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Abstract. Smoothing time series allows removing noise. Moving averages are used in finance to 
smooth stock price series and forecast trend direction. We propose optimised custom moving av-
erage that is the most suitable for stock time series smoothing. Suitability criteria are defined by 
smoothness and accuracy. Previous research focused only on one of the two criteria in isolation. We 
define this as multi-criteria Pareto optimisation problem and compare the proposed method to the 
five most popular moving average methods on synthetic and real world stock data. The comparison 
was performed using unseen data. The new method outperforms other methods in 99.5% of cases 
on synthetic and in 91% on real world data. The method allows better time series smoothing with 
the same level of accuracy as traditional methods, or better accuracy with the same smoothness. 
Weights optimised on one stock are very similar to weights optimised for any other stock and can 
be used interchangeably. Traders can use the new method to detect trends earlier and increase the 
profitability of their strategies. The concept is also applicable to sensors, weather forecasting, and 
traffic prediction where both the smoothness and accuracy of the filtered signal are important.

Keywords: moving average filter, smoothness and accuracy, weight optimisation, triple smoothed 
exponential moving average (TSEMA), custom moving average.

JEL Classification: C22, C6, C63.

Introduction

In various disciplines, moving averages (MAs) are used to smooth and remove noise from 
time series data (Fiodor 2014; Sakalauskiene 2003; Kriaučiūnienė et al. 2007). They are very 
popular in finance (Kononovicius, Gontis 2013, 2015), and especially in trend following 
where traders use moving averages for trend forecasting. It is a popular trading strategy 
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and the author in (Grebenkov, Serror 2014) states that “85% of CTA returns are explained 
by simple trend following”. Moving averages smooth stock market data and make trend de-
tection easier. Traders buy or sell (Raudys, Matkenaite 2016) depending on the direction 
of the smoothed stock market data. In this process two factors influence trader’s success: 
the number of ill-detected trends and the promptness of trend detection. Poorly detected 
trends lead to unnecessary trading costs, slippage and commissions. Promptness of trend 
detection allows traders to enter a trend earlier and increase their profit. Ideally one needs 
to make few trades but enter the market at the beginning of the trend. Unfortunately, these 
requirements conflict. If the data are more smoothed then there are fewer error trades but 
trends are detected after a delay, and, vice versa, if the data are less smoothed then trends 
are detected earlier but there are many erroneous trades. Smooth time series cannot change 
direction often enough (otherwise they would not be smooth) to be close to the most recent 
price, so accuracy decreases as a series become smoother. For more information, please refer 
to Section II and illustrations in Figure 1.

The trading community has been trying to invent the “perfect moving average” for a 
long time, and many new methods have been introduced. Unfortunately, the comparison 
approach was not scientific, “proofs” were in many cases visual graphs with few moving av-
erages plotted, and authors typically claimed that the new moving average was smoother than 
the others or lagged (was more accurate or differed from the actual price) less than the others. 
In this paper we solve this problem scientifically. We define two quality measures mathemat-
ically, name them “smoothness” and “accuracy” and try to find the best ratio between them.

Moving averages date to 1901, although the name was applied later. The method of 
smoothing data points was used for decades, until the general term came into use. In statis-
tics moving averages are called “autoregressive models” where model parameters correspond 
to moving average weights. The statistical moving average model and the moving average 
used in finance to smooth the data must not be confused – they are different. Moving av-
erage is also a type of real time filter that removes unwanted frequencies (usually high) 
from the data. In signal processing, moving averages are thus also called “low pass filters” 
see (Orlowski 2010). Another name for moving averages is “smoothers” and “exponential 
smoothing” is the best known method. In the financial trading community however, the term 
“moving average” is the most popular. In a nutshell, moving average is a simple weighted sum 
calculated over a selected historical price range. Financial trading price data are usually noisy, 
so by using weighted sums we reduce noise. By averaging more data (increasing the look-
back period), we can achieve a more smoothed price that could forecast the trend (Wang, Wu 
2013; Chikhi et al. 2013), despite the price fluctuations. Let’s define ci as a price at the time 
i. Let = ={ }, 1...ic c i p  be the time series where p is the time series length. So, the simplest 
moving average of the period n at the time l would be:
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Here each historical price cl is multiplied with the appropriate weights element wi, and n 
is the period (number of days or data periods to look back), w1 is the weight for the oldest 
data member and wn is the weight for the newest (most recent) data member. More complex 
moving averages have a more complex weight vector, w = (w1, w1, …, wn). Some have linearly 
declining weights, such as weighted moving average (Kaufman 2013), some have exponen-
tially declining weights – such as an exponential moving average (Kaufman 2013), and some 
can have negative weights but the wi sum must always be 1. More exotic distributions of the 
weight components are also possible.

Moving averages are predominantly used to forecast trends in noisy data (Wang, Wu 
2013). As the period (the window width), n, of a moving average is increased, more noise can 
be filtered from the financial data and better smoothness can be achieved. Sometimes price 
fluctuation is a trend reversal and not noise (Bury 2014). Since a moving average combines 
historical prices and a current price to obtain the filtered price, for some time, depending 
on the period, it will show the previous trend direction instead of the new one. This is called 
“lag”. Lag is the distance in days that the smoothed signal needs to be shifted into the future. 
Lag is easily calculated for simple moving averages but is not so easily done for more exotic 
methods. Lag is sometimes called inertia. An easier and more mathematically proved method 
is to measure the quality as the accuracy – the difference between price and moving average 
values. A raw price (unsmoothed data) is perfectly accurate. The important question is how 
to improve accuracy. 

Moving averages can have different properties. The simplest moving average has only 
positive > =0, 1...iw i n  and non-changing weights. We only analyse this type of moving 
averages in this paper, however, there are other types. Finite Impulse Response (FIR) and 
Infinite Impulse Response (IIR) are two terms used in signal processing (Oppenheim et al. 
1989) and indicate the size of the weight vector w. With FIR = <, 1... ,iw i n n p and in IIR 
case = =, 1... ,iw i n n p , we note that n is the size of the weight vector and p is the size of 
time series. Adaptive moving averages (Makridakis, Wheelwright 1977) change weights de-
pending on the circumstances  – so smoothness and accuracy changes too. The adaptive 
moving average weight wj used to calculate jth value is not equal to wi used to calculate ith 
value, where ≠j i . The idea of adaptive moving averages has been extensively discussed in 
(Kaufman 2013) and some trading strategies involving adaptive element has been assessed in 
(Ellis, Parbery 2005). A fuzzy logic-based approach was discussed in (Raudys, S., Raudys, A. 
2010). Another type of moving averages is corrective moving averages, which have posi-

tive and negative weights ∈ − =  1,1 , 1...iw i n  but still have to sum up to one: 
=

=∑
1

1
n

i
i

w . 

Some data (usually the most recent) has greater weights and this is compensated by negative 
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way error is reduced at the expense of an “overshooting” effect during trend reversals. These 
are special cases of Kalman filter (Welch, Bishop 1995). The most famous examples are the 
Hull moving average (Hull 2004) introduced by Allan Hull and T3 moving average (Tillson 
1998) introduced by Tim Tillson. The Hull moving average has been widely used in trading 
applications (Pereira, Mello 2014). Once again, we analyse only moving averages with posi-
tive, non-adaptive, non-correcting weights in this paper. 
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Comparing moving averages based on smoothness and accuracy is very new. A com-
parison of 19 moving averages was presented in (Raudys et  al. 2013). Only recently this 
topic has been addressed by authors and in some cases indirectly, as a side effect. It is worth 
mentioning Yager (Yager 2013, 2008) and Letchford (Letchford et al. 2011, 2012, 2013). In 
this paper, contrary to other works, we directly aim to optimise weights and create custom 
moving averages that would give the best smoothness and accuracy ratio. Global (Hendrix, 
Lancinskas 2015) or local methods can be used here. Our proposed method would give the 
highest accuracy for the given level of smoothness.

1. Moving averages

We evaluate two opposing properties of moving averages: smoothness and accuracy. Trad-
ers desire optimal filters so trend following would be accurate and whipsaw trades could be 
avoided. Better accuracy for a trader means that they can detect a trend earlier and profit 
more. Smoothness means that it avoids changing trading direction too often and at the same 
time reduces transaction costs. Usually moving averages take one parameter, the period n 
of the past prices, for use. As the period increases, accuracy decreases but smoothness in-
creases. For different moving average periods n means something different. For the same n, 
two moving averages can generate enormously different smoothness and accuracy profile. 
In Figure 1 we see two different moving averages (simple moving average and TSEMA) with 
the same period of 10 days. 

When the trend changes, the black one responds very slowly, value is far from the 
real price, but the line is smooth. Red follows price more aggressively, and remains close 
to the price, but is bumpier. The same period generates vastly different moving averages.  

Fig. 1. The equal periods of 10 days for different MA generate different curves
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We cannot compare moving averages by period as a similarity measure. To solve this problem 
we introduce a new comparison measure – accuracy. We define accuracy as the difference 
between current value and moving average value at that point. At the time t accuracy is: 

= − n
t t tacc c ma . For the entire dataset, average accuracy is calculated as follows:

 =
= −∑

1

1n
p

ma n
i i

i
acc c ma

p
.  (3)

Here p is the time series length and n is a moving average period. This estimate explains 
how the moving average is missing the price on average. We will call “average accuracy” 
simply “accuracy” in this paper. Smaller accuracy values are better. 

The other comparative measure is smoothness. It is defined like this: 
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In other words smoothness represents the extent to which the moving average is smooth, 
and how much it changes direction. The smaller the smoothness value, the better it is. Char-
acteristic (4) is similar to the second derivative of the time series. In order to compare com-
parable things, we considered moving averages with similar smoothness. Our aim overall is 
to create a moving average that has a small accuracy value and a small smoothness value that 
corresponds to smooth and accurate results.

To illustrate how these metrics change we computed simple moving average smoothness 
and accuracy of the periods from 1 to 30. The results are depicted in Figure 2. Short period 
moving averages are very bumpy but quite accurate. Long period MA has a high smoothness 
but poor accuracy. As the period increases, moving average becomes smoother, but at the 
same time accuracy decreases. Alternatively, smoothness and accuracy can be plotted against 
each other. Different moving averages characteristics are plotted in Figure 3. 

Fig. 2. Smoothness and accuracy of SMA plotted as two lines
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It can be seen that as the accuracy decreases, smoothness improves and vice versa. Each 
MA changes periods from 2 to 30 over the same dataset (British Petrol daily stock price se-
ries). These two simple measurements can help to answer questions: which moving average 
has the best smoothness/accuracy ratio? Or is smoothest for a given accuracy? Or is the 
most accurate for a given smoothness? As can be seen, the green (TSEMA) moving average 
is slightly better than the others.

Some researches propose fuzzy moving averages (Zeng et al. 2016). They are very interest-
ing and potentially powerful methods. However they differ in the mechanics how they are 
calculated and used. Such models assume that values in time series are fuzzy. This is rather 
different approach, thus fair comparison of such methods becomes impossible. We plan to 
expand our investigation in the future where we will consider fuzzy moving averages. The 
principle of multi criteria optimization of proposed custom moving average can be applied 
to fuzzy moving averages as well. 

2. Description of the moving averages

Simple moving average (SMA) is well known and widespread. It gives equal weights to all 
past prices and by definition is simply their average. Although it is very simple, it can solve 
serious problems and is widely used. It will be used as a benchmark to compare against other 
averages. The formula can be found in the introduction.

Exponential moving average (EMA) gives exponentially diminishing weights to all past 
prices. This moving average is very well known and used.

 ( ) −= a + −a 1( ) 1 ( )n i i n iEMA X X EMA X , a =
+
2

1n
.

Fig. 3. Smoothness vs. accuracy plotted as one line
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Weighted moving average (WMA) gives arithmetically diminishing weights for past 

prices, depending on the length of the average − +

=
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Sinus weighted moving average (SWMA) is a weighted average, based on motivation, 
that price fluctuates following some unknown wave. As a model, the Sine wave is used to 
adjust price weights. SWMA is calculated using this formula: 
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Where n is a period of moving averages, X is a list of prices, with X0 being the most 
recent.

Double exponential moving average (DEMA) is completely different from those de-
scribed above. It is a composite moving average and uses other moving averages to get the 
final result (Kaufman 2013). In the case of DEMA, the EMA is used. DEMA also employs 
mechanisms to adapt to price swings dynamically. DEMA uses tricks to improve smoothness 
by running a moving average on itself, but this operation increases lag, so to counter this 
problem it uses the so called “twicing” technique. Formula:

 DEMAn(X) = 2 × EMAn(X) – EMAn(EMAn (X)),

where n is the length of the moving average and X are actual prices. 
Triple smoothed exponential moving average (TSEMA) applies the exponential moving 

average three times on the result: 

 ( )( )( )( ) .n n n nTSEMA X EMA EMA EMA X=

Zero lag moving average (ZMA) sounds like a perfect moving average (Ehlers 2001), but 
the only thing without lag is the price, which this adaptive and composite moving average 
uses to correct itself. In a nutshell, ZMA adds a portion of price to EMA to counter lag, while 
giving up some smoothness. Formula (n – period, X – prices) if n > 1, b = 0.2. 

ZMA↓n(X) = a *(X ↓(n – 1) + b *( X ↓n – ZMA↓(n – 1) (X ↓(n – 1))) +  
(1 – a) * ZMA↓(n – 1)(X ↓(n – 1))). 

Kaufman moving average (KAMA) alters alpha of EMA using smoothing constant C to 
achieve adaptability (Kaufman 2013: 731). Formula (n – period, X – prices, Xi – past price 
i bars back):
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KAMA adjusts alpha using a market efficiency ratio, which is the ratio between direction 
and volatility. Constants 0.6667 and 0.0645 represent adaptability ranging from 2 to 30 bars 
of the EMA alpha value. These constants are suggested by the author, so we will not change 
them. 

3. Custom moving average

We propose using a custom moving average (CMA) where weights w are optimised to achieve 
the best accuracy on a given smoothness level. We emphasise that weights were not optimised 
and evaluated on the same data. Weights were optimised on one dataset and used for all stock 
and artificial time series. We computed 200 smoothness levels, equivalent to 200 SMA levels, 
and maximised accuracy for each of these smoothness levels by fixing it:

 
= <min ( ( )), ( ( )) .x

w
w acc ma w sm ma w sm

Here w is a weight vector, acc is an accuracy function, sm is a smoothness function, ma is 
a moving average generated using weights w and smx is fixed to the specific smoothness level. 

To achieve our goal, we used two methods - the heuristic and gradient descent type of 
optimisations and compared the results. Heuristic optimisation is slower but requires less 
tuning (Fiedor 2014), while gradient is very fast but optimisation parameters require cali-
bration. Other faster optimisation methods are also possible, such as semi-definite-quadrat-
ic-linear programming. 

3.1. Heuristic weight optimisation 

We tried several heuristic methods for optimisation. Finally we used simple random weights 
modification optimisation to obtain optimal weights. Here we start with equal weights (the 
same as simple moving average weights) and randomly modify weights, and if accuracy is 
better than previously we retain the modification. This procedure is repeated iteratively (circa 
200000 times). The method is simple, but relatively slow for use in practical tasks. To speed 
up calculations we developed a fast version of the gradient descent method. Our proposed 
gradient descent method is described in the next section.

3.2. Gradient weight optimisation

The more advanced method to optimise weights is the gradient descent method. It is widely 
used in neural network optimisations (Zhang et al. 2014). A cost function is created here 
and minimised. Denote weights W = (w1, w2, ... , wn), and multiple delayed time series n
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We use a modulus error criterion, hence we have: 
1. Minimise following modulus: Cost (loss) function:
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2. and fulfil the requirement:
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To satisfy requirement (6) instead of minimising Cost (5) we can minimise modified cost 
function with an additional “weight decay” term:
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where L is a large positive constant introduced in order to ensure fulfilment of the require-
ment (6). It penalises the cost function if the requirement is not completely fulfilled.

The smoothness term (6) can be rewritten in the following form:
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The n-dimensional vector-row of the gradient of the cost function (8) is:
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The iterative total gradient descent training procedure adapts n-dimensional weight vec-
tor W as
 Wt+1 = Wt – n ×

∂

∂
modCostnl

W
,  (10)

where n is a learning step parameter.
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∂

∂
modifiedCostnl

W
, in gradient descent training do 
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learning step size should decrease with an increase in the number of iterations. In Figure 4 we 
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In comparison with a direct heuristic search of the best set of the weights, w1, w2, ... , wn, 
training is very fast, but it requires the tedious selection of training parameters, a number of 
iterations, L, h, and a style of reduction of h with the increase in the number of iterations. 
A successful example is presented in Figure 4.

3.3. Optimisation results

Initially we thought that optimised weights would be different for different stocks but weights 
are near optimal for any stock data, as well as for randomly generated (independent and 
uncorrelated) data (Ruseckas et al. 2012). The difference cannot be distinguished visually. 
We generated random data using −∈ = + = =1 0(1,0), , 0, 1...i i i ix N c c x c i p  normal distribu-
tion and later cumulatively summed them. Triple smoothed exponential moving average 
(TSEMA) has the weights most similar to our method. This is seen in the Figure 5. 

Here we can see that weights optimised for British Petroleum (BP), S&P 500 (SPY) and 
cumulatively summed normally distributed random data (random) and TSEMA method 
weights are very similar. The difference between weights is more visible for the longer aver-
aging periods. In Figure 6 we present n = 63 day weights.

Random and BP (British Petroleum) weights are initially (on the right) very similar but 
diverge as they go further into the past. TSEMA weights are shifted to the left in comparison 
to others. This confirms that recent history is the most important.

3.4. Beta distribution

This weighting scheme is similar to the beta probability density function where a = 1.9; b = 6:
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( )

b−a− −
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a b

11 1
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Fig. 4. Weights of the CMA n = 50 method after optimisation
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In Eq. (11) B is the beta function. This weighting method has to be investigated further 
and is the subject of future research. Preliminary investigation has demonstrated very similar 
results. See Figure 7.

4. Discussion

Weighs that correspond to the oldest data points has a very minor impact on the accuracy 
and smoothness, so for longer periods noise in the time series data distorts weights for the 

Fig. 5. Weights of various methods generated using various data (data name in brackets)

Fig. 6. CMA weights generated using two different datasets and weights of TSEMA
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oldest weights (left side of the graphs). This is illustrated in Figure 8 BP (British Petroleum) 
optimised weights for a 123 day period using the latest 4000 days of data (from 16-Sep-1997 
to 19-Jul-2013). Weights for the oldest data (left side) are distorted. 

In the experiments we used the average absolute smoothness measure defined in (4). We 
also tried different smoothness measures such as mean square smoothness: 
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Fig. 7. Beta distribution weights alongside CMA weights

Fig. 8. Very long (123) CMA weight vector
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The preliminary results showed that weights are highly skewed to the most recent data 
and visual smoothness is not as good as absolute smoothness. We therefore left the investi-
gation of this topic for the future. 

Other metrics for smoothness have been investigated by other authors. For example, in 
(Yager 2008) the authors use variance as a smoothness measure = var( )nma nsmo ma .

The reasoning of the authors remains unknown. We plan to investigate and compare these 
and other smoothness measures in the future. 

5. Experiments 

We compared our new method to other methods with real and artificial data in the experi-
ments. We found that our new method is usually superior. Comparison methodology was a 
challenge as we needed to compare moving averages by two criteria. More example of multi 
criteria optimisation can be found in (Ulubeyli, Kazaz 2016).

5.1. Comparison methodology

Comparing two moving averages is not easy due to the two criteria: smoothness and ac-
curacy. Either the volume of a two dimensional shape or values at specific points can be 
measured. We decided to test the four smoothness levels that are most common in practice, 
derived from simple moving average of 5, 10, 21 and 63 days (n = 5,10,21,63). These periods 
are commonly used by practitioners, and represent one week, two weeks, one month and a 
quarter of the year. Each period has its associated smoothness level computed according to 
a formula (4). For random data these smoothness levels correspond to the values nmasmo  = 
0.22, 0.11, 0.052 and 0.017. For each moving average we then computed all smoothness and 
accuracy values in the range from 1 to 500, so that we had all possible versions of moving 
averages. We found the smallest smoothness value, not less than P5, P10, P21, P63, and 
then we measured the accuracy: that is, we found the MA with the same smoothness level 
and then measured the accuracy. This way we compared “apples to apples”. We repeated this 
procedure for all moving averages and finally we compared accuracies between each MA. At 
this point we found the MA that for a given smoothness has the best accuracy. For each time 
series there were four winners for different smoothness levels (P5, P10, P21, P63). Finally, we 
counted how often each moving average was most accurate. The results can be seen in Results 
section. The summary of moving averages used in our experiments is presented in Table 1.

Table 1. List of moving averages

Abbreviation Full Name

cmavg Custom Moving Average (New Method)
tsemavg Triple Smoothed Exponential Moving Average
zeromavg Zero Lag Moving Average
mavg Simple Moving Average
kamaavg Kaufman Adaptive Moving Average
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Abbreviation Full Name

emavg Exponential Moving Average
wmavg Weighted Moving Average
smavg Sine Weighted Moving Average
demavg Double Exponential Moving Average

5.2. Real world time series data

For the real world data we used ~2000 United States traded stocks from NASDAQ and NYSE 
exchanges. Initially we had 2082 stocks, and after filtering stock with less than 1000 days of 
history we had 1952 stocks. We obtained time series data from Google finance. Data points 
go as old as 13-Aug-1993 and the newest record is 24-Jul-2013. Date range is 4524 days and 
across all stocks we performed experiments on 6643501 data points.

Stock data are a series of prices, obtained from the exchange where the stock was traded. 
Historical stock prices are adjusted at the point they pay a dividend. On the day after divi-
dend payment, historical data are moved down according to the amount of dividend stocks 
paid. Stocks that paid an unusually big dividend at some point in its history may thus have 
negative historical prices. Adjustment is necessary to make stock price look like a long and 
continuous investment, and dividends are accumulated into the stock’s growth. In our study 
we selected the most popular and liquid stocks. We filtered stocks with the highest trading 
volume at the time of writing and with a recent price above 10 USD. An example of stocks 
used in this study is presented in Table 2.

Table 2. Used stocks

Ticker Name
AAPL Apple Inc.
PFE Pfizer, Inc.
GE General Electric
MSFT Microsoft Corp.

6. Results and discussion

To demonstrate the benefits of the proposed method we generated 1000 random normally 
distributed synthetic time series datasets and cumulatively summed the values. This resulted 
in visually similar time series as typical stock price time series. We compared our method 
to other moving averages techniques on these artificial time series and the results are listed 
in Table 3 where numbers indicate number of times moving average was the best. The very 
right column is percentage representation. All moving averages under investigation were 
compared using four smoothness levels. For every smoothness level we select a winning 

End of Table 1
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moving average. We repeated this procedure for all time series. Finally we counted how often 
each moving average was most accurate. We can see that the novel method is the best choice 
99.5 percent of the time. 

Experiments with the stock data were performed in a similar way as in experiments with 
the random data. We compared every moving average for every stock and every smoothness 
level. In each category we selected the most accurate. The results are presented in Table 4 
where numbers indicate number of times moving average was the best. The very right col-
umn is percentage representation.

To demonstrate a snapshot of results that have not been summarised we included a sub-
set of stock comparison in Table 5. Every row represents stocks and each column represents 
a smoothness level equivalent to a simple MA smoothness of 5, 10, 21 and 63 days. Cells 
contain the name of the most accurate moving average.

Table 3. Summary of experiments with random data

Data P5 P10 P21 P63 Total percent
cmavg 1000 1000 990 989 3979 99.5%
tsemavg 0 0 10 11 21 0.5%
mavg 0 0 0 0 0 0.0%
emavg 0 0 0 0 0 0.0%
wmavg 0 0 0 0 0 0.0%
zeromavg 0 0 0 0 0 0.0%
smavg 0 0 0 0 0 0.0%
kamaavg 0 0 0 0 0 0.0%
demavg 0 0 0 0 0 0.0%

Table 4. Summary of stock experiments

Data P5 P10 P21 P63 Total percent
cmavg 1968 1972 1813 1434 7187 91.0%
tsemavg 0 1 160 539 700 8.9%
mavg 5 0 0 0 5 0.1%
emavg 0 1 1 1 3 0.0%
wmavg 1 0 0 0 1 0.0%
zeromavg 0 0 0 0 0 0.0%
smavg 0 0 0 0 0 0.0%
kamaavg 0 0 0 0 0 0.0%
demavg 0 0 0 0 0 0.0%
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Table 5. Sample of non-summarised stock experiments. Table body cells contain the name of the most 
accurate moving average for that smoothness category

Stock P5 P10 P21 P63
A cmavg cmavg cmavg cmavg
AAN cmavg tsemavg cmavg cmavg
AAON cmavg cmavg cmavg tsemavg
AAP cmavg cmavg tsema tsemavg
AAPL cmavg cmavg cmavg tsemavg
AAXJ cmavg cmavg cmavg cmavg
AB cmavg cmavg cmavg tsemavg
ABAX cmavg cmavg cmavg tsemavg
ABB cmavg cmavg cmavg cmavg
ABC cmavg cmavg cmavg tsemavg
ABCO cmavg cmavg cmavg cmavg
ABG cmavg cmavg cmavg cmavg

For P63 smoothness, TSEMA method is superior circa 10% of the time with stocks data. 
We believe that in the future we could improve our method and reduce this number by im-
proving the longer weight optimisation process. This subject is reserved for future research. 

Visual comparison of CMA and the next best method, TSEMA, are depicted in Figure 9 
and Figure 10. The visual difference between them is small but consistent. Similar behaviour 
was observed in all the experiments.

6.1. Numerical example 

In this example we numerically demonstrate the superiority of CMA over other methods and 
visually illustrate on one specific stock. For comparison we chose only TSEMA method as 
other methods are much worse. We compare CMA only with the best of available methods: 
TSEMA. We select SPY dataset closing prices of the day (S&P 500 index traded on NYSE). 
This one of the most popular indexes in the world and is widely traded and used. We select 
Simple MA of 20 days. We smoothed the data and measured smoothness and lag of the 
resulting time series: SSMA = 0.0669 ASMA = 2.5180.

Next, in order to compare to other methods we need to fix one of the two metrics. We fix 
smoothness, so smoothness of other methods cannot be higher than S = 0.0669. We selected 
best smoothness not exceeding given value 0.0669 for CMA and TSEMA methods: SCMA = 
0.0668 ACMA = 1.8952 and STSEMA = 0.0614 ATSEMA = 1.9890.

We can see that CMA is more accurate than TSEMA: LCMA = 1.8952 < LTSEMA = 1.9890. 
CMA is almost always produces better accuracy than TSEMA and other methods, regardless 
of smoothness level or stock data series we chose. This is illustrated in the Figure 9 where 
we depict smoothness and lag of two methods. CMA red line is always below TSEMA cyan 
line. In the next Figure 10 we illustrate numerical example. Smoothness of all 3 methods is 
not exceeding S = 0.0668 value. CMA (red) is always closer to the price (blue) than other 
methods, thus is the most accurate. 
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Conclusions

In the past, technical traders have debated whether some moving averages are smoother or 
have less lag (are more accurate) than the others. No one, however, analysed these two cri-
teria together and often analysis was purely visual, in a chart. We define smoothness and ac-
curacy mathematically and propose a new Pareto optimised custom moving average (CMA) 
method, which optimises weights to obtain the most accuracy for a given smoothness or 
vice versa. The originality of CMA method is in simultaneous optimisation of two quality 

Fig. 9. Smoothness vs. Accuracy of CMA and TSEMA

Fig. 10. Smoothed price curve using CMA, SMA and TSEMA.  
CMA is more accurate than other methods
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measures – smoothness and accuracy. Typical moving average has fixed weights and aim to 
smooth the data or produce least delayed (most accurate) results. In other words we opti-
mise one of the parameters in isolation – smoothness or accuracy. The novelty of this paper 
is in weights optimisation based on dual criteria. This was not done in the past. The study 
showed that our new method was more accurate than all other popular moving averages for 
stock price series smoothing. Custom moving average is more accurate than other moving 
averages in 99.5% of cases on synthetic data and in 91% of cases on real world stock data. 
By definition it is the best possible weighting scheme (subject to the optimisation quality) 
as we optimise accuracy and smoothness. The evaluation is performed using out of sample, 
unseen data from 1000 randomly generated datasets and ~2000 the most liquid NASDAQ 
and NYSE stocks. We demonstrate empirically that the new approach outperforms all tested 
moving averages and has both the best smoothness and the best accuracy. For the major-
ity of stocks and artificial data, for the four most popular smoothness levels, the suggested 
moving average generates the best accuracy in comparison to all other moving averages. In a 
minority of cases the new method is outperformed by other methods and we plan to address 
this issue in future research. The concept is applicable not only to financial data but also to 
sensors, weather forecasting, and traffic prediction where both the smoothness and accuracy 
of the filtered signal are important.

More importantly we obtained very similar smoothing weights for both stocks and for 
random data. Weights optimised on one stock can be interchangeably used for another and 
still outperform all other techniques. The same is true for random data. Weights optimised 
on the random data can be successfully used for stock data and still outperform all other 
techniques. For all experiments we used the same weights generated on random data. No 
overfitting is possible here. This means that stock data are random in nature and is not au-
to-correlated. We will investigate this phenomenon in more detail in future research.

CMA has fixed length weights (a finite impulse response) compared to other methods, 
which have infinite weights (such as Exponential MA or any composite method using EMA). 
This feature can be beneficial in certain situations where a fast processing time is required.

We analysed moving averages according to two criteria: smoothness and accuracy. These 
are, of course, important criteria, but the ultimate criterion for a trader is profit. In future 
research we will try to use CMA for trading applications using “one moving average” or “two 
moving average crossover” or other trading logic. Alternatively, instead of comparing MA 
value to today’s price we may compare MA to future value (tomorrow). Preliminary research 
showed that weights are very similar. This change will make MA similar to the autoregressive 
model with one difference. Autoregression pays no attention to the smoothness of the fore-
cast; it simply tries to optimise one criterion – accuracy (or mean square error). In parallel to 
the other accuracy criterion we plan to investigate different smoothness definitions including 
squared smoothness and variance of the moving average. 

We also plan to improve the weight optimisation procedure. We already used the heuristic 
and gradient descent method but think that it is possible to solve the weight optimisation 
problem analytically. We also plan to investigate beta distribution for weight generation. This 
would speed up the optimisation process substantially. Overall this method is very promising 
and is worth further investigation.
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