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Abstract Let {ξ1, ξ2, . . .} be a sequence of independent but not necessarily identically dis-
tributed random variables. In this paper, the sufficient conditions are found under which the tail
probability P(supn�0

∑n
i=1 ξi > x) can be bounded above by �1 exp{−�2x} with some posi-

tive constants �1 and �2. A way to calculate these two constants is presented. The application
of the derived bound is discussed and a Lundberg-type inequality is obtained for the ultimate
ruin probability in the inhomogeneous renewal risk model satisfying the net profit condition on
average.

Keywords Exponential bound, supremum of sums, tail probability, risk model,
inhomogeneity, ruin probability, Lundberg’s inequality
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1 Introduction

Let {ξ1, ξ2, . . .} be a sequence of independent real-valued random variables (r.v.’s),
and let

M∞ = sup
n�0

{ n∑
k=1

ξk

}
.

Here and subsequently, all empty sums are assumed to be zero.
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Sgibnev [30] generalized results by Kiefer and Wolfowitz [21] obtaining the upper
bound for the submultiplicative moment E(ϕ(M∞)) in the case of independent and
identically distributed (i.i.d.) r.v.’s. In Theorem 2 of that paper, the following assertion
is proved.

Theorem 1. Let {ξ1, ξ2, . . .} be a sequence of i.i.d. r.v.’s with distribution function
(d.f.) F , and let ϕ be a nondecreasing submultiplicative function defined on [0,∞).
Then E(ϕ(M∞)) < ∞ under the following conditions:

• Eξ1 < 0,

•
∫ ∞

0
ϕ(x)F (x) dx < ∞,

• E
(
erξ1

)
< 1 if r := lim

x→∞
log ϕ(x)

x
> 0.

Recall that a function ϕ defined on the interval [0,∞) is said to be submultiplica-
tive if

ϕ(0) = 1 and ϕ(x + y) � ϕ(x)ϕ(y) for all x, y ∈ [0,∞).

Theorem 1 was applied several times to find the asymptotic behavior of the ruin prob-
abilities in the homogeneous renewal risk models.

We say that the insurer’s surplus process R(t) varies according to the homoge-
neous renewal risk model if

R(t) = u + pt −
Θ(t)∑
i=1

Zi, t � 0, (1)

where:

• u � 0 denotes the initial insurer’s surplus;

• p > 0 denotes a constant premium rate;

• the claim sizes {Z1, Z2, . . .} form a sequence of i.i.d. nonnegative r.v.’s;

• Θ(t) = ∑∞
n=1 1{θ1+θ2+···+θn � t} is the renewal counting process generated by

the inter-occurrence times {θ1, θ2, . . .}, which form another sequence of i.i.d.
nonnegative and nondegenerate at 0 r.v.’s;

• the sequences {Z1, Z2, . . .} and {θ1, θ2, . . .} are mutually independent.

The ultimate ruin probability

ψ(u) = P

(
inf
t�0

R(t) < 0
)

= P

(
sup
n�1

n∑
k=1

(Zk − pθk) > u

)
(2)

and the probability of ruin within time T

ψ(u, T ) = P

(
inf

0�t�T
R(t) < 0

)
= P

(
sup

1�n�Θ(T )

n∑
k=1

(Zk − pθk) > u

)
are the main characteristics of the renewal risk model.
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The asymptotic behavior of ψ(u, T ) was considered by Tang [31] when random
claims in the homogeneous model have d.f. with consistently varying tail. The au-
thor of the paper uses the assertion of Theorem 1 for function ϕ(x) = (1 + x)q with
q > 0 to get the main term of the asymptotics for the probability ψ(u, T ). Leipus
and Šiaulys considered the asymptotic behavior of ψ(u, T ) in [22, 23] but for subex-
ponentially distributed r.v.’s {Z1, Z2, . . .}. In their proofs, the assertion of Theorem 1
was used for function ϕ(x) = exp(ρx) with some ρ > 0 (see Lemma 3.3 in [22]
and Lemma 2.1 in [23]). In the case of exponential function, Theorem 1 implies the
following assertion.

Corollary 1. Let {ξ1, ξ2, . . .} be a sequence of i.i.d. r.v.’s. If Eξ1 < 0 and E ehξ1 < ∞
for some positive h, then there exists a positive constant � such that

e�x
P(M∞ > x) →

x→∞ 0.

The Sgibnev’s proof of Theorem 1 is substantially related to the techniques of
Banach algebras, while Corollary 1 can be derived using only the probabilistic ap-
proach. Wang et al. (see Lemma 4.4 in [32]) demonstrated such a probabilistic way
to obtain the assertion of Corollary 1 supposing, in addition, that r.v.’s {ξ1, ξ2, . . .}
follow some dependence structure. Corollary 1 can be applied not only as auxiliary
assertion in the consideration of the asymptotic behavior of ψ(u, T ). The assertion of
Corollary 1 is closely related to the following statement on the upper bound for ψ(u)

in the homogeneous renewal risk model.

Theorem 2. Let the claim sizes {Z1, Z2, . . .} and the inter-occurrence times
{θ1, θ2, . . .} form a homogeneous renewal risk model. Let, in addition, the net profit
condition EZ1 − pEθ1 < 0 hold and E ehZ1 < ∞ for some positive h. Then, there
exists a positive H such that

ψ(u) � e−H u, u � 0. (3)

If E eR (Z1−p θ1) = 1 for some positive R, then we can take H = R in (3).

The above assertion is the well-known Lundberg inequality. There exist a lot of
different proofs of this inequality. For example, some of the proofs can be found in
[4], [14], [15], [16], [25]. The existing proofs of Lundberg’s inequality are essentially
based on the renewal idea. However, the classical methods used for consideration of
the ruin probability in the homogeneous renewal risk model are not applicable in the
case of the inhomogeneous model because at any time moment distribution of the
future is completely new.

Another way to derive the Lundberg inequality is related to Theorem 1. Namely,
the first part of Theorem 2 follows from Theorem 1 and the additional inequality
ψ(0) < 1. We use this approach to get the inequality similar to the Lundberg in-
equality but for the inhomogeneous renewal risk model with not necessarily identi-
cally distributed claim sizes {Z1, Z2, . . .} and the inter-occurrence times {θ1, θ2, . . .}.

In this paper, we consider a sequence of independent but not necessarily iden-
tically distributed r.v.’s {ξ1, ξ2, . . .}. We obtain an assertion similar to that in Corol-
lary 1. We present an algorithm to get the numerical values of the two positive con-
stants in the exponential bound for P(M∞ > x) in the case of not necessarily iden-
tically distributed r.v.’s {ξ1, ξ2, . . .}. We apply the obtained estimate to derive two
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Lundberg-type inequalities similar to that in Theorem 2 but for the inhomogeneous
renewal risk model with possibly nonidentically distributed random claim amounts
Z1, Z2, . . .. Corollaries 2 and 3 below show that the exponential bound for the ruin
probability in the inhomogeneous renewal risk model holds if the model satisfies the
net profit condition on average. This means that the quantity

1

n

n∑
k=1

E(Zk − pθk)

is negative for all sufficiently large n.
The results of the present paper are complementary to those obtained by Al-

brecher et al. [1], Ambagaspitiya [2], Bernackaitė and Šiaulys [5, 6], Castañer et
al. [7], Cojocaru [9], Constantinescu et al. [10], Czarna and Palmowski [11], Dama-
rackas and Šiaulys [12], Danilenko et al. [13], Grigutis et al. [17, 18], Jordanova and
Stehlík [20], Mishura et al. [24], Răducan et al. [26–28], Ragulina [29], Zhang et al.
[33], Zhang et al. [34] and other authors who dealt with different inhomogeneous risk
models.

The rest of the paper is organized as follows. In Section 2, we present our main
result together with its proof. In Section 3, we recall the concept of the inhomoge-
neous renewal risk model and we present two corollaries from the main theorem,
which yield exponential bounds for the ruin probability in this model. Finally, in Sec-
tion 4, we present some examples which show the applicability of the theorem and
corollaries.

2 Main result

In this section, we formulate and prove our main result. The assertion below is a gen-
eralization of Lemma 1 by Andrulytė et al. [3]. In that lemma, the exponential bound
for P(M∞ > x) was established under more restrictive conditions. In addition, the
assertion below provides an algorithm to calculate two positive constants establishing
this exponential bound. For this reason, the conditions of the main theorem are for-
mulated in an explicit form in contrast to the conditions of Lemma 1 in [3]. It should
be noted that the presented proof of the main result has some similarities with the
classical approach by Chernoff [8] and Hoeffding [19].

Theorem 3. Let {ξ1, ξ2, . . .} be independent r.v.’s such that:

(i)
1

n

n∑
i=1

E ξi � −a if n � b,

(ii) sup
n�b

1

n

n∑
i=1

E
(|ξi |1{ξi�−c}

)
� ε,

(iii) sup
n�b

1

n

n∑
i=1

(
P(ξi � 0) + E

(
ehξi1{ξi>0}

))
� d1,

(iv) max
1�n�b−1

1

n

n∑
i=1

(
P(ξi � 0) + E

(
ehξi1{ξi>0}

))
� d2,
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for some a > 0, b ∈ N, c > 0, ε � 0, h > 0, d1 � 1 and d2 � 1.
If

− Δ := ε + δhd1 max

{
c2

2
,

2

h2

}
− a < 0, (4)

with some δ ∈ (0, 1/2], then

P

(
sup
n�0

n∑
i=1

ξi > x

)
� min

{
1, c1e−δhx

}
, x � 0,

where

c1 =
(

S(b, d2) + exp{−δhΔb}
1 − exp{−δhΔ}

)
,

with

S(b, d2) =
{

d2
db−1

2 −1
d2−1 if d2 > 1,

b − 1 if d2 = 1.

Proof. We observe that, for all x � 0,

P(x) := P

(
sup
n�0

n∑
i=1

ξi > x

)
= P

( ∞⋃
n=1

{ n∑
i=1

ξi > x

})

�
∞∑

n=1

P

( n∑
i=1

ξi > x

)
.

Since r.v.’s {ξ1, ξ2, . . .} are independent, by the exponential Chebyshev inequality,
we get

P(x) � e−yx
∞∑

n=1

n∏
i=1

E eyξi

= e−yx

b−1∑
n=1

n∏
i=1

E eyξi + e−yx

∞∑
n=b

n∏
i=1

E eyξi

:= P1(x) + P2(x), (5)

for all x � 0 and 0 < y � h.
For all i ∈ N, we have

Eeyξi = 1 + yEξi + E
((

eyξi − 1
)
1{ξi�−c}

) − yE
(
ξi1{ξi�−c}

)
+ E

((
eyξi − 1 − yξi

)
1{−c<ξi�0}

)
+ E

((
eyξi − 1 − yξi

)
1{ξi>0}

)
.

It is obvious that

ev − 1 � 0 if v � 0,
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ev − v − 1 � v2

2
if v � 0,

ev − v − 1 � v2

2
ev if v � 0,

and v2 � ev for nonnegative v. Using these inequalities we get

Eeyξi � 1 + yEξi + y E
(|ξi |1{ξi�−c}

) + y2

2
E

(
ξ2
i 1{−c<ξi�0}

)
+ y2

2
E

(
ξ2
i eyξi1{ξi>0}

)
� 1 + yEξi + y E

(|ξi |1{ξi�−c}
) + y2c2

2
P(ξi � 0)

+ 2y2

h2 E
(
ehξi1{ξi>0}

)
, (6)

if 0 < y � h/2, because

E

((
hξi

2

)2

eyξi1{ξi>0}
)
� E

((
hξi

2

)2

ehξi/21{ξi>0}
)
� E

(
ehξi1{ξi>0}

)
,

in this case.
If n � b, then conditions (ii), (iii) and relation (6) together with the inequality

1 + u � eu, u ∈ R, imply that

n∏
i=1

Eeyξi �
n∏

i=1

(
1 + yEξi + y E

(|ξi |1{ξi�−c}
)

+ y2c2

2
P(ξi � 0) + 2y2

h2 E
(
ehξi1{ξi>0}

))
� exp

{
y

n∑
i=1

Eξi + ny sup
n�b

1

n

n∑
i=1

E
(|ξi |1{ξi�−c}

)
+ ny2 max

{
c2

2
,

2

h2

}
sup
n�b

1

n

n∑
i=1

(
P(ξi � 0) + E

(
ehξi1{ξi>0}

))}

� exp

{
y

n∑
i=1

Eξi + nyε + ny2d1 max

{
c2

2
,

2

h2

}}
.

Hence, by condition (i)

P2(x) � e−yx

∞∑
n=b

exp

{
ny

(
−a + ε + yd1 max

{
c2

2
,

2

h2

})}
, (7)

for all x � 0 and 0 < y � h/2.
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If n � b − 1 and 0 < y � h then, due to the condition (iv), we have

1

n

n∑
i=1

Eeyξi = 1

n

n∑
i=1

(
E

(
eyξi1{ξi�0}

) + E
(
eyξi1{ξi>0}

))
� d2.

Therefore,

P1(x) � e−yx
b−1∑
n=1

d n
2 , (8)

because
n∏

i=1

Eeyξi �
(

1

n

n∑
i=1

Eeyξi

)n

,

by the inequality of arithmetic and geometric means.
Equality (5) and inequalities (7), (8) imply that

P(x) � e−yx

(
S(b, d2) +

∞∑
n=b

(
exp

{
y

(
−a + ε + yd1 max

{
c2

2
,

2

h2

})})n)
, (9)

for all x � 0 and 0 < y � h/2.
Let now y = δh with some δ ∈ (0, 1/2] satisfying condition (4). For such y, we

obtain from (9) that

P(x) � e−δhx

(
S(b, d2) + exp{−δhΔb}

1 − exp{−δhΔ}
)

.

This is the desired inequality. The theorem is proved.

3 Lundberg-type inequalities

In this section, we present two corollaries from Theorem 3, which yield the Lundberg-
type inequalities for the inhomogeneous renewal risk model.

We say that the insurer’s surplus process R(t) varies according to the inhomo-
geneous renewal risk model if equality (1) holds for all t � 0 with the initial in-
surer’s surplus u � 0, a constant premium rate p > 0, a sequence of independent
nonnegative and not necessarily identically distributed claim amounts {Z1, Z2, . . .}
and with the renewal counting process Θ(t) generated by the inter-occurrence times
{θ1, θ2, . . .}, which form a sequence of independent nonnegative nondegenerate at
zero and possibly not identically distributed r.v.’s. In addition, sequences {Z1, Z2, . . .}
and {θ1, θ2, . . .} are supposed to be independent.

It is obvious that definitions and expressions of the ruin probabilities ψ(u) and
ψ(u, T ) for the inhomogeneous renewal risk model remain the same as those given
in Section 1.

The main requirement to get the Lundberg-type bounds for ψ(u) is the net profit
condition. In both assertions below, it is supposed that this condition holds on average.
Our first corollary follows immediately from Theorem 3 and representation (2).
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Corollary 2. Let us consider the inhomogeneous renewal risk model such that r.v.’s
ξk = Zk − pθk , k ∈ N, satisfy conditions (i)–(iv) of Theorem 3. Then the ruin proba-
bility in the model satisfies the following inequality

ψ(u) � min
{
1, c1e−δhu

}
, u � 0,

where constants h > 0, δ ∈ (0, 1/2] and c1 > 0 are the same as in Theorem 3 for the
sequence {ξ1 = Z1 − pθ1, ξ2 = Z2 − pθ2, . . .}.

Our second corollary is more convenient to use because the requirements are for-
mulated separately for r.v.’s {Z1, Z2, . . .} and {θ1, θ2, . . .} in it. We present the corol-
lary below together with a short proof.

Corollary 3. Let the inhomogeneous renewal risk model with a sequence of random
claim amounts {Z1, Z2, . . .}, a sequence of random inter-occurrence times
{θ1, θ2, . . .} and premium rate p satisfy the following additional requirements

(i)
1

n

n∑
i=1

(EZi − pEθi) � −α if n � β,

(ii) sup
n�β

1

n

n∑
i=1

E
(
θi1{θi�κ

p
}
)
� ε,

(iii) sup
n�β

1

n

n∑
i=1

EeγZi � ν1,

(iv) max
1�n�β−1

1

n

n∑
i=1

EeγZi � ν2,

for some α > 0, β ∈ N, κ > 0, ε � 0, γ > 0, ν1 � 1 and ν2 � 1.
If

−Δ̂ := pε + δγ (1 + ν1) max

{
κ

2

2
,

2

γ 2

}
− α < 0,

for some δ ∈ (0, 1/2], then

ψ(u) � min
{
1, c2e−δγ u

}
, u � 0,

with the positive constant

c2 =
(

1 + ν2

ν2

(
(1 + ν2)

b−1 − 1
) + exp{−δγ Δ̂β}

1 − exp{−δγ Δ̂}
)

.

Proof of Corollary 3. Let ξi = Zi − p θi for all i ∈ N. Then obviously

1

n

n∑
i=1

Eξi � −α if n � β, (10)

by condition (i) of the corollary.
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Further, by conditions (iii) and (iv), we have

sup
n�β

1

n

n∑
i=1

E
(
eγ ξi1{ξi>0}

)
� sup

n�β

1

n

n∑
i=1

EeγZi � ν1, (11)

max
1�n�β−1

1

n

n∑
i=1

E
(
eγ ξi1{ξi>0}

)
� ν2, (12)

because of the nonnegativity of the inter-occurrence times θi, i ∈ N.
For the use of Theorem 3, it remains to estimate

sup
n�β

1

n

n∑
i=1

E
(|ξi |1{ξi�−c}

)
,

for some suitable positive c.
Choosing c = κ we get

sup
n�β

1

n

n∑
i=1

E
(|ξi |1{ξi�−κ}

)
� p sup

n�β

1

n

n∑
i=1

E
(
θi1{Zi−p θi�−κ}

)
= p sup

n�1

1

n

n∑
i=1

E
(
θi1{θi� 1

p
(Zi+κ)}

)
� p sup

n�1

1

n

n∑
i=1

E
(
θi1{θi�κ

p
}
)

� p ε. (13)

The obtained inequalities (10), (11), (12) and (13) imply that r.v.’s {ξ1, ξ2, . . .}
satisfy conditions (i)–(iv) of Theorem 3 with

a = α, b = β, c = κ, h = γ, d1 = 1 + ν1, d2 = 1 + ν2 and ε = p ε.

The assertion of the corollary follows now from Theorem 3.

4 Examples

In this section, we present four examples. The first two examples show the appli-
cability of Theorem 3. The third example demonstrates how to get the exponential
bound for the ruin probability applying Corollary 3. The last example shows that the
Lundberg-type inequality of the form ψ(u) � �1e−�2u, u � 0, with �1 = 1 and a
positive constant �2 is impossible if the inhomogeneous renewal risk model is “good”
only on average.

Example 1. Suppose that {ξ1, ξ2, . . .} are independent r.v.’s such that:

• ξi are uniformly distributed on interval [0, 2] for all i ≡ 1 mod 3;

• ξi are uniformly distributed on interval [−2, 0] for all i ≡ 2 mod 3;

• Fξi
(x) = 1(−∞,−2)(x) + e−x−21[−2,∞)(x) if i ≡ 0 mod 3.
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We can see that the presented sequence {ξ1, ξ2, . . .} has three subsequences. Two
of them generate random walks with negative drifts, and one subsequence generates
random walk with a positive drift. Fortunately, sequence {ξ1, ξ2, . . .} has a negative
drift on average. Therefore, we can use Theorem 3 to get the exponential bound for
P(M∞ > x).

It is evident that

Eξi =
{

1 if i ≡ 1 mod 3,

−1 if i ≡ 2 mod 3 or i ≡ 0 mod 3.

Therefore, after some calculations, we get

1

n

n∑
i=1

Eξi � −1

7
for n � 7. (14)

Additionally,

sup
n�1

1

n

n∑
i=1

E
(|ξi |1{ξi�−2}

) = 0 (15)

and

E
(
e

4
5 ξi1{ξi>0}

) =

⎧⎪⎨⎪⎩
5
8 (e8/5 − 1) < 2.48 if i ≡ 1 mod 3,

0 if i ≡ 2 mod 3,

5/e2 < 0.68 if i ≡ 0 mod 3.

The last expression implies

sup
n�7

1

n

n∑
i=1

(
P(ξi � 0) + E

(
e

4
5 ξi1{ξi>0}

))
< 1.79, (16)

max
1�n�6

1

n

n∑
i=1

(
P(ξi � 0) + E

(
e

4
5 ξi1{ξi>0}

))
< 2.48. (17)

By (14)–(17), we conclude that conditions of Theorem 3 hold with a = 1/7,
b = 7, c = 2, ε = 0, h = 4/5, d1 = 1.8 and d2 = 2.5. Therefore,

−Δ = ε + δhd1 max

{
c2

2
,

2

h2

}
− a = 9

2
δ − 1

7
= − 1

14
,

if δ = 1/63. It follows now from Theorem 3 that

P(M∞ > x) � min

{
1,

(
d2

d 6
2 − 1

d2 − 1
+ exp{−δhΔb}

1 − exp{−δhΔ}
)

e−δhx

}
� min

{
1, 1502 exp{−0.01269x}},

for all positive x.
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The last inequality works if x � 578. Though the obtained bound is not as good
as one would prefer, it is still exponential. Its weakest point is the large constant be-
fore the main term. By Theorem 3, the value of this constant is closely related to the
behavior of the first elements of the sequence {ξ1, ξ2, . . .}. In our case, the first ele-
ments of {ξ1, ξ2, . . .} increase this constant because the subsequence {ξ1, ξ4, ξ7, . . .}
has a positive drift. The second example shows that the better exponential bound can
be obtained from Theorem 3 in the case when only some of the r.v.’s {ξ1, ξ2, . . .} drag
the model to the positive side.

Example 2. Suppose that {ξ1, ξ2, . . .} are independent r.v.’s such that:

P(ξi = −1) = 1 − 1

i + 1
and P(ξi = 1) = 1

i + 1
for i ∈ {1, 2, . . .}.

For all i � 1, we have

Eξi = 2

i + 1
− 1 and E

(
eξi1{ξi>0}

) = e

i + 1
.

Consequently,

1

n

n∑
i=1

Eξi � − 5

18
if n � 3,

sup
n�3

1

n

n∑
i=1

(
P(ξi � 0) + E

(
eξi1{ξi>0}

)) = 13e + 23

36
< 1.621,

max
1�n�6

1

n

n∑
i=1

(
P(ξi � 0) + E

(
eξi1{ξi>0}

)) = e + 1

2
< 1.86.

Due to the derived bounds conditions of Theorem 3 hold with

a = 5/18, b = 3, c = 11/10, ε = 0, h = 1, d1 = 1.625 and d2 = e + 1

2
.

In this case, we have

−Δ = ε + δhd1 max

{
c2

2
,

2

h2

}
− a = 13

4
δ − 5

18
< 0,

for δ < 10/117.
If we chose δ = 1/20, then by Theorem 3, we have

P(M∞ > x) � min
{
1, 178 exp{−x/20}}, x � 0.

As was stated before, the next example shows the possibility of the exponen-
tial bound for the ruin probability in the case when the inhomogeneous renewal risk
model satisfies net profit condition on average.
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Example 3. Let us consider the inhomogeneous risk model which is generated by
uniformly distributed on [1, 3] inter-occurrence times θ1, θ2, . . . , constant premium
rate p = 2 and a sequence of the claim amounts {Z1, Z2, . . .} such that Z1 = Z2 = 0,
Z3 = Z4 = 4 with probability 1 and

FZi
(x) = 1(−∞,0)(x) + e−x

(
1 + x

i

)
1[0,∞)(x), i � 5.

In this case, we have

EZi = 1 + 1

i
, i � 5,

E eγZi = i − 1

i

1

1 − γ
+ 1

i

1

(1 − γ )2 , i � 5, γ ∈ (0, 1).

Consequently,

1

n

n∑
i=1

(EZi − pEθi) � −2 if n � 1

and

sup
n�1

1

n

n∑
i=1

E
(
eZi/3) � 2.4.

The obtained inequalities imply conditions of Corollary 3 with

α = 2, β = 1, κ = 6, ε = 0, γ = 1

3
, ν1 = 2.4, ν2 = 1.

Therefore, for the described model,

−Δ̂ = 102

5
δ − 2 < 0,

if δ < 10/102.
If we choose δ = 9/102, then Δ̂ = 1/5, and the assertion of Corollary 3 implies

the following Lundberg-type inequality for the model

ψ(u) � min
{
1, 170 e−0.029 u

}
, u � 0.

If we choose δ = 5/102, then Δ̂ = 1, and Corollary 3 implies that

ψ(u) � min
{
1, 61 e−0.016 u

}
, u � 0.

Remark 1. It is clear that we can get a lot of different Lundberg-type inequali-
ties for the same model because there exist infinitely many collections of constants
{α, β,κ, ε, γ, ν1, ν2, δ} satisfying conditions of Corollary 3. It follows from the con-
struction of the bound in Corollary 3 that we get the better bound for the smaller
constants β,κ, ε, ν1, ν2 and for larger constants α, γ . If the collection of the con-
stants {α, β,κ, ε, γ, ν1, ν2} is quite “unfriendly”, then we can still get an exponential
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Fig. 1. Ruin probability in the model of Example 4

bound for the ruin probability but with unsatisfiably small δ. All possible exponen-
tial bounds for the ruin probability have the form �1 exp{−�2u} with some positive
constants �1 and �2. Theorem 2 shows that �1 = 1 in the case of the homogeneous
renewal risk model satisfying the net profit condition. If the net profit condition holds
on average (see condition (i) of Corollaries 2 or 3), then it is impossible to get the
exponential bound for ψ(u) with �1 = 1 in general. The following simple example
confirms this.

Example 4. Let us consider the inhomogeneous risk model with p = 1 such that
Z1 = Z2 = 10, Zi = 0 for i � 3, and θi = 1 for i � 1 almost surely.

The model under consideration is inhomogeneous but satisfies the net profit con-
dition on average and all other conditions of, for instance, Corollary 3. On the other
hand, the model is degenerate. It is not difficult to obtain the exact values of the ruin
probability. Namely, expression (2) implies that

ψ(u) = 1 if 0 � u < 18,

ψ(u) = 0 if u � 18.

We can see the graph of the function ψ in Figure 1. All the best possible exponential
bounds for ψ(u) must go through the point A(18,1) (see colored curves in Figure 1).
Therefore, the upper bounds of the form �1 exp{−�2u} should satisfy the condition

�1e−18 �2 � 1.

Hence, it is evident that
�1 � e18 �2 > 1.

5 Concluding remarks

In the paper, the problem of the estimating of the ruin probability for the inhomo-
geneous renewal risk models is considered. It is evident that this problem is closely
related to the bounds for the tail probability of the supremum of an inhomogeneous
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random walk. The upper bound of the exponential type �1e−�2u is derived for the
renewal risk models satisfying the net profit condition on average. The positive con-
stants �1 and �2 depend on the constants describing the model. Unfortunately, the
obtained estimates are not sharp enough. We guess that it is possible to get sharper
exponential bounds for the ruin probabilities but for narrower class of the inhomoge-
neous renewal risk models.
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[27] Răducan A.M., Vernic R., Zbăganu G.: On the ruin probability for nonhomogeneous
claims and arbitrary inter-claim revenues. J. Comput. Appl. Math. 290, 319–333 (2015).
MR3370412
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