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Introduction

Biosensor is a device for detection and measurement of substrate concentration
in analysed solution. It is a cheap and reliable device used in environment mon-
itoring, food industry and medicine [1, 2]. This dissertation analyses application
of neural networks to determine multiple substrate concentrations from biosen-
sor response. Furthermore this dissertation analyses biosensor optimisation as a

design measure.

Amperometric biosensor has some disadvantages: usually it can measure concen-
tration of only one substrate and has relatively small measure range, enzyme have
to be selective, expensive production of the enzyme, signal is noise sensitive [3, 4].
By using chemometrical methods the concentrations of several substrates can be
determined [5, 6, 7, 8, 9]. Optimisation was used to solve the inverse problem, i.e.,
to find multiple concentrations of substrates from biosensor response [8, 9]. More-

over several substrates was determined using artificial neural networks [5, 6, 7].

Commercially successful biosensor usually needs to have the following character-
istics: a measure range sould be as long as possible, amount of enzyme should
be small, a signal should not be sensitive to noise and etc. Mathematical models
are widely applied in order to get biosensor of required characteristics [3]. Multi-
criteria optimisation with mathematical models may be utilised during design of
the biosensor [10]. The multi-objective optimization of biochemical processes and
systems has been successfully performed in different applications, particularly, for
the technological improvement of biochemical systems [11, 12], for increasing the
productivity and yield of a multi-enzymatic system [13], for the optimal design of
a pressure swing adsorption system [14], for finding trade-off between sensitivity
and enzyme volume of biosensors [15] and for the optimal design of a metal ion

biosensor [16].
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Tasks and Goal of Dissertation

The goal of this dissertation is to investigate the influence of biosensor parameters
towards accuracy of multiple substrates concentration determination with artifi-
cial neural networks, furthermore an application of optimisation methods to find

appropriate parameters of biosensors is investigated.

To reach the goal of dissertation, the following tasks were solved:

1. Application of neural networks to determine multiple substrates concentra-

tion:

o Define mathematical biosensor model, including the external (Nernst)
diffusion layer and substrate interaction. Approximate the model of
biosensor by a numerical model and implement it by a computer model.

Apply computer simulation to get pseudo-experimental data.

o Apply artificial neural networks to determine multiple substrates con-

centration from biosensor response and steady state currents.

» Investigate and find best biosensor parameters for multiple substrates
concentration determination.

2. Biosensor optimisation:

o Define multi-objective optimisation problem for biosensor: determine
optimisation variables and objective functions.

o Implement objective functions.

« Investigate objective functions ant select optimisation method.

e Optimise biosensor and analyse optimisation results. Give recommen-

dation based on optimisation result analysis.

Means and Methods of Investigation

Biosensors analysed in this work were modeled using reaction-diffusion equations

[17]. A mathematical model was solved using a numerical finite difference method
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[3]. Computer models were implemented using the C programming language [18].
Multiple substrate concentrations were determined using artificial neural networks
[19]. The Matlab Neural Network Toolbox was used [20]. To reduce imput data
dimension, the principal component analysis was used [21]. Parallel calculations
were done using OpenMPI protocol [22]. Optimisation was done using the Hooke-
Jeeves optimisation algorithm [23] and the Chebyshev scalarisation [24]. Multi-
dimensional scaling was done using the SMACOF algorithm [25].

Novelty of Dissertation Results

1. In this dissertation a mathematical model of biosensor was used: it includes
the external Nernst diffusion layer and substrate interaction. Artificial neu-
ral networks were used to find concentrations of substrates from biosensor

response.

2. Artificial neural networks were used to determine concentrations of sub-

strates using multiple steady state currents generated by biosensors.

3. A dimensionless model was used to investigate the influence of biosensor
parameters on errors when concentrations were determined by neural net-

works.
4. Multi-objective optimisation problem for biosensor was defined.

5. The proposed method of biosensor design that integrates the multi-objective
optimisation with visualisation facilitates exploration of a relation between
the Pareto optimal decision and solution spaces aiming at search for an

appropriate trade-off between conflicting objectives.

Practical Value of Dissertation Results

Biosensors capable to measure several substrates would enable primary analysis in
pollution detection. As shown by our investigation, a biosensor response or steady

state currents can be used to determine concentrations of multiple substrates.
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Mathematical model of biosensor including the external (Nernst) diffusion layer

and substrate interaction was used.

The proposed method of biosensor design that integrates the multi-objective opti-
misation with visualisation facilitates exploration of a relation between the Pareto
optimal decision and solution spaces aiming at search for an appropriate trade-off
between conflicting objectives. It was applied for glucose and phenol biosensors

and recommendations was given.

Dissertation results were used for an EU project "Developing computational tech-
niques, algorithms and tools for efficient simulation and optimisation of biosensors
of complex geometry", under the European Social Fund measure No. VP1-3.1-
SMM-07-K (2014-2015).

Propositions to be Defended

1. Using mathematical model of biosensor (including the external Nernst dif-
fusion layer and substrate interaction) and artificial neural networks it is

possible to determine concentration of several substrates.

2. Using multiple steady state currents generated by biosensors (differing only
in parameters) and artificial neural networks it is possible to determine

concentrations of several substrates.

3. Applying multi-objective optimisation and multi-dimensional data visual-
isation in the phase of biosensor design allows to get most suited Pareto

optimal trade-off solutions.

Approval of Dissertation Results

Two publications related to multi-objective biosensor optimisation were published.
The first one published in a journal indexed in Clarivate Analytics Web of Knowl-
edge [Al]. The second one was published in a scientific conference proceedings
indexed in SCOPUS [A5].
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Material related to the application of artificial neural networks to determine mul-
tiple substrate concentrations was published in Lithuanian journal of computer

science [A4] and in a proceedings of the conferences [A3, A2].

Dissertation results were presented in four international and three Lithuanian

conferences:

1. ECMS 2017 (Budapest, Hungary): 31th European Conference on Modelling
and Simulation. 23-26th May 2017.

2. FTMTT 2017 (Vilnius, Lithuania): Fiziniy ir technologijos moksly tarpda-
lykiniai tyrimai 2017. 9th February 2017.

3. MMA 2016 (Tartu, Estonia): Mathematical Modelling and Analysis 2016.
1-4th June 2016.

4. OR 2016 (Vilnius, Lithuania): Open Readings 2016. 15-18th March 2016.

5. DAMSS 2015 (Druskininkai, Lithuania): Data Analysis Methods for Soft-
ware Systems 2015. 3-5th December 2015.

6. KODI 2015 (Paneveézys, Lithuania): Computer Days 2015. 17-19th Septem-
ber 2015.

7. IVUS 2015 (Kaunas, Lithuania): International Conference on Information
Technology 2015. 24th April 2015.



Chapter 1

Modeling and Analysis of

Biosensors

1.1 Mathematical Modeling of Biosensors

Biosensors are based on the enzyme reaction of substrates [26]. In case of amper-
ometric biosensor the generated current is based on oxidation-reduction reaction
of enzyme reaction products. The abundance of ferment reaction allows creating
many schemes of bioelectrocatalysis [3, 27]. Biosensor can be created using vari-
ous bioelectrocatalysis schemes and semi-permeable membranes. The selection of

the geometry and enzyme parameters is essential in project phase of biosensors.

Usually biosensor is composed of multiple membranes [3]. Figure 1.1 shows
the principal scheme of multi-layer biosensor. Thickness of all layers varies:
di,ds, ...,d,. ap is the surface of an electrode, a, is the solution  boundary

and aq, ..., a,_1 is layer boundaries.

Biosensors are modeled using diffusion-reaction equations. In the [ layer the dif-
fusion movement of particles and the kinetics of reaction can be expressed by a

system of diffusion-reaction equations [3],

0,V = DAY + RV (D), (1.1)
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Figure 1.1: Principal scheme of multi-layer biosensor. Diffusion is present in all
layers and the reaction is present in some layers. Ferment reaction is present in
the first layer = € [ag, a4].

where ¢V (z,t) = (cgl)(a:, t),cgl)(:zz, t), ...,c,il)(w, t))T is a vector of regents concen-
trations in the [ layer, € = (x,y, z) is a space coordinate, ¢ is time, DY is the di-
agonal diffusion coefficient matrix, RV (c®) = (RY(e®), RY (e®), ..., RV (c®))T
is a function that describes the kinetics of a reaction. When no reaction occurs we
get a diffusion equitation, i.e., R(l)(c(l)) = (0,0,...,0)T, index [ indicates a specific
layer 1 <[ < n.

Biosensor can be modeled in one dimentional space without losing of accuracy
if some assumptions are adopted [3]. The system of one dimensional diffusion-

reaction equations is used,
atc(l) — D(l)amc(l) + R(l)(c(l)), (1.2)

where x is a one dimensional space coordinate.

In case when the i-th regent can diffuse by a limit (x = a;) of layers, the flux by
a limit of layers [ and [+ 1 (i.e. through surface z = a;) is equal to the flux that
is equal to the corresponding flux of the same compound entering the surface of
a layer [ [3],

Dz('l)axcz(l)‘x:al _ DZ(»HI)@Z CEZH)}x:al? (1.3a)

l I+1
D=y
T=q r=aq;

(1.3b)
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where DZ(-l) and DEHI) is the 7-th regent diffusion coefficient in the [-th and the
[ + 1-th layers.

If the [ + 1 layer has a constant concentration of the i-th substrate, the Dirichlet
boundary condition is applied to the [ layer on a boundary (x = a;) [3],

A = ¢, (1.4)

v lzx=q
where ¢g is a concentration value.

If i-th regent doesn’t diffuses by the limit (z = a;) of layers [ and [ + 1 because of

the non-permeability, the Neumann boundary condition is applied [3],

DV,

1 ‘x:al

~0. (1.5)

In case of amperometric biosensor electrochemically active regents (lets say: cgl),

01(612),....,0,(62) transfer charge on the electrode surface (z = ay) and generate an

electric current. It can be calculated using Fick and Faraday laws [3],

. L= lim I(), (1.6)

t—o00

T=ag

I(t) = Z niFD,g)amc,(:i)
i=1

where n; is a number of electrons involved in the charge transfer on the electrode

surface (z = ag), I is a steady state current, F' is the Faradays constant.

Diffusion-reaction problem is specified by specifying a function that describes the
kinetics of the reaction R(l), 1 <1 < n also boundary and initial conditions.

Specified problem can be solved using analytical or numerical methods [3].

1.2 Multi-objective Optimisation of Biosensor

Multi-objective optimisation allows to get Pareto optimal trade-off solutions (any
single objective of the Pareto optimal solution cannot be improved by not worsen

other objectives) [24]. Design of biosensor can be reduced to multi-objective op-
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timisation with an optimised function [28§],

Fp = min F(X) = , (1.7)

where F'(X) is a vector of minimised objective functions that describe the charac-
teristics of biosensors (k > 2), X € A is a decisions vector (optimisation variables)
from the decision area A. The decision area is defined by the following constraints:
A={XeR": g(X)=0,....gm(X) > 0}. In the case of maximisation, a nega-

tive value of an optimised function is analysed.

Multi-objective optimisation result is the Pareto front aproximation Fp, i.e., a set
of Pareto optimal solutions. Besides computing an approximation of Fp we are

also interested in the representation of the set of Pareto optimal decisions,

Optimised objectives (characteristics) depend on particular biosensor. It may be
maximisation of a steady state current I,,, minimisation of a biosensor response
time 7', minimisation of a ferment amount E X d; etc. Decisions variables also
depend on particular biosensor which may be the thickness of biosensor layers

dy,ds, ...,d,, a ferment concentration E, regent concentrations etc.

It is important to select the method of optimisation to get a representative Pareto
front. The initial objective function analysis is used to select a proper method.
Optimisation may be complicated if the optimsed function is an expensive (needs a
lot computing resources) black box function. Also convexity of optimised functions
should be analysed. Classical methods [24] and their adaptations [29] are well
suited for continuous and convex functions, they do not suit for non-convex and
non-continuous functions. Functions may be non-continuous due to numerical
errors. The application of metaeuristic methods is irrational if optimised functions
are expensive [30]. The most suitable option for expensive black box function
optimisation is an algorithm based on a statistical model of the objectives [31].

However, at present the corresponding software is only available for bi-objective
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problems [31]. Among other available alternatives the most promising method
for the considered problem is the Chebyshev scalarisation method [24]. Using the

latter, the minimisation problem (1.7) is reduced to a single objective problem.

Applied optimisation algorithm gives the Pareto front representation. Pareto
optimal solutions are analysed by visualisation. Results of visualisation allows

selecting the proper trade-off solution determined by a human expert [32].

1.3 Application of Artificial Neural Networks to

Determine Substrates Concentrations

A linear analysis was applied in analysis of biological systems [33]. Complex
signals are analysed using multi-variate analysis methods [34, 35]. Artificial neural
networks can be used to increase the selectivity and sensitivity of sensors [36].
Artificial neural networks were applied to the classification of biosensor response
[5, 6]. In case of measured substrate changing evenly and artificial neural networks
can be applied to the determination of substrates concentrations from biosensor

response [7].

In comparison to previous papers, this dissertation uses a mathematical model of
biosensor including the external diffusion layer and substrate interaction. Arti-
ficial neural networks were applied to determine substrates concentrations from
biosensor response [A3]. Artificial neural networks were also applied to determine
substrates concentrations from multiple steady state currents [A2]. Furthermore,
was found biosensor parameter values for most accurate concentrations determi-
nation [A4].

1.4 Optimisation of Biochemical Systems and

Biosensors

Modeling was used to investigate biosensor action principles and give some rec-
ommendations for design, for example, modeling glucose dehydrogenase [27] and

cyclic reaction based biosensors [37, 38]. Optimal parameters of biosystems can be

10
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obtained using multi-objective optimisation, for example, technological improve-
ment of biochemical systems [11, 12], increasing the productivity and yield of a
multi-enzymatic system [13], the optimal design of a pressure swing adsorption
system [14], finding trade-off between sensitivity and enzyme volume of biosensors
[15] and the optimal design of a metal ion biosensor [16]. The importance of the
multi-objective optimisation in biochemical engineering constantly increases due
to development of new methods sustained by increased computational resources
[12]. Computer based design of industrial analytical systems is still a challenging
task due the fact that there are not only multiple often conflicting objectives,

but also a combination of factors with complex non-linear mathematical models
(12, 14, 39].

Optimisation was used to solve the inverse problem, i.e., to determine concentra-
tions of substrates from biosensor response [8, 9]. On the other hand it important
to find optimal often conflicting characteristics of biosensor as in the case of find-
ing trade-off between sensitivity and enzyme volume of biosensors [15] and the
optimal design of a metal ion biosensor [16]. In this dissertation multi-objective
optimisation and visualisation was applied to find optimal trade-off characteristics

of glucose [A1] and phenol biosensors [A5].

11



Chapter 2

Analysis of Biosensor Response

In this chapter an artificial neural networks is applied to the biosensor to de-
termine multiple substrate concentrations. In subsection 2.1 the case of the k
substrate is analysed. The biosensor model involves substrate interaction and
the external (Nernst) diffusion layer. The response of the biosensor is used to
determine multiple substrates concentrations. Moreover, the effect of the exter-
nal diffusion layer is investigated [A3]. In subsection 2.2 the determination of
concentration of two substrates using two biosensor static currents is investigated

[A2, A4]. Furthermore, the effect of a diffusion module is analysed.

2.1 Multiple Substrate Concentration Determi-

nation from Biosensor Response

Biosensor response was used to determine multiple substrates concentrations. Be-
sides that, the effect of the external diffusion layer was investigated. The principal
component analysis was used to reduce the dimension of artificial neural networks

input vector. The results show the effect of using external diffusion layer.

12
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2.1.1 Model of the Biosensor

Using quasy-steady state assumption, enzyme reaction can be expressed [26],
Sl—i-SQ—i-...—i-Sk£>P1+P2+...+Pk, (21)

substrates S;, ¢ = 1, ..., k, do not react with each other, but are competing in the

enzyme reaction.

The analysed model of the biosensor involves three parts: an enzyme layer, where
enzyme reaction and diffusion proceed, the external diffusion layer, where only
diffusion proceed, and the analysed solution, where substrate concentrations re-
main constant [8]. Lets denote d as the thickness of the enzyme layer and ¢ as
the thickness of the external diffusion layer. Model of the biosensor was specified
by a reaction-diffusion system [A3]. The specified problem was solved using the
finite difference method [3].

2.1.2 Numerical Experiments

In this case four substrates were analysed (k = 4). Neural networks determined

normalised substrates (S;, ¢ = 1...k) concentrations ¢,
C; = i,O/Kivi = ]_k’, (22)

where S; is the concentration of the ith substrate and K, is the Michaelis constant
[26].  Selected concentration ¢ = (cy,...,c;) change range C' = [3.2;12.8]" [§].
Biosensor numerical simulation gives response Z(c¢) = (z(1,c¢),...,2(n,c)), ie.,

biosensor generated currents at time moments ¢; = ¢ s.

Biosensor involves a diffusion layer. In this case the Biot number is important. It
defines the ratio between the internal and the external mass transport resistance

[40],
_ d/DSi,e o dDSi,b

'~ 6/Ds,, 0Ds,.’

i,e

ik, (2.3)

where d is the thickness of an enzyme membrane, 0 is the thickness of the diffusion

layer, Dg,, is S; substrate diffusion coefficient in an enzyme membrane, Dg, , is

13
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S; substrate diffusion coefficient in the diffusion layer.

Biosensor response asymptotically goes to a steady state, so experiment should be
stopped when the current increase is negligible. The normalised current increase

was used and an acceptable value € was selected [3],

(ot dilt)

t
i(t) dt’ (24)

where i(t) is biosensor currents, ¢ is time. Biosensor simulation continues while
(2.4) the condition is met.

2.1.3 Application of Artificial Neural Networks

Biosensor response can have large dimension. To reduce data dimension the prin-
cipal component analysis was applied [21, 41]. First ten (J = 10) principal com-
ponents were used as input for artificial neural networks, because remaining ones

have a small dispersion (sum less than 10%).

Artificial neural networks that use superposition of a sigmoidal function were used.
It can approximate any continuous function in a selected precision [42]. To find
weights of neural networks the Levenberg-Marquardt optimisation algorithm was
used [5, 43]. Artificial neural networks gives output vector of determined values

of substrate concentrations (¢, és, ..., Cx).

Artificial neural networks were trained on records evenly covering concentration

change range,
CcEc {Qi i = Cmin +Z X (Cma,m - Cmin)/Mai - 07 "‘7M}k €

C' = [Comin; Cmaz)® = [3.2;12.8]" k = 4, M = 10.

To validate the accuracy of neural networks a validation set was used. It con-
sisted of 1000 records with random concentrations. During biosensor model-
ing the stop condition ¢ = 0.01 (see (2.4)) was used and ¢,,,, shows how long
the experiment lasted. In experiments various external diffusion layer thickness
d € {0; 0.004; 0.016; 0.04; 0.1} and, respectively, Biot numbers: § = 0.04/§

14
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Table 2.1: Average values of substrate concentration determination relative errors.

Y ﬁ tmax €1 €2 €3 €4

0 oo | 120 | 0.0427 | 0.0465 | 0.0177 | 0.0122
0.004 | 10 | 146 | 0.05 | 0.0577 | 0.0222 | 0.0148
0.016 | 2.5 | 309 | 0.0376 | 0.0407 | 0.0162 | 0.0145
0.04 | 1 | 910 |0.0051 | 0.0061 | 0.0032 | 0.0026
0.1 [0.4]3468 | 0.002 | 0.0021 | 0.0013 | 0.001

were used. Expression of 5; (2.3) is simplified to  because constant values were

applied.

2.1.4 Results

To estimate substrate concentration determination errors the relative errors value

was used: g; = w, 1 = 1,...,k, where ¢; is a value determined by neural
networks, ¢; is the real value of the ith substrate concentration. Experiments

were carried out ten times and the average values are indicated in table 2.1.

The table shows that the external diffusion layer improves accuracy of results,

i.e., comparing rows with 6 = 0 and § = 0.1 we see that accuracy is improved

mineqr, g ;2556::0(2) = 3T ~ 13.6 times. One the other hand, the experiment

time increases % = % = 28.4 times. Results confirm that external

diffusion layer improves the sensitiveness of biosensors [40, 44, 45, 46, 47].

2.2 Determination of Several Substrates by Us-

ing Steady State Currents

Two biosensors that have the same enzyme (differing only in enzyme concentra-
tion) were used to determine two substrate concentrations. Steady state currents
generated by two biosensors were used as an input of artificial neural networks to
determine concentrations of two substrates. Furthermore, the influence of biosen-

sor parameters (diffusion module) was investigated.

15
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2.2.1 Model of the Biosensor

The analysed model of the biosensor involves three parts: an enzyme layer, where
enzyme reaction and diffusion proceed, the external diffusion layer, where only dif-
fusion proceed, and the analysed solution, where substrate concentrations remain
constant. The model of the biosensor was specified by a steady state reaction-
diffusion system [A2]. The anlaysed model was simplified by deriving a dimen-
sionless model [A4]. The specified problem was solved using the finite difference
method [3].

One of most important parameters that define biosensor is a diffusion module:
of = (d®V;)/(Dg, K;) [3]. It describes the ratio between an enzyme reaction
speed (V;/K;) and a diffusion speed in enzyme layer (Dg, /d?). There V; is the
enzyme reaction speed, K; is the Michael constant, Dy, _ is the diffusion coefficient
in enzyme layer, d is the thickness of diffusion layer. The influence of the diffusion

module was investigated.

2.2.2 Modeling Steady State Current of Biosensor

Two biosensors that have a different enzyme concentration were analysed. Biosen-
sors generate two different steady state currents: I; and . The diffusion module
differs because different enzyme concentrations were used. Steady state currents
can be expressed as functions of diffusion modules: (a7}, a3 ;) and (o ,, a3 ,).
Diffusion modules of both biosensors (o7 |, 03 ,) and (af ,, a3 ,) can be expressed

by parameters p, q, a?,

ai, =a? a3, =pa (2.5a)

al, =qa®, af, = qpa’. (2.5b)

where o is a constant that defines the enzyme reaction speed, p is the enzyme
reaction speeds ratio of substrates, ¢ is the enzyme concentrations ratio of biosen-

SOTs.

Having steady state currents I; and I, an artificial neural networks determined
normalised substrate S; concentrations S'w = Si0/K;,i = 1,2. Substrate concen-

tration s = (51, S50) change range is s € S = [3.2;12.8]2 [8]. Parameters p, g,
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2.2. Determination of Several Substrates by Using Steady State Currents

o? influence on the substrate determination using artificial neural networks was

investigated.

2.2.3 Application of Artificial Neural Networks

An artificial neural networks that uses superposition of a sigmoidal function was
used. It can approximate any continuous function in the selected precision [42].
Therefore, it was used to find concentrations (31,07 gg,o) from steady state currents
(11, I5). Neural networks weights were found using the Levenberg-Marquardt op-

timisation algorithm [43].

An artificial neural networks was trained on records evenly covering concentration

change range,

s € {QZ LG = SO,min +1 X (go,max - go,mm)/MJ = 07 ) M}2 (26&)
S = [Soumin; So.maz)? = [3.2;12.8]%, M = 20. (2.6D)

To validate the accuracy of neural networks a validation set was used. It consists

of 100 records with random concentrations.

2.2.4 Results

To estimate substrate concentration determination errors a relative error value
was used: &; = |S;o— ¢|/Sio, i = 1,2, where ¢ is the value determined by neural

networks, ;¢ is the real value of the ith substrate concentration. Experiments

were carried out ten times and the average values were calculated &;,7 = 1, 2.

Experiments were carried out with different values of p and ¢ so we get a relative
error function &;(p, q),7 = 1,2. Results were normalised using the maximum error
value &4, ~ 0,45 to get percent error function: e;(p,q) = (5i(p,q)/Emaz) X
100%,i = 1,2. Theset A ={1,2,...,10} was used as a change range of parameters
p € A and ¢ € A so function values e;(p,q),i = 1,2 calculated in the area
(p,q) € A% Results were calculated using o € {0.1;1;10} and are presented in
Fig. 2.1.
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2. Analysis of Biosensor Response
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Figure 2.1:  Relative error values ¢;(p,q),i = 1,2. Used a? values: o® = 0.1

(a)=(b), a* = 1 (c)~(d), a® = 10 (e)~(f).

The figure shows that the greatest relative error values occurred when p = g =1,
i.e., in this case both biosensors were identical and its impossible to find two
substrate concentrations using one biosensor. Similarly when p = 1 or ¢ = 1,
i.e., it is impossible to find substrate concentration values. The minimal error
ei(p,q) = 1%,i = 1,2, occurs when p = ¢ = 10. When parameters p, ¢ were
reduced, error became greater.

In all cases o € {0.1,1,10} error values approach the minimum when p > 4
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2.8. Conclusions and Results

and ¢ > 4. In all cases when p > 1 and ¢ > 1 the error value of the second
substrate is lower, because of | < a3, 0‘32 < agg, i.e., the seconds substrate
influences biosensor current more. The lowest error values were obtained when
a? > 1,i = 1,2, (Fig. 2.1e, 2.1f), i.e., when biosensor responses are mostly

influenced by diffusion.

2.3 Conclusions and Results

Biosensors responding to multiple substrates are analysed. The model of the
biosensor involves substrate interaction and external (Nernst) diffusion layer. Re-
sponse of the biosensor was used to determine multiple substrate concentrations.
The external diffusion layer improves the accuracy of results. One the other hand,

the experiment time increases, so the trade-off should be selected.

Biosensors differing only in enzyme concentration were used to determine two
substrate concentrations. The steady state current generated by two biosensors
was used as an input for artificial neural networks to determine the two sub-
strates concentrations. Moreover, the influence of biosensor parameters (diffusion
module) was investigated. Error values approach the minimum when p > 4 and
q > 4, i.e., the ratio of enzyme reaction speeds of substrates p and the ratio of
enzyme concentrations of biosensors ¢ is more than 4. Lowest error values were
obtained when a? > 1,7 = 1,2, i.e., when biosensor response mostly influenced

by diffusion.
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Chapter 3
Optimisation of Biosensors

In order to make good biosensor, the device should meet many contradictory
requirements [3]. This chapter presents a method that combines mathematical
modeling, multi-objective optimisation and multi-dimensional visualisation that
is intended for the design and optimisation of amperometric biosensors. The
approach for optimising parameters of biosensors are based on the availability of
a mathematical model of a catalytic biosensor. A multi-objective visualisation of
trade-off solutions and Pareto optimal decisions is applied to select of the most
favorable decision by a human expert when designing biosensors. The multi-
objective optimisation was applied to glucose (subsection 3.1) [A1l] and phenol
(subsection 3.2) biosensors [A5].

3.1 Multi-objective Optimisation and Decision
Visualisation of Biosensors with Synergistic

Substrates Conversion

Biosensor that utilises the synergistic substrates conversion was optimised to get
the optimal design. The following three objectives were optimised: the apparent
Michaelis constant was maximised, the output current was maximised and the
enzyme amount was minimised. The synergistic schemes of substrates conver-

sion are of particular interest due to their application in order to produce highly
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3.1. Multi-objective Optimisation and Decision Visualisation of Biosensors with Synergistic Substrates
Conversion

sensitive bioelectrodes and powerful biofuel cells [48].

3.1.1 Modeling of Biosensor with Synergistic Substrates

Conversion

The glucose dehydrogenase (GDH)-based amperometric biosensor is a particular
case of biosensors utilising the synergistic substrates conversion used to measure
the glucose level in blood [27, 48]. The modeled GDH biosensor is assumed to be
composed of a graphite electrode covered with an enzyme (GDH) layer [48]. The
enzyme layer is separated from the bulk solution by means of the inert dialysis

membrane.

Assuming the symmetrical geometry of the biosensor, the homogeneous distribu-
tion of the immobilised enzyme and coupling reactions in the enzyme layer with
a one-dimensional-in-space diffusion, described by the Fick’s second law, lead to
reaction-diffusion type equations [3, 27]. The governing equations together with
appropriate initial, boundary and matching conditions form the non-linear initial
value and boundary value problem, which was numerically solved by applying the

finite difference technique [3].

Values of some parameters are usually application-specific to a target biosensor:
reaction rate constants, substrates diffusion coeflicients, mediators, products and
others [40]. Meanwhile, values of some other parameters, e.g., the concentration
of the enzyme and mediators, as well as, the geometry, can be selected by the

designer quite freely.

3.1.2 Optimal Design of Biosensor as a Problem of Multi-
objective Optimisation

3.1.2.1 Patameters of the Biosensor to be Optimised

Designing biosensor, like designing in general, may be reducible to a multi-objective

optimisation where the minimum or the maximum values of numerous parameters

are desirable, e.g., the sensitivity of biosensors, the response time, material costs
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3. Optimisation of Biosensors

and etc. In this work three objectives were considered: the apparent Michaelis
constant K37°, the maximum current .y, and the enzyme amount Ad; Ey, where

Ejy is the total concentration of the enzyme.

An upper limit of the linear concentration range is an important parameter for
electrochemical biosensors [40]. The greater value of K}}” corresponds to a wider

range of the linear part of the calibration curve [3].

In some cases of biosensors, enzymes are archival and only available in a limited
quantity or are products of combinatorial synthesis procedures and thus are only
produced in micrograms or milligrams [40]. Therefore, the amount of enzyme used
in biosensors should be minimised. The total quantity of the enzyme (GDH) is
expressed as a product of initial (total) concentration Fy of GDH and the volume

Ad; of the enzyme layer, i.e. the total quantity of GDH equals Ad; Ej.

The limit of detection of sensors is also determined by a signal-to-noise ratio [49].
The signal amplification enhances the signal-to-noise ratio of biosensors. There-

fore, it is reasonable to maximise the biosensor current I,...

3.1.2.2 Multi-objective Optimisation Problem

The considered optimal design problem mathematically is stated as a three-
objective optimisation problem with an objective function ®(x) = (p;(z), pa(z),
w3(z))T, where @y(x) is Ky/¥, po() is Inax and @3(x) is AdyEy. The decision

variables for the optimal biosensor design problem are provided in Table 3.1.

The minimum, as well as the maximum, values of decision parameters should be
expertly estimated. Values of some of them depend on the technological possi-

bilities, e.g. on the thicknesses of commercially available dialysis membranes or

Table 3.1: Decision variables x = (dy, da, Ey, S1.0, 5270)T for the problem of biosen-
sor design.

Variable Description Range Units
1. dy Enzyme layer thickness [2 x 1075, 1079 m

2. ds Dialysis membrane thickness [1076, 2 x 1079 m

3. Ey  Enzyme concentration [5x 1078 5x 107°] mol dm™3
4. S10 Ferricyanide concentration (1073, 1072 mol dm~3
5. Sso Oxidised mediator concentration [0, 1075] mol dm~3
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3.1. Multi-objective Optimisation and Decision Visualisation of Biosensors with Synergistic Substrates
Conversion

on the of nylon nets thread thicknesses that is used to prepare of the enzyme
layer [26, 40, 48].

First two objectives should be maximised, and the last one should be minimised.
However, to facilitate the analysis it is convenient to reformulate the optimisation
problem into a problem with all objectives aimed at minimisation. To equalise
the range of objectives, their minimum and maximum ¢; , ¢}, i = 1,2,3, were
computed (using the multi-start with the Hooke-Jeeves algorithm) and the ranges

were normalised to [0, 1],

+t _
fl(x) = (10@4_—%02(?)7 7/ - 1727 (31&)
Vi —Pi
p3(z) — o3
fa(w) = o—22, (3.1b)
Y3 — 3
= , ~ — min o; —
i = max;(z), P =ming(z), i=1,..3 (3.1c)
r=(ry,...,25)7, A={z:0<z;<1, j=1,..5}, (3.1d)
where z;, 7 = 1,2,...,5, denotes optimisation variables (decision parameters)

rescaled to the unit interval; thus the considered optimal design problem is reduced

to the following,

Fp = min F(z), F(z) = (fu(@), fal2), fa(2))". (3.2)

T€EA

The optimisation result Fp is the Pareto front of the formulated three-objective
optimisation problem. The vector of variables that correspond to the Pareto
optimal solution is named the Pareto optimal decision. Besides computing an
approximation of Fp, we are interested in the representation of a set of Pareto

optimal decisions,

Xp ={z: F(x) € Fp}. (3.3)

3.1.2.3 Solution of the Stated Multi-objective Optimisation Problem

In selecting an appropriate algorithm to represent Fp and Xp the crucial difficulty
is the characterisation of the problem as an expensive black-box problem. More-
over, numerical experiments showed the non-convexity of at least one objective

function. Classical methods [24], which are efficient for smooth convex problems,
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3. Optimisation of Biosensors

as well as their adaptive versions, e.g. [29], are not suitable here because of the
non-convexity, and because of possible non-smoothness of the objective functions
which is implied by numerical errors. The application of various metaheuristic
methods [30] is limited because of expensiveness of the objectives; a vector value
of objective function on average takes almost 6 minutes using a personal computer
with Intel Core i7-4770 3.5 GHz processor. The most suitable algorythm for prob-
lems with characteristic of interest would be an algorithm based on a statistical
model of the objectives [31], however, at present, the corresponding software is
available only for biobjective problems. Among other available alternatives the
most promising method for the considered problem is the so called Chebyshev
scalarisation method [24]. Using the latter, the minimisation problem (3.2) is

reduced to the following parametric single objective problem,

f(z) = 112?53 w; fi(x), z(w) = arg Ixréllil f(x), (3.4)
3
w = (wy,wy,ws)’, 0 < w; <1, Zwi =1, (3.5)

=1

where the minimiser x(w) is the Pareto optimal decision of the original multi-
objective problem. All Pareto optimal decisions can be found by the solution of
(3.4) with an appropriate vector of weights w. To represent whole set Fp and
Xp the minimisation problem (3.4) should be solved repeatedly with different
vectors of weights. The scalarised function f(z) can be minimised by using a
combination of a randomised selection of starting point with the Hooke-Jeeves

optimisation algorithm [23].

The choice of weights aiming at the uniform distribution of solutions in Fp is
complicated. We plan to compute the desirably distributed solutions using a two-
step procedure. At the first step, the optimisation problem (3.4) was solved with
weights shown in Fig. 3.1a. The determined Pareto optimal solutions are depicted
in Fig. 3.1b, where triangles correspond to solutions with f, > 0.3 and squares to
solutions with f, < 0.3; this notation is held throughout the subsection. Different
notation is used to highlight the change in structure of the representation of Fp:
for fo < 0.3 Fp it looks like a curve, and for f; > 0.3 it seems to be extending
to a surface. To verify the supposition that Fp transforms to a surface (not to
separate curves), a more detailed representation of the Pareto front is desirable

next to of points indicated by triangles. At the second step, the problem (3.4)
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Figure 3.1: The weights (a) used and the Pareto optimal solutions (b) found at
the first step of the optimisation procedure.
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Figure 3.2: The supplementary weights indicated by black points in the triangle
of weights (a) and the augmented representation of the Pareto front (b).

was solved using a set of weights depicted by solid points in Fig. 3.2a where the
whole set of the used for approximation weights W is presented. The augmented

representation of the Pareto front presented in Fig. 3.2b validates the supposition.

Although it requires a lot of computing time, the described implementation of
the method for the representation of Fp(W), is still appropriate to be run on a

personal computer. On our experiment, the computing of the representation of
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3. Optimisation of Biosensors

the set of Pareto optimal solutions by the described implementation of the Cheby-
shev method (using weights shown in Fig. 3.1a) took about 168 hours. The total
number of the objective function computations was equal to 1.3 x 10%. The algo-
rithm was run on a personal computer with Intel Core i7-4770 3.5 GHz processor,
and 8 parallel threads were used to perform minimisation of different aggregated
objectives f(x) defined using different vectors of weights w. The optimisation was
distributed by a master-slave approach using the Open MPI library. Open MPI
provides the ability to parallelize task over a nonhomogenous distributed system

(e.g., a supercomputer) [22].

3.1.3 Visualisation of Optimisation Results

By the analysis of a visual representation of the Pareto front Fp(W), such as
presented in Fig. 3.2b, an appropriate Pareto solution can be selected as well as
the decision z(w) which corresponds to the selected Pareto solution. However,
such a choice is not always satisfactory since it does not consider such properties
of the corresponding decision as e.g. the location of the selected decision vector
in the feasible region A. The analysis of the location of the set of efficient points
in A can be especially valuable in cases of structural properties of the considered
set is important for the decision making [14]. To visualise a set of Pareto optimal
decisions, which is a subset of a feasible region in a multi-dimensional space,
special methods of visualisation of multi-dimensional data are required. A suitable

method here is the multi-dimensional scaling [41].

The approximation Fp(W) of the Pareto front Fp computed by the Chebyshev
algorithm consists of N = 136 three-dimensional vectors. The corresponding set
Xp (W) of five dimensional points z(w') € A, i =1,..., N, is an approximation
of Xp. To get an idea of the location of Xp(W) in a five dimensional unit cube,
a multi-dimensional scaling based algorithm was applied to the two-dimensional
visualisation of a set of five dimensional points consisting of z(w'), i = 1,..., N,
and the cube vertices. We decided to apply a multi-dimensional scaling procedure
that is widely available on the internet [25]. The selected procedure is based on
the well known SMACOF algorithm [50].

Before visualising the data for the considered problem, a two-dimensional image of

the set of vertices of the five dimensional cube is presented in Fig. 3.3a. It is worth
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Figure 3.3: Two-dimensional images of the vertices of a five dimensional hypercube
(a) and the vertices together with the points approximating the set of Pareto
optimal decisions (b). Points marked by plus sign stand for closest to the Pareto
front hypercube vertices.

Table 3.2: Hypercube vertices closest to Pareto front hypercube vertices.

Vertice | 1 T2 X3 T4 s
vl O 0 0 1 1
v? o o 1 1 1
v3 O 1 0 1 1
vt o 1 1 1 1
Vo 1 0 1 1 1
V8 1 1 0 1 1
v’ 1 1 1 1 1

mentioning that a two-dimensional image is presented in the abstract coordinates,
and the mutual distance between two-dimensional image points approximates the
distance in a five dimensional space. In this way the structure of the set of two-
dimensional points visualise the structure of the original set of multi-dimensional
points. Images of points x(w') are presented together with images of vertices
in Fig. 3.3b. The seven hypercube vertices closest to the set of Pareto optimal
decisions are depicted in Fig. 3.3b as numbers corresponding to vertice indexes

vt, ..., v". Their five coordinates are presented in Table 3.2.

The vertices closest to the set of Pareto optimal decisions have x4 = 1, x5 = 1,
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3. Optimisation of Biosensors

meaning that values closest to the maximum of these decision variables should
be chosen for the optimal biosensor design. If five dimensional Pareto optimal
decisions x(w) are projected onto a plane (x4, x5), the points are located near

point (1,1) corresponding to the maximum values these decision variables.

The optimisation procedure as well as physical experiments showed that increasing
concentrations of x, and x5 (corresponding to Sy o and S ) increases the biosensor

sensitivity and thus increases the apparent Michaelis constant K377 [48].

3.2 Multi-objective Optimisation of Biosensor

with Cyclic Substrate Conversion

Biosensor utilising cyclic substrate conversion was optimised. The following three
objectives were optimised: the output current was maximised, the enzyme amount

was minimised and sensitivity was maximised.

Biosensors with cyclic substrate conversion are of particular interest due to their
high sensitivity made possible by utilising cyclic substrate conversion in a sin-
gle enzyme membrane. Mathematical and corresponding numerical models for
particular amperometric biosensors utilising cyclic substrate conversion are al-
ready known [37, 38]. In this work, a more complex biosensor involving a dialysis
membrane was modelled and optimised. The modeled biosensor comprises of three

compartments, an enzyme layer, a dialysis membrane and an outer diffusion layer.

3.2.1 Modeling of Biosensor with Cyclic Substrate Con-

version
3.2.1.1 Model of the biosensor

In the case of a biosensor utilising cyclic substrate conversion, a measured sub-
strate (S) is electrochemically converted into a product (P) which in an enzyme

(E) reaction is then converted into a substrate (S) [37],

S—p-5s. (3.6)
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3.2. Multi-objective Optimisation of Biosensor
with Cyclic Substrate Conversion

The modeled biosensor has four regions: the enzyme layer where the enzymatic
reaction and the mass transport by diffusion takes place, a dialysis membrane and
a diffusion limiting region where only mass transport by diffusion takes place, and
a convective region where the analyte concentration remains constant. Where d;,

ds and dj is the thicknesses of an enzyme, dialysis and diffusion layers respectively.

Assuming symmetric geometry of the enzyme electrode, homogeneous distribution
of enzyme in the enzyme membrane, and the uniform thickness of the dialysis
membrane, the dynamics of the biosensor action can be described by a reaction-

diffusion mathematical model [A5].

3.2.1.2 Computational simulation

The reaction-diffusion problem is a non-linear. Because of this, the problem was
solved numerically by applying a finite difference technique. An explicit finite

difference scheme was build as a result of the model discretisation [3].

Some model parameters are application-specific and cannot be changed or opti-
mised by a biosensor designer [40]. Meanwhile, values of some other parameters,
e.g., the concentration of the enzyme as well as geometry of biosensor, can be

selected by the designer quite freely.

The chemical signal amplification is one the main features of amperometric biosen-
sors that utilise a cyclic substrate conversion [37, 38]. The rate of the steady state
current of enzyme active electrode (V4. > 0) to the steady state current of the
corresponding enzyme inactive electrode (V.. = 0) is considered as the gain G

of the biosensor sensitivity [37],

Ioo(vmam)

G(Vmax) = Ioo(o)

(3.7)

3.2.2 Optimisation of Biosensor

Most enzymes are expensive products and some of them are produced in very
limited quantity [40, 49]. In such cases the optimisation of the enzyme amount is
important though a larger amount of enzymes in some cases increases the range

of the calibration curve [3].
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The response of biosensor is often perturbed by noise, e.g. white noise, sinusoidal
power electrical noise etc [4]. Miniaturised biosensors with a small sensitive area
has a low signal-to-noise ratio and this may result measurement problems [49].
To reduce the negative influence of signal noise on biosensor sensitivity, biosensor

current I, should be as high as possible.

The gain of biosensor sensitivity G shows an increase of the steady state current
due to the catalized enzyme reaction. The high GG indicates that biosensor with a

particular configuration effectively uses enzymes to amplify the current.

The maximum enzymatic rate V,,,, is proportional to the enzyme amount (V,,,4, =
kE, k is reaction rate constant, F is enzyme concentration). This mean that, the
maximum enzymatic rate can be changed by changing the enzyme concentration.
The relative enzyme amount can be calculated as a product V,,..d; of a maximum

enzymatic rate and the thickness of enzyme layer.

The enzyme amount dy V;,,4., the density Iy, of a steady state current and the gain

G of sensitivity were optimised for biosensor utilising cyclic substrate conversion.

3.2.2.1 Multi-objective Optimisation Problem

Design of the biosensor with the cyclic substrate conversion can be stated as a
three-objective optimisation  problem  with an  objective  function
P(z) = (p1(2), p2(), 3(x))", where ¢1(x) is G, @2(x) is Iy and @3(x) is di Vs
Decision variables of the optimal design are given in Table 3.3. Range values of the
decision parameters should be expertly evaluated. This depends on technological
possibilities, e.g. the thicknesses of commercially available dialysis membranes or

the thicknesses of nylon nets used for enzyme layer [26].

The stated multi-objective optimisation problem is similar to one solved in sub-
section 3.1.2.2. Therefore, the same method based on the Chebyshev scalarisation
is applied [24]. By wusing scalarisation weight vectors: w = (wy, ws, ws3)7T,
0<w; <1, 3%  w; = 1 and optimising the scalarised function (3.4), the Pareto

optimal solutions is found.
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3.2. Multi-objective Optimisation of Biosensor
with Cyclic Substrate Conversion

Table 3.3: Decision variables = = (dy, ds, ds, Vmaw)T for the cyclic biosensor design
problem.

Variable Description Range

dy Enzyme layer thickness, cm 2 x107% 5 x 1077
ds Dialysis membrane thickness, cm (1074, 1072

ds Diffusion layer thickness, cm (1074, 1071]

Vinax Maximal enzymatic rate, mol/(cm?s) |0, 10 0]

3.2.2.2 Results of Optimisation

The selection of weights to get an uniform distribution of Pareto front is rather
complicated task. Search of Pareto front solutions was performed by a two-step
procedure. In the first step, to solve the task (3.4) uniformly distributed weights
were used as shown in Fig. 3.4a. The determined Pareto optimal solutions are
shown in Fig. 3.4b. In Fig. 3.4b a gap in the Pareto front near square points
can be observed. The corresponding weight vectors are shown as squares in Fig.
3.4a. To eliminate the gap a more detailed representation of the Pareto front is
needed nearby the square points. In the second step, additional weight vectors
(black points) are added to find solutions nearby the square points in Fig. 3.5a.
A supplemented representation of the Pareto front is presented in Fig. 3.5b. The
gap is now filled with new solutions (black points). In figures, the Pareto front
solutions were given in original dimensions ®(z) = (¢1(z), v2(z), ¢3(z))” in order

to evaluate solutions in further analysis.

The analysis of the Pareto front was performed to find an acceptable trade-off so-
lution. A solution with the lowest enzyme amount d;V,,,., = 8.4 pmol/(cm?s) cor-
responds to the lowest steady state current Ip; = 1.7 uA/(cm?) and the lowest gain
of the sensitivity G = 1.8. A solution with the highest enzyme amount d;V,,., =
2.5 nmol/(cm?s) has the highest steady state current I, = 79.1 pA/(cm?) and
the highest gain of sensitivity G = 80.1. So, the steady state current and the gain

of the sensitivity are proportional to the amount of enzyme.

The steady state current and the sensitivity gain are not conflicting parameters,

i.e. when one parameter increases, so does the other increases. An analysis of the
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Figure 3.4: Weights (a) used in the first step of the optimisation procedure and
the Pareto optimal solutions (b).
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Figure 3.5: Additional weights indicated by black points in the triangle of weights
(a) and the complementary representation of the Pareto front (b). Solution
marked with red circle is one of most prommising trade-off solutions.

Pareto front revealed that a solution marked with a red circle (G, In, diVias)
= (25.3, 25.2 pA/(cm?), 0.3 nmol/(cm?s)) is most promissing trade-off solution
(dy,da, ds3, Vinaz) = (1.45 x 1073 cm, 5.56 x 1072 c¢m, 1.14 x 1073 c¢m, 2.03 x 1077
mol/(cm3s)), as it uses a relatively small amount of enzyme and produces an

acceptably high steady state current, as well as sensitivity gain.

The analysis of Pareto front decision variables revealed that a very thin en-
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3.8. Conclusions and Results

zyme layer is used in Pareto optimal solutions, i.e. the range of enzyme layer
thickness is near the lowest limit of selected d; range (see Table 3.3): d; €
(2.84 x 107" cm,2.52 x 1073 c¢cm). So, a thin enzyme layer should be used in

the biosensor with the cyclic substrate conversion.

When comparing obtained most promissing trade-off solution (marked with red
circle) with known configurations of the biosensor, particularly used for continuous
flow-through measurements of phenol compounds in a alarm systems [37, 38, 51],
one can see that optimised biosensor provides signal gain around tenfold stronger

than others at approximately the same enzyme amount.

3.3 Conclusions and Results

The design of biosensor may use a multi-objective optimisation where optimal
values of numerous parameters are desirable. The complex nature of biosensors
involves consideration of the simultaneous optimisation of several often conflicting

objectives.

The stated multi-objective optimisation problem is difficult to solve, since objec-
tives are numerical solutions of the non-linear mathematical model. The Cheby-
shev scalarisation based method can be efficiently applied to find trade-off solu-
tions (Pareto optimal decisions). Multi-dimensional scaling is a suitable method
for visualisation of Pareto optimal decisions which are a subset of a feasible region

in a multi-dimensional space.

The proposed method of biosensor design which integrates the multi-objective
optimisation with visualsation helps exploring of the relation between the Pareto
optimal decision and solution spaces that are aimed to look for an appropriate
trade-off between conflicting objectives. An application of the proposed method
to the optimisation of glucose biosensor that utilises the synergistic substrates
conversion has showed that the advantage of the method is attained by combining
advantages of mathematical methods to generate a set of admissible decisions with
human heuristics to analyse the visual information. Multi-objective optimisation
was also applied to phenol biosensors utilising the cyclic substrate conversion.

Analysis of Pareto front give a solution having strong saturation current gain.
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Conclusions

1. Using a mathematical model of biosensor (which includes an external
(Nernst) diffusion layer and substrate interaction) and artificial neural net-
works it is possible to determine the concentration of several substrates.
External diffusion layer improves accuracy of results. When large diffusion
layer is used the relative error is about 0.2%, on the other hand, the exper-

iment time increases, so a trade-off should be selected.

2. Using multiple steady state currents of biosensors (differing only in param-
eters) and artificial neural networks it is possible to determine the concen-
tration of several substrates. The best accuracy was approached when was
used a large diffusion module (more than 1) also the ratio of enzyme reaction
speed of substrates and the ratio of enzyme concentration of biosensors are

more than 4.

3. Applying multi-objective optimisation and multi-dimensional data visualisa-
tion in the phase of biosensor design allows to get the most suited Pareto op-
timal trade-off solutions. Hooke-Jeeves optimisation algorithm with Cheby-
shev scalarisation is effective enought for biosensor parameters optimisation
with personal computer. The most suited Pareto optimal trade-off solutions
can be sellected using multi-dimensional scaling (SMACOF algorithm) and
projections of optimal solutions. Configurations of the glucose biosensor
used in experiments are rather similar to optimal decisions, however the
number of potentially good configurations can be reduced and configura-
tions can be intentionally improved. Comparing the trade-off solution with
the known phenol biosensor configurations show that the optimised biosen-
sor produces a signal gain that is tenfold stronger compared to others at

approximately the same enzyme amount.
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Summary in Lithuanian
(Santrauka)

Biojutikliai yra prietaisai, skirti aptikti ir matuoti medziagy koncentracijas tir-
paluose. Tai pakankamai pigus ir patikimi prietaisai, placiai taikomi aplinkosaugo-
je, maisto pramongéje ir medicinoje [1, 2]. Disertacijoje nagrinéjamas neuroniniy
tinkly pritaikymas keliy substraty koncentracijoms rasti is biojutikliy atsako. Taip

pat nagrinéjamas biojutiklio daugiakriterinis optimizavimas projektuojant.

Amperometrinis biojutiklis turi trukumy: be papildomy priemoniy gali matuoti
tik vieno substrato koncentracija, sunku pagaminti selektyvy fermentg, turi san-
tykinai trumpa iSmatuojamy koncentracijy intervalg, gamybai naudojami brangus
fermentai, matuojamas signalas jautrus triukSmams 3, 4).
Chemometriniai metodai taikomi siekiant rasti keliy substraty koncentracija nau-
dojant biojutiklio atsaka [5, 6, 7, 8, 9]. Optimizavimo metodai taikyti spresti
atvirkstiniam uzdaviniui, t. y. iS turimo biojutiklio atsako rasti keliy medziagy
(substraty) koncentracijas [8, 9]. Keliy tirpalo substraty koncentracijoms rasti

naudotas dirbtinis neuroninis tinklas [5, 6, 7].

Biojutiklio projektavimas yra biojutiklio kintamuyjy parametry reiksmiy, ku-
rios duoty tinkamas charakteristikas gamintojams ir vartotojams, radimas. Toks
parametry parinkimas — sudétingas uzdavinys net kompetetingiems specialistams.
Gaminant rinkoje konkurencingg biojutiklj, jis turi pasizyméti ypatingomis savy-
bémis: tureti kiek jmanoma ilgesnj matavimo intervalg, naudoti mazai brangaus
fermento, buti mazai jautriu triukSmams ir kt. Norint gauti tinkamy charakteris-
tiky biojutiklj, placiai naudojami matematiniai modeliai [3]. Kaip ir kity prietaisy
projektavimui, biojutiklio projektavimui gali buti panaudoti daugiakriterinio opti-

mizavimo metodai bei matematiniu modeliu isreiksta optimizavimo funkcija [10].
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Optimalios biocheminiy sistemy kintamuyjy parametry reikSmeés gautos pritaikius
daugiakriterinj optimizavima daugelyje darby: biocheminéms sistemoms gerinti
[11, 12], multifermentinés sistemos produktyvumui ir efektyvumui didinti [13],
nuo slégio kitimo apsaugandiai sistemai optimaliai projektuoti [14], biojutikliui,

pasizyminc¢iam aukstu jautrumu ir mazomis fermento sanaudomis, rasti [15].

Disertacijos tikslas ir uzdaviniai

Sio darbo tikslas yra istirti biojutiklio fiziniy ir cheminiy savybiy jtaka sub-
straty koncentracijy radimo tikslumui, kai joms rasti naudojami dirbtiniai neu-
roniniai tinklai, taip pat pritaikyti optimizavimo metodus biojutikliy parametrams

parinkti.

Disertacijos tikslui pasiekti buvo sprendziami uzdaviniai:

1. Dirbtinio neuroninio tinklo taikymas keliy substraty koncentracijoms nus-

tatyti:

o Apibrézti biojutiklio matematinj modelj, kuriame substratai saveikauja
su vienu fermentu bei nagrinéjamas Nernsto iSorinis difuzijos sluoks-
nis. Aproksimuoti biojutiklio matematinj modelj skaitiniu ir jj real-
izuoti kompiuteriniu modeliu. Atlikti kompiuterinj modeliavimg pseu-

doeksperimentiniams duomenims gauti.

o Pritaikyti dirbtinius neuroninius tinklus keliy substraty koncentraci-

joms rasti naudojant biojutiklio atsaka bei jsisotinimo sroves.
« [stirti koncentracijy radimo tikslumg randant geriausias biojutiklio kin-
tamyjy parametry reiksSmes.

2. Biojutiklio optimizavimas:

» Apibrézti biojutiklio daugiakriterinio optimizavimo uzdavinj: paramet-
rus, kurie gali buti kei¢iami, ir charakteristikas (kriterijus), kurias
racionalu optimizuoti.

o Realizuoti praktiniy biojutikliy modelius ir funkcijas, skaic¢iuojancias

optimizuojamas charakteristikas.

36



Summary in Lithuanian (Santrauka)

o Atlikti optimizuojamy funkcijy charakteristiky analize ir parinkti op-

timizavimo metoda.

o Atlikti skaitinj biojutiklio optimizavima, optimizavimo rezultaty anal-

ize ir pateikti rekomendacijas biojutikliy parametrams parinkti.

Tyrimo metodai ir priemoneés

Darbe nagrinéti biojutikliai modeliuojami reakcijos-difuzijos diferencialinémis
lygtimis [17]. Modeliai aproksimuoti skirtuminémis schemomis, naudojant baig-
tiniy skirtumy metoda [3]. Programos, jgyvendinancios biojutiklio modelius, rasy-
tos C programavimo kalba [18]. Biojutikliy analizei taikomi dirbtiniai neuroniniai
tinklai [19]. Dirbtiniams neuroniniams tinklams naudotas Matlab Neural Network
Toolbox paketas [20]. Duomeny dimensijai mazinti naudota pagrindiniy kompo-
nenciy analizé [21]. Lygiagretus skai¢iavimai ir optimizavimo algoritmai realizuoti
C OpenMPI paketu [22]. Naudotas Huko-Dzivso optimizavimo algoritmas [23] ir
Cebysevo skaliarizacija [24]. Daugiamaciy skaliy metodui naudota SMACOF re-

alizacija [25].

Mokslinis rezultaty naujumas

1. Keliy substraty koncentracijai rasti is biojutiklio atsako naudoti dirbtiniai
neuroniniai tinklai ir biojutiklio modelis, atsizvelgiantis i substraty tar-
pusavio sgveika ir i Nernsto isorinj difuzijos sluoksnj. Toks modelis jvertina

difuzijos sluoksnio poveikj.

2. Taikant dirbtinius neuroninius tinklus, keliy substraty koncentracijos ran-
damos vien tik i$ stacionariyju (jsotinimo) sroviy, kurias generuoja keli to

paties tipo, bet skirtingy parametry biojutikliai.

3. Istirta biojutiklio parametry jtaka, koncentracijoms rasti naudojant dirb-

tinius neuroninius tinklus.

4. Suformuoluotas biojutiklio daugiakriterinio optimizavimo uzdavinys.
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5. Pasiulytas biojutiklio projektavimo metodas, apimantis daugiakriterinj op-
timizavima ir daugiamate vizualizacijg, naudojamas tiriant sarysius tarp
Pareto optimaliy sprendiniy ir juy kintamyjy vektoriy bei siekiant rasti tin-

kama kompromisinj sprendinj.

Praktiné rezultaty reiksmé

Biojutikliai, gebantys matuoti kelias medziagas, leisty efektyviau atlikti pirmine
analize ir aptikti tersalus skyscéiuose. Kaip parodé tyrimas, neuroniniais tinklais
analizuojant biojutiklio atsakg ar biojutikliy jsisotinimo sroves, vienu matavimu
galima rasti keliy substraty koncentracijas. Tyrimams naudotas biojutiklio matem-
atinis modelis, atsizvelgiantis | substraty tarpusavio saveika ir iSorinj Nernsto di-

fuzijos sluoksnj.

Sudaryta metodika, naudojanti daugiakriterinj optimizavima ir duomeny anal-
ize, kurig taikant galima rasti optimalius projektuojamo biojutiklio parametrus.
Darbe atlikta gliukozés ir fenolio biojutikliy optimizacija ir pateiktos rekomen-

dacijos.

Disertacijos rezultatai panaudoti jgyvendinant projekta ,, Kompiuteriniy metody,
algoritmy ir jrankiy efektyviam sudétingos geometrijos biojutikliy modeliavimui ir
optimizavimui sukurimas®, finansuojama Europos socialinio fondo lésomis pagal
visuotinés dotacijos priemone VP1-3.1-SMM-07-K , Parama mokslininky ir kity
tyréju mokslinei veiklai (visuotiné dotacija)“(2014-2015).

Ginami disertacijos teiginiai

1. Naudojant dirbtinj neuroninj tinkla ir biojutiklio matematinj modelj, at-
sizvelgiant] j substraty tarpusavio saveika bei iSorinj Nernsto difuzijos slu-
oksnj, is biojutiklio atsako galima pakankamai tiksliai rasti keliy substraty

koncentracijas.

2. Taikant dirbtinius neuroninius tinklus, keliy substraty koncentracijas galima
rasti vien tik i$ stacionariyju (jsotinimo) sroviuy, kurias generuoja keli to

paties tipo, bet skirtingy parametry biojutikliai.
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3. Biojutikliui pritaikant optimizavimo metodus, gaunamos Pareto optimaliy
biojutikliy kriterijy reikSmes, is kuriy naudojant vizualizacijos ir duomeny
analizés metodus (daugiamaciy skaliy metodas, Pareto fronto grafinis vaiz-

davimas), galima iSrinkti geriausias biojutikliy kriterijy reikSmes.

Rezultaty patvirtinimas

Doktorantiros metu paskelbtas straipsnis, nagrinéjantis biojutiklio optimiza-
vimg, zurnale indeksuojamame Clarivate Analytics Web of Knowledge duomeny
bazéje [A1]. Taip pat paskelbtas straipsnis tarptautines konferencijos darby rinki-
nyje indeksuojamame SCOPUS sistemoje [A5]. Dirbtinio neuroninio tinklo taiky-
mo rezultatai aprasyti ir paskelbti Lietuvoje leidziamame periodiniame recenzuo-

jamame zurnale [A4], taip pat konferencijos darby rinkiniuose [A2, A3].
Rezultatai pristatyti keturiose tarptautinése ir trijose Lietuvos konferencijose:
1. ECMS 2017 (Budapestas, Vengrija):  31th European Conference on Mod-
elling and Simulation. 2017 m. geguzés 23-26 d.

2. FTMTT 2017 (Vilnius, Lietuva): Fiziniy ir technologijos moksly tarpda-
lykiniai tyrimai 2017. 2017 m. vasario 9 d.

3. MMA 2016 (Tartu, Estija): Mathematical Modelling and Analysis 2016.
2016 m. birzelio 1-4 d.

4. OR 2016 (Vilnius, Lietuva): Open Readings 2016. 2016 m. kovo 15-18 d.

5. DAMSS 2015 (Druskininkai, Lietuva): Duomeny analizés metodai programuy
sistemoms 2015. 2015 m. gruodzio 3-5 d.

6. KODI 2015 (Panevézys, Lietuva): Kompiuterininky dienos 2015. 2015 m.
rugséjo 17-19 d.

7. IVUS 2015 (Kaunas, Lietuva): Informacinés technologijos 2015. 2015 m.
balandzio 24 d.
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