119 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=3^{\circ}$. V_x = 20 m/s.

120 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=4^\circ$. V_x = 20 m/s.

121 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=5^{\circ}$. V_x = 20 m/s.

122 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=6^{\circ}$. V_x = 20 m/s.

123 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=7^{\circ}$. V_x = 20 m/s.

124 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=8^{\circ}$. V_x = 20 m/s.

125 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. Sparno profilio atakos kampas $AoA=9^{\circ}$. V_x = 20 m/s.

126 pav. Albatroso sklandmens oro srauto greičių pasiskirstymo spektras. AoA=10°. V_x = 20 m/s.

127 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YX. $AoA=10^{\circ}$. V_x = 20 m/s.

128 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje, koordinačių plokštumoje YX iš priekio. $AoA=10^{\circ}$. V_x = 20 m/s.

129 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje, koordinačių plokštumoje YX iš galo. $AoA=10^{\circ}$. V_x = 20 m/s.

130 pav. Albatroso skrydžio metu veikiančių vektorių priklausomybių iliustracija.

131 pav. Optimizuota albatroso dinaminio skriejimo matematinio modelio trajektorija.

132 pav. Optimizuota albatroso dinaminio skriejimo matematinio modelio trajektorija.

TURINYS

MAGISTRO DARBO UŽDUOTIS	3
SANTRAUKA	5
SUMMARY	6
SANTRUMPŲ SĄRAŠAS	7
LENTELIŲ SĄRAŠAS	9
PAVEIKSLŲ SĄRAŠAS	13
ĮVADAS	21
1. MOKSLINĖS LITERATŪROS APŽVALGA - KLAJOJANTIS ALBATROSAS (<i>DIOMEDI</i> EXULANS)	EA 23
2. ALBATROSO (DIOMEDEA EXULANS) SKLANDMENS MODELIAVIMAS	27
2.1. ALBATROSO SPARNO MODELIAVIMAS	27
2.2. ALBATROSO LIEMENS MODELIAVIMAS	34
2.3. ALBATROSO SKLANDMENS MODELIAVIMAS	36
3. TYRIMO METODIKA	
4. ALBATROSO (<i>DIOMEDEA EXULANS</i>) DINAMINIO SKRIEJIMO MODELIO AERODINAMINĖS CHARAKTERISTIKOS	40
4.1. ALBATROSO SPARNO PROFILIO AERODINAMINĖS CHARAKTERISTIKOS	40
4.2. ALBATROSO SKLANDMENS AERODINAMINIŲ CHARAKTERISTIKŲ TYRIMA	S56
5. ALBATROSO (DIOMEDEA EXULANS) MATEMATINIS MODELIS	85
5.1. ALBATROSO DINAMINIO SKRIEJIMO TRAJEKTORIJOS	85
5.2. SKAIČIAVIMO IR MODELIAVIMO REZULTATAI	86
LYGINAMOSIOS IŠVADOS	87
LITERATŪROS SĄRAŠAS	90
PRIEDAI	92

ĮVADAS

BAIGIAMOJO MAGISTRO DARBO TIKSLAS

Išnagrinėti klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*) dinaminio skriejimo (angl. *Dynamic soaring*) ypatumus ir jų priklausomybę nuo sklandmens konfigūracijos aerodinaminių charakteristikų.

BAIGIAMOJO MAGISTRO DARBO UŽDAVINIAI

- 1. Atlikus mokslinės literatūros analizę, sumodeliuoti klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*):
 - 1.1. sparną su kintama geometrija,
 - 1.2. liemenį su kintama geometrija,
 - 1.3. skriejimo aplinkoje su vėjo gradientu dinaminį ir kinematinį modelį.
- 2. Atlikti albatroso dinaminio skriejimo modelio aerodinaminių charakteristikų analizę.
- 3. Aprašyti albatroso dinaminio modelio kinematinio skriejimo matematinį modelį.
- 4. Nubraižyti dinaminio modelio kinematinio skriejimo trajektorijas ir atlikti albatroso dinaminio skriejimo modelio skaitinę analizę skriejimo trajektorijos ekstremumo taškuose.
- 5. Atlikti albatroso dinaminio skriejimo modelio rezultatų analizę ir pateikti lyginamąsias išvadas.

Paukščių populiacija - svarbus biologinės įvairovės rodiklis. Pažangių šiuolaikinių technologijų pagalba galime išsamiai pažinti ir analizuoti paukščių rūšis, nustatyti jų paplitimą, stebėti migraciją. Kiekviena paukščių rūšis išsiskiria skrydžio technika ir jos pritaikymu. Skrydžio technika priklauso ne tik nuo paukščio rūšies, bet ir nuo biometrinių savybių, tokių kaip sparno mostas, sparno profilis, nuo sklandmens geometrinių ir aerodinaminių charakteristikų, nuo kūno svorio ir meteorologinių sąlygų. Išskiriamos dvi pagrindinės paukščių skrydžio technikos rūšys: skrydis, kurio metu paukštis skrenda plasnodamas sparnais (angl. *flapping flight*); skrydis, kurio metu paukštis neplasnoja sparnais (angl. *non-flapping flight*) [1]. Skrydžio technika, kurios metu paukštis neplasnoja – skirstoma į dvi rūšis: sklandymą (angl. soaring) ir sklendimą (angl. gliding). Kai kurios paukščių rūšys, pavyzdžiui, vanaginių šeimos (lot. *Accipitridae*, lot. *Cathartidae*, lot. *Pandionidae*, lot. *Sagittariidae*), sklando izoliuotuose aukštyneigiuose oro srautuose, vadinamuose termikais. Termikai gali būti skirstomi į dvi rūšis:

radiaciniai termikai, kurie susidaro dėl saulės radiacijos ir advekciniai termikai, kurie susidaro slenkant šaltoms oro masėms. Dėl saulės spinduliuotės įšildyto paviršiaus labiau išauga virš jo esančio oro temperatūra. Kylant orui į viršų, prie pat žemės paviršiaus susidaro žemesnio slėgio sritis, o jam leidžiantis virš vėsesnio paviršiaus susidaro aukštesnio slėgio sritis. Taigi prie pat žemės oras pradeda judėti šiltesnio paviršiaus link, kur jis šyla ir pradeda kilti į viršų. Tokiu būdu susidaro uždara terminė cirkuliacija, kurios stiprumas ir kartu vėjo greitis priklauso nuo paviršių terminio kontrasto [2]. Šis sklandymo būdas dar kitaip galėtų būti vadinamas statiniu sklandymo būdu. Šios rūšies paukščiai, pasinaudodami antrąją skrydžio technikos rūšimi – sklendimu (angl. *gliding*), sklendžia žemėdami tam, kad būtų išlaikytas pastovus sklendimo greitis. Taip pat galėtų būti išskirta dar viena skrydžio technikos rūšis, kai paukštis neplasnodamas geba sklandyti pasinaudodamas oro srauto aukštyneigiu judėjimu, dažniausiai vykstančiu orui kylant kalnų šlaitais [2] (angl. *slope soaring*).

Rečiau paplitęs paukščių skrydžio technikos būdas – dinaminis sklandymo būdas (angl. *dynamic soaring*). Ši išskirtinė technika leidžia paukščiui, pasinaudojant horizontaliu oro srauto greičiu (angl. *wind-shear*), įgyti altitudę ir vertikalų gradientą. Naudojantis dinaminio sklandymo būdu, paukščiai sklendžia dviejų rūšių trajektorijomis: apskritimo trajektorija arba *S* formos trajektorija. Kiekviena šių trajektorijų gali būti charakterizuojama periodo puse. Pusę dinaminio sklendimo trajektorijos paukštis išnaudoja aukščiui įgyti sklendžiant prieš oro srautą, o antrąją sklendimo trajektorijos pusę – greičiui įgyti sklendžiant pagal oro srauto judėjimo kryptį. Šios rūšies skrydžio technika labai efektyvi, leidžianti dinamiškai sklandyti didžiulius nuotolius.

Klajojantis albatrosas (angl. Wandering albatross, lot. *Diomedea exulans*) – ilgasparnis jūrų paukštis, puikiai įvaldęs dinaminio sklandymo skrydžio techniką. Ši skrydžio technikos rūšis analizuojama ir aprašoma įvairių rūšių mokslininkų ir specialistų kiek daugiau nei šimtmetį [3][4].

Magistro baigiamąjame darbe pasinaudodami mokslinės literatūros šaltiniais ir publikacijomis atkursime klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*) 3D modelį skaitinės analizės programų pagalba, atliksime albatroso dinaminio skriejimo modelio aerodinaminių charakteristikų analizę, aprašysime albatroso dinaminio skriejimo matematinį modelį, nubraižysime dinaminio skriejimo trajektorijas ir atliksime skriejimo skaitinę analizę trajektorijos ekstremumo ir faziniuose taškuose. Šio magistro baigiamojo darbo tyrimo ir skaitinės analizės metu priimta, jog albatrosas naudoja skrydžio technikos rūšį, kurios metu sklendžia neplasnodamas sparnais (angl. *non-flapping flight*).

1. MOKSLINĖS LITERATŪROS APŽVALGA - KLAJOJANTIS ALBATROSAS (DIOMEDEA EXULANS)

Klajojantis albatrosas (angl. *Wandering albatross*, lot. *Diomedea exulans*) – priklauso *Diomedeidae* albatrosų šeimai. Tai ilgasparnis paukštis, kurio liemens ilgis 110-135 cm, sparno mojis 250-350 cm, svoris 6-11 kg. Albatroso uodega – trumpa, pleišto formos.

Klajojantis albatrosas matmenimis ir anatomija panašus tik su didžiaisiais *Diomedeidae* šeimos albatrosais – karališkuoju (angl. *Royal*, lot. *D. Epomphora*) ir Amsterdamo (angl. *Amsterdam*, lot. *D. Amsterdamensis*). Priklausomai nuo nuolatinės albatrosų gyvenamosios vietos, matmenys gali neženkliai skirtis. Priklausomai nuo lyties, albatroso patelių matmenys vidutiniškai mažesni nei patinėlių [5].

1 pav. Klajojantis albatrosas (angl. Wandering albatross, lot. Diomedea exulans) [6]

Klajojantis albatrosas – jūrinis paukštis. Antarktidoje dažiausiai pastebimas atvirame vandenyne, retai priartėja prie žemyninės dalies, ledynų. Vėlyvą vasarą galima pastebėti albatrosus ant ledo lyčių šalia Antarktidos ledynų. Taip pat pastebima, jog gyvenamajai vietai ir perėjimui albatrosai koncentruojasi prie atvirų skardžių ir žemyninės dalies, pro kurias teka vandenyno srovės. Dalis albatrosų visus metus lieka atvirame vandenyne, pelaginiuose vandenyse (angl. *pelagic water*).

2 pav. Klajojančio albatroso (lot. *Diomedea exulans*) migracijos zonos ir buveinės vasaros ir žiemos metų laiku [5]

Nustatyta, jog albatrosai renkasi vandens paviršius, kurių temperatūra svyruoja nuo -2 °C iki 24_°C. Pietų pusrutulyje, Indijos vandenyne, albatrosai renkasi vandens paviršių, kurio temperatūra svyruoja nuo 6,3 °C iki 7,7 °C. Prie Pietų Amerikos pakrančių – 8-12 °C. Atlanto vandenyno pietuose pastebimos dvi albatrosų gausa pasižyminčios zonos, kurios vandenyno paviršiaus temperatūra siekia 0_°C ir antroji zona, kurioje temperatūra svyruoja nuo 9 iki 20 °C [5].

3 pav. pateikiama pasaulio žemėlapio iliustracija su didžiųjų vandenyno srovių srautų struktūra. Iliustracijoje raudona spalva žymi šalia vandenyno paviršiaus tekančias šiltąsias sroves. Mėlyna spalva iliustruoja giliąsias šaltąsias vandenyno sroves. Būtina pažymėti, jog šiltosioms srovėms paviršiuje atšalus, jos leidžiasi į vandenyno gilumą, įgijusios teigiamą temperatūros gradientą – kyla į vandenyno paviršių, taip srovės nuolatos cirkuliuoja vandenynuose.

3 pav. Didžiųjų vandenyno srovių srautų struktūra [7]

Klajojantis albatrosas dinaminiam skriejimui naudoja bangos fronto sukuriamą vertikalų vėjo greičio gradientą kintantį horizontaliai ir veikiantį jūros paviršiuje iki 15 metrų aukščio [5].

4 pav. Albatroso dinaminio sklendimo (angl. dynamic soaring) trajektorijos ir pagrindiniai principai [8]

Įvade trumpai aprašyta skrydžio technika, kurios metu albatrosas pasinaudodamas horizontaliu oro srauto greičiu įgyja aukštį, vertikalų gradientą. Naudodamasis dinaminio skriejimo būdu, albatrosas pasirinktinai sklendžia dviejų rūšių trajektorijomis: apskritimo trajektorija arba S formos trajektorija. Kiekviena šių trajektorijų gali būti charakterizuojama periodo puse. Pusė dinaminio skriejimo periodo trajektorijos paukštis išnaudoja aukščiui įgyti sklendžiant prieš oro srautą, o antrąją sklendimo periodo trajektorijos pusę - greičiui įgyti sklendžiant pagal oro srauto judėjimo kryptį. Šios rūšies skrydžio technika labai efektyvi, leidžianti dinamiškai skrieti didžiulius nuotolius.

4 pav. albatroso judėjimo trajektorijos vaizdas iš šono (kairėje pusėje) ir iš viršaus (dešinėje pusėje). Aukščiau bangos paviršiaus pastebimas horizontalus vėjo greičio gradiento didėjimas kylant į viršų. Pakilęs aukščiau bangos paviršiaus albatrosas įgyja didelį kinetinės energijos kiekį, kuris leidžia per trumpą laiko tarpą pasiekti 10-15 metrų aukštį virš vandens paviršiaus. Geltona spalva iliustruoja prieš vėją sklendžiančio albatroso trajektoriją, sklendimą prieš bangų judėjimo kryptį. Žalia spalva iliustruoja su šoniniu vėju sklendžiančio albatroso trajektoriją, pagal bangų judėjimo kryptį.

Šiame skyriuje bei įvade pateiktą medžiagą papildysime bei detaliai analizuosime skyriuje 4.2. *Albatroso sklandmens aerodinaminių charakteristikų tyrimas*, kuriame konkrečiai apibrėžiame analizuojamųjų skrydžio trajektorijų fazes, skrydžio greičius bei albatroso modelio aerodinamines charakteristikas priklausomai nuo sparno užsparnių atakos kampo taip pat ir nuo sparno atakos kampo padėties.

2. ALBATROSO (DIOMEDEA EXULANS) SKLANDMENS MODELIAVIMAS

2.1. ALBATROSO SPARNO MODELIAVIMAS

Siekdami kuo tiksliau atkurti klajojančio albatroso sparną, pritaikysime 5 pav. iliustruotą pirmąjį sparno profilį. Sparno profilio stygos ilgis pagal iliustracijoje pateiktą skalę – 230 mm. Albatroso sparno profilio styga bei profilio kreivumas nėra pats didžiausias lyginant su kitų rūšių paukščių sparno profiliais iliustruotais 5 pav., tai paaiškina, kodėl klajojantis albatrosas gali nusklęsti kur kas didesniu atstumu.

5 pav. Albatroso, gandro, erelio ir vanago nesimetrinių sparno profilių ilgiai [9]

Sparno profilis – tai kontūras, gaunamas sparną perkirtus plokštuma, lygiagrečia simetrijos plokštumai [10]. Aukščiau pateiktos iliustracijos pirmąjį sparno profilį – Albatross (*Diomedea exulans*) – naudojantis skaitinio modeliavimo programa AutoCAD padaliname horizontaliai – vertikaliais pjūviais. Sparno profilio priekis padalintas į 4 dalis žingsniu 1,8 mm, tęsiant dalijimą atitinkamai – 8_dalys žingsniu 3,6 mm ir 27 dalys žingsniu 7,2 mm.

6 pav. Albatroso sparno profilio dalijimas horizontaliai - vertikaliais pjūviais

Aprašome sumodeliuoto aerodinaminio profilio formos charakteristikas. 7 pav. iliustruotas albatroso sparno aerodinaminis profilis.

7 pav. Albatroso sparno profilio forma

Albatroso aerodinaminio profilio formą apibūdina įvairūs parametrai, ne visi jie gali būti išmatuoti. Apskaičiuosime parametrus pasinaudodami žemiau esančiomis lygtimis [10] tam, kad galėtume tiksliai aprašyti sumodeliuotą aerodinaminio profilio formą.

$$t = \frac{T}{c} \tag{1}$$

čia: t – santykinis profilio storis, T – profilio storis, mm, c – profilio styga, mm.

Skaičiavimas pritaikant formulę (1) apskaičiuojamas albatroso sparno profilio santykinis storis, kuris yra lygus t = 0.123.

$$x_t = \frac{x_T}{c} \tag{2}$$

čia: x_t – santykinė didžiausio storio vieta, X_T – didžiausio storio vieta, mm, c – profilio styga, mm.

Skaičiavimas pritaikydami formulę (2) apskaičiuojame albatroso sparno profilio santykinės didžiausio storio vietos reikšmę, kuri yra lygi $x_t = 0.176$.

$$f = \frac{F}{c} \tag{3}$$

čia: f – santykinis profilio gaubtumas, F – profilio gaubtumas, mm, c – profilio styga, mm.

Skaičiavimas pritaikydami formulę (3) apskaičiuojame albatroso sparno profilio santykinio gaubtumo reikšmę, kuri yra lygi f = 0.08.

$$x_f = \frac{X_F}{c} \tag{4}$$

čia: x_f – santykinė didžiausio gaubtumo vieta, X_F – didžiausio gaubtumo vieta, mm, c – profilio styga, mm.

Skaičiavimas pritaikydami formulę (4) apskaičiuojame albatroso sparno profilio santykinę didžiausio gaubtumo vietos reikšmę, kuri yra lygi $x_f = 0.392$.

$$r_{LE} = \frac{R_{LE}}{c} \tag{5}$$

čia: r_{LE} – santykinis noselės kreivumo spindulys, R_{LE} – prie priekinės briaunos įbrėžto apskritimo spindulys, mm, c – profilio styga, mm.

Skaičiavimas pritaikant formulę (5) apskaičiuojamas albatroso sparno profilio santykinis noselės kreivumo spindulys, kuris yra lygus $r_{le} = 0.013$.

Albatroso sparno profilio matmenys ir skaičiavimo rezultatai pateikiami prieduose, 1 lentelė.

Būtina pažymėti, jog sparno profilio stygos ilgis priedų 1 lentelėje nesutampa su 6 pav. nurodytu sparno profilio stygos ilgiu lygiu 230 mm. Skaitinio modeliavimo programos SolidWorks aplinkoje atliksime sparno profilio aerodinaminių charakteristikų tyrimus su profiliu, kurios stygos ilgis lygus c_r=294,39 mm. Šis sparno profilis yra pats ilgiausias sparno konstrukcijoje, tvirtinamas prie albatroso kūno ir dar vadinamas sparno pagrindu. Sparno profilio styga prie liemens vadinama sparno pagrindo styga ir žymima c_r [10]. Pagal klajojančio albatroso anatomiją, tai pirmasis prie kūno esantis sparno profilis.

Siekdami kuo tiksliau atkurti klajojančio albatroso sklandmens modelį pagal mokslinės literatūros apžvalgos skyriuje 1.1. nurodytus matmenis ir aprašymą – ilgis 110-135 cm, sparno mojis 250-350 cm, svoris 6-11 kg, uodega – trumpa, pleišto formos, kurios plotis 78,56 mm - panaudojome ne mažiau nei 20 skirtingų klajojančio albatroso skrydžio konfigūracijos iliustracijų iš įvairių mokslinių straipsnių, biologijos ir ornitologijos vadovėlių [5].

Vertikaliais pjūviais padalinsime albatroso nuotraukas, jog galėtume atkurti horizontalią sparno ir kūno konstrukciją. Pirminiame etape sparnas padalintas 21 vertikaliu pjūviu. Pjūvių žingsnis skirtingas – pradedant 76.76 mm ir baigiant 53.73 mm ties sparno galine dalimi.

8 pav. Albatroso projekcijų horizontalieji ir vertikalieji pjūviai

8 pav. matome dvi albatroso nuotraukas ir vieną iliustraciją. Paveikslo viršuje, kairioji iliustracija vaizduoja klajojančio albatroso skeletą. Būtina paminėti, jog ši iliustracija – tai 2 veidrodiniai iliustracijos [11] atspindžiai - naudojama tik kaip pagalbinė priemonė albatroso sparno formai atkurti. 8 pav. apačioje – muziejaus, esančio pietų *Džiordžijos* (angl. *Georgia*) saloje, *Grytviken* 'e, eksponatas [12]. 8 pav. nuotrauka dešinėje – Amerikos nacionalinio muziejaus eksponatas [13]. Ši nuotrauka padalinta į 27 horizontalius pjūvius, padėjusius atkurti albatroso kūno, galvos ir uodegos profilio pjūvį. Horizontaliais ir vertikaliais pjūviais albatroso iliustracija ir nuotraukos dalintos tose vietose, kuriose keičiasi sparno, galvos, kūno ir uodegos geometrinė forma.

Albatroso sparną sudaro trys pagrindiniai regionai: brachialinė dalis (angl. *Brachial region*), antebrachialinė dalis (angl. *Antebrachial region*) ir distalinė sparno dalis (angl. *Distal wing region*) [11]. Šie duomenys būtini atkuriant albatroso sparno struktūrą ir geometriją. 9 pav. pateikiame sparno profilių stygų ilgius, kuriais suskirstytas kairysis albatroso sparnas. Sparnas vaizduojamas iš viršaus, nurodyti matmenys – milimetrai.

9 pav. Albatroso kairiojo sparno vertikalių pjūvių matmenys

Albatroso sparno geometrinis kreivumas pateiktas 10 pav. Matome, jog sumodeliuotas sparnas turi neigiamą V formą. Strėliškumo kampas aerodinamikoje suvokiamas kaip kampas tarp statmens sparno simetrijos plokštumai ir linijos, jungiančios taškus, esančius ketvirtyje stygos (0,25c). Jis apibrėžiamas kampu Λ [14]. Mūsų atveju, išmatuotas sumodeliuoto albatroso sparno strėliškumo kampas, matuojant kampą tarp jo galinės briaunos ir statmens simetrijos ašiai, yra apytiksliai lygus Λ =5°.

10 pav. Albatroso sparno geometrinis kreivumas

Naudojami ir plačiai paplitę kintamos geometrijos sparno kūrimo principai [14]:

- A. Keisti sparno profilį;
- B. Keisti sparno plotą;
- C. Keisti sparno strėliškumą;
- D. Derinti kelis ar visus aukščiau išvardytus sparno geometrijos keitimo būdus.

Albatroso sparno kintamos geometrijos atkūrimui, mūsų atveju, tinkamas sparno geometrijos keitimo principas A – keisti sparno profilį. Principai B ir C nėra tinkami, nes tyrimo ir analizės metu priimame, jog albatroso sparno plotas ir strėliškumas nebus keičiamas. Siekdami atkurti albatroso sparno konstrukciją, diferencijuojame 6 pav. pateiktą sparno profilį ir jo stygos ilgį. Diferencijavimui panaudojame sparno geometrijos kitimo vietose atliktų vertikalių pjūvių ilgius. Kad išgautumėme vientisą ir kiek įmanoma tikslesnę kintamą geometriją, sparno galas padalinamas į dar tris papildomas dalis tarp pjūvio vietų, kurių ilgis 57,43 mm ir 1,64 mm.

11 pav. Kintamos geometrijos albatroso sparno išklotinė

Atkūrėme klajojančio albatroso sparną pagal mokslinės literatūros apžvalgos skyriuje 1.1. nurodytus sparno mojo matmenis – sparno mojis 250-350 cm. Sumodeliuoto sparno mojis – 3000 mm (žr. pav. 18).

Klajojančio albatroso 3 dimensijų kintamos geometrijos sparno modelis pavaizduotas 12 pav. Sparno mojis – 3000 mm. Sparno konstrukcijos ilgiu sudėlioti diferencijuoti sparno profiliai pagal priedų 2 lentelėje pateiktus duomenis. Diferencijuoti sparno profiliai sudedami sparno vertikalių pjūvių vietose pradedant kairiojo sparno galo profiliu, kurio stygos ilgis lygus $c_t=1,64$ mm ir baigiant kairiojo sparno pagrindo profiliu, kurio stygos ilgis $c_r=294,39$ mm.

Sparno konstrukciją sudaro du vienodos formos ir konfigūracijos sparnai, kurių kiekvienas susideda iš 24 kintamos geometrijos sparno profilių.

12 pav. Albatroso sparno aksonometrinis modelis

2.2. ALBATROSO LIEMENS MODELIAVIMAS

13 pav. detaliau pavaizduotas albatroso liemens atkūrimas. Kairioji nuotrauka – JAV *Iovos* (angl. *Iowa*) universiteto publikacija [15], kurioje vaizduojamas apšviestas klajojančio albatroso skeletas. Šio tipo iliustracija leis tiksliai nustatyti, kokiame aukštyje ir kurioje albatroso kūno vietoje prisitvirtina sparno brachialinis regionas (angl. *Brachial region*) - pagrindinis sparno šaknies kaulas su jungiamaisiais audiniais.

13 pav. Albatroso projekcijų horizontalieji pjūviai

14 pav. Albatroso liemens projekcijos x ir y ašyse

14 pav. pateikti albatroso matmenys – milimetrai. Atkūrėme albatroso liemens modelio projekcijas x ir y ašyse pagal mokslinės literatūros apžvalgos skyriuje 1.1. nurodytus ilgio matmenis ir uodegos aprašymą – ilgis 110-135 cm, uodega – trumpa, pleišto formos, kurios plotis 78,56 mm.

Prieš pereinant prie paskutinio paukščio 3 dimensijų atkūrimo etapo, kontūro linijomis apibrėžiame albatroso liemens horizontalią ir vertikalią projekcijas. Kontūro linijos leis atkurti liemens skersinius profilius, o kartu ir aptraukti vertikaliuosius pjūvius jungiamąja medžiaga.

15 pav. Albatroso liemens konstrukcijos skersinių profilių kontūrai

2.3. ALBATROSO SKLANDMENS MODELIAVIMAS

Albatroso sparnas tvirtinamas prie paukščio liemens nugarinės dalies (angl. *dorsal*). Pagal 13 pav. pateiktą iliustraciją nustatėme, kurioje albatroso liemens dalyje kertasi albatroso sparno vidurio linija ir sumodeliuotas paukščio liemuo.

16 pav. Kintamos geometrijos albatroso aksonometrinis vaizdas x, y ir z ašyse

Albatroso tvirtinimo taškas nuo paukščio liemens pradžios nutolęs 533 mm horizontaliai (žr. 18 pav.). Paukščio sparno vidurio linijos vidurio taškas tvirtinamas tarp 18 ir 19 horizontalių pjūvių pavaizduotų 11 pav., 23,51 mm nuo 18 horizontalaus pjūvio ir 84,157 mm aukščiau albatroso liemens vidurio linijos.

Albatroso liemens ašis ir sparno profilio styga prie liemens yra lygiagrečios. Kampas tarp sumodeliuoto albatroso liemens ašies ir sparno stygos yra lygus 0 (žr. pav. 16).

Paskutinis etapas siekiant tiksliai atkurti albatroso sparnų ir liemens 3 dimensijų išorės formą – paukščio sparno 3D modelio ir liemens 3D modelio aptraukimas kontūrus jungiančia medžiaga.

Albatroso sparno 3D modelis aptraukimas kontūrus jungiančia medžiaga atliekamas pradedant sparno galo profiliu ir lygiai taip pat baigiant kito sparno galo profiliu. Šiuo atveju aptraukimo krypties linija (angl. guide line) bus sparno vidurio linija.

Albatroso liemens 3D modelio aptraukimas kontūrus jungiančia medžiaga vyks analogiškai sparno modelio aptraukimo principu – pradedant liemens priekine dalimi ir baigiant liemens galo kontūro linija. Krypties linija – albatroso liemens vidurio linija.
Žemiau esančiame 18 pav. pateikiame 3 dimensijų kintamos geometrijos albatroso sklandmens 3D modelį skaitinio modeliavimo programos SolidWorks aplinkoje.

17 pav. Albatroso 3 dimensijų modelis su x, y, z ašimis

Panaudodami skaitinio modeliavimo programas AutoCAD ir SolidWorks atkūrėme klajojančio albatroso modelį pagal mokslinės literatūros apžvalgos skyriuje 1.1. nurodytus matmenis ir aprašymą. Albatroso modelio ilgis – 1197 mm, sparno mojis 3000 mm, uodega – trumpa, pleišto formos, kurios plotis 78,56 mm. Pateikiame klajojančio albatroso 3 dimensijų plano formą iš šono, priekio ir viršaus. 18_pav. nurodyti matmenys – milimetrai.

18 pav. Albatroso 3 dimensijų modelis su matmenimis

3. TYRIMO METODIKA

Pagrindinis magistro baigiamojo darbo tikslas - išnagrinėti klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*) dinaminio skriejimo (angl. *Dynamic soaring*) ypatumus ir jų priklausomybę nuo sklandmens konfigūracijos aerodinaminių charakteristikų.

Tiriamojo objekto skaitinei analizei atlikti panaudosime modeliavimo ir skaitinės analizės programą – *SolidWorks. SolidWorks* plačiai paplitusi skaitinio modeliavimo programa, kuri suteikia galimybę ne tik sumodeliuoti objektą, bet ir atlikti skaitinę objekto konstrukcijos parametrų analizę, nustatyti modelio aerodinamines charakteristikas. Magistro baigiamajame darbe albatroso sparno profilio ir sklandmens aerodinaminėms charakteristikoms nustatyti naudosime skaitinės analizės programos *SolidWorks* paprogramę *Flow Simulation. Flow Simulation* paprogramė leidžia nustatyti kraštines sąlygas, pradines ir aplinkos sąlygas įtakojančias tiriamojo objekto aerodinamiką – medžiagą, aptekančią tiriamajį objektą skaičiuotinėje erdvėje, aplinkos temperatūrą, slėgį, tankumą, srauto aptekėjimo būdą (laminarinis, turbulentinis arba laminarinis-turbulentinis), srauto tekėjimo kryptį, srauto tekėjimo greitį, tiriamojo objekto sienelės šilumos būseną (adiabatinė sienelė, šilumos srautas, šilumos perdavimo greitis, sienelės temperatūra).

Tiriamojo objekto priimtos aplinkos sąlygos skaitinei analizei atlikti – ISA. ISA (angl. *International Standard Atmosphere*) – tai tarptautinė standartinė atmosfera, kurios atmosferos modelis nurodo kaip keičiasi atmosferos tankumas, temperatūra, slėgis ir klampumas keičiantis altitudei. Tarptautinė standartizacijos organizacija (angl. *International Organization For Standardization* (ISO)) pateikia ISA sąlygų apibrėžimą tarptautiniu standartu – ISO 2533:1975 [17]. Kitos standartizacijos organizacijos tokios kaip *Tarptautinė Civilinės Aviacijos Organizacija (ICAO*) pateikia savo ISA atmosferos modelius. ICAO ISA modelis publikuojamas pavadinimu "ICAO Standard Atmosphere".

Klajojantis albatrosas, dinaminiam skriejimui, naudoja bangos fronto sukuriamą horizontalų vėjo greičio gradientą veikiantį jūros paviršiuje iki 15 metrų aukščio [5]. Detali ISA sąlygų lentelė jūros lygyje pateikiama prieduose, 3 lentelė [18].

Atlikdami albatroso sparno profilio, albatroso sklandmens aerodinaminių charakteristikų tyrimus, modeliavimo ir skaitinės analizės programos *SolidWorks* paprogramės *Flow Simulation* simuliacijos parametruose nurodysime, jog analizė – tai išorės aerodinaminių charakteristikų tyrimas, į kurį nėra įtrauktos ertmės be srauto aptekėjimo sąlygų bei vidinės albatroso ertmės. Tiriamąjį objektą apteka laminarinis ir turbulentinis oro srautas. Tiriamojo objekto sienutė – adiabatinė, kurios šiurkštumas lygus 0 mikrometrų. Albatroso sparno profilio aerodinaminės charakteristikos analizuojamos veikiant 20 m/s

oro srauto greičiui. Atliekant albatroso sklandmens analizę, kurios metu bus keičiama albatroso 3D modelio užsparnių padėtis, oro srauto greitis, aptenkantis sklandmenį, kai užsparnių padėtis nuo -2° iki 0° imtinai, 25 m/s ir oro srauto greitis, aptenkantis sklandmenį, kai užsparnių padėtis nuo 0° iki 6° imtinai, 15 m/s. Oro srauto greičių keitimas nėra atsitiktinis. Veikiant 25 m/s oro srauto greičiui analizuojamos albatroso sklandmens aerodinaminės charakteristikos, kai paukštis pradeda tolygaus žemėjimo manevrą iš aukščiausio trajektorijos taško. Veikiant 15 m/s oro srauto greičiui, analizuojamos albatroso sklandmens charakteristikos, kai paukštis pradeda tolygaus vėjo greičio gradientui.

Pagrindinės charakteristikos apibūdinančios oro srautu aptekančio modelio aplinkos sąlygas jūros lygyje ir parametrus parinktus *SolidWorks* programos paprogramėje *Flow Simulation* simuliacijoje [18]:

- 1. Oro temperatūra, T +15 °C;
- 2. Oro tankis, $\rho 1.225 \text{ kg/m}^3$;
- 3. Oro slėgis, *P* 1013.25, hPa;
- 4. Kinematinis klampumas, $v 1.460 \cdot 10^{-5}$ kg/m/s;
- 5. Klampumas (angl. *Viscosity*), $\mu 1.789 \cdot 10^{-5} \text{ m}^2/\text{s}$.

Skaičiuotinė erdvė – svarbus skaitinės analizės elementas aerodinaminėms charakteristikoms nustatyti. Ji apibrėžia sritį, kurioje bus atliekami skaičiavimai ir pateikiami skaičiavimo rezultatai. Keliamoji jėga yra vienas pagrindinių aerodinaminio profilio ir sklandmens parametrų, kurį siekiame apskaičiuoti, o keliamoji jėga – ne kas kita, kaip slėgių pasiskirstymo virš sparno ir po sparnu skirtumas. Todėl būtina užtikrinti, kad visos sritys, kuriose pasireiškia žymus slėgio pasikeitimas, būtų įtrauktos į skaičiuotinę modelio erdvę. Atliekant albatroso sparno profilio ir sklandmens aerodinaminių charakteristikų tyrimą, analizei naudojamų skaičiuotinių erdvių parametrai pateikti 3 skyriuje – *Albatroso dinaminio skriejimo modelio aerodinaminės charakteristikos*.

4. ALBATROSO (DIOMEDEA EXULANS) DINAMINIO SKRIEJIMO MODELIO AERODINAMINĖS CHARAKTERISTIKOS

4.1. ALBATROSO SPARNO PROFILIO AERODINAMINĖS CHARAKTERISTIKOS

Skyriuje 2.1. "Albatroso sparno modeliavimas" pateiktas analizuojamasis sparno profilis. Būtina pažymėti, jog sparno profilio duomenys ir jo taškų koordinatės nėra patalpintos sparno profilio duomenų bazės internetiniuose puslapiuose. Skyriuje 2.1. buvo aprašyta, jog sparno profilis – tai kontūras, gaunamas sparną perkirtus plokštuma, lygiagrečia simetrijos plokštumai [10]. Analizuojamojo objekto – Albatross (*Diomedea exulans*) – sparno profilis atkurtas naudojantis skaitinio modeliavimo programa *AutoCAD*, kurioje 6 pav. pavaizduotą sparno profilį padaliname horizontaliai – vertikaliais pjūviais. Sparno profilio priekis padalintas į 4 dalis - žingsniu 1,8 mm, tęsiant dalijimą atitinkamai – 8 dalys žingsniu – 3,6 mm ir 27 dalys – žingsniu 7,2 mm. Apjungus šiuos pjūvius programos *AutoCAD* aplinkoje, sukurtas eksperimentinis analizuojamojo objekto sparno profilis, kurio aerodinaminių charakteristikų tyrimai bus atliekami skaitine modeliavimo programa *SolidWorks*, paprograme *Flow Simulation*, remiantis 3 skyriuje aprašyta tyrimo metodika.

Dinaminis slėgis yra vienas pagrindinių parametrų, nuo kurių priklauso aerodinaminės jėgos. Oro potencinę energiją apibūdina statinis slėgis, o kinetinę – dinaminis slėgis. Statinio ir dinaminio slėgio suma yra visuminis slėgis, kuris apibūdina srauto pilnutinę energiją. [10] Oro srauto mechaninės energijos tvermės dėsnis išreiškiamas Bernulio lygtimi (6), (7) arba (8):

potencinė energija + kinetinė energija = pilnutinė energija = const.
$$(6)$$

$$statinis slėgis + dinaminis slėgis = visuminis slėgis = const.$$
 (7)

$$p + \frac{\rho \cdot V^2}{2} = p_0 = const. \tag{8}$$

Skyriuje 2.1. aprašyta, jog albatroso sparno profilio aerodinaminės charakteristikos analizuojamos veikiant 20 m/s oro srauto greičiui. Ši oro srauto greičio reikšmė pasirinkta neatsitiktinai. Tai nustatyta vertikalaus oro srauto greičio grandiento reikšmė veikiantį jūros paviršiuje iki 15 metrų aukščio [5].

Prieduose esančiame grafike 19 pav. detaliai pateikiamos įvairių rūšių paukščių ir lėktuvų kreiserinio skriejimo greičio, svorio ir sparno įkrovos priklausomybės. 19 pav. matome, kad klajojančio albatroso svoris ir kreiserinio skriejimo greičio priklausomybė išskirta bei pažymėta horizontalios ir vertikalios linijų susikirtimu.

Aptekėdamas sparno profilį, kietąjį kūną, oro srautas, be slėgio jėgų, paribio sluoksnyje taip pat sukuria trinties jėgas, dėl kurių sparno viršutinėje ir apatinėje, priekinėje ir galinėje dalyse atsiranda slėgių skirtumas. Pilnutinė aerodinaminė jėga R yra visų kūną veikiančių jėgų suma. Pilnutinė aerodinaminė jėga R pasvirusi aptekančio srauto kryptimi [20]. 20 pav. pavaizduotos sparno profilį veikiančios jėgos, kai kietąjį kūną apteka oro srautas. 20 a pav. matome dvi jėgos dedamąsias: p – slėgio pasiskirstymas kūno paviršiuje; τ – trinties pasiskirstymas kūno paviršiuje. Dėl slėgio ir trinties jėgų pasiskirstymo kūno paviršiuje susidaro aerodinaminės jėgos ir kietąjį kūną veikiantys momentai. 20b pav. matome, pavaizduotus keliamosios (L), pasipriešinimo (D) ir jėgų atstojamosios (R) krypties vektorius. Akivaizdu, jog taip sparno profilį aptekėdamas oro srautas sukurs momentą, veikiantį laikrodžio rodyklės sukimosi kryptimi. Iš 20 pav. esančių iliustracijų (20a) ir (20b) nesunkiai galime daryti prielaidą, jog norint, kad albatrosas skristų tiesiai ir tolygiai pastoviu greičiu, visų tiriamąjį objektą veikiančių momentų suma turi būti lygi 0 (pirmasis Niutono dėsnis).

20 pav. Sparno profilį veikiančios jėgos (20a); Aerodinaminės jėgos (20b) [21]

Sparno profilio vieta, kurioje veikia pilnutinė aerodinaminė jėga R dar vadinama slėgio centru (SC). Slėgio centro vieta kiekvienu atveju gali būti tiksliai išreiškiama koordinatėmis. Tačiau pilnutinę aerodinaminę jėgą naudoti nėra patogu – keičiantis sparno profilio atakos kampui, jos padėtis keičiasi, kinta tiek skaitinė išraiška, tiek ir kryptis. Siekiant palengvinti skaičiavimus pilnutinė aerodinaminė jėga skaidoma į vertikalią ir horizontalią projekcijas. Šios projekcijos atitinkamai vadinamos keliamąja (L) ir pasipriešinimo (*D*) jėgomis. Būtina pažymėti, jog tyrimo metu, keliamosios ir pasipriešinimo jėgos reikšmės bus pateiktos globalioje koordinačių sistemoje O_x ir O_y (statmenai ir išilgai stygos) [20].

Albatroso sparno profilis nėra simetriškas, todėl galima daryti prielaidą, jog sparno profiliui esant nustatytam atakos kampu lygiu α =0°, pagal Bernulio dėsnį, oro srauto srovelės sparno viršuje susispaus labiau nei apačioje taip sukurdamos keliamąją jėgą, o kartu ir pasipriešinimo jėgą. Keliamosios ir pasipriešinimo jėgų koeficientų priklausomybės nuo atakos kampo grafiškai vaizduojamos kreive vadinama sparno profilio poliare.

Vienas pagrindinių sparno profilio aerodinaminių tyrimo tikslų yra nubrėžti analizuojamojo objekto – klajojančio albatroso - sparno poliarę esant skirtingiems atakos kampams. Poliarė ne tik grafiškai pavaizduos koeficientų C_L , C_D ir C_R priklausomybę nuo atakos kampo, bet ir remiantis [20] literatūros šaltiniu leis rasti:

- kritinį atakos kampą α_{kr} , kuris atitinka didžiausią keliamosios jėgos koeficiento C_L reikšmę, nustatomą pravedus poliarei liestinę, lygiagrečia C_D ašiai;
- nulinės keliamosios jėgos atakos kampą α_0 , kuris atitinka $C_L = 0$, kur poliarė kerta C_D ašį;
- didžiausios sparno kokybės kampą θ_{min} , išvedus poliarei liestinę iš koordinačių centro;
- mažiausio pasipriešinimo atakos kampą, pravedus poliarės liestinę lygiagrečią C_L ašiai;
- du skirtingus vienodos kokybės atakos kampus pravedus poliarės kirstinę iš koordinačių pradžios kampu, didesniu kaip θ.

Sparno profilio keliamosios ir pasipriešinimo koeficientų C_L ir C_D reikšmės apskaičiuojamos pagal (9)-(13) formules:

$$C_L = \frac{L}{\rho \cdot V^2 / 2} \cdot S \tag{9}$$

čia: C_L – keliamosios jėgos koeficientas, kuris priklauso nuo profilio formos, glotnumo, atakos kampo; L – keliamoji jėga, N; ρ – oro tankis, kg/m^3 ; V – oro srauto greitis, m/s; S – sparno plotas, m^2 .

$$D_a = D_{ap} + D_{ai} \tag{10}$$

čia: D – sparno pasipriešinimo jėga, N; D_{ap} – sparno profilinio pasipriešinimo jėga, N; D_{ai} – sparno indukcinio pasipriešinimo jėga, N.

$$D_a = C_{Dap} \cdot \frac{\rho \cdot V^2}{2} \cdot S + C_{Dai} \cdot \frac{\rho \cdot V^2}{2} \cdot S \tag{11}$$

čia: D_a – sparno pasipriešinimo jėga, N; C_{Dap} – sparno profilinio pasipriešinimo koeficientas; C_{Dai} – sparno profilinio indukcinio pasipriešinimo koeficientas; ρ – oro tankis, kg/m^3 ; V – oro srauto greitis, m/s; S – sparno plotas, m^2 .

Sparno profilio pasipriešinimo jėgos koeficientas C_{xa} tyrimo metu bus išreiškiamas kaip profilinio ir indukcinio pasipriešinimo koeficientų suma $C_{Dap} + C_{Dai} = C_D$. Tuomet iš (11) formulės išreiškiame pasipriešinimo koeficiento lygtį (12):

$$C_D = \frac{D}{\rho \cdot V^2 / 2} \cdot S \tag{12}$$

čia: C_D – pasipriešinimo jėgos koeficientas, kuris priklauso nuo sparno profilio paviršinio ir indukcinio pasipriešinimo koeficientų bei atakos kampo; D – pasipriešinimo jėga, N; ρ – oro tankis, kg/m^3 ; V – oro srauto greitis, m/s; S – sparno plotas, m^2 .

Oro srauto aptekėjimas sparno profilio paviršiumi vyksta dviem aptekėjimo tipais – laminariniu ir turbulentiniu. Laminarinis oro srauto tekėjimas suprantamas kaip tarpusavyje nesimaišantis oro srautas, aptekantis kūną atskirais sluoksniais. Turbulentinis oro srautas nėra pastovus, susidarantys oro srauto sūkuriai maišosi tarpusavyje taip atitrūkdami nuo aptekamo paviršiaus. Oro srauto ribą, kuomet laminarinis oro srauto tekėjimas virsta turbulentiniu apibrėžia Reinoldso skaičius, dar vadinamas kritiniu. Reinoldso skaičius – tai bedimensis dydis apskaičiuojamas pagal formulę (13):

$$R_e = \frac{v \cdot L}{v} \tag{13}$$

čia: \mathcal{V} – oro srauto greitis, *m/s*; *L* – paviršiaus ilgis, *m*; \mathcal{V} – srauto kinematinė klampa, *kg/m/s*.

$$\nu = \frac{\mu}{\rho} \tag{14}$$

čia: μ – medžiagos klampumas, kuris priklauso nuo medžiagos temperatūros, m²/s; ρ – medžiagos tankis, kg/m^3 .

Kadangi tyrimo metu naudosime ISA aplinkos sąlygas jūros lygyje, pasinaudodami prieduose pateiktos 3 lentelės "ISA aplinkos sąlygos jūros lygyje" duomenimis apskaičiuojame analizuojamojo profilio Reinoldso skaičių pagal (13) formulę, kurio reikšmė R_e =403274:

$$R_e = \frac{20 \cdot 0.29439}{1.46 \cdot 10^{-5}} = 403274$$

Būtina pažymėti, jog šios reikšmės Reinoldso skaičius atitinka tik albatroso sparno profilio 2D ir 3D aerodinaminių charakteristikų programos *SolidWorks* paprogramės *Flow Simulation* aplinkoje atliekamą tyrimą. Atliekant albatroso sklandmens aerodinaminių charakteristikų analizę skaičiuotinėje erdvėje, kurios tikslūs matmenys pateikiami 4.2. skyriuje "Albatroso sklandmens aerodinaminės charakteristikos", R_e reikšmė bus ženkliai didesnė, kadangi pasikeis analizuojamojo paviršiaus ilgis.

Vienas pagrindinių tyrimo uždavinių - atlikti albatroso dinaminio skriejimo modelio aerodinaminių charakteristikų analizę. Klajojančio albatroso modelį sudaro sparno konstrukcija, detaliai aprašyta 2.1. skyriuje "Albatroso sparno modeliavimas", bei albatroso liemens konstrukcija, aprašyta 2.2 skyriuje "Albatroso liemens modeliavimas". Skyriuje 2.1 aprašėme, jog albatroso sparno profilis – tai kontūras, gaunamas sparną perkirtus plokštuma, lygiagrečia simetrijos plokštumai [10] ir sumodeliuotas naudojantis skaitinio modeliavimo programa *AutoCAD*. Tiriamojo objekto sparno profilio koordinatės nebuvo atkurtos remiantis sparno profilių duomenų bazėje pateikiama informacija ir profilio aerodinaminės charakteristikos nėra ištirtos vėjo tunelyje, o tai reiškia, jog klajojančio albatroso sparno profilis visų pirma turi būti ištirtas ir tik tuomet atliekamas bendras albatroso sklandmens aerodinaminių charakteristikų tyrimas. Albatroso sparno profilio aerodinaminių charakteristikų tyrima *SolidWorks*. Remiantis 3 skyriuje aprašyta tyrimo metodika užsiduodame kraštines sąlygas programoje *SolidWorks* paprogramėje *Flow Simulation*. Tiksli duomenų įvestis pateikiama prieduose esančiuose paveikslėliuose 63 pav. - 70 pav.

Pirminiame tyrimo etape siekiame nustatyti albatroso sparno profilio aerodinamines charakteristikas, todėl šiam tikslui, programos *SolidWorks* aplinkoje, atliekame 2D simuliaciją nustatytų matmenų, pateiktų prieduose esančiame 21 pav. kairėje pusėje, lentelėje "Dydžiai ir kraštinės sąlygos" (angl. *Size and Conditions*), skaičiuotinėje erdvėje.

Tyrimui atlikti pasirenkame 2D simuliaciją Y ir Z plokštumoje, nes siekiame, jog sparno profilio aerodinaminės charakteristikos nebūtų įtakotos laisvųjų sūkurių (angl. *Vortex*) užsilenkenčių už sparno profilio galų. Kadangi virš sparno veikia sumažėjusio slėgio sritis, o žemiau jo – padidėjusi slėgio sritis, oro srautas pačioje sparno apačioje krypsta į išorinę sparno pusę, apeina sparno galus ir virš jo nukrypsta į vidinę sparno pusę. Nuo sparno galinės briaunos nueina sūkurių sluoksnis, kuris susisuka į du galinius sūkurius [10]. Laisvieji sūkuriai sukuria indukcinį pasipriešinimą, kuri yra papildoma pasipriešinimo jėga ir sudaro apie 35-45% viso sparno pasipriešinimo [20]. Tyrimui naudojama 2D simuliacija suteikia galimybę eliminuoti laisvuosius sūkurius, sukuriančius papildomą pasipriešinimo jėga dėl jų užlinkimo sparnų galuose. 2D simuliacija tyrimo metu naudojama tik sparno profilio aerodinaminių charakteristikų tyrimams atlikti. Analizuodami albatroso sklandmens aerodinamines charakteristikas naudosime 3D skaičiuotinę erdvę.

22 pav. (a) pateikiamos sparno profilį aptekančio oro srauto linijos, kai sparno profilio atakos kampas $AoA=0^\circ$, o Reinoldso skaičius $R_e=403274$. Oro srautas aptekėdamas sparno profilį be slėgio jėgų, paribio sluoksnyje taip pat sukuria trinties jėgas, dėl kurių sparno viršutinėje ir apatinėje, priekinėje ir galinėje dalyse atsiranda slėgių skirtumas. Slėgių skirtumai, kai sparno profilio atakos kampas $AoA=0^\circ$, o Reinoldso skaičius $R_e=403274$ iliustruojami 22 pav.

(a) Sparno profili aptekančio oro srauto linijos YZ plokštumoje. AoA=0°. Re=403274

(b) Slėgių pasiskirstymo spektras su oro srauto linijomis. AoA=0°. Re=403274

 $R_e = 403274$

- (c) Slėgių pasiskirstymo spektras. AoA=0°. (d) Slėgių pasiskirstymo spektras. AoA=0°. $R_e = 403274$
- 22 pav. Albatroso sparno profilį aptekančio oro srauto linijos ir slėgių pasiskirstymo spektras. AoA=0°. $R_e = 403274$

23 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=0°. Re=403274

Pateiktuose 26 ir 27 pav. oro srautas aptekantis sparno profilį turi neigiamą reikšmę – nukreiptas priešinga Y ašies kryptimi. Albatroso sparno profilis nėra simetriškas, todėl 26 pav. matome, kai sparno profilio atakos kampas lygus AoA=0°, pagal Bernulio dėsnį, oro srauto srovės virš sparno susispaudžia labiau nei apačioje ir taip sukuria keliamąją bei pasipriešinimo jėgas.

24 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=0°. Re=403274

Kaip jau minėjome, vienas pagrindinių sparno profilio aerodinaminio tyrimo tikslų yra nubrėžti analizuojamojo objekto – klajojančio albatroso – sparno poliarę esant skirtingiems atakos kampams. Poliarė grafiškai pavaizduos koeficientų C_L , C_D ir C_R priklausomybę nuo atakos kampo. 4 lentelėje pateikiame skaičiavimo rezultatų duomenis programos *SolidWorks*, paprogramės *Flow Simulation* aplinkoje.

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	1,947	1,7923	1,6781	1,947	47	Yes	0,062	0,029
GG Force (Y) 1	[N]	-0,308	-0,3011	-0,3165	-0,289	87	Yes	0,009	0,008
GG Force (Z) 1	[N]	1,922	1,7668	1,6510	1,922	45,6	Yes	0,063	0,029

4 lentelė. Sparno profilio aerodinaminės charakteristikos YZ plokštumoje. AoA=0°. Re=403274

Pirmajame 4 lentelės stulpelyje pateiktos trys pagrindinės aerodinaminės jėgos reikalingos pavaizduoti koeficientų C_L , C_D ir C_R priklausomybę nuo atakos kampo. Pirmojoje eilutėje – pilnutinė aerodinaminė jėga, antrojoje – keliamoji, o trečiojoje eilutėje – pasipriešinimo jėga. Visų veikiančių jėgų dydžiai išreikšti Niutonais [N].

Sparno profilio keliamosios, pasipriešinimo ir pilnutinės aerodinaminės jėgos koeficientų C_L , C_D , C_R reikšmės apskaičiuojamos pagal (9)-(13) formules. Prieduose esančiose 6-8 lentelėse pateikiame skaičiavimo rezultatus gautus naudojantis programa *MS Excel*.

5 lentelė. Sparno profilio paviršiaus plotas apribotoje skaičiuotinėje erdvėje $AoA=0^{\circ}\div 25^{\circ}$. $R_e=403274$

Parameter	Value	X-component	Y-component	Z-component	Surface Area [m^2]
Surface Area [m^2]	0,060546686	0	9,88792E-16	-4,11997E-18	0,060546686

Tyrimo metu atlikome sparno profilio aerodinaminių charakteristikų analizę, kai sparno profilio atakos kampas AoA kinta nuo 0° iki 25°. Prieduose esančiuose paveikslėliuose ir lentelėse pateikiame detalias sparno profilio atakos kampo iliustracijas su spektro kitimu keičiantis slėgių pasiskirstymui prieš sparną, sąstingio taško vietoje, virš sparno bei sparno apačioje, kaip kinta keliamoji jėga, pasipriešinimo ir pilnutinė aerodinaminė jėga keičiantis profilio atakos kampui. Prieduose esančioje 6 lentelėje detaliai pateikiame sparno profilio keliamosios jėgos priklausomybę nuo atakos kampo, taip pat keliamosios jėgos koeficiento C_L reikšmes. 7 lentelėje pateikiame sparno profilio pasipriešinimo jėgos priklausomybę nuo atakos kampo bei apskaičiuotas pasipriešinimo jėgos koeficiento C_D reikšmes. 7 lentelės 2-ame stulpelyje "D" įrašytos pasipriešinimo jėgos reikšmės iš prieduose esančioje 8 lentelėje pateikiamos pilnutinės aerodinaminės jėgos R reikšmės kintant sparno profilio atakos kampui AoA=0°+25°. Pilnutinė aerodinaminė jėga yra visų kūną veikiančių jėgų suma. Jėgų atstojamoji pasvirusi aptekančio srauto kryptimi ir pridedama sparno profilio slėgio centro vietoje.

α	CL	α	C∟
0	0,129568	13	0,493733
1	0,183566	14	0,462183
2	0,193947	15	0,529394
3	0,210396	16	0,561348
4	0,236013	17	0,484767
5	0,295404	18	0,542944
6	0,366794	19	0,563505
7	0,38904	20	0,55791
8	0,370165	21	0,497912
9	0,385535	22	0,531484
10	0,427533	23	0,524069
11	0,427533	24	0,498721
12	0,482744	25	0,506811
		MAX	0,563505

9 lentelė. C_L priklausomybė nuo atakos kampo α , R_e

Atakos kampas α , kai keliamosios jėgos koeficientas įgyja didžiausią reikšmę – vadinamas kritiniu atakos kampu ir žymimas simboliu α_{kr} . Pasiekus kritinį atakos kampą albatroso sparno profilio keliamoji jėga, keliamosios jėgos koeficiento reikšme pradeda mažėti. Pagal 9 lentelėje pateiktus duomenis galime daryti išvadą, jog sparno profilis atakos kampų diapazone [α_0 ; α_{kr}] pasiekė kritinį atakos kampą ir įgijo didžiausią keliamosios jėgos koeficiento reikšmę C_L =0,561348, kai α_{kr} =16°.

α	CD	α	CD
0	0,020696	13	0,061953
1	0,022044	14	0,065525
2	0,027302	15	0,075435
3	0,032763	16	0,082851
4	0,035999	17	0,098221
5	0,023123	18	0,110557
6	0,028583	19	0,121276
7	0,034448	20	0,131051
8	0,047459	21	0,15114
9	0,050223	22	0,153297
10	0,051301	23	0,158555
11	0,049616	24	0,184307
12	0,063773	25	0,168195
		MAX	0,184307

10 lentelė. C_D priklausomybė nuo atakos kampo α , R_e

11 lentelė. C_R priklausomybė nuo atakos kampo α , R_e

α	C _R	α	C _R
0	0,131253	13	0,497575
1	0,184846	14	0,466835
2	0,195835	15	0,53472
3	0,21289	16	0,567415
4	0,238709	17	0,494609
5	0,296347	18	0,554135
6	0,36794	19	0,576448
7	0,390523	20	0,573078
8	0,373198	21	0,520293
9	0,388771	22	0,553191
10	0,430567	23	0,547528
11	0,430432	24	0,531686
12	0,486991	25	0,533978
		MAX	0,576448

Tęsdami sparno profilio aerodinaminių charakteristikų tyrimą pastebime, jog toliau didinant atakos kampą $\alpha_{16+i} > \alpha_{kr}$, keliamosios jėgos koeficiento reikšmė mažėja dėl atitrūkstančio srauto srities, o pasipriešinimo jėgos koeficiento reikšmė auga sparčiau didinant virškritinį atakos kampą. Pasipriešinimo jėgos reikšmė tarp atakos kampų $\alpha_{15} = 15^{\circ}$ ir $\alpha_{16} = 16^{\circ}$ yra $\Delta_{15-16} = 0,007416$, o kai sparno profilio atakos kampas įgyja reikšmes $\alpha_{16} = 16^{\circ}$ ir $\alpha_{17} = 17^{\circ}$ pasipriešinimo jėgos reikšmė atitinkamai lygi $\Delta_{16-17} = 0,01537$. Pasipriešinimo jėgos koeficiento reikšmė padidėjo 2,073_karto.

α	C _L /C _D	α	C _L /C _D
0	6,260586	13	7,969532
1	8,327217	14	7,053498
2	7,103704	15	7,017873
3	6,421811	16	6,775427
4	6,55618	17	4,935484
5	12,77551	18	4,910976
6	12,83255	19	4,64647
7	11,29354	20	4,257202
8	7,799716	21	3,29438
9	7,67651	22	3,467018
10	8,333771	23	3,305272
11	8,616848	24	2,705925
12	7,569767	25	3,013226
MAX	12,83255		

12 lentelė. C_L/C_D priklausomybė nuo atakos kampo α , R_e

Daugelis šiuolaikinių sparno profilių įgyja maksimalią keliamosios jėgos koeficiento reikšmę lygią $C_{Lmax}=0,7\div1,5$; $\alpha_{kr}=14\div18^{\circ}$ [20]. Sumodeliuoto eksperimentinio albatroso sparno profilio aerodinaminės charakteristikos yra artimos literatūros šaltinyje [20] aprašytoms reikšmėms ir lygios $C_{Lmax}=0,561348$; $\alpha_{kr}=16^{\circ}$.

Keliamoji jėga yra priežastis, dėl kurios sparnas laikosi ore, o pasipriešinimo jėga sparną veikia priešingai – ji bando sustabdyti. Todėl natūralu, kad šių dviejų parametrų santykis apibrėžia aerodinamikai labai svarbų parametrą – aerodinaminės kokybės koeficientą. Šio koeficiento dydis, t.y. keliamosios ir pasipriešinimo jėgos santykis arba keliamosios jėgos ir pasipriešinimo jėgos koeficientų santykis, parodo kiek kartų keliamosios jėgos reikšmė yra didesnė už pasipriešinimo jėgą. Skaičiavimus atlikome pasinaudodami lygtimis (15) ir (16). Apskaičiuotos aerodinaminės kokybės koeficiento reikšmės kiekvienam sparno profilio atakos kampui pateikiamos 12 lentelėje.

$$K = \frac{L}{D} = \frac{C_L}{C_D} \tag{15}$$

čia: *K* – aerodinaminės kokybės koeficientas;

L – sparno profilio keliamoji jėga, N;

D – sparno profilio pasipriešinimo jėga, N;

 C_L – sparno profilio keliamosios jėgos koeficientas;

 C_D – sparno profilio pasipriešinimo jėgos koeficientas.

$$ctg\theta = K = \frac{C_L}{C_D} arba tg\theta = \frac{1}{K} = \frac{C_D}{C_L}$$
 (16)

čia: *K* – aerodinaminės kokybės koeficientas;

- θ kokybės kampas, °;
- C_L sparno profilio keliamosios jėgos koeficientas;
- C_D sparno profilio pasipriešinimo jėgos koeficientas.

Aerodinaminės kokybės kampas θ – tai kampas tarp sparno profilio keliamosios jėgos *L* ir pilnosios aerodinaminės jėgos *R*. Šios aerodinaminės jėgos iliustruotos 20 pav. (20b). Tyrimo metu apskaičiuota kokybės kampo reikšmė yra lygi θ = 4,45585°.

Nustatėme, jog didžiausias keliamosios ir pasipriešinimo jėgų santykis gaunamas, kai atakos kampas lygus $\alpha_6 = 6^\circ$, tuomet aerodinaminės kokybės koeficiento reikšmė yra lygi *K*=12,83255. Sparno profilio atakos kampui pasiekus kritinį, α_{kr} =16°, aerodinaminės kokybės koeficiento reikšmė yra lygi *K*=6,775. Tiriamojo sparno profilio aerodinaminės kokybės koeficiento dydis priklauso nuo profilio paviršiaus lygumo ir glotnumo, taip pat kitų veiksnių, darančių įtaką keliamosios ir pasipriešinimo jėgų dydžių kitimui. *SolidWorks* programos aplinkoje sudaromos idealios sąlygos laminariniam oro srauto aptekėjimui, todėl galime daryti prielaidą, jog atlikus sparno profilio aerodinaminių charakteristikų tyrimą vėjo tunelyje aerodinaminės kokybės koeficientas, kai atakos kampas lygus α_6 =6°, pasikeistų ir būtų mažesnis nei gautoji reikšmė *K*=12,83255.

α	CD	CL	α	CD	CL
0	0,020696	0,129568	13	0,061953	0,493733
1	0,022044	0,183566	14	0,065525	0,462183
2	0,027302	0,193947	15	0,075435	0,529394
3	0,032763	0,210396	16	0,082851	0,561348
4	0,035999	0,236013	17	0,098221	0,484767
5	0,023123	0,295404	18	0,110557	0,542944
6	0,028583	0,366794	19	0,121276	0,563505
7	0,034448	0,38904	20	0,131051	0,55791
8	0,047459	0,370165	21	0,15114	0,497912
9	0,050223	0,385535	22	0,153297	0,531484
10	0,051301	0,427533	23	0,158555	0,524069
11	0,049616	0,427533	24	0,184307	0,498721
12	0,063773	0,482744	25	0,168195	0,506811

13 lentelė. C_L ir C_D priklausomybė nuo atakos kampo α , R_e

(a) C_L priklausomybė nuo atakos kampo α , R_e

(c) C_L/C_D priklausomybė nuo atakos kampo α , R_e

(b) C_D priklausomybė nuo atakos kampo α , R_e

(e) C_L ir C_D priklausomybę nuo atakos kampo α , R_e

25 pav. Koeficientų C_L , C_D ir C_R priklausomybė nuo atakos kampo. $\alpha = 0^{\circ} \div 25^{\circ}$. $R_e = 403274$

9-13 lentelėse pateiktus sparno profilio aerodinaminių tyrimų duomenis iliustruojame taškų sklaidos diagramomis 25 pav. (a)-(e). Paveikslėlio punktas (e) iliustruoja koeficientų C_L ir C_D priklausomybę nuo atakos kampo. Sujungus šios diagramos sklaidos taškus, gauname sparno profilio poliarę. Taip pat pateikiame poliarės funkcijos matematinę išraišką. Skyriaus 3.1 pradžioje jau aprašėme sparno profilio poliarės panaudojimo galimybės ir jos naudą tyrimų eigai bei papildomiems aerodinaminių charakteristikų parametrams rasti, pavyzdžiui, nulinės keliamosios jėgos kampą α_0 ir kt.

26-29 pav. pateikiame sparno srauto aptekos ir slėgių pasiskirstymo spektrinės analizės iliustracijas, skirtas palyginti, kaip tyrimo eigoje keičiasi slėgio pasiskirstymas bei srauto aptekėjimo greitis charakteringuose atakos kampuose $\alpha \in [0^\circ; 6^\circ; 16^\circ]$.

26 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=0°. Re=403274

27 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=6°. Re=403274

28 pav. Slėgių ir srauto greičio pasiskirstymas YZ plokštumoje. AoA=16°. Re=403274

Palyginę 26-28 pav. pateikiamas sparno srauto aptekos ir slėgių pasiskirstymo spektrinės analizės iliustracijas, kai atakos kampas $\alpha \in [0^\circ; 6^\circ; 16^\circ]$, pastebime, kad sparno profiliui pasiekus kritinę ribą $\alpha_{kr}=16^\circ$, pasienio sluoksniu tekantis oro srautas nebepajėgia nugalėti slėgio didėjimo galinės briaunos link ir atitrūksta nuo sparno paviršiaus pradžioje prie galinės briaunos [10]. Galime daryti išvadą, jog atitrūkęs oro srautas, kai atakos kampas lygus $\alpha_{kr}=16^\circ$, sparno profilio galinėje dalyje suformuoja sūkurius, kurie, remiantis spektrine analize ir prieduose pateiktomis iliustracijomis, įgyja srautui priešingą greičio vektorių. Šis srauto atitrūkimas mažina keliamosios jėgos koeficiento C_L reikšmę ir detaliai pateikiamas 9 lentelėje.

4.2. ALBATROSO SKLANDMENS AERODINAMINIŲ CHARAKTERISTIKŲ TYRIMAS

Pagrindinis magistro baigiamojo darbo tikslas - išnagrinėti klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*) dinaminio skriejimo (angl. *Dynamic soaring*) ypatumus ir jų priklausomybę nuo sklandmens konfigūracijos aerodinaminių charakteristikų. Skyriuje 4.1. "Albatroso sparno profilio aerodinaminės charakteristikos" atlikę analizę nustatėme, kaip keičiasi aerodinaminės charakteristikos keičiant sparno profilio atakos kampą. Šiame skyriuje atliksime albatroso sklandmens aerodinaminių charakteristikų tyrimą, kuris leis išanalizuoti albatroso aerodinaminių charakteristikų priklausomybę nuo sparno konfigūracijos pagal 3 skyriuje aprašyta tyrimo metodiką ir aplinkos sąlygas.

Klajojantis albatrosas dinaminiam skriejimui naudoja bangos fronto sukuriamą horizontalų vėjo (angl. *wind-shear*) greičio gradientą (žr. pav. 29, 30), veikiantį jūros paviršiuje iki 15 metrų aukščio [5].

29 pav. Albatroso skriejimo trajektorija jūros paviršiuje [22]

Oro srautas veikiantis bangų paviršiuje sukuria horizontalią ir vertikaliąją vėjo dedamąsias. Šias dedamąsias nėra lengva atskirti. Bangų paviršiuje veikiantis oro srautas taip pat sukuria smarkius momentinius gūsius. Pietų pusrutulyje, Atlanto ir Ramiajame vandenynuose, kuriuose didžioji dalis pasaulio klajojančių albatrosų populiacijos yra paplitę, naudojasi stipriais veikiančiais vėjais ir aukštomis bangomis dinaminiam skriejimui realizuoti.

30 pav. Ideali albatroso skriejimo trajektorijos ciklo schema jūros paviršiuje [22]

Matematiniai modeliai, skirti analizuoti albatroso dinaminio skriejimo trajektorijas, įvertina vėją kaip horizontalų vėjo greičio gradientą kintantį vertikaliai ir nevertina vandenyno paviršiaus bangų judėjimo tuo metu, kai albatrosas atlieka skriejimo ciklą numatyta trajektorija (žr. 30 pav.). Taip pat nėra įvertinami gūsio poveikiai aktyviai veikiantys albatroso dinaminį skriejimą bei sukuriantys pasipriešinimo jėgas priklausomai nuo skrydžio trajektorijos.

Matematiniai modeliai, aprašantys albatroso dinaminį skriejimą, apribojami linijiniu, logaritminiu ar eksponentiniu horizontalaus vėjo gradiento kitimu, tai labai skiriasi nuo momentinio vėjo veikimo keičiantis aukščiui, gūsių ir oro srauto įtakos, priklausomai nuo bangos judesio kiekio bei intensyvumo. Idealizuoti dinaminio skriejimo modeliai leidžia priartėjimo būdu vertinti albatroso skriejimo trajektorijas ir išreikšti jas sudėtingomis diferencialinėmis lygtimis, kurias naudosime aprašydami tiriamojo objekto dinaminio skriejimo trajektorijas, bei atlikdami trajektorijų optimizavimą.

Albatroso dinaminio skriejimo ciklas dar kitaip vadinamas Railio ciklu (angl. *Rayleigh cycle*). Tai pirmasis mokslininkas aprašęs ir iliustravęs horizontalaus vėjo gradiento (angl. *wind-shear*) išnaudojimą skrydžio metu [22]. Horizontalaus vėjo greičio dinamika bangų paviršiuje leidžia nuspėti, kokia trajektorija bei greičiu albatrosas atliks skrydžio manevrą. Railio ciklo (angl. *Rayleigh cycle*) metu naudojami du homogeniniai oro srauto sluoksniai, pateikti pačia efektyviausia srauto išnaudojimo forma, kai albatrosas horizontalų vėjo greičio gradientą panaudoja efektyviausiai su mažiausiomis energijos sąnaudomis ir nuostoliais. Kitaip tariant, sugeba nenaudodamas energijos atlikti skrydžio ciklą (angl. *energy-neutral flight*) [22].

Šiame tyrimo etape siekiame nustatyti albatroso sklandmens aerodinamines charakteristikas. Programos *SolidWorks* aplinkoje atliekame 3D simuliaciją nustatytų matmenų, pateiktų 31 pav. kairėje pusėje, lentelėje "Dydžiai ir kraštinės sąlygos" (angl. *Size and Conditions*), skaičiuotinėje erdvėje. 14 lentelėje pateikiame albatroso 3D modelio paviršiaus ploto duomenis, kurie yra programos *SolidWorks* išvesties duomenys.

 Parameter
 Value
 X-component
 Y-component
 Z-component
 Surface Area [m^2]

 Surface Area [m^2]
 1,52412789
 -7,05052E-06
 -1,82245E-05
 -3,34633E-06
 1,52412789

14 lentelė. Albatroso sklandmens paviršiaus plotas apribotoje skaičiuotinėje erdvėje AoA=-2°÷6°

Tyrimams atlikti naudojami skaičiuotinės erdvės matmenys pateikti prieduose esančiame 31 pav. Šie matmenys pasirinkti taip, kad visas tiriamasis objektas ir charakteringos slėgio izobaros, bei oro srauto greičio izolinijos patektų į skaičiuotinės erdvės ribas. Mažinant skaičiuotinės erdvės matmenis ir apribojant albatroso 3D modelį siauru kontūru, gaunamos aerodinaminių charakteristikų skaitinių reikšmių paklaidos, kurios neleidžia pasiekti išvesties duomenų su kiek įmanoma mažesne paklaida.

Tyrimams atlikti naudojama tikroji albatroso skriejimo greičio reikšmė (angl. *True Air Speed*) oro srauto atžvilgiu. Ši reikšmė skiriasi nuo albatroso skrydžio greičio žemės atžvilgiu (angl. Ground Speed). Būtina pažymėti, jog *TAS* ir *GS* reikšmės skiriasi, jos nėra lygios. Tiriamojo objekto aerodinaminės charakteristikos priklauso nuo tikrosios albatroso skriejimo greičio reikšmės oro srauto atžvilgiu. Jeigu skaičiavimams panaudotume *GS* reikšmę, kuri yra kur kas mažesnė nei *TAS* reikšmė, negalėtume tiksliai ištirti albatroso aerodinaminių charakteristikų. Apskaičiuota kinetinės energijos reikšmė būtų mažesnė nei tikroji.

Tikrasis ir ženklus skriejimo greičio prieaugis pasiekiamas albatrosui kirtus horizontalaus vėjo greičio gradiento veikimo liniją. Ši linija iliustruota 30 pav. ir pažymėta pavadinimu "Wind-Shear layer". Didžiausias *GS* reikšmės prieaugis stebimas tuomet, kai albatrosas skrydžio trajektorijoje atlieka posūkio manevrą iš kiltinės (angl. *upwind*) į grįžtinę (angl *downwind*). Šis greičio skirtumo pokytis komplikuoja energijos efektyvumo išnaudojimo aprašymą matematiniu modeliu. Subalansuoto skrydžio metu (pirmasis Niutono dėsnis), kai albatrosas skrieja grįžtinėje, akivaizdu, kad tiriamasis objektas prarasdamas aukštį, patiria energijos nuostolius. Tam, kad būtų galimą tęsti skrydį nustatyta trajektorija, albatrosas privalo pasinaudoti veikiančiais atmosferos reiškiniais ir kompensuoti patirtus kinetinės bei potencinės energijos nuostolius.

Pietų pusrutulyje, vandenynų regionuose, kuriuose gausiausiai paplitusios albatrosų populiacijos neegzistuoja stiprios aukštyneigės oro srauto srovės (*antvėjis*), todėl šis skrydžio modelis nebus nagrinėjamas. Tyrimas apsiriboja dinaminio skriejimo modeliu ir šiam modeliui mokslinėje literatūroje pateikiamomis skrydžio trajektorijomis. Laikas, per kurį albatrosas atlieka vieną dinaminio skriejimo ciklą – 10 sekundžių [22].

32 pav. Albatroso sparno aksonometrinis modelis su užsparniais

Albatroso sparno profilio aerodinaminės charakteristikos analizuojamos veikiant 20 m/s oro srauto greičiui. Mokslinėje publikacijoje [22] pateikiama, jog nustatytas tikrasis albatroso skrydžio greitis 15_m/s kiltinės pozicijoje. Žemiau horizontalaus vėjo greičio gradiento veikimo linijos, kurią kirtęs albatrosas įgyja papildomą kinetinės energijos kiekį ir tikrasis albatroso greitis gali išaugti iki 20 m/s. Albatrosui keičiant skrydžio trajektoriją iš kiltinės į grįžtinę, nustatyta, jog tikrasis skrydžio greitis 20_m/s gali įgyti papildomą 5 m/s nugarinio vėjo reikšmę, taip albatrosui suteikdamas papildomą kinetinės energijos prieaugį. Apatiniame grįžtinės taške, žemiau horizontalaus vėjo greičio gradiento veikimo linijos, albatroso tikrojo oro greičio projekcija į horizontalią plokštumą išauga iki 25 m/s. Šis kinetinės energijos prieaugis leidžia atlikti posūkio manevrą ir iš naujo pradėti skrydžio ciklą kiltinėje.

Flight characteristic	t (s)	φ(°)	<i>V</i> (m/s)	<i>V_z</i> (m/s)	V/V_z	⊿W (m/s)
Straight flight						
Minimum sink rate	-	0	12.2	0.66	18.4	-
Maximum V/Vz	-	0	16.0	0.76	21.2	-
Circular flight						
Minimum sink at $t = 10$ s	10.0	42.1	14.1	1.04	13.7	-
Minimum height loss	9.3	45.0	14.5	1.11	13.0	-
Rayleigh cycle loop						
Minimum ΔW at $t = 10$ s	10.0	45.6	16.0	1.14	13.8	3.55
Absolute minimum ΔW	7.2	54.7	16.0	1.51	10.6	3.36

15 lentelė. Klajojančio albatroso skrydžio charakteristikos [22]

Galima daryti prielaidą, jog reiškiniai, tokie kaip – didelis tikrojo oro greičio prieaugis, staigūs posūkiai dideliu posvyriu, fizinės paukščio charakteristikos – apribos realaus albatroso skrydį ir skriejimo trajektoriją.

33 pav. Albatroso sparno 3D modelis su užsparniais

Atliekant albatroso sklandmens analize, keisime albatroso sparno užsparnių bei sparno atakos kampo padėtis, oro srauto greičius, aptenkančius sklandmenį, kai užsparnių padėtis nuo -2° iki 0° imtinai, žingsniu 1°, o oro srauto greitis 25 m/s. Taip pat, kai oro srauto greičio reikšmė, aptenkančio sklandmenį, lygi 15 m/s, o užsparnių padėtis kinta nuo 0° iki 6° imtinai, žingsniu 1°. Veikiant 25 m/s oro srauto greičiui analizuojamos albatroso sklandmens aerodinaminės charakteristikos, kai paukštis atlieka tolygaus žemėjimo manevrą iš aukščiausio trajektorijos taško. Veikiant 15 m/s oro srauto greičiui analizuojamos albatroso sklandmens charakteristikos, kai paukštis pradeda aukštėti veikiant horizontalaus vėjo greičio gradientui. Suprojektuoti albatroso modelio paprastieji užsparniai naudojami tyrimams atlikti iliustruojami 32 pav. Užsparniai keičia albatroso sparno konfigūraciją, jeigu tiksliau, sparno profilio kreivumą, taip padidindami keliamosios jėgos koeficiento C_L reikšmę. Žemiau esančiuose paveiksluose bei prieduose pateiktose tyrimo rezultatu analizės iliustracijose, matysime, kaip naudojant užsparnius padidėja slėgių skirtumas sparno apatinėje ir viršutinėje dalyse. Žinoma, padidėja ir pasipriešinimo jėgos koeficientas C_D , keičiasi aerodinaminės kokybės reikšmė. Naudojant užsparnius, kritinę sparno profilio atakos kampo reikšmę galima sumažinti vidutiniškai 2°÷5°. Rekomenduojamas užsparnio stygos ir sparno profilio stygos santykis 0,2-0,25c. Tokio sparno, irengto visu ilgiu $\Delta C_{\text{ymax}} =$ (0,65-0,75)C_{ymax}.

34 pav. Albatroso sparno aksonometrinis modelis su užsparniais

Analizuodami albatroso sklandmens aerodinamines charakteristikas naudojame 3D skaičiuotinę erdvę, o tai reiškia, kad tyrimo eigoje dėl slėgių skirtumų, virš sparno veikia sumažėjusio slėgio sritis, o žemiau jo – padidėjusi slėgio sritis. Oro srautas pačioje sparno apačioje krypsta į išorinę sparno pusę, apeina sparno galus ir virš jo nukrypsta į vidinę sparno pusę. Nuo sparno galinės briaunos nueinantys sūkuriai bus iliustruoti kaip izoliuotos oro srauto linijos ties sparnų galais prieduose esančiuose paveikslėliuose. Laisvuosius sūkurius sukuriančius papildomą pasipriešinimo jėgą, iliustruosime išreikšdami sūkurį per greitį, oro srauto judėjimo kryptimi. Papildoma pasipriešinimo jėga atsirandanti dėl susidariusių sukūrių, kaip jau minėjome, sudaro 35-45 % viso sparno pasipriešinimo [20]. SolidWorks programos duomenų išvestis bei rezultatai pateikiami įvertinus visus pasipriešinimą sukeliančius poveikius, išreikšta pasipriešinimo jėga *D* ir pasipriešinimo jėgos koeficientu C_D .

36 pav. Albatroso sparno profilio oro srauto greičių pasiskirstymo spektras pjūvio vietoje.

AoA= 6° . V_x = 15 m/s

Atliekame albatroso sklandmens aerodinaminių charakteristikų tyrimą, kai oro srauto greičio reikšmė, aptenkančio sklandmenį, lygi 15 m/s, o užsparnių padėtis kinta nuo 0° iki 6° imtinai, žingsniu 1°. 36 pav. pateikiame albatroso sparno profilio oro srauto greičių pasiskirstymo spektras pjūvio vietoje, ties antrąją nerviūra, kai užsparnių padėtis $AoA = 0^\circ$ veikiant horizontaliam oro srauto greičiui V_x = 15 m/s, ISA sąlygomis.

Lift	$L = C_L * (q(V^2)/2) * s$				
		1,225	15	1,5241	
α	L, N	q, kg/m³	V, m/s	S,m ²	CL
0	18,75	1,225	15	1,5241	0,089269
1	21,713	1,225	15	1,5241	0,103376
2	22,741	1,225	15	1,5241	0,10827
3	23,824	1,225	15	1,5241	0,113426
4	25,041	1,225	15	1,5241	0,11922
5	26,636	1,225	15	1,5241	0,126814
6	27,285	1,225	15	1,5241	0,129904

16 lentelė. Albatroso sklandmens keliamosios jėgos koeficientas CL. AoA=0°÷6°

16 lentelėje pateikiame albatroso sklandmens keliamosios jėgos priklausomybę nuo atakos kampo bei apskaičiuotas keliamosios jėgos koeficiento C_L reikšmes. Antrajame 16 lentelės stulpelyje "L" įrašytos keliamosios jėgos reikšmės iš prieduose esančių lentelių duomenų. 6-ajame stulpelyje pateikiamos apskaičiuotos C_L reikšmės priklausomai nuo užsparnių atakos kampo reikšmės.

37 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=6^{\circ}$. V_x = 15 m/s

Prieduose esančiuose paveiksluose ir lentelėse pateikiame detalias užsparnių pastatymo kampo iliustracijas su spektro kitimu keičiantis slėgių pasiskirstymui prieš sparną, sąstingio taško vietoje, virš sparno bei sparno apačioje, keliamosios, pasipriešinimo ir pilnutinės aerodinaminės jėgos reikšmes.

Drag	$D = C_D * (q(V^2)/2)*s$				
		1,225	15	1,5241	
α	D, N	q, kg/m³	V <i>,</i> m/s	S,m ²	CD
0	8,493	1,225	15	1,5241	0,040435
1	8,594	1,225	15	1,5241	0,040916
2	8,576	1,225	15	1,5241	0,04083
3	8,637	1,225	15	1,5241	0,041121
4	8,697	1,225	15	1,5241	0,041406
5	8,699	1,225	15	1,5241	0,041416
6	8,832	1,225	15	1,5241	0,042049

17 lentelė. Albatroso sklandmens pasipriešinimo jėgos koeficientas C_D. AoA=0°÷6°

17 lentelėje pateikiame albatroso sklandmens pasipriešinimo jėgos priklausomybę nuo atakos kampo bei apskaičiuotas pasipriešinimo jėgos koeficiento C_D reikšmes. 17 lentelės stulpelyje "D" įrašytos pasipriešinimo jėgos reikšmės iš prieduose esančių lentelių duomenų, o 6-ajame stulpelyje pateikiamos apskaičiuotos C_D reikšmės priklausomai nuo užsparnių atakos kampo reikšmės.

38 pav. Albatroso sklandmens greičio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=6^{\circ}$. V_x = 15 m/s

18 lentelėje pateikiamos pilnutinės aerodinaminės jėgos *R* reikšmės, kintant užsparnių padėčiai kampu $AoA=0^{\circ}\div6^{\circ}$.

Resultant	R=C _R *(q(V^2)/2)*s				
		1,225	15	1,5241	
α	R, N	q, kg/m³	V, m/s	S,m ²	C _R
0	20,577	1,225	15	1,5241	0,097967
1	23,352	1,225	15	1,5241	0,111179
2	24,305	1,225	15	1,5241	0,115716
3	25,342	1,225	15	1,5241	0,120653
4	26,509	1,225	15	1,5241	0,126209
5	28,02	1,225	15	1,5241	0,133403
6	28,679	1,225	15	1,5241	0,136541

18 lentelė. Albatroso sklandmens pilnutinės jėgos koeficientas C_R. AoA=0°÷6°

Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybę nuo atakos kampo $\alpha \in [0^\circ; 6^\circ]$, kai tikrasis albatroso skriejimo greitis oro srauto atžvilgiu lygus $V_x = 15$ m/s, pateikiame žemiau esančioje 19 lentelėje. Albatroso sparno užsparnių padėtis, šiuo atveju, keičiame atakos kampų diapazone $\alpha \in [0^\circ; 6^\circ]$ neatsitiktinai. Nagrinėjame aerodinamines albatroso charakteristikas kiltinėje ir grįžtinėje pasinaudodami albatroso sparno profilio aerodinaminių charakteristikų tyrimo rezultatais. Didžiausia aerodinaminė kokybė pasiekiama, kai sparno profilio atakos kampas lygus $\alpha = 6^\circ$. Žinome, jog sparno profilio kritinio atakos kampo ir užsparnių kritinio atakos kampo reikšmės skiriasi, bet šio tyrimo metu siekiame detaliau paanalizuoti, kaip elgiasi, keičiasi albatroso aerodinamika pasitelkiant užsparnius, dažniausiai naudojamus lėktuvuose. Albatrosas, skrydžio metu, atlikdamas manevrus siekia išnaudoti kuo didesnę sukauptos kinetinės ir potencinės energijos dalį nepatirdamas papildomų energijos nuostolių. Albatroso sklandmens keliamosios, pasipriešinimo ir pilnutinės aerodinaminės jėgos koeficientų C_L , C_D , C_R reikšmės apskaičiuojamos pagal (9)-(13) formules. 19 lentelėje pateikiame skaičiavimo rezultatus gautus naudojantis programa *MS Excel*.

19 lentelė. Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybė nuo atakos kampo $\alpha \in [0^\circ; 6^\circ]$. V_x = 15 m/s

α	CL
0	0,089269
1	0,103376
2	0,010827
3	0,113426
4	0,11922
5	0,126814
6	0,129904
MAX	0,129904

 (a) C_L priklausomybė nuo atakos kampo α

	-
α	C _R
0	0,097967
1	0,111179
2	0,115716
3	0,120653
4	0,126209
5	0,133403
6	0,136541
MAX	0,136541

(c) C_R priklausomybė nuo atakos kampo α

α	CD
0	0,040435
1	0,040916
2	0,04083
3	0,041121
4	0,041406
5	0,041416
6	0,042049
MAX	0,040916

(b) C_D priklausomybė nuo atakos kampo α

α	C _L /C _D
0	2,2077
1	2,52653
2	2,651702
3	2,758365
4	2,879269
5	3,061961
6	3,089334
MAX	3,089334

(d) C_L/C_D priklausomybė nuo atakos kampo α

Albatroso sklandmens aerodinaminių charakteristikų priklausomybė nuo užsparnių padėties iliustruojama 39 pav. Albatroso aerodinaminės kokybės koeficiento dydis, yra ne kas kita kaip keliamosios ir pasipriešinimo jėgos santykis arba keliamosios jėgos ir pasipriešinimo jėgos koeficientų santykis. Jis parodo, kiek kartų albatroso sklandmens konstrukcijos keliamosios jėgos reikšmė yra didesnė už pasipriešinimo jėgą. Skaičiavimus atlikome pasinaudodami lygtimis (15) ir (16). Apskaičiuotos aerodinaminės kokybės koeficiento reikšmės kiekvienai užsparnių padėčiai atakos kampų diapazone $\alpha \in [0^\circ; 6^\circ]$ pateikiamos 19 lentelėje (d) punkte bei iliustruojamos 39 pav. (d) punkte.

(a) C_L priklausomybė nuo atakos kampo α

(b) C_D priklausomybė nuo atakos kampo α

40 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje. *AoA*=6°. V_x = 15 m/s

41 pav. pateikiame albatroso sklandmens poliarę, kai užsparnių atakos kampas kinta $AoA=0\div6^{\circ}$, kai tikrasis abatroso greitis oro srauto atžvilgiu kiltinėje yra lygus $V_x = 15$ m/s. Taip pat pateikiame albatroso sklandmens poliarės funkcijos matematinę išraišką.

41 pav. Koeficientų C_L ir C_D priklausomybę nuo atakos kampo $AoA=0.6^{\circ}$. V_x = 15 m/s

42 pav. Albatroso sklandmens turbulentinių oro srovių spektras. $AoA=6^{\circ}$. V_x = 15 m/s

Albatroso sklandmens aerodinaminių charakteristikų tyrimo metu, kai $AoA=0^{\circ}\div6^{\circ}$, albatroso judėjimo greitis oro srauto atžvilgiu lygus V_x = 15m/s, nustatyta, kad didžiausias keliamosios ir pasipriešinimo jėgų santykis gaunamas, kai atakos kampas lygus $\alpha = 6^{\circ}$, tuomet aerodinaminės kokybės koeficiento reikšmė yra lygi K = 3,089334. Užsparnių atakos kampui išstatytam $\alpha = 1^{\circ}$ aerodinaminės kokybės koeficiento reikšmė yra lygi K = 2,52653. Didžiausios keliamosios ir pasipriešinimo jėgų koeficientų reikšmės pasiektos, kai $\alpha = 6^{\circ}$, šios reikšmės atitinkamai lygios C_L = 0,129904 ir C_D = 0,042049.

43 pav. Albatroso sparno profilio oro srauto greičių pasiskirstymo spektras pjūvio vietoje.

 $AoA = -2^{\circ}$. V_x = 25 m/s

Sklandytuvams, tokiems kaip PIK-20B ir daugeliui kitų panašaus tipo sklandytuvų, nustatyta, jog skrendant greičiu TAS žemesniu nei 55 mazgai su užsparnių padėtimi lygia AoA = -4° gaunama mažesnė žemėjimo sparta nei su užsparnių padėtimi $AoA = 0^{\circ}$. Remiantis atliktais tyrimais, kai tikrasis oro greitis sklandytuvu D-78 viršija 70 mazgų greitį, žemėjimo sparta su neigiama užsparnių padėtimi gaunama kur kas didesnė nei tuomet, kai užsparnių pastatymo kampas AoA = 0° [23]. Šiame etape atliekame albatroso sklandmens aerodinaminių charakteristikų tyrimą, kai oro srauto greičio reikšmė, aptenkančio sklandmenį, lygi 25 m/s, o užsparnių padėtis kinta nuo -2° iki 0° imtinai, žingsniu 1°, su tikslu nustatyti, kaip elgiasi sumodeliuotas albatroso 3D modelis, ar įmanoma, jog žemėjimo sparta gaunama mažesnė nei su teigiama užsarnių padėtimi skrydžio trajektorijos grižtinėje.

43 pav. pateikiame albatroso sparno profilio oro srauto greičių pasiskirstymo spektrą pjūvio vietoje, ties antrąją nerviūra, kai užsparnių padėtis $AoA = -2^{\circ}$ veikiant horizontaliam oro srauto greičiui $V_x = 25$ m/s, ISA sąlygomis. Albatroso sklandmens keliamosios jėgos priklausomybę nuo atakos kampo bei apskaičiuotas keliamosios jėgos koeficiento C_L reikšmes pateikiame 20 lentelėje. 20 lentelės 2-ame stulpelyje "*L*" įrašytos keliamosios jėgos reikšmės iš prieduose esančių lentelių duomenų, o 6-ajame stulpelyje pateikiamos apskaičiuotos C_L reikšmės priklausomai nuo užsparnių pastatymo kampo reikšmės.

Lift	$L = C_L * (q(V^2)/2) * s$				
	Vidurkis	1,225	25	1,5241	
α	L, N	q, kg/m³	V, m/s	S,m ²	CL
0	55,215	1,225	25	1,5241	0,094636
-1	54,391	1,225	25	1,5241	0,093224
-2	52,981	1,225	25	1,5241	0,090807

20 lentelė. Albatroso sklandmens keliamosios jėgos koeficientas C_L. AoA=-2°÷0°

44 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA = -2^{\circ}$. V_x = 25 m/s

Prieduose esančiuose paveiksluose ir lentelėse pateikiame detalias užsparnių pastatymo kampo AoA=-2°÷0° iliustracijas su spektro kitimu keičiantis slėgių pasiskirstymu, keliamosios, pasipriešinimo ir pilnutinės aerodinaminės jėgų reikšmes. Albatroso sklandmens pasipriešinimo jėgos priklausomybę nuo atakos kampo bei apskaičiuotas pasipriešinimo jėgos koeficiento C_D reikšmes pateikiame žemiau esančioje 21 lentelėje. 21 lentelės 2-ame stulpelyje "D" įrašytos pasipriešinimo jėgos reikšmės iš prieduose esančių lentelių duomenų, o 6-ajame stulpelyje pateikiamos apskaičiuotos C_D reikšmės priklausomai nuo užsparnių atakos kampo reikšmės.

21 lentelė. Albatroso sklandmens pasipriešinimo jėgos koeficientas C_D. AoA=-2°÷0°

Drag	$D = C_D * (q(V^2)/2)*s$				
	1,225		25	1,5241	
α	D, N	q, kg/m³	V, m/s	S,m ²	CD
0	23,591	1,225	25	1,5241	0,040434
-1	23,527	1,225	25	1,5241	0,040324
-2	25,573	1,225	25	1,5241	0,043831

Pasipriešinimo jėgos *D* ir jos koeficiento reikšmės C_D kintant albatroso sklandmens užsparnių padėčiai kampu $AoA=-2^{\circ}\div0^{\circ}$ pateikiamos 21 lentelėje. Didžiausią reikšmę pasipriešinimo jėgos koeficientas įgyja, kai atakos kampas AoA=-2°. Ši reikšmė yra lygi $C_D = 0,043831$. Matome, jog turi tendenciją mažėti atlenkiant užsparnius atakos kampais AoA= $0^{\circ}\div-1^{\circ}$. 45 pav. pateiktos oro srauto greičio pasiskirstymo izolinijos viršutinėje ir apatinėje albatroso sklandmens konstrukcijos dalyje.

45 pav. Albatroso sklandmens greičio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. AoA=-2°. V_x = 25 m/s

Resultant	R=C _R *(q(V^2)/2)*s				
		1,225	25	1,5241	
α	R, N	q, kg/m³	V, m/s	S,m ²	C _R
0	60,044	1,225	25	1,5241	0,102913
-1	59,262	1,225	25	1,5241	0,101573
-2	57,988	1,225	25	1,5241	0,099389

22 lentelė. Albatroso sklandmens pilnutinės jėgos koeficientas C_R. AoA=-2°÷0°

22 lentelėje pateikiamos pilnutinės aerodinaminės jėgos *R* reikšmės kintant albatroso sklandmens užsparnių padėčiai kampu $AoA = 0^{\circ} \div 6^{\circ}$. Didžiausią reikšmę jėgų atstojamosios koeficientas įgyja, kai atakos kampas AoA = 0°, ši reikšmė yra lygi C_R = 0,102913. Matome, jog koeficientas turi tendenciją mažėti atlenkiant užsparnius į viršų, atakos kampais AoA = $-2^{\circ} \div -1^{\circ}$. 46 pav. pastebime, kad oro srauto greičio spektro linijos visai kitokios spalvos, nei atitekančio oro srauto fronto, greitis už sparno kur kas mažesnis, reikšmė skiriasi apie $\Delta V_x = 10$ m/s.

46 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje. *AoA*=-2°. V_x = 25 m/s

23 lentelė. Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybė nuo atakos kampo $\alpha \in [-2^\circ; 0^\circ]$. V_x = 25 m/s

α	CL
0	0,094636
-1	0,093224
-2	0,090807
MAX	0,094636

 (a) C_L priklausomybė nuo atakos kampo α

α	C _R
0	0,102913
-1	0,101573
-2	0,099389
MAX	0,102913

(c) C_R priklausomybė nuo atakos kampo α

α	CD
0	0,040434
-1	0,040324
-2	0,043831
MAX	0,043831

(b) C_D priklausomybė nuo atakos kampo α

α	C_L/C_D
0	2,340511
-1	2,311854
-2	2,071755
MAX	2,340511

(d) C_L/C_D priklausomybė nuo atakos kampo α

47 pav. Albatroso sklandmens turbulentinių oro srovių spektras. $AoA=-2^{\circ}$. V_x = 25 m/s

Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybę nuo užsparnių atakos kampo $\alpha \in [-2^{\circ};0^{\circ}]$, kai tikrasis albatroso skriejimo greitis oro srauto atžvilgiu lygus V_x = 25m/s, pateikiame žemiau esančiame 48 pav. 48 pav. (d) punkto iliustracijoje albatroso sklandmens aerodinaminės kokybės koeficiento reikšmė turi tendenciją mažėti keičiantis užsparnių padečiai $\alpha \in [-2^{\circ};0^{\circ}]$.

(a) C_L priklausomybė nuo atakos kampo α

(d) C_L/C_D priklausomybė nuo atakos kampo α

48 pav. Albatroso skalndmens koeficientų C_L , C_D ir C_R priklausomybė nuo užsparnių atakos kampo. $\alpha = -2^{\circ} \div 0^{\circ}$

49 pav. Koeficientų C_L ir C_D priklausomybę nuo atakos kampo $AoA=-2\div0^\circ$. V_x = 25 m/s

Albatroso sklandmens aerodinaminių charakteristikų tyrimo metu, kai $AoA=-2^{\circ}\div0^{\circ}$, albatroso judėjimo greitis oro srauto atžvilgiu lygus $V_x = 25$ m/s, nustatyta, jog didžiausias keliamosios ir pasipriešinimo jėgų santykis gaunamas, kai atakos kampas lygus $\alpha = 0^{\circ}$, tuomet aerodinaminės kokybės koeficiento reikšmė yra lygi K = 2,340511. Užsparnių atakos kampui išstatytam $\alpha = -2^{\circ}$ aerodinaminės kokybės koeficiento reikšmė yra lygi K = 2,071755. Didžiausios keliamosios ir pasipriešinimo jėgų koeficientų reikšmės pasiektos, kai $\alpha = 0^{\circ}$, šios reikšmės atitinkamai lygios $C_L = 0,094636$ ir $C_D = 0,040434$. Atlikę palyginimą su literatūros šaltinyje [23] esančiais duomenimis ir tyrimo skaičiavimų rezultatais gavome, jog tikrojo oro srauto greičio reikšmei esant lygiai $V_x = 25$ m/s, albatroso sklandmens konstrukcijai grįžtinėje nėra efektyvu naudoti neigiamos padėties užsparnius, nes aerodinaminės kokybės koeficiento reikšmė mažėja, o tai reiškia, žemėjimo spartos didėjimo tendenciją su neigiama užsparnių padėtimi.

Šiame tyrimo etape iš esmės keičiame sparno profilio pastatymo kampą eliminuodami užsparnius. Skyriuje 1.2.1 13 pav. pateikėme iliustracijas, kuriomis remiantis atkūrėme albatroso horizontalią projekciją. Šio paveikslo kairėje pusėje, jau minėjome anksčiau, JAV *Iovos* (angl. *Iowa*) universiteto publikacija [15], kurioje vaizduojamas apšviestas klajojančio albatroso skeletas.

50 pav. Albatroso sparno ir liemens skeleto vaizdas iš apačios [15]

Iliustracija panaudota tiksliai nustatyti, kokiame aukštyje ir kurioje albatroso kūno vietoje prisitvirtina sparno brachialinis regionas (angl. *Brachial region*) - pagrindinis sparno šaknies kaulas su jungiamaisiais audiniais. Prie jungiamųjų albatroso sparno audinių pritvirtintos plunksnos, kurios formuoja sparno profilį. Keičiantis sparno profilio atakos kampui, albatrosas efektyviai išnaudoja aplinkoje veikiančias oro srauto sroves skrydžio manevrams atlikti.

Trečiasis tyrimo etapas – albatroso sklandmens aerodinaminių charakteristikų priklausomybės nuo atakos kampo $AoA = 0^{\circ} \div 10^{\circ}$. Keičiamas viso sparno profilio atakos kampas ir albatroso skrydis modeliuojamas, kai paukštis skrydžio trajektorijos kiltinėje ir grįžtinėje siekia išlaikyti skrydžio greitį oro srauto atžvilgiu $V_x = 20$ m/s [20], greičio prieaugis dėl galimai veikiančių vėjo gūsių, kurių stiprumas siekia 5 m/s, šiuo atveju neturės įtakos. Įtaka nebus įvertinta, nes oro srauto gūsių veikimas reliatyvus. Aerodinaminės kokybės koeficientas turi didelės įtakos aukštėjimo ir žemėjimo spartai, skrydžio nuotoliui, todėl tyrimo metu siekiame, jog albatroso sparno profilis būtų pastatytas tokiu atakos kampu, jog būtų gaunama didžiausia keliamosios jėgos koeficiento C_L ir pasipriešinimo jėgos koeficiento C_D santykis.

51 pav. Albatroso sparno profilio oro srauto greičių pasiskirstymo spektras pjūvio vietoje.

 $AoA = 10^{\circ}$. V_x = 20 m/s

52 pav. Albatroso sklandmens oro srauto greičių pasiskirstymo spektras.

AoA=10°. $V_x = 20 \text{ m/s}$

Lift	$L = C_L * (q(V^2)/2) * s$				
		1,225	20	1,5241	
α	L, N	q, kg/m³	V <i>,</i> m/s	S,m ²	CL
0	34,668	1,225	20	1,5241	0,092843
1	39,789	1,225	20	1,5241	0,106557
2	45,047	1,225	20	1,5241	0,120639
3	54,318	1,225	20	1,5241	0,145467
4	61,489	1,225	20	1,5241	0,164671
5	69,212	1,225	20	1,5241	0,185354
6	74,477	1,225	20	1,5241	0,199454
7	82,411	1,225	20	1,5241	0,220702
8	93,099	1,225	20	1,5241	0,249325
9	99,545	1,225	20	1,5241	0,266588
10	105,187	1,225	20	1,5241	0,281697

24 lentelė. Albatroso sklandmens keliamosios jėgos koeficientas C_L. AoA=0°÷10°

Albatroso sklandmens keliamosios jėgos priklausomybę nuo atakos kampo bei apskaičiuotas keliamosios jėgos koeficiento C_L reikšmes pateikiame 24 lentelėje. 24 lentelės 2-ame stulpelyje "L" įrašytos keliamosios jėgos reikšmės iš prieduose esančių lentelių duomenų, o 6-ajame stulpelyje pateikiamos apskaičiuotos C_L reikšmės priklausomai nuo sparno profilio atakos kampo reikšmės.

53 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=10^{\circ}$. V_x = 20 m/s

Drag		$D = C_D * (q(V^2)/2)*s$				
		1,225	20	1,5241		
α	D, N	q, kg/m³	V, m/s	S,m ²	CD	
0	15,062	1,225	20	1,5241	0,040337	
1	14,93	1,225	20	1,5241	0,039983	
2	14,849	1,225	20	1,5241	0,039767	
3	15,04	1,225	20	1,5241	0,040278	
4	15,713	1,225	20	1,5241	0,04208	
5	16,403	1,225	20	1,5241	0,043928	
6	17,35	1,225	20	1,5241	0,046464	
7	18,226	1,225	20	1,5241	0,04881	
8	19,243	1,225	20	1,5241	0,051534	
9	20,496	1,225	20	1,5241	0,05489	
10	21,528	1,225	20	1,5241	0,057653	

25 lentelė. Albatroso sklandmens pasipriešinimo jėgos koeficientas C_D . $AoA = 10^{\circ}$. $V_x = 20$ m/s

Pasipriešinimo jėgos *D* ir jos koeficiento reikšmės C_D kintant albatroso sparno profilio $AoA=0^{\circ}\div10^{\circ}$ pateikiamos 25 lentelėje. Didžiausią reikšmę pasipriešinimo jėgos koeficientas įgyja, kai atakos kampas AoA=10°, ši reikšmė lygi $C_D = 0,057653$. 54 pav. pateiktoje iliustracijoje matome oro srauto greičio pasiskirstymo izolinijas viršutinėje ir viršutinėje sklandmens konstrukcijos dalyje.

54 pav. Albatroso sklandmens greičio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YZ. $AoA=0^{\circ}\div10^{\circ}$. V_x = 20 m/s

Resultant	R=C _R *(q(V^2)/2)*s				
		1,225	20	1,5241	
α	R, N	q, kg/m³	V, m/s	S,m ²	C _R
0	37,799	1,225	20	1,5241	0,101228
1	42,72	1,225	20	1,5241	0,114407
2	47,432	1,225	20	1,5241	0,127026
3	56,362	1,225	20	1,5241	0,150941
4	63,465	1,225	20	1,5241	0,169963
5	71,129	1,225	20	1,5241	0,190488
6	76,472	1,225	20	1,5241	0,204797
7	84,402	1,225	20	1,5241	0,226034
8	95,067	1,225	20	1,5241	0,254595
9	101,633	1,225	20	1,5241	0,272179
10	107,367	1,225	20	1,5241	0,287535

26 lentelė. Albatroso sklandmens pilnutinės jėgos koeficientas C_R. $AoA=0^{\circ}\div10^{\circ}$. V_x = 20 m/s

Pilnutinės aerodinaminės jėgos R reikšmės kintant albatroso sparno profilio atakos kampo padėčiai $AoA=0^{\circ}\div6^{\circ}$ pateikiamos 26 lentelėje. Didžiausią reikšmę jėgų atstojamosios koeficientas įgyja, kai atakos kampas AoA=10°, ši reikšmė yra lygi C_R = 0,287535. 55 pav. pastebime, jog oro srauto greičio spektro linijos albatroso sparnų galuose intensyviau užlinksta dėl didėjančio slėgių skirtumo sparno apatinėje ir viršutinėje dalyse.

55 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje. $AoA=10^{\circ}$. V_x = 20 m/s

27 lentelė. Albatroso sklandmens aerodinaminių jėgų koeficientų priklausomybė nuo atakos kampo $\alpha \in [0^\circ; 10^\circ]$. V_x = 20 m/s

α	CL
0	0,092843
1	0,106557
2	0,120639
3	0,145467
4	0,164671
5	0,185354
6	0,199454
7	0,220702
8	0,249325
9	0,266588
10	0,281697
MAX	0,281697

 (a) C_L priklausomybė nuo atakos kampo α

α	C _R
0	0,101228
1	0,114407
2	0,127026
3	0,150941
4	0,169963
5	0,190488
6	0,204797
7	0,226034
8	0,254595
9	0,272179
10	0,287535
MAX	0,287535

(c) C_R priklausomybė nuo atakos kampo α

α	CD
0	0,040337
1	0,039983
2	0,039767
3	0,040278
4	0,04208
5	0,043928
6	0,046464
7	0,04881
8	0,051534
9	0,05489
10	0,057653
MAX	0,057653

 (b) C_D priklausomybė nuo atakos kampo α

α	C _L /C _D
0	2,301686
1	2,665037
2	3,033672
3	3,611569
4	3,913257
5	4,219472
6	4,292622
7	4,521617
8	4,838071
9	4,856801
10	4,886055
MAX	4,886055

(d) C_L/C_D priklausomybė nuo atakos kampo α

Albatroso sklandmens aerodinaminių charakteristikų priklausomybė nuo atakos kampo padėties iliustruojama 56 pav. Albatroso aerodinaminės kokybės koeficiento dydis, jau žinome, yra ne kas kita, kaip sklandmens keliamosios ir pasipriešinimo jėgos santykis arba sklandmens keliamosios jėgos ir pasipriešinimo jėgos koeficientų santykis. Jis parodo kiek kartų albatroso sklandmens konstrukcijos keliamosios jėgos reikšmė yra didesnė už pasipriešinimo jėgą. Skaičiavimus atlikome pasinaudodami lygtimis (15) ir (16). Apskaičiuotos aerodinaminės kokybės koeficiento reikšmės kiekvienai sparno profilio atakos kampo padėčiai atakos kampų diapazone $\alpha \in [0^\circ; 10^\circ]$ pateikiamos 27 lentelėje (d) punkte bei iliustruojamos 56 pav. (d) punkte.

(a) C_L priklausomybė nuo atakos kampo α

(b) C_D priklausomybė nuo atakos kampo α

57 pav. Koeficientų C_L ir C_D priklausomybę nuo atakos kampo $\alpha = 0^{\circ} \div 10^{\circ}$. V_x = 20 m/s

57 pav. pateikiame albatroso sklandmens poliarę bei poliarės funkciją. Matome, jog funkcija pasiekia maksimalią reikšmę, kai $\alpha = 10^{\circ}$, o tai reiškia, jog šis atakos kampas yra naudingiausias sparno profilio atakos kampas α_{naud} , kuriuo sklęsdamas albatrosas įveiks didžiausią atstumą.

58 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje ašyse YZ. $AoA=10^{\circ}$. V_x = 20 m/s

Albatrosui sklendžiant α_{naud} , sklendimo kampas visuomet yra lygus albatroso sklandmens kokybės kampui, tuomet sklandmens kokybė prilygsta nuotoliui, kurį albatrosas nusklęs iš 1 km aukščio. Lėktuvams konstruoti ir aprašyti naudojamoje teorijoje nurodoma, jog lėktuvo kokybė yra nusklęsto nuotolio ir aukščio, iš kurio sklendžiama, santykis [20]:

$$l = H \cdot K \operatorname{arba} K = \frac{l}{H} \tag{17}$$

čia: l – sklendimo nuotolis, km;

H – sklendimo aukštis, km;

K – aerodinaminės kokybės koeficientas.

Taip pat aerodinaminė kokybė gali būti išreiškiama kaip sklendimo greičio ir žemėjimo spartos santykis [20]:

$$K = \frac{V_{skl}}{V_y} \tag{18}$$

čia: K – aerodinaminės kokybės koeficientas;

 V_{skl} – sklendimo greitis, m/s;

 V_{v} – žemėjimo sparta, m/s.

Aerodinaminės kokybės skaičiavimo rezultatų skaitines išraiškas pagal (18) lygtį ir remiantis literatūros šaltinio [22] duomenimis pateikėme klajojančio albatroso skrydžių charakteristikų 15 lentelėje. Pagal lentelėje pateikiamus duomenis matome, jog tiesiaeigiame skrydyje (pirmasis Niutono dėsnis) maksimali aerodinaminės kokybės koeficiento reikšmė V/V_z = 21,2. Kai žemėjimo sparta mažiausia albatroso kokybės koeficientas įgyja reikšmę lygią V/V_z = 18,4. Atlikę skaičiavimus pagal lygtis (17)-(18) ir remiantis tyrimo metu gautais bei apskaičiuotais aerodinaminių jėgų koeficientų dydžiais nustatėme, kad didžiausią aerodinaminę kokybę horizontaliame skrydyje albatrosas pasiekia, kai $\alpha_{naud} = 10^{\circ}$. Tuomet apskaičiuotoji aerodineminės kokybės koeficiento reikšmė lygi K = 4,886055, kai žemėjimo sparta lygi V_y = 4.09328 m/s. Didžiausias nusklęsto atstumo nuotolis iš 15 m aukščio, kai K = 4,886055, lygus *l*=73,290825 m. Tyrimo metu nustatyta albatroso sklandmens turbulentinio intersyvumo reikšmė 0,10_%, kurios ilgis 0,002 m, kai AoA = 10°, V_x = 20 m/s. Albatroso sklandmens žemėjimo spartos reikšmė horizontalaus skrydžio metu, kai tikrasis albatroso sklendimo greitis $V_{skl} = 20$ m/s, yra kur kas didesnė nei literatūros šaltinyje [20] pateikti duomenys. Mažiausios žemėjimo spartos greitis, lyginant su 15 lentelėje pateiktais duomenimis, skiriasi 6,2019 karto. Dėl to galime daryti išvadą, jog mokslinėje literatūroje pateikti duomenys remiasi ne tik skaitinėmis išraiškomis, bet ir albatroso skrydžio stebėjimu realiu laiku bei ekspedicijų metu naudojamais prietaisais leidžiančiais sekti paukščio judėjimo trajektoriją bei jo migraciją. Taip pat būtina pažymėti, kad tyrimo metu nebuvo analizuojama, kaip žemės ekrano efektas veikia albatroso 3D modelio aerodinamines charakteristikas. Remiantis gautais skaičiavimų skirtumais, galima daryti prielaidą, kad žemės ekrano efektas yra labai svarbus reiškinys albatroso dinaminio skriejimo metu.

59 pav. Albatroso sklandmens turbuletinių oro srovių spektras. $AoA=10^{\circ}$. V_x = 20 m/s

5. ALBATROSO (DIOMEDEA EXULANS) MATEMATINIS MODELIS

5.1. ALBATROSO DINAMINIO SKRIEJIMO TRAJEKTORIJOS

Matematiniai modeliai skirti, analizuoti albatroso dinaminio skriejimo trajektorijas. Įvertina vėjo įtaką kaip horizontalų vėjo gradientą kintantį vertikaliai. Kaip minėjome, kai kurie matematiniai modeliai nevertina vandenyno paviršiaus bangų judėjimo tuo metu, kai albatrosas atlieka skriejimo ciklą numatytą trajektorija pateikta. Atlikę mokslinės literatūros analizę pastebėjome, jog nėra išvestų universalaus pritaikymo albatroso dinamikos matematinių modelių, kurie leistų įvertinti kintančius vėjo gūsių poveikius aktyviai veikiančius albatroso dinaminį skriejimą. Taip pat pastebėjome, jog matematiniai modeliai, aprašantys albatroso dinaminį skriejimą apsiriboja trigonometrinėmis funkcijomis bei logaritminiu ar eksponentiniu horizontalaus vėjo gradiento kitimu. Tai labai skiriasi nuo momentinio vėjo veikimo keičiantis aukščiui, gūsių ir oro srauto įtakos priklausomai nuo bangos judesio kiekio bei intensyvumo. Idealizuoto dinaminio skriejimo modelio pagalba, priartėjimo būdu, įvertinsime sumodeliuoto albatroso skriejimo trajektorijas. Šis dinaminio skriejimo modelis išreiškiamas lygtimis (19) ir (20) [24]:

$$\frac{du}{dz} = \frac{g}{w} \left(C_D + C_L \frac{w}{v} \right) \frac{\rho}{2} \cdot \frac{V^2}{m/S}$$
(19)

čia: u – albatroso judėjimo greitis oro srauto atžvilgiu, m/s; z – albatroso skrydžio trajektorijos altitudė, m; g – laisvojo kritimo pagreitis, m/s²; C_L – keliamosios jėgos koeficientas; C_D – pasipriešinimo jėgos koeficientas; m – albatroso masė, kg; w – žemėjimo sparta, m/s; V – oro srauto greitis, m/s; ρ – oro tankis, m/s.

$$\frac{dw}{dz} = \frac{g}{w} \left(C_L \frac{\rho}{2} \cdot \frac{V^2}{\frac{m}{s}} - 1 \right)$$
(20)

čia: z – albatroso skrydžio trajektorijos altitudė, m; g – laisvojo kritimo pagreitis, m/s²; C_L – keliamosios jėgos koeficientas; C_D – pasipriešinimo jėgos koeficientas; m – albatroso masė, kg; w – žemėjimo sparta, m/s; V – oro srauto greitis, m/s; ρ – oro tankis, m/s.

5.2. SKAIČIAVIMO IR MODELIAVIMO REZULTATAI

Idealizuoto albatroso dinaminio skriejimo modelio trajektorijos, išreikštos dinaminio skriejimo diferencialinėmis lygtimis (19) ir (20), nėra visiškai tinkamos taikyti sumodeliuotai sklandmens konstrukcijai. Todėl atliekame albatroso optimalių dinaminio skriejimo lygčių optimizavimą remdamiesi literatūros šaltiniuose [16], [22] bei [24] pateikta informacija. Parametrinėse lygtyse koeficientai *a, b* ir *z* atitinkamai optimizuoja trajektoriją pagal jos ilgį, plotį bei skrydžio ekstremumo aukštį. Šie parametrai ne tik apibrėžia ekstemumo taškus bei trajektoriją, bet yra glaudžiai susiję su periodo dažnumo parametru. Kaip jau minėjome, laikas, per kurį albatrosas atlieka viena skrydžio ciklą vidutiniškai trunka t = 10 s. Diferencialinių lygčių išraiškas bei optimizuotą dinaminio skriejimo trajektoriją pateikiame *MathCAD* programos aplinkoje (žr. prieduose pav. 130-132):

60 pav. Optimizuotas albatroso sklandmens dinaminio skriejimo matematinis modelis

LYGINAMOSIOS IŠVADOS

Magistro baigiamajame darbe, pasinaudodami mokslinės literatūros šaltiniais ir publikacijomis, skaitinės analizės programomis atkūrėme klajojančio albatroso (angl. *Wandering albatross*, lot. *Diomedea exulans*) 3D modelį: a) sparną su kintama geometrija, kurio mostas 3 metrai; b) liemenį su kintama geometrija, kurio ilgis 1,2 metrai. Atlikome albatroso dinaminio skriejimo modelio aerodinaminių charakteristikų analizę. Taip pat aprašėme albatroso dinaminio skriejimo matematinį modelį, nubraižėme dinaminio skriejimo trajektorijas ir atlikome skriejimo skaitinę analizę trajektorijos ekstremumo ir faziniuose taškuose.

Atlikę sumodeliuoto albatroso sparno profilio aerodinaminių charakteristikų tyrimą atakos kampų imtyje $\alpha \in [0^\circ; 25^\circ]$, nustatėme, jog sparno profilio atakos kampas pasiekia kritinę ribą, kai $\alpha_{kr} = 16^\circ$. Taip pat galime daryti išvadą, jog didžiausias keliamosios ir pasipriešinimo jėgų santykis gaunamas, kai atakos kampas lygus $\alpha_6 = 6^\circ$, tuomet aerodinaminės kokybės koeficiento reikšmė yra lygi K = 12,83255. Sparno profilio atakos kampui pasiekus kritinį $\alpha_{kr} = 16^\circ$ aerodinaminės kokybės koeficiento reikšmė yra lygi K = 6,775. Tiriamojo sparno profilio aerodinaminės kokybės koeficiento dydis priklauso nuo profilio paviršiaus lygumo ir glotnumo, taip pat kitų veiksnių darančių įtaką keliamosios ir pasipriešinimo jėgų dydžių kitimui. Tyrimo metu *SolidWorks* programos aplinkoje sudaromos idealios sąlygos oro srauto laminariniam aptekėjimui, todėl galime daryti prielaidą, jog atlikus sparno profilio aerodinaminių charakteristikų tyrimą vėjo tunelyje aerodinaminės kokybės koeficientas, kai atakos kampas lygus $\alpha_6 =$ 6° pasikeistų, galime daryti prielaidą, jog būtų mažesnis nei gautoji reikšmė K = 12,83255.

Albatroso sklandmens aerodinaminių charakteristikų tyrimo metu, kai $AoA=0^{\circ}\div6^{\circ}$, albatroso judėjimo greitis oro srauto atžvilgiu lygus V_x = 15m/s, nustatyta, jog didžiausias keliamosios ir pasipriešinimo jėgų santykis gaunamas, kai atakos kampas lygus $\alpha = 6^{\circ}$, tuomet aerodinaminės kokybės koeficiento reikšmė yra lygi K = 3,089334. Užsparnių atakos kampui nustatytam $\alpha = 1^{\circ}$ aerodinaminės kokybės koeficiento reikšmė yra lygi K = 2,52653. Didžiausios keliamosios ir pasipriešinimo jėgų koeficientų reikšmės pasiektos, kai $\alpha = 6^{\circ}$, šios reikšmės atitinkamai lygios C_L = 0,129904 ir C_D = 0,042049.

Albatroso sklandmens aerodinaminių charakteristikų tyrimo metu, kai $AoA=-2^{\circ}\div0^{\circ}$, albatroso judėjimo greitis oro srauto atžvilgiu lygus V_x = 25 m/s, nustatyta, jog didžiausias keliamosios ir pasipriešinimo jėgų santykis gaunamas, kai atakos kampas lygus $\alpha = 0^{\circ}$, tuomet aerodinaminės kokybės koeficiento reikšmė yra lygi K = 2,340511. Užsparnių atakos kampui išstatytam $\alpha = -2^{\circ}$ aerodinaminės kokybės koeficiento reikšmė yra lygi K = 2,071755. Didžiausios keliamosios ir pasipriešinimo jėgų

koeficientų reikšmės pasiektos, kai $\alpha = 0^{\circ}$, šios reikšmės atitinkamai lygios C_L = 0,094636 ir C_D = 0,040434. Atlikę palyginimą su literatūros šaltinyję [23] esančiais duomenimis ir tyrimo skaičiavimų rezultatais gavome, jog tikrojo oro srauto greičio reikšmei esant lygiai V_x = 25 m/s albatroso sklandmens konstrukcijai grįžtinėje nėra efektyvu naudoti neigiamos padėties užsparnius, nes aerodinaminės kokybės koeficiento reikšmė mažėja, o tai reiškia žemėjimo spartos didėjimo tendenciją su neigiama užsparnių padėtimi.

Atliktas albatroso sklandmens aerodinaminių charakteristikų tyrimas, kai sparno profilio atakos kampas kinta AoA=0°÷10°. Keičiamas viso sparno profilio atakos kampas ir albatroso skrydis modeliuojamas, kai paukštis skrydžio trajektorijos kiltinėje ir grįžtinėje siekia išlaikyti skrydžio greitį oro srauto atžvilgiu $V_x = 20$ m/s [20], greičio prieaugis dėl galimai veikiančių vėjo gūsių, kurių stiprumas siekia 5 m/s, įtaka nebuvo įvertinta, nes oro srauto gūsių veikimas reliatyvus. Nustatėme, kad albatroso sklandmens aerodinaminės kokybės koeficientas turi didelę įtaką aukštėjimo ir žemėjimo spartai, skrydžio nuotoliui, todėl tyrimo metu siekėme, jog albatroso sparno profilis būtų pastatytas tokiu atakos kampu, kad būtų gaunamas didžiausias keliamosios jėgos koeficiento C_L ir pasipriešinimo jėgos koeficiento C_D santykis. Iš 15 lentelėje pateiktų duomenų matome, kad tiesiaeigiame skrydyje maksimali aerodinaminės kokybės koeficiento reikšmė $V/V_z = 21,2$. Kai žemėjimo sparta mažiausia, albatroso kokybės koeficientas įgyja reikšmę, lygią $V/V_z = 18,4$. Atlikę skaičiavimus pagal lygtis (17)-(18) ir remdamiesi tyrimo metu gautais bei apskaičiuotais aerodinaminių jėgų koeficientų dydžiais nustatėme, jog didžiausią aerodinaminę kokybę horizontaliame skrydyje albatrosas pasiekia, kai $\alpha_{naud} = 10^{\circ}$. Apskaičiuotoji aerodinaminės kokybės koeficiento reikšmė, kai $\alpha_{naud} = 10^{\circ}$ lygi K = 4,886055, žemėjimo sparta lygi $V_y = 4,09328$ m/s. Ši aerodinaminės kokybės koeficiento reikšmė modeliuojama su tikslu, kad albatrosas atliktų dinaminio skriejimo ciklą per 10 sekundžių, nors natūrali sumodeliuotos albatroso sklandmes konstrukcijos žemėjimo spartos reikšmė yra lygi V_y = -0,089 m/s. Pagal bendruosius aerodinamikos principus, kai albatroso sklendimas kiltinėje modeliuojamas su sparno profilio atakos kampu, lygiu $\alpha_{naud} = 10^{\circ}$, albatroso aukštėjimo sparta labai intensyvi, o tai sumažina albatroso sklendimo nuotolį bei tikrąjį albatroso sklendimo greitį. Siekdamas nusklęsti kuo didesnį atstumą, albatrosas turėtų kiltinėje naudoti sparno profilio atakos kampo padėtį, lygią AoA = 0°, o grįžtinėje – didžiausios aerodinaminės kokybės kampa $\alpha_{naud} = 10^{\circ}$. Tačiau pagal mokslinėje literatūroje [20] aprašytus albatroso skrydžio parametrus, kai dinaminio skriejimo ciklas trunka 10 sekundžių, naudojome didžiausios aerodinaminės kokybės kampą $\alpha_{naud} = 10^\circ$, kad albatrosas kiltinėje kuo greičiau įgytų 15 metrų aukštį ir taip pat grįžtinėje šiuo sparno profilio atakos kampu nusklęstų didžiausią atstumą. Didžiausias nusklęsto atstumo nuotolis iš 15 m aukščio, kai K = 4,886055, lygus l = 73,290825 m. Tyrimo metu nustatyta albatroso sklandmens turbulentinio intensyvumo reikšmė 0,10 %, kurios ilgis 0,002 m, kai AoA = 10° , V_x = 20 m/s.

Albatroso sklandmens žemėjimo spartos reikšmė horizontalaus skrydžio metu, kai tikrasis albatroso sklendimo greitis $V_{skl} = 20$ m/s, yra kur kas didesnė nei literatūros šaltinyje [20] pateikti duomenys. Mažiausios žemėjimo spartos greitis lyginant su 15 lentelėje pateiktais duomenimis skiriasi 6,2019 karto. Dėl to galime daryti išvadą, jog mokslinėje literatūroje pateikti duomenys remiasi ne tik skaitinėmis išraiškomis, bet ir albatroso skrydžio stebėjimu realiu laiku bei ekspedicijų metu naudojamais prietaisais leidžiančiais sekti paukščio judėjimo trajektoriją bei jo migraciją. Taip pat būtina pažymėti, jog tyrimo metu nebuvo analizuojama, kaip žemės ekrano efektas veikia albatroso 3D modelio aerodinamines charakteristikas, o tai, remiantis gautais skaičiavimų skirtumais, leidžia daryti prielaidą, kad žemės ekrano efektas yra labai svarbus reiškinys albatroso dinaminio skriejimo metu.

Atlikę tyrimą galime daryti išvadą, jog gamtoje veikiančios jėgos ir jų pritaikymo galimybės neribotos. Būtina atlikti gamtos reiškinių tyrimus bei jų pritaikymo galimybės. Taip pat ne mažiau svarbu lavinti bei orientuoti jaunosios kartos mąstymą į autonominių sistemų kūrimą bei diegimą, energetinį efektyvumą, neribotų aplinkoje veikiančių energijos resursų pritaikymo galimybes: vandenynuose, jūrose veikianti bangavimo energijos pernaša; troposferoje veikiantys reiškiniai - oro srauto masių pernašos, konvekcija, advekcija; Masačiusetso technologijos universiteto mokslininkų pasiūlytos idėjos apie galimybę ore esančia drėgmę paversti dar vienu alternatyvios energijos šaltiniu. Albatroso dinaminio skriejimo technikos rūšis analizuojama ir aprašoma įvairių rūšių mokslininkų ir specialistų kiek daugiau nei šimtmetį [3][4]. Albatroso dinaminio skriejimo modelio realaus pritaikymo galimybės tyrinėjo NASA, eksperimentinius skrydžius atliko USAF (angl. United States Air Force) lakūnai. Gamtoje veikiančių reiškinių tyrinėjimas bei praktinis jų pritaikymas labai plataus spektro energetinio efektyvumo siekiamybė neabejotinai išliks žmonijos prioritetu ateityje.

LITERATŪROS SĄRAŠAS

- A.J. Ward-Smith. "Biophysical Aerodynamics and the Natural Environment", John Wiley & Sons, 1984.
- 2. E. Rimkus. "Meteorologijos įvadas", 43, 97 psl., Vilniaus universitetas, 2011.
- 3. J.W.S. Rayleigh. "The sailing flight of the albatross", Nature, 1889.
- 4. G. Sachs, P. Bussotti. "Variational analysis and applications", skyrius "Application of optimal control theory to dynamic soaring of seabirds", 975-994 psl., Springer: Berlin, Germany, 2005.
- S. Marchant, P.J. Higgins. "Handbook of Australian, New Zealand and Antarctic Birds", Volume 1, Ratitles to ducks; Part A, Ratitles to petrels. 263-281 psl., plates 13 & 14. Melbourne, Oxford University Press, 1990.
- J.J. Harrison. "Wandering Albatross (Diomedea exulans) in flight", picture taken at East of the Tasman Peninsula, Tasmania, Australia. Nuoroda į leidinį internete -<u>http://www.ourendangeredworld.com/species/birds-bats/wandering-albatross</u>.
- M. Pidwirny. "Surface and Subsurface Ocean Currents". Fundamentals of Physical Geography, 2nd Edition. 2006 Date Viewed. Nuoroda į leidinį internete -<u>http://www.physicalgeography.net/fundamentals/8q.html</u>.
- Philip L. Richardson. "How albatrosses fly such vast distances tracking upwind", Wools hole Oceanographic Institution, 2011. Nuoroda į leidinį internete - <u>http://www.sail-</u> world.com/Austria/How-Albatrosses-fly-such-wast-distances-tracking-upwind.
- B.R. Munson, T.H. Okiishi, D.F. Young. "Fundamentals of Fluid Mechanics", 4th Edition, R.R. Donneley & Sons, Chicago, 2002.
- 10. E. Lasauskas. "Skrydžio principai", leidykla "Technika", 10-11, 17-20, 40, 61 psl., Vilnius, 2008.
- 11. "Albatross, azhdarchid and pteranodontian skeletons compared". Nuoroda į leidinį internete http://openi.nlm.nih.gov/detailedresult.php?img=PMC2981443_pone0013982.g004&req=4.
- Wandering albatross, Museum of the wandering albatross specimens, located in the southern island Georgia (*Grytviken*). Nuoroda į leidinį internete http://geofftoantarctica2009.blogspot.lt/2009/04/grytviken-and-stromness-south-georgia.html.
- Wandering albatross (*Diomedea exulans*) Linnaneus, in New York. Photo: American Museum of Natural History. Nuoroda į leidinį internete - <u>http://blog.tepapa.govt.nz/2017/03/10/the-global-hunt-for-the-original-wandering-albatross</u>.
- 14. B. Merkys. "Orlaivių konstrukcijos", 17-24 psl., leidykla "Technika", Vilnius, 2012.

- "The illuminated skeleton of a wandering albatross <...> Photo by Kirk Murray". Nuoroda į leidinį internete - <u>http://itsnt774.iowa.uiowa.edu/fyi-</u> <u>archives/issues/issues2000/0323001/bird.html</u>.
- 16. G. Pfeifhofer, H. Tributsch. "The flight of albatross how to transform it into aerodynamic engineering?", 427-438 psl., Carinthia University of Applied Sciences, Villach, Austria, 2014. Nuoroda į leidinį internete <u>http://dx.doi.org/10.4236/eng.2014.68045</u>.
- 17. Standard atmosphere, ISO 2533:1975. Nuoroda į leidinį internete <u>https://www.iso.org/standard/7472.html</u>.
- Properties of the atmosphere, sea level conditions. Nuoroda į leidinį internete - <u>http://s6.aeromech.usyd.edu.au/aerodynamics/index.php/sample-page/properties-of-the-</u> atmosphere.
- H. Tennekes. "The simple science of flight. From insects to jumbo jets", 17 psl., The MIT press, Cambridge, Massachusetts, London, England, 2009. Nuoroda į leidinį internete -<u>https://mitpress.mit.edu/sites/default/files/titles/content/9780262513135_sch_0001.pdf</u>
- 20. P. Akulavičius, A. Skurdenis. "Aerodinamika ir skrydžių dinamika", 48-49, 50, 84, 87-88, 92, 93, 96 psl., Vilnius, Rosma, 2000.
- 21. I. A. Maia. "Performance analysis of typical airfoils through numerical simulations using fluidstructure interaction", 1 pav., Fortaleza, CE, Brazil, 2014. Nuoroda į leidinį internete -<u>https://www.researchgate.net/publication/281378133_PERFORMANCE_ANALYSIS_OF_TY</u> <u>PICAL_AIRFOILS_THROUGH_NUMERICAL_SIMULATION_USING_FLUID_STRUCTU</u> <u>RE_INTERACTION.</u>
- Philip L. Richardson. "How do albatrosses fly around the world without flapping their wings?",
 2010, Department of Physical Oceanography, Woods Hole Oceanograpjic institution, Woods Hole, USA. Nuoroda į leidinio tiklaraštį internete <u>www.elsevier.com/locate/pocean</u>.
- Richard H. Johnson. "A flight test evaluation of the PIK-20D-78", "Soaring Magazine", 1979. Nuoroda į literatūros šaltinį internete - <u>http://ssa.org/Johnson/26-1979-01.pdf</u>.
- 24. Clarence D. Cone Jr. "A Mathematical Analysis of the Dynamic Soaring Flight of the Albatross with Ecological Interpretations", Virginia institute of marine science, special scientific report no. 50, 1964. Nuoroda į leidinį internete -

https://publish.wm.edu/dgi/viewcontent.cgi?article=1100&context=reports.

PRIEDAI

Žymuo	Reikšmė
с	294,39 mm
Т	36,25 mm
t	0,123
Xr	51,75 mm
x_t	0,176
F	23,49 mm
f	0,08
X _F	115,52 mm
Xf	0,392
R _{LE}	3,9 mm
r _{LE}	0,013
$\Delta heta_{TE}$	8°

1 lentelė. Albatroso sparno profilio charakteristika

Eil. Nr.	Sparno profilio etalono stygos ilgis, mm	Diferencijuotas sparno profilio stygos ilgis, mm	Santykis
1	230,54	1,64	0,007
2	230,54	8,73	0,038
3	230,54	16,24	0,070
4	230,54	30,39	0,132
5	230,54	57,43	0,249
6	230,54	83,19	0,361
7	230,54	103,74	0,450
8	230,54	120,96	0,525
9	230,54	138,12	0,599
10	230,54	149,56	0,649
11	230,54	158,9	0,689
12	230,54	169,07	0,733
13	230,54	179,47	0,778
14	230,54	191,65	0,831
15	230,54	208,87	0,906
16	230,54	223,7	0,970
17	230,54	232,38	1,008
18	230,54	231,36	1,004
19	230,54	224,49	0,974
20	230,54	223,29	0,969
21	230,54	231,88	1,006
22	230,54	248,36	1,077
23	230,54	270	1,171
24	230,54	294,39	1,277

2 lentelė. Sparno profilio stygos diferencijavimas sparno ilgiu

Pavadinimas	Žymuo	Reikšmė	
Slėgis	D	1013 25 hPo	
(angl. Pressure)	Г	1015,25 liFa	
Tankis	0	1.225 kg/m^3	
(angl. Density)	μ	1,223 Kg/III	
Temperatūra	T	±15 °C	
(angl. Temperature)	1	±15 C	
Garso greitis	<i>a</i>	340.3 m/s	
(angl. Speed of Sound)	u	540,5 11/8	
Klampumas		$1.789 \cdot 10^{-5} m^2/s$	
(angl. Viscosity)	μ	1,769 10 1178	
Kinematinis klampumas	, v	$1.460 \cdot 10^{-5} \text{ kg/m/s}$	
(angl. Kinematic viscosity)	μ ν k	1,100 10 Kgmb 5	
Šilumos laidumas	k	0.02596 W/m/K	
(angl. Thermal conductivity)	μ ν k R	0,0-0,0 0,0 milling	
Dujų konstanta	R	287 1 J/kg/K	
(angl. Gas constant)			
Savitoji kūno šiluma	Ca	1005 J/kg/K	
(angl. Specific heat)	\mathcal{O}_{p}	1000 0/10/11	
Kūno šilumos talpa	Cu	717.98 J/kg/K	
(angl. Specific heat)			
Šilumos perdavimo koeficientas	γ	1.40	
(angl. Ratio of Specific Heats)	,	1,10	
Laisvojo kritimo pagreitis	g	9.80665 m/s ²	
(angl. Gravitational acceleration)	8		

3 lentelė. ISA aplinkos sąlygos jūros lygyje

Lift	$L = C_L * (q(V^2)/2) * s$				
		1,225	20	0,060547	
А	L, N	q, kg/m³	V, m/s	S,m²	CL
0	1,922	1,225	20	0,060547	0,129568
1	2,723	1,225	20	0,060547	0,183566
2	2,877	1,225	20	0,060547	0,193947
3	3,121	1,225	20	0,060547	0,210396
4	3,501	1,225	20	0,060547	0,236013
5	4,382	1,225	20	0,060547	0,295404
6	5,441	1,225	20	0,060547	0,366794
7	5,771	1,225	20	0,060547	0,38904
8	5,491	1,225	20	0,060547	0,370165
9	5,719	1,225	20	0,060547	0,385535
10	6,342	1,225	20	0,060547	0,427533
11	6,342	1,225	20	0,060547	0,427533
12	7,161	1,225	20	0,060547	0,482744
13	7,324	1,225	20	0,060547	0,493733
14	6,856	1,225	20	0,060547	0,462183
15	7,853	1,225	20	0,060547	0,529394
16	8,327	1,225	20	0,060547	0,561348
17	7,191	1,225	20	0,060547	0,484767
18	8,054	1,225	20	0,060547	0,542944
19	8,359	1,225	20	0,060547	0,563505
20	8,276	1,225	20	0,060547	0,55791
21	7,386	1,225	20	0,060547	0,497912
22	7,884	1,225	20	0,060547	0,531484
23	7,774	1,225	20	0,060547	0,524069
24	7,398	1,225	20	0,060547	0,498721
25	7,518	1,225	20	0,060547	0,506811

6 lentelė. Sparno profilio keliamosios jėgos koeficientas C_L. $AoA=0^{\circ}\div 25^{\circ}$. $R_e=403274$

Drag	$D = C_D * (q(V^2)/2)*s$				
			20	0,060547	
А	D, N	q, kg/m³	V, m/s	S,m ²	CD
0	0,307	1,225	20	0,060547	0,020696
1	0,327	1,225	20	0,060547	0,022044
2	0,405	1,225	20	0,060547	0,027302
3	0,486	1,225	20	0,060547	0,032763
4	0,534	1,225	20	0,060547	0,035999
5	0,343	1,225	20	0,060547	0,023123
6	0,424	1,225	20	0,060547	0,028583
7	0,511	1,225	20	0,060547	0,034448
8	0,704	1,225	20	0,060547	0,047459
9	0,745	1,225	20	0,060547	0,050223
10	0,761	1,225	20	0,060547	0,051301
11	0,736	1,225	20	0,060547	0,049616
12	0,946	1,225	20	0,060547	0,063773
13	0,919	1,225	20	0,060547	0,061953
14	0,972	1,225	20	0,060547	0,065525
15	1,119	1,225	20	0,060547	0,075435
16	1,229	1,225	20	0,060547	0,082851
17	1,457	1,225	20	0,060547	0,098221
18	1,64	1,225	20	0,060547	0,110557
19	1,799	1,225	20	0,060547	0,121276
20	1,944	1,225	20	0,060547	0,131051
21	2,242	1,225	20	0,060547	0,15114
22	2,274	1,225	20	0,060547	0,153297
23	2,352	1,225	20	0,060547	0,158555
24	2,734	1,225	20	0,060547	0,184307
25	2,495	1,225	20	0,060547	0,168195

7 lentelė. Sparno profilio pasipriešinimo jėgos koeficientas C_D. $AoA=0^{\circ}\div 25^{\circ}$. $R_e=403274$

Resultant	R=C _R *(q(V^2)/2)*s					
		1,225	20	0,060547		
A R, N		q, kg/m³	V, m/s	S,m²	C _R	
0	1,947	1,225	20	0,060547	0,131253	
1	2,742	1,225	20	0,060547	0,184846	
2	2,905	1,225	20	0,060547	0,195835	
3	3,158	1,225	20	0,060547	0,21289	
4	3,541	1,225	20	0,060547	0,238709	
5	4,396	1,225	20	0,060547	0,296347	
6	5,458	1,225	20	0,060547	0,36794	
7	5,793	1,225	20	0,060547	0,390523	
8	5,536	1,225	20	0,060547	0,373198	
9	9 5,767 10 6,387		20	0,060547	0,388771	
10			20	0,060547	0,430567	
11	116,385127,224	1,225	20	0,060547	0,430432	
12		1,225	20	0,060547	0,486991	
13	13 7,381		20	0,060547	0,497575	
14	6,925	1,225	20	0,060547	0,466835	
15	7,932	1,225	20	0,060547	0,53472	
16	8,417	1,225	20	0,060547	0,567415	
17	7,337	1,225	20	0,060547	0,494609	
18	8,22	1,225	20	0,060547	0,554135	
19	8,551	1,225	20	0,060547	0,576448	
20	8,501	1,225	20	0,060547	0,573078	
21	7,718	1,225	20	0,060547	0,520293	
22	8,206	1,225	20	0,060547	0,553191	
23	8,122	1,225	20	0,060547	0,547528	
24	7,887	1,225	20	0,060547	0,531686	
25	7,921	1,225	20	0,060547	0,533978	

8 lentelė. Sparno profilio pilnutinės aerodinaminės jėgos koeficientas C_R. $AoA=0^{\circ}\div 25^{\circ}$. $R_e=403274$

19 pav. Kreiserinių skrydžio greičių diagrama [19]

Z	SOLIDWORKS - 🗋 - 🗞 - 🗐 - 🧞 - 1) 🖆 🗷 -	Wandering wing profile angle of attack 0 *	Search SolidWorks Help	♀•?•_□₫X
V C M	Wizard New Cone Project Settings Methods Settings Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Methods Simulation Simulation Methods Simulation	Image: Strategy of the strat			35
Fea	tures Sketch Evaluate DimXpert Office Products Simul	ation Flow Simulation	Q, Q, 🗞 🐘 🎒 - 🗊 - 60 - 🕘 🙈 - 👰 -		
A	🗞 🖆 🐥 🕘 💿		+ · · · · · · · · · · · · · · · · · · ·		
a	🖵 Computational Domain 🛛 💦 🤶 🤶				• •
Ø	✓ ×				1 🔿 🚡
ø	Туре				1
Ø	3D simulation	5			
	2D simulation	j			- -
		1			§ 👱
	○ XZ plane	1			
	YZ plane	<u>}</u>			1
40	Size and Conditions				ş.
	Ø _x 25.7 m ♀ i v	ال ا			
	Ø, 25.6 m ▲ 🗃 🗸				1
		1 1			\$
	🕰 -5m 📫 🖸 🗸	1			1
	🛱 -9 m 🔷 🗧 🗸				1
	15m	1			1
		1 2			j,
	□ Z -1.5 m	Z,			1
	Reset				
	A	((
	Appearance V				
	Model Motion Study 1	_	· · · · · · · · · · · · · · · · · · ·		
Solid	Norks Premium 2013 x64 Edition			Editing Part	Custom 🔺 🥥

21 pav. Sparno profilio aerodinaminių charakteristikų tyrimo skaičiuotinė erdvė

💰 SOLIÐWORKS 🕨 🗋 - 🖄 - 🗐 - 🗞 - 🧐	- 🗟 - 🖲 🖆 🖾 -	Wandering angle of attack 0^ *	😵 Search SolidWorks Help	
Vitzard Image: Section of the section of	Load/Unload	ቻ ም ab		
Features Sketch Evaluate DimXpert Office Produ Image: Sketch	as Simulation Flow Simulation			
*Top References Model Motion Study 1				

31 pav. Albatroso sklandmens aerodinaminių charakteristikų tyrimo skaičiuotinė erdvė

Зs	SOLIDWORK	s 🕨 🗋 - 🗞 - 🖬	- 🖗 • 🧐 -	k - 8 💣 🖽 -		Wandering flaps 0^ 15 *		Search SolidWorks Help	Q -
Ex Bos	truded Revolv ss/Base Boss/B	G Swept Boss/Base ed J Lofted Boss/Base ed Boundary Boss/Base	Extruded Hole Cut Wiza	Revolved Cut Boundary Cut	Rib Fillet Linear Pattern C Draft	Intersect	Instant3D		
	tures Sketc Steection Front Pl H: 34.2734		Office Products ?	Simulation Flow Simulat	(De		☐ • 6s • ● ▲ • ♀ •		
	Display Contours Contours Disolines Vectors Contours Streamlin Mesh	es	*						
	Contours Velocity Zx Global C # 150 30 profil	(X) icoordinate System 0 : Model Motion Study 1		Z					

35 pav. Albatroso sparno pjūvio vieta (antrosios sparno nerviūros vietoje)

🕉 SOLIDWORKS 🕨 🗋 - 🖻 - 🖥] - 🗞 • 19 - k - 1 🖆 🗉 -		Wandering	wing profile angle of	fattack 0 *		Search SolidWorks Help	🔽 - ?
Vizard New Cone Project New Cone Project New New Cone Project New	i ♥ Run I Load/Unload III III Load/Unload III III Load/Unload III III Load/Unload III III Load/Unload III III Load/Unload III	w A Simulati						35
Features Sketch Evaluate DimXpert	Office Products Simulation Flow Sim	ulation	0.0	😽 🖹 🐴 - 🗂	- 6m - 🔘 🔍	- <u>P</u> -		
Features Sketch Evaluate DimXpert Image: Sketch Evaluate DimXpert Image: Sketch Sketch Sketch Image: Sketch Sketch Sketch<	Office Products Simulation Flow Sim Wizard - Unit System	ulation Unit system: System CGS (cm-g-s) FPS ((th-b-s) IPS ((th-b-s) IPS (th-b-s) USA USA Create new Parameter Frammeter Pressure & stress Velocity Mass Length Temperature Physical time T: I kV&r < Back	Path Pre-Defined Pre-Defined Pre-Defined Pre-Defined Pre-Defined Pre-Defined Name: SI Unit Vinit Pa w/s kg K s Next>	Comme CS (comme CS (cr FFS (H) IPS (m) IPS (m) USA (m-kg-s) (modified) Decimals in results display 12 12 123 123 123 123 123 123 123	- Grote - ? ? nt	> X >>		
Kotion Study 1]							

61 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

62 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

63 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

<u>→s solidworks</u> → □ - ▷ - □ - ◇ - □ - ◇ - □ - ◇ - □ - ○ - □ - ○ - □ - ○ - □ - □ - □ - □	Wandering wing profile angle of attack 0 *	🦻 Search SolidWorks Help 🛛 🔎 📍 🖬 🗇 🔀
Witzard Image: Section 2 Image: Section 2	 ・	35
Features Sketch Evaluate DimXpert Office Products Simulation Flow S	imulation 💿 🖗 🛠 🗎 🖓 - 🗇 - 🏤 - 🗎 -	
Features Sketch Evaluate DimXpert Office Products Simulation Flow 5 Wadering wing profile angle of Annotations Annotations Annotations Imported/Lurve1 Imported/Lurve2 Imported/Lurve1 Import	Imulation Image: Control of the second sec	
Y Y		
Model Motion Study 1		
SolidWorks Premium 2013 x64 Edition		Editing Part Custom 🔺 了 🥔

64 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

🕉 solidworks 🔸 🛛 - 🖻 - 🖩	- & • 9 · k · 1 f E ·	Wandering wing profile angle of attack 0 *	💡 Search SolidWorks Help 🛛 🔎 📍 🖬 📾 🖾
Vizard General Cone Project Cone Settings	Run Load/Unload	▶ ¹ / ₂ ¹	<u>z</u> s
Features Sketch Evaluate Dimxpert	Office Products Simulation Flow Sim		
Wandering wing profile angle of attact Sensors Annotations Front Plane Front P	Wzard - Initial and Ambient Conditions	Parameter Value Parameter Definition User Defined Thermodynamic Parameters Temperature, densky Parameters Temperature, densky Velocity Parameters Parameter Parameter 28.2 K Densky 1.22 ksg/m ³ Velocity Parameters Persentation Velocity Parameters Persentation Velocity in X direction 0 m/s Velocity in Z direction -20 m/s Velocity in Z direction 0 m/s Turbulence Parameters (************************************	
a line and a second sec			

65 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

66 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

67 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

ЗS	SOLIDWORKS	🗋 - 🖻 - 🖬 - 🗞 - 🎾 - 🤉 - 🛚 🖆	· 🖅 🔸	Wandering wing profile angle of attack 0 *	😵 Search SolidWorks Help	
V D m	Wizard 50 New 12 Clone Project 10	General Settings	 Image: Simulation of the second secon	L' _π		25
Fea	atures Sketch	Evaluate DimXpert Office Products Simulation	Flow Simulation	ion 🔍 Ə, 🗞 📖 🗳 - 🗍 -	ôg - 🕘 🌲 - 🛒 -	
	S 🖻 😫 4	0	⊡ -%	Wandering wing profile an		
	🍍 Global Goals		?			
đ	🗸 🗙			*********************		
	Parameters		* ^	1		1
ø	Parameter	Mir A\ Ma> Bulk A\ Use for Con	/. ^	5		
A	Turbulence Length			3		
	Turbulence Intens			2		
	Turbulent Energy			1		•
1	Turbulent Dissipati		_	di d) •
+/	Heat Hux		-	6		R
	Total Enthaloy Rat					-K
40	Normal Force					-Ki
	Normal Force (X)					9
	Normal Force (Y)		"م		-	3
	Normal Force (Z)			6		R
	Force		_	5		1
	Force (X)		_	2		N.
	Force (Y)		-	2		4
	Force (2)		-			<u></u>
	Friction Force (X)		-	6		r
	Friction Force (Y)			5		X
	Friction Force (Z)			y.		- (
	Torque (X)			2		6
	Torque (Y)					` }
	Torque (Z)		- v v - 1	1 1		
	†7					
	Global Coord	nate System				
	Mod Mod	el Motion Study 1				
Solid	Works Premium 20	3 x64 Edition			Editing Part	Custom 🔺 🥝

68 pav. Sparno profilio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

28 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=1^{\circ}$, $R_e=403274$.

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	2,742	2,757	2,691	2,816	100	Yes	0,041	0,041
GG Force (Y) 1	[N]	-0,327	-0,326	-0,330	-0,320	100	Yes	0,004	0,006
GG Force (Z) 1	[N]	2,723	2,738	2,671	2,797	100	Yes	0,041	0,042

29 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

SolidWorks aplinkoje. AoA=2°, Re=403274

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	2,905	2,941	2,790	3,047	100	Yes	0,052	0,053
GG Force (Y) 1	[N]	-0,405	-0,409	-0,420	-0,391	100	Yes	0,006	0,008
GG Force (Z) 1	[N]	2,877	2,913	2,762	3,019	100	Yes	0,053	0,055

30 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=3^\circ$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	3,158	3,219	3,115	3,317	100	Yes	0,040	0,041
GG Force (Y) 1	[N]	-0,486	-0,489	-0,501	-0,480	100	Yes	0,005	0,013
GG Force (Z) 1	[N]	3,121	3,181	3,077	3,280	100	Yes	0,039	0,042

31 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=4^\circ$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	3,541	3,626	3,454	3,852	56,5	Yes	0,123	0,069
GG Force (Y) 1	[N]	-0,534	-0,543	-0,574	-0,515	100	Yes	0,011	0,015
GG Force (Z) 1	[N]	3,501	3,585	3,413	3,811	57,5	Yes	0,125	0,072

32 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	4,396	4,776	4,396	4,936	23,9	Yes	0,179	0,043
GG Force (Y) 1	[N]	-0,343	-0,368	-0,391	-0,343	100	Yes	0,011	0,013
GG Force (Z) 1	[N]	4,382	4,762	4,382	4,923	24,4	Yes	0,179	0,044

SolidWorks aplinkoje. AoA=5°, Re=403274

33 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=6^\circ$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	5,458	5,272	4,920	5,505	35,7	Yes	0,163	0,058
GG Force (Y) 1	[N]	-0,424	-0,431	-0,443	-0,402	80,6	Yes	0,020	0,016
GG Force (Z) 1	[N]	5,441	5,255	4,904	5,488	36,5	Yes	0,164	0,060

34 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

SolidWorks aplinkoje. AoA=7°, Re=403274

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	5,793	5,487	5,248	5,793	44,3	Yes	0,183	0,081
GG Force (Y) 1	[N]	-0,511	-0,505	-0,528	-0,482	100	Yes	0,014	0,016
GG Force (Z) 1	[N]	5,771	5,463	5,225	5,771	45	Yes	0,183	0,083

35 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=8^\circ$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	5,536	5,669	5,536	5,783	41,4	Yes	0,117	0,049
GG Force (Y) 1	[N]	-0,704	-0,706	-0,720	-0,699	100	Yes	0,007	0,013
GG Force (Z) 1	[N]	5,491	5,625	5,491	5,739	40,7	Yes	0,117	0,048

36 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=9^\circ$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	5,767	5,771	5,762	5,789	100	Yes	0,027	0,066
GG Force (Y) 1	[N]	-0,745	-0,745	-0,748	-0,737	100	Yes	0,011	0,012
GG Force (Z) 1	[N]	5,719	5,722	5,714	5,742	100	Yes	0,028	0,066

37 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	6,387	6,337	6,166	6,612	100	Yes	0,074	0,076
GG Force (Y) 1	[N]	-0,761	-0,730	-0,772	-0,707	100	Yes	0,013	0,018
GG Force (Z) 1	[N]	6,342	6,295	6,124	6,566	100	Yes	0,073	0,075

SolidWorks aplinkoje. AoA=10°, Re=403274

38 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=11^{\circ}$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	6,385	6,729	6,385	6,890	23,4	Yes	0,271	0,064
GG Force (Y) 1	[N]	-0,736	-0,785	-0,813	-0,736	75,7	Yes	0,026	0,019
GG Force (Z) 1	[N]	6,342	6,683	6,342	6,844	23,2	Yes	0,270	0,063

39 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

SolidWorks aplinkoje. *AoA*=12°, *R_e*=403274

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	7,224	7,274	7,214	7,338	100	Yes	0,071	0,079
GG Force (Y) 1	[N]	-0,946	-0,946	-0,959	-0,940	100	Yes	0,019	0,019
GG Force (Z) 1	[N]	7,161	7,212	7,152	7,276	100	Yes	0,074	0,080

40 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=13°, *Re*=403274

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	7,381	7,468	7,371	7,551	100	Yes	0,007	0,075
GG Force (Y) 1	[N]	-0,919	-0,932	-0,958	-0,914	100	Yes	0,019	0,020
GG Force (Z) 1	[N]	7,324	7,410	7,314	7,490	100	Yes	0,008	0,074

41 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=14^{\circ}$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	6,925	7,001	6,918	7,164	100	Yes	0,070	0,103
GG Force (Y) 1	[N]	-0,972	-0,964	-0,982	-0,946	100	Yes	0,026	0,029
GG Force (Z) 1	[N]	6,856	6,935	6,851	7,097	100	Yes	0,074	0,101

42 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	7,932	7,928	7,866	7,952	100	Yes	0,085	0,105
GG Force (Y) 1	[N]	-1,119	-1,137	-1,157	-1,119	100	Yes	0,028	0,040
GG Force (Z) 1	[N]	7,853	7,846	7,782	7,871	100	Yes	0,090	0,103

SolidWorks aplinkoje. *AoA*=15°, *R_e*=403274

43 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=16^{\circ}$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	8,417	8,442	8,394	8,473	100	Yes	0,080	0,089
GG Force (Y) 1	[N]	-1,229	-1,231	-1,246	-1,216	100	Yes	0,030	0,033
GG Force (Z) 1	[N]	8,327	8,352	8,305	8,383	100	Yes	0,078	0,088

44 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

SolidWorks aplinkoje. AoA=17°, Re=403274

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	7,337	7,296	7,219	7,365	100	Yes	0,042	0,133
GG Force (Y) 1	[N]	-1,457	-1,448	-1,466	-1,428	100	Yes	0,031	0,032
GG Force (Z) 1	[N]	7,191	7,151	7,075	7,219	100	Yes	0,040	0,131

45 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=18°, *Re*=403274

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	8,220	8,174	8,113	8,220	100	Yes	0,106	0,121
GG Force (Y) 1	[N]	-1,640	-1,656	-1,674	-1,640	100	Yes	0,015	0,032
GG Force (Z) 1	[N]	8,054	8,005	7,938	8,054	100	Yes	0,116	0,119

46 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA=19^{\circ}$, $R_e=403274$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	8,551	8,529	8,457	8,551	100	Yes	0,094	0,143
GG Force (Y) 1	[N]	-1,799	-1,827	-1,865	-1,798	100	Yes	0,020	0,053
GG Force (Z) 1	[N]	8,359	8,331	8,249	8,359	100	Yes	0,111	0,139

47 lentelė. Sparno profilio aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Force 1	[N]	8,501	8,469	8,376	8,506	100	Yes	0,130	0,151
GG Force (Y) 1	[N]	-1,944	-1,976	-2,012	-1,944	100	Yes	0,025	0,055
GG Force (Z) 1	[N]	8,276	8,235	8,132	8,279	100	Yes	0,147	0,147

SolidWorks aplinkoje. AoA=20°, Re=403274

Užsparnių padėtis $AoA = 0^{\circ}$. V_x = 15 m/s

Užsparnių padėtis $AoA = 4^{\circ}$. V_x = 15 m/s

Užsparnių padėtis $AoA = 5^{\circ}$. V_x = 15 m/s

Averaged Maximum Progress Goal Minimum Use In Unit Value Delta Criteria Name Value Value Value [%] Convergence GG Normal [N] 20,397 20,577 0,256 20,225 20,780 100 Yes 0,196 Force 1 SG Normal [N] 20,397 20,780 0,196 0,256 20,577 20,224 100 Yes Force 1 GG Normal [N] 8,493 8,476 8,449 100 Yes 0,017 0,316 8,498 Force (X) 1 SG Normal 8,493 0,017 [N] 8,476 8,449 8,497 100 Yes 0,316 Force (X) 1 GG Normal [N] 18,545 18,750 18,362 18,974 100 Yes 0,212 0,295 Force (Y) 1 SG Normal [N] 18,545 18,750 18,362 18,973 100 Yes 0,212 0,295 Force (Y) 1 GG 20,603 20,779 20,979 100 Yes 0,194 0,258 Force [N] 20,429 1 GG Force [N] 8,954 8,930 8,900 8,957 100 Yes 0,018 0,324 (X) 1 GG 0,294 Force [N] 18,555 18,762 18,374 18,984 100 Yes 0,212 (Y) 1

48 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 0^\circ$, $V_x = 15$ m/s
49 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 1^{\circ}$, $V_x = 15$ m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	23,390	23,352	23,102	23,684	100	Yes	0,063	0,243
GG Normal Force (X) 1	[N]	8,576	8,594	8,541	8,628	100	Yes	0,009	0,320
GG Normal Force (Y) 1	[N]	21,761	21,713	21,454	22,065	100	Yes	0,065	0,309
GG Force 1	[N]	23,570	23,534	23,279	23,865	100	Yes	0,063	0,244
GG Force (X) 1	[N]	9,041	9,058	8,972	9,114	100	Yes	0,016	0,331
GG Force (Y) 1	[N]	21,767	21,720	21,460	22,072	100	Yes	0,065	0,309

50 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 2^{\circ}$, $V_x = 15 \text{ m/s}$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	24,538	24,305	24,011	24,591	100	Yes	0,235	0,260
GG Normal Force (X) 1	[N]	8,584	8,576	8,552	8,600	100	Yes	0,010	0,329
GG Normal Force (Y) 1	[N]	22,987	22,741	22,428	23,045	100	Yes	0,251	0,321
GG Force 1	[N]	24,714	24,476	24,182	24,760	100	Yes	0,233	0,260
GG Force (X) 1	[N]	9,052	9,029	8,995	9,070	100	Yes	0,010	0,339
GG Force (Y) 1	[N]	22,996	22,750	22,437	23,053	100	Yes	0,251	0,320

51 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 3^{\circ}$, $V_x = 15 \text{ m/s}$

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	25,367	25,342	25,184	25,476	100	Yes	0,167	0,267
GG Normal Force (X) 1	[N]	8,630	8,637	8,623	8,661	100	Yes	0,014	0,335
GG Normal Force (Y) 1	[N]	23,854	23,824	23,661	23,964	100	Yes	0,183	0,323
GG Force 1	[N]	25,543	25,508	25,348	25,640	100	Yes	0,166	0,268
GG Force (X) 1	[N]	9,108	9,090	9,064	9,126	100	Yes	0,013	0,345
GG Force (Y) 1	[N]	23,864	23,833	23,670	23,972	100	Yes	0,183	0,322

52 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 4^{\circ}$, $V_x = 15$ m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	26,728	26,509	26,237	26,728	100	Yes	0,091	0,289
GG Normal Force (X) 1	[N]	8,692	8,697	8,666	8,729	100	Yes	0,009	0,344
GG Normal Force (Y) 1	[N]	25,275	25,041	24,746	25,275	100	Yes	0,096	0,335
GG Force 1	[N]	26,883	26,666	26,392	26,883	100	Yes	0,090	0,291
GG Force (X) 1	[N]	9,131	9,142	9,100	9,182	100	Yes	0,011	0,355
GG Force (Y) 1	[N]	25,285	25,050	24,754	25,285	100	Yes	0,096	0,335

53 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 5^{\circ}$, $V_x = 15$ m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	28,018	28,020	27,737	28,228	100	Yes	0,097	0,287
GG Normal Force (X) 1	[N]	8,729	8,699	8,666	8,737	100	Yes	0,013	0,348
GG Normal Force (Y) 1	[N]	26,624	26,636	26,345	26,855	100	Yes	0,099	0,348
GG Force 1	[N]	28,168	28,172	27,887	28,378	100	Yes	0,097	0,289
GG Force (X) 1	[N]	9,175	9,151	9,109	9,200	100	Yes	0,014	0,358
GG Force (Y) 1	[N]	26,632	26,644	26,354	26,864	100	Yes	0,098	0,348

54 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 6^{\circ}$, $V_x = 15$ m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	28,757	28,679	28,480	28,819	100	Yes	0,063	0,336
GG Normal Force (X) 1	[N]	8,818	8,832	8,812	8,860	100	Yes	0,013	0,361
GG Normal Force (Y) 1	[N]	27,371	27,285	27,073	27,431	100	Yes	0,063	0,360
GG Force 1	[N]	28,911	28,834	28,637	28,975	100	Yes	0,063	0,337
GG Force (X) 1	[N]	9,279	9,297	9,273	9,332	100	Yes	0,014	0,371
GG Force (Y) 1	[N]	27,381	27,294	27,083	27,441	100	Yes	0,063	0,360

55 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = 0^{\circ}$, $V_x = 25$ m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	59,763	60,044	59,386	60,572	100	Yes	0,424	0,637
SG Normal Force 1	[N]	59,763	60,044	59,386	60,571	100	Yes	0,424	0,637
GG Normal Force (X) 1	[N]	23,679	23,591	23,499	23,683	100	Yes	0,051	0,881
SG Normal Force (X) 1	[N]	23,679	23,591	23,498	23,683	100	Yes	0,051	0,882
GG Normal Force (Y) 1	[N]	54,872	55,215	54,472	55,796	100	Yes	0,483	0,831
SG Normal Force (Y) 1	[N]	54,872	55,215	54,471	55,796	100	Yes	0,483	0,831
GG Force 1	[N]	60,260	60,533	59,883	61,052	100	Yes	0,418	0,642
GG Force (X) 1	[N]	24,879	24,777	24,678	24,883	100	Yes	0,055	0,904
GG Force (Y) 1	[N]	54,885	55,230	54,483	55,811	100	Yes	0,483	0,830

56 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = -1^{\circ}$, $V_x = 25$ m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	58,926	59,262	58,628	59,846	100	Yes	0,087	0,578
GG Normal Force (X) 1	[N]	23,611	23,527	23,451	23,619	100	Yes	0,020	0,878
GG Normal Force (Y) 1	[N]	53,989	54,391	53,677	55,038	100	Yes	0,092	0,855
GG Force 1	[N]	59,434	59,770	59,157	60,339	100	Yes	0,082	0,578
GG Force (X) 1	[N]	24,820	24,752	24,658	24,843	100	Yes	0,025	0,904
GG Force (Y) 1	[N]	54,003	54,404	53,688	55,053	100	Yes	0,092	0,854

57 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. $AoA = -2^{\circ}$, $V_x = 25$ m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	58,505	57,988	57,396	58,505	100	Yes	0,148	0,484
GG Normal Force (X) 1	[N]	23,577	23,573	23,487	23,677	100	Yes	0,068	0,851
GG Normal Force (Y) 1	[N]	53,544	52,981	52,317	53,544	100	Yes	0,147	0,859
GG Force 1	[N]	59,027	58,501	57,910	59,027	100	Yes	0,145	0,486
GG Force (X) 1	[N]	24,823	24,780	24,687	24,905	100	Yes	0,068	0,877
GG Force (Y) 1	[N]	53,554	52,993	52,327	53,554	100	Yes	0,146	0,858

<mark>∂S SOLIDWORKS</mark> · □ - ▷ - 🖩 - 🍇 - 🧐 - R - 🛚 🖆 🗐 -		Wand	lering angle of attad	k0^*	Search SolidWorks Help	🔎 • • • • • • • ×
Witzard Image: Second se	ow Ja № % Flow Ja № % simulat					
Features Sketch Evaluate DimXpert Office Products Simulation Flow Sim	nulation	00	*	- 6e - 0 0	<u>↓</u> ■ +	
Tesauce stellar branchet umnger Office Products Simulation Flow Sim Wandering angle of attack 0' Wandering angle of attack 0' Sensors Annotations Suface Bodie(18) Suface Imported Corigin Suface-Imported ImportedCurve1 Suface-Imported3 ImportedCurve3 Suface-Imported3 ImportedCurve5 Suface-Imported3 ImportedCurve5 Suface-Imported3 ImportedCurve5 Suface-Imported3 ImportedCurve5 Suface-Imported3 ImportedCurve6 Suface-Imported3 ImportedCurve6 Suface-Imported3 ImportedCurve7 Suface-Imported3 ImportedCurve8 Suface-Imported3 ImportedCurve8 Suface-Imported4 Suface-Imported4 Suface-Imported4 Suface-Imported5 ImportedCurve8 Suface-Imported6 Sufa	Unit system: System CCS (cm-g-s) FPS ((k-b-s) IPS (in-b-s) NMM (mm-g-s) SI (m+g-s) USA Create new Parameter Man Pressure & stress Velocity Mass Length Length Competature Physical time C (Back	Path Pre-Defined P	Comme CGS (c FPS (fri IPS (fri	? nt m-g-s) ib-s) m-g-s) g-s] 1 Si unit 1 1 1 1 1 1 1 1 1 + +		
Model Motion Study 1						

110 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

🔏 SOLIDWORKS 🔸 🗋 - 🖯 - 🖻 - 🖬 - i	S. 9 · k · 1 M E ·	Wandering angle of attack 0^ *	Search SolidWorks Help	,
Vitzard Image: Section 2 Image: New Image: Section 2 Image: Section 2 Section 2 Image: Section 2 Section 2	Image: Point of the state of the	- ビュ ゆ みみ -		35
Features Sketch Evaluate DimXpert Offi	ice Products Simulation Flow Simu	lation 🕜 🔅 😒 📾 🗠 🖓 - 🗇 - 🖓 -		
Features Sketch Evaluate DimXpert Off Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensors Image: Sensor	ce Products Simulation How Simulation tard - Analysis Type	Iation		
Model Motion Study 1				

111 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

112 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

113 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

114 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

115 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

116 pav. Albatroso 3D modelio aerodinaminių tyrimų duomenų įvestis programoje SolidWorks

126 pav. Albatroso sklandmens oro srauto greičių pasiskirstymo spektras. $AoA = 10^{\circ}$. $V_x = 20$ m/s

127 pav. Albatroso sklandmens slėgio pasiskirstymo spektras skaičiuotinėje erdvėje, koordinačių plokštumoje YX. $AoA = 10^{\circ}$. V_x = 20 m/s

128 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje, koordinačių plokštumoje YX iš priekio. $AoA = 10^{\circ}$. V_x = 20 m/s

129 pav. Albatroso sklandmens konstrukciją aptekančio oro srauto greičių pasiskirstymo spektras apribotoje skaičiuotinėje erdvėje, koordinačių plokštumoje YX iš galo. $AoA = 10^{\circ}$. V_x = 20 m/s

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	37,680	37,799	37,605	38,236	100	Yes	0,401	0,430
SG Normal Force 1	[N]	37,679	37,798	37,605	38,236	100	Yes	0,401	0,430
GG Normal Force (X) 1	[N]	15,018	15,062	14,987	15,128	100	Yes	0,052	0,563
SG Normal Force (X) 1	[N]	15,018	15,062	14,987	15,128	100	Yes	0,052	0,563
GG Normal Force (Y) 1	[N]	34,557	34,668	34,468	35,145	100	Yes	0,453	0,523
SG Normal Force (Y) 1	[N]	34,557	34,668	34,468	35,145	100	Yes	0,453	0,523
GG Force 1	[N]	38,008	38,132	37,939	38,565	100	Yes	0,396	0,432
GG Force (X) 1	[N]	15,794	15,846	15,777	15,920	100	Yes	0,049	0,577
GG Force (Y) 1	[N]	34,572	34,683	34,484	35,160	100	Yes	0,453	0,522

58 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=0°

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	42,498	42,72	42,413	42,984	100	Yes	0,453	0,453
SG Normal Force 1	[N]	42,498	42,72	42,413	42,984	100	Yes	0,453	0,453
GG Normal Force (X) 1	[N]	14,93	14,943	14,877	15,023	100	Yes	0,059	0,546
SG Normal Force (X) 1	[N]	14,93	14,943	14,877	15,023	100	Yes	0,059	0,546
GG Normal Force (Y) 1	[N]	39,789	40,021	39,668	40,296	100	Yes	0,492	0,622
SG Normal Force (Y) 1	[N]	39,789	40,021	39,668	40,296	100	Yes	0,492	0,622
GG Force 1	[N]	42,776	42,997	42,691	43,26	100	Yes	0,453	0,456
GG Force (X) 1	[N]	15,69	15,701	15,632	15,787	100	Yes	0,06	0,561
GG Force (Y) 1	[N]	39,794	40,028	39,673	40,303	100	Yes	0,492	0,622

59 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=1°

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	47,362	47,432	47,164	47,719	100	Yes	0,555	0,555
SG Normal Force 1	[N]	47,362	47,432	47,164	47,719	100	Yes	0,555	0,555
GG Normal Force (X) 1	[N]	14,859	14,849	14,799	14,893	100	Yes	0,094	0,578
SG Normal Force (X) 1	[N]	14,859	14,849	14,799	14,893	100	Yes	0,094	0,578
GG Normal Force (Y) 1	[N]	44,970	45,047	44,782	45,342	100	Yes	0,560	0,738
SG Normal Force (Y) 1	[N]	44,970	45,047	44,782	45,342	100	Yes	0,560	0,738
GG Force 1	[N]	47,605	47,677	47,408	47,964	100	Yes	0,556	0,557
GG Force (X) 1	[N]	15,611	15,601	15,547	15,647	100	Yes	0,100	0,594
GG Force (Y) 1	[N]	44,972	45,052	44,786	45,347	100	Yes	0,560	0,737

60 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=2°

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	56,236	56,362	56,009	56,699	100	Yes	0,454	0,546
SG Normal Force 1	[N]	56,236	56,362	56,009	56,699	100	Yes	0,454	0,546
GG Normal Force (X) 1	[N]	15,024	15,040	15,000	15,083	100	Yes	0,033	0,590
SG Normal Force (X) 1	[N]	15,024	15,040	15,000	15,083	100	Yes	0,033	0,590
GG Normal Force (Y) 1	[N]	54,192	54,318	53,960	54,656	100	Yes	0,474	0,719
SG Normal Force (Y) 1	[N]	54,192	54,318	53,960	54,656	100	Yes	0,474	0,719
GG Force 1	[N]	56,433	56,559	56,207	56,894	100	Yes	0,453	0,534
GG Force (X) 1	[N]	15,752	15,768	15,715	15,817	100	Yes	0,032	0,607
GG Force (Y) 1	[N]	54,190	54,316	53,959	54,655	100	Yes	0,474	0,718

61 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=3°

Goal Averaged Minimum Maximum Progress Use In Unit Value Delta Criteria Convergence Name Value Value Value [%] GG Normal [N] 63,528 63,465 100 Yes 0,517 0,587 63,035 63,885 Force 1 SG Normal [N] 63,522 63,460 63,029 63,880 100 Yes 0,518 0,587 Force 1 GG Normal [N] 15,682 15,713 15,639 15,815 100 Yes 0,069 0,588 Force (X) 1 SG Normal 15,680 [N] 15,711 15,637 15,813 100 Yes 0,069 0,588 Force <u>(X)</u> 1 GG Normal [N] 61,562 61,489 61,064 61,904 100 Yes 0,521 0,717 Force (Y) 1 SG Normal [N] 61,557 61,484 61,058 61,899 100 0,522 0,717 Yes Force (Y) 1 GG [N] 63,711 63,651 63,222 64,071 100 Yes 0,517 0,588 Force 1 SG 63,705 63,645 63,216 64,066 100 Yes 0,518 0,589 [N] Force 1 GG Force [N] 16,425 16,466 16,385 16,576 100 Yes 0,071 0,603 (X) 1 SG 0,071 Force [N] 16,423 16,464 16,383 16,574 100 Yes 0.603 (X) 1 GG Force [N] 61,557 61,484 61,058 61,897 100 Yes 0,520 0,717 (Y) 1 SG Force [N] 61,552 61,479 61,053 61,892 100 Yes 0,521 0,717 (Y) 1

62 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=4°

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	71,236	71,129	70,802	71,320	100	Yes	0,518	0,624
SG Normal Force 1	[N]	71,236	71,129	70,802	71,320	100	Yes	0,518	0,624
GG Normal Force (X) 1	[N]	16,371	16,403	16,371	16,466	100	Yes	0,096	0,580
SG Normal Force (X) 1	[N]	16,371	16,403	16,371	16,466	100	Yes	0,096	0,580
GG Normal Force (Y) 1	[N]	69,329	69,212	68,880	69,411	100	Yes	0,531	0,740
SG Normal Force (Y) 1	[N]	69,329	69,212	68,880	69,411	100	Yes	0,531	0,740
GG Force 1	[N]	71,403	71,298	70,973	71,485	100	Yes	0,511	0,618
GG Force (X) 1	[N]	17,115	17,153	17,115	17,222	100	Yes	0,108	0,596
GG Force (Y) 1	[N]	69,321	69,204	68,873	69,401	100	Yes	0,528	0,740

63 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=5°

		-		-	-				
Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	76,389	76,472	76,214	76,759	100	Yes	0,545	0,600
SG Normal Force 1	[N]	76,389	76,472	76,214	76,759	100	Yes	0,545	0,600
GG Normal Force (X) 1	[N]	17,380	17,350	17,320	17,389	100	Yes	0,068	0,586
SG Normal Force (X) 1	[N]	17,380	17,350	17,320	17,389	100	Yes	0,068	0,586
GG Normal Force (Y) 1	[N]	74,385	74,477	74,219	74,777	100	Yes	0,558	0,706
SG Normal Force (Y) 1	[N]	74,385	74,477	74,219	74,777	100	Yes	0,558	0,706
GG Force 1	[N]	76,560	76,645	76,386	76,931	100	Yes	0,544	0,592
GG Force (X) 1	[N]	18,186	18,164	18,127	18,222	100	Yes	0,096	0,603
GG Force (Y) 1	[N]	74,369	74,461	74,203	74,761	100	Yes	0,558	0,706

64 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=6°

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	84,327	84,402	84,085	84,651	100	Yes	0,567	0,747
SG Normal Force 1	[N]	84,327	84,402	84,085	84,651	100	Yes	0,567	0,747
GG Normal Force (X) 1	[N]	18,235	18,226	18,168	18,288	100	Yes	0,120	0,567
SG Normal Force (X) 1	[N]	18,235	18,226	18,168	18,288	100	Yes	0,120	0,567
GG Normal Force (Y) 1	[N]	82,331	82,411	82,094	82,652	100	Yes	0,558	0,835
SG Normal Force (Y) 1	[N]	82,331	82,411	82,094	82,652	100	Yes	0,558	0,835
GG Force 1	[N]	84,482	84,559	84,240	84,807	100	Yes	0,566	0,740
GG Force (X) 1	[N]	19,044	19,038	18,988	19,092	100	Yes	0,105	0,584
GG Force (Y) 1	[N]	82,308	82,387	82,071	82,630	100	Yes	0,558	0,835

65 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=7°

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	94,896	95,067	94,716	95,343	100	Yes	0,628	0,740
SG Normal Force 1	[N]	94,896	95,067	94,716	95,343	100	Yes	0,628	0,740
GG Normal Force (X) 1	[N]	19,159	19,243	19,159	19,377	100	Yes	0,218	0,576
SG Normal Force (X) 1	[N]	19,159	19,243	19,159	19,377	100	Yes	0,218	0,576
GG Normal Force (Y) 1	[N]	92,942	93,099	92,750	93,353	100	Yes	0,603	0,814
SG Normal Force (Y) 1	[N]	92,942	93,099	92,750	93,353	100	Yes	0,603	0,814
GG Force 1	[N]	95,037	95,206	94,852	95,482	100	Yes	0,630	0,734
GG Force (X) 1	[N]	20,005	20,077	19,999	20,207	100	Yes	0,208	0,594
GG Force (Y) 1	[N]	92,907	93,065	92,713	93,319	100	Yes	0,606	0,815

66 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=8°

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	101,582	101,633	101,288	101,979	100	Yes	0,692	0,764
SG Normal Force 1	[N]	101,582	101,633	101,288	101,979	100	Yes	0,692	0,764
GG Normal Force (X) 1	[N]	20,521	20,496	20,430	20,560	100	Yes	0,130	0,543
SG Normal Force (X) 1	[N]	20,521	20,496	20,430	20,560	100	Yes	0,130	0,543
GG Normal Force (Y) 1	[N]	99,487	99,545	99,203	99,886	100	Yes	0,683	0,829
SG Normal Force (Y) 1	[N]	99,487	99,545	99,203	99,886	100	Yes	0,683	0,829
GG Force 1	[N]	101,710	101,763	101,415	102,108	100	Yes	0,693	0,760
GG Force (X) 1	[N]	21,304	21,288	21,214	21,361	100	Yes	0,147	0,561
GG Force (Y) 1	[N]	99,454	99,511	99,170	99,850	100	Yes	0,680	0,830

67 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA=*9°
1	1				I			1	
Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
GG Normal Force 1	[N]	107,558	107,367	106,930	107,726	100	Yes	0,797	0,841
SG Normal Force 1	[N]	107,558	107,367	106,930	107,726	100	Yes	0,797	0,841
GG Normal Force (X) 1	[N]	21,536	21,528	21,448	21,616	100	Yes	0,169	0,556
SG Normal Force (X) 1	[N]	21,536	21,528	21,448	21,616	100	Yes	0,169	0,556
GG Normal Force (Y) 1	[N]	105,379	105,187	104,748	105,537	100	Yes	0,788	0,890
SG Normal Force (Y) 1	[N]	105,379	105,187	104,748	105,537	100	Yes	0,788	0,890
GG Force 1	[N]	107,681	107,490	107,052	107,849	100	Yes	0,797	0,837
GG Force (X) 1	[N]	22,370	22,350	22,262	22,426	100	Yes	0,164	0,574
GG Force (Y) 1	[N]	105,331	105,141	104,700	105,492	100	Yes	0,792	0,892

68 lentelė. Albatroso sklandmens aerodinaminių charakteristikų L, D ir R tyrimo rezultatai programos SolidWorks aplinkoje. *AoA*=10°

130 pav. Albatroso skrydžio metu veikiančių vektorių priklausomybių iliustracija

131 pav. Optimizuota albatroso dinaminio skriejimo matematinio modelio trajektorija

132 pav. Optimizuota albatroso dinaminio skriejimo matematinio modelio trajektorija