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The four-neutron system is studied using exact continuum equations for transition operators and solving 
them in the momentum-space framework. A resonant behavior is found for strongly enhanced interaction 
but not a the physical strength, indicating the absence of an observable tetraneutron resonance, in 
contrast to a number of earlier works. As the transition operators acquire large values at low energies, it 
is conjectured that this behavior may explain peaks in many-body reactions even without a resonance.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The four-neutron (4n) system is an exotic few-body system 
challenging experimental techniques as well as theoretical un-
derstanding of the nuclear force and methods for the descrip-
tion of the few-particle continuum. It has attracted a great inter-
est in the last few years [1–5], but, nevertheless, remains highly 
controversial. An experimental observation of few events in the 
double charge–exchange reaction 4He(8He, 8Be), that were inter-
preted as a formation of a tetraneutron resonance with the energy 
Er = 0.83 ± 0.65(stat) ± 1.25(syst) MeV and width � ≤ 2.6 MeV 
[1], still awaits a confirmation in the analysis of further experi-
ments. The theoretical predictions for the tetraneutron are even 
more contradictory: They range from a narrow near-threshold res-
onance with Er ≈ 0.8 MeV and � ≈ 1.4 MeV [2] or Er ≈ 2.1 MeV 
[3] to a broad resonance with Er ≈ 7.3 MeV and � ≈ 3.7 MeV 
[4] while other authors [5,6] predict no observable tetraneutron 
resonance at all, i.e., negative Er and very large �. Despite these 
differences, all above works concluded that tetraneutron proper-
ties are insensitive to the details of the neutron–neutron (nn) and 
three-neutron (3n) interaction models as long as they remain real-
istic. Thus, those very different predictions cannot be explained by 
differences in employed potentials but raise question on the relia-
bility of at least some of the above calculations. Indeed, the 4n sys-
tem resides in the continuum whose exact treatment is much more 
complicated as compared to bound states. However, among the 
above-mentioned works only the solution of the complex-scaled 
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Faddeev–Yakubovsky (FY) equations [5,6] treats the continuum rig-
orously; if no further simplifications are made unlike in Ref. [4]
this applies also to the no-core Gamow shell model. In contrast, 
the harmonic oscillator representation of the continuum [2] and 
the bound-state quantum Monte Carlo with the extrapolation to 
the continuum [3] approaches are not natural methods for a rig-
orous description of the four-particle continuum. In fact, none of 
the approaches from Refs. [2–4] has been applied successfully to 
other four-nucleon scattering processes, in contrast to FY equa-
tions [7]. However, the only method that so far provided reliable 
results for all four-nucleon reactions above the complete breakup 
threshold, i.e., for elastic, charge–exchange, transfer, and breakup 
processes in nucleon–trinucleon and deuteron–deuteron collisions, 
is the momentum-space transition operator method [8,9]. Further-
more, it provided the most accurate results in the field of the 
universal four-fermion [10] and four-boson [11] physics, includ-
ing the properties of resonant (unstable) four-particle states. The 
method is an exact integral version of FY equations [12] proposed 
by Alt, Grassberger, and Sandhas (AGS) [13,14]. Its application to 
the 4n problem is highly desirable, since being a rigorous contin-
uum method it should provide reliable conclusions regarding the 
tetraneutron resonance, much like in the case of the 3n system 
[15], where it clearly supported the earlier conclusion [5,16] on 
the 3n resonance unobservability in contrast to Ref. [3]. Another 
very important advantage of the transition operator method is its 
ability to determine not only the resonance position and width but 
also the nonresonant (background) contribution to scattering am-
plitudes, thereby making solid conclusions regarding the resonance 
observability in physical processes.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Theory

AGS equations for four-nucleon transition operators have been 
applied to the study of reactions initiated by all possible two-
cluster collisions [8,9]. The situation is different in the 4n system 
that has no bound subsystems and the only possible reaction is the 
elastic scattering of four free particles. Starting from Ref. [17], the 
operator for this 4 → 4 process can be split into two-, three-, and 
four-particle components, i.e.,

T4→4 =
∑

j

t j +
∑

jiβ

t j G0U ji
β G0 ti +

∑

jiβα

T ji
βα. (1)

Here Latin (sub)superscripts denote pairs while Greek subscripts 
denote two-cluster partitions (subsystems) that can be of 3 + 1 or 
2 + 2 type. Furthermore, G0 is the free resolvent at the available 
energy E , t j = v j + v j G0t j are the pair transition operators with 
pair potentials v j , and U ji

β = G−1
0 δ̄ ji + ∑

k δ̄ jktkG0U ki
β are the sub-

system transition operator where δ̄ ji = 1 − δ ji . The four-particle 
transition operators obey the system of integral equations

T ji
βα =

∑

k

t j G0U jk
β δ̄βαG0 tk G0Uki

α G0 ti

+
∑

γ k

t j G0U jk
β G0δ̄βγ T ki

γ α.
(2)

Taking into account identity of neutrons the equations (2) can be 
symmetrized, reducing the number of jβ components from 18 to 
just two, one being of the 3 +1 type and another of the 2 +2 type; 
in the following they will be abbreviated by subscripts 1 and 2, 
respectively. For example, four-neutron operators Tβ2 are obtained 
from integral equations

T12 = tG0U1G0tG0U2G0t + tG0U1G0(T22 − P34T12), (3a)

T22 = tG0U2G0(1 − P34)T12, (3b)

where P34 is the permutation operator of particles 3 and 4, while 
t and Uβ are symmetrized pair and subsystem operators, respec-
tively [18]. Kernel of Eqs. (3) is built from the same operators 
(just in a different order) as in Refs. [8,9,18] for two-cluster reac-
tions. Thus, the solution technique to a large extent can be taken 
over from Refs. [8,9,18]. It is performed in the momentum-space 
partial-wave representation [18], whereas kernel singularities aris-
ing from G0 are treated by the complex-energy method with spe-
cial integration weights [19]. As the four-cluster matrix elements 
exhibit stronger dependence on the imaginary part ε of the en-
ergy, smaller values 0.1 MeV ≤ ε ≤ 1 MeV as compared to Refs. [8,
9,19] have to be used, which implies larger number (around 80) of 
grid points for the discretization of Jacobi momenta kx , ky , and kz
in the notation of Refs. [11,19].

A pure 4n scattering experiment is practically impossible, with 
presently available experiment techniques one may only indirectly 
observe 4n as a final subsystem in a more complicated reaction 
such as 4He(8He, 8Be). It is complicated many-body process that 
cannot be described rigorously by presently available methods, 
however, half-shell matrix elements of Tβα that determine the 4n
wave function, together with some simplified reaction model, may 
provide estimation for the properties of the final 4n subsystem, 
e.g., its energy distribution. Therefore it is important to evaluate 
also half-shell matrix elements of Tβα .

3. Results

In the following I consider the 4n state with total angular mo-
mentum and parity J� = 0+; namely in this state Refs. [2–4]
predict the 4n resonance. In order to make comparison with those 
works, I use chiral effective field theory (χEFT) potential at next-
to-leading order (NLO) [20], an improved version of the local NLO 
potential used in Ref. [3], and a low-momentum potential that 
should have similar behavior as those used in Refs. [2,4]. It is based 
on a realistic Argonne V18 potential [21] evolved using the sim-
ilarity renormalization group (SRG) transformation [22] with the 
flow parameter λ = 1.8 fm−1. It is important that this is one of 
few models able to reproduce quite well not only the 3H bind-
ing energy but also the cross section for n-3H scattering in the 
energy regime with pronounced four-nucleon (3n + proton) reso-
nances [23]. For this reason it can be considered as a well suited 
model for the 4n resonance study.

In order to follow the evolution of the 4n resonance, I also per-
form calculations enhancing the nn potential by a factor f > 1 in 
nn partial waves with the total angular momentum jx < 3 except 
for the 1 S0 wave where the physical potential strength is kept, en-
suring that there are no bound dineutrons. The calculations include 
nn partial waves with jx < 3 and 3n partial waves with the total 
angular momentum J y < 7

2 , while subsystem orbital angular mo-
menta are l y, lz < 5. With these cutoffs the results appear to be 
well converged.

Since the 4n resonance corresponds to the pole of the transition 
operators Tβα in the complex energy plain at Er − i�/2, these val-
ues are extracted from the energy dependence of calculated Tβα

matrix elements much like in Ref. [15] for the 3n resonance. In 
general they are functions of six Jacobi momentum variables, but 
since all of them exhibit the same resonant behavior, they are 
shown for few initial and final on-shell and off-shell states only, 
abbreviated by |ka〉 and |koff

a 〉, respectively. They are chosen with 
lx = l y = lz = 0 and two vanishing Jacobi momenta k j = 0 for j �= a, 
the remaining one being ka = √

2μa E and koff
a = √

2μa(E + εoff), 
respectively. For example, the state |kz〉 in the 2 + 2 configuration 
corresponds to two pairs of neutrons with vanishing relative nn
momentum, that can be interpreted as a two (unbound) dineutron 
state. In the above relations μa is the associated reduced mass 
while εoff measures how much off-shell the system is. A typical 
value in the shown results is εoff = 2 MeV that roughly corre-
sponds to 8He binding with respect to the 4He + 4n threshold.

4n transition operators Tβα in the J� = 0+ wave calculated 
using the physical nn potential, i.e., f = 1, show no indications 
of resonance, but for sufficiently large f a resonant behavior is 
clearly seen in all matrix elements; two examples for the SRG 
potential with f = 1 and f = 5 are presented in Fig. 1. The re-
sults indicate that nonresonant contributions are very important 
even at f = 5 with Er − i�/2 ≈ (5.9 − 0.6i) MeV. The J � = 0+
resonance position and width extracted at different f values are 
displayed in Fig. 2. The 4n system becomes bound at f = 5.29. 
Thus, the tetraneutron is lower in energy than the trineutron that 
in the SRG model becomes bound only at f > 6 [15]. The results 
for f ≥ 5.3 obtained solving the standard bound state FY equa-
tions connect to f ≤ 5.3 results indicating the consistency between 
the simpler bound state and much more complicated continuum 
calculations. Surely, the resonance trajectory depends on the par-
ticular enhancement scheme used and therefore is not identical 
with those in Refs. [5,6]. Nevertheless it exhibits a typical behav-
ior [5,6,16,15]: decreasing the enhancement factor f the pole first 
moves to higher energy and away from the real axis until the turn-
ing point where Er starts to decrease while � continues increasing 
rapidly. For f < 4.3 the pole of Tβα becomes too far from the real 
axis to be discernible from the nonresonant continuum, which re-
sults in increasing theoretical error bars estimated as in Ref. [15]. 
Thus, an unrealistically large enhancement of the higher-wave po-
tential is needed to support an observable 4n resonance, which 
strongly suggests that at the physical interaction strength there is 
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Fig. 1. (Color online) Energy dependence of real and imaginary parts of selected 
J� = 0+ four-neutron transition matrix elements calculated using the SRG poten-
tial with higher wave enhancement factors f = 1 and 5.

Fig. 2. (Color online) Four-neutron J� = 0+ resonance trajectory obtained with the 
SRG potential varying the higher-wave enhancement factor f from 5.5 to 4.3 with 
the step of 0.1. The inset shows the individual dependence of Er and � on f. Lines 
are for guiding the eye only.

no observable 4n resonance, in agreement with Refs. [5,6] and in 
contradiction with Refs. [2–4].

The absence of an observable 4n resonance with a physical nn
interaction is shown in Fig. 3 over a broader energy range on 
the example of still another matrix elements of Tβα . Also predic-
tions with the NLO potential are presented. In fact, the results are 
almost independent of the force model, as observed also in pre-
vious works. Calculations using the CD Bonn potential [24], not 
shown in Fig. 3, provide an additional confirmation. Furthermore, 
the results appear to be insensitive to P - and higher-wave interac-
tion: SRG calculations including only the 1 S0 nn force agree quite 
well with full SRG results. The dominance of the S-wave interac-
tion may indicate a manifestation of the four-fermion universality 
where observables are governed by a large nn scattering length. 
This point of view also supports the absence of an observable 4n
resonance since the universal four-fermion system is very far from 
being bound: a positive scattering length for two difermions indi-
cates that their effective interaction is repulsive [10,25].

Despite that no observable 4n resonance is predicted, matrix el-
ements of transition operators Tβα acquire large absolute values at 
low energies. This can be seen in both Figs. 1 and 3, and is con-
Fig. 3. (Color online) Energy dependence of selected 4n transition matrix elements 
obtained using the physical NLO (dots) and SRG (solid curves) potentials. For the 
latter also the results including only the 1 S0 nn interaction are given by dotted 
curves. The inset shows the squared matrix element multiplied with kz arising from 
the phase-space factor.

firmed by further calculations not shown here. One may conjec-
ture that this low-energy enhancement could manifest itself also 
in more complicated many-body reactions with the 4n subsystem 
in the final state such as 4He(8He, 8Be) of Ref. [1]. The ampli-
tude for such a reaction could be approximated by a many-body 
double charge–exchange matrix elements for the involved clusters 
(8Be and 4n) weighted with the corresponding initial and final-
state wave functions [26]. It also depends on the double charge–
exchange operator that is not well known; note that a choice made 
in Ref. [26] has not produced a pronounced peak without a reso-
nance. Nevertheless, to illustrate the possibility of the low-energy 
enhancement, in the inset of Fig. 3 the squared matrix element 
of Tβα multiplied with kz due to the phase-space factor is plot-
ted; this product would be a factor in the integrand determining 
the cross section d6σ/d3kxd3ky for two (unbound) dineutrons. In-
deed, this quantity exhibits a two-peak shape: a sharp and narrow 
one around 0.25 MeV and a broad one around 4.5 MeV. Note, that 
peaks are possible even in repulsive systems; a textbook example 
is given in Ref. [27].

Finally, it is important to understand the difference to Refs. 
[2–4] that predicted a tetraneutron resonance. Among the ap-
proaches used in those works there is also one based on the nn
force enhancement by a factor f and subsequent extrapolation of 
the obtained bound-state energy to the f = 1 limit in the contin-
uum.1 However, Refs. [2–4] apply the same factor f in all nn waves 
thereby generating a bound 1 S0 dineutron once f exceeds roughly 
1.1. Thus, 4n states interpreted in Refs. [2–4] as bound tetraneu-
trons are in fact above the two-dineutron threshold. Strictly speak-
ing, no stable 4n bound state is possible above the two-dineutron 
threshold, only scattering states. Thus, a calculation of 4n bound 
states in the regime above the two-dineutron threshold and ex-
trapolation of their energies is meaningless. A similar situation 
arises for the 4n system in an external trap where a tetraneutron 
“bound” at the 4n threshold [3] is above the dineutron threshold. 

1 In Ref. [2] this was an auxiliary method used beside the harmonic-oscillator 
representation.
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These simple considerations indicate serious shortcomings in the 
calculations of Refs. [2–4] and question the reliability of their re-
sults.

4. Conclusions

The 4n system was studied using one of the most reliable four-
nucleon continuum methods. The integral equations for transition 
operators were solved in the momentum space leading to well-
converged results. Strongly enhancing the nn force in higher partial 
waves the 4n model system in the J � = 0+ state was made bound 
or resonant. In the latter case the resonant behavior was seen in 
all transition matrix elements, their energy dependence was used 
to extract the resonance position and width. However, reducing the 
enhancement factor the resonant behavior disappears well before 
the physical strength is reached. This indicates the absence of an 
observable 4n resonance, in agreement with Refs. [5,6] and in con-
tradiction with Refs. [2–4], a possible reason being the neglection 
of the dineutron threshold in the latter works.

Even without an observable 4n resonance the transition opera-
tors exhibit pronounced low-energy peaks. It is conjectured that 
they may be seen also in more complicated reactions such as 
4He(8He, 8Be) of Ref. [1] with the 4n subsystem in the final state. 
The present calculation of half-shell matrix elements of 4n transi-
tion operators is a first step toward understanding of those reac-
tions.
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