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Abstract

This thesis explores concepts of bitemporal data storage and querying techniques - from data
structures to storage, extraction and performance. With stable growth of unstructured data, rela-
tional data becomes too complicated to manage and store. Therefore, this paper explores various
NoSQL storing solutions that might help find a way to efficiently store and extract bitemporal data.
As a proof-of-concept, an application capable of performing bitemporal operations performance
tests was constructed. It’s quite important to know how bitemporal concepts apply to non-relational
database, as well as to traditional relation databases. All bitemporal queries are measured against
various metrics - time, memory, IO and CPU usage.



Santrauka
Bitemporaliniu duomenu baziy jgyvendinimo metodikos

Sio darbo pagrindinis tikslas — iSai¥kinti jvarius bitemporaliniy duomeny baziy jgyvendino
aspektus. Darbe nagrinéjami duomeny struktiiry, jy saugojimo ir iStraukimo aspektai. Pagrindinis
démesys skiriamas SQL/NoSQL duomeny baziy bitemporaliams aspektams. Sukurtas jrankis,
leidzia lengvai testuoti sudétingas duomeny manipuliavimo bei atrinkimo uzklausas. Atliekama
palyginamoji analiz¢ tarp reliaciniy ir nereliaciniy duomeny baziy valdymo sistemy analizuojant
ju naSumg ir sudétinguma. Bitemporalinés uzklausos lyginamos pagal laika, atminties, disko bei
procesoriaus naudojamus resursus.



Introduction

Previous research on this topic has partially shown bitemporal data storage techniques and
approaches using relational databases. However, this thesis will focus more on modern data man-
agement systems - NoSQL. With continuous growth of semi-structured and unstructured data,
managing and maintaining relational data have become much harder. Thus, it is more beneficial to
explore other possible data storage mechanisms, that might help to remedy relational problems.

Utmost of the data in today’s systems are temporal. Tracking validity of an entity in a single
point in time could be described as a trivial task. However, bitemporality adds another dimension
to the game. Bitemporal model supports two different timelines - valid time and transaction time.
First one represents object’s factual time while transaction time underlines when object’s became
known to database. In order words *what you know’ or when you knew it’. Bitemporal solutions
picked up traction in financial institutions, trading, legal practices or even medicine. When you
have an option to wind back clocks at any time, some of common complexities become trivial.
For example, in medicine, bitemporality can present more precise patient history. You can then
correlate illnesses with preexisting conditions. Furthermore law practices can significantly benefit
from this. Knowing which laws where active during given time interval, it can be applied to legal
artifacts. Nevertheless, financial institutions can use bitemporal system to comply with financial
regulations - for example, having transparent trading - uniformed, consistent data and rewinding
trading metrics.

First problem that can be pointed out is scalability issue. Conventional database management
systems are designed to be vertically scaled. Such architecture creates both technological and
business barriers, that will not be easy to solve. The issue of such vertical scaling is explained in
the detail later on. Second problem is adapting to modern data structures, which in itself could be
a daunting task. Variety of different services and features are leading to diverse data structures,
which not all relational databases are equipped to handle. NoSQL can offer semi-structured or even
unstructured data handling. Furthermore, there are numerous types of NoSQL database, which
are analyzed and compared in the second chapter of this thesis. In addition to this, there is one
more issue, that is equally important - speed. Data saving or retrieving speed is significant to any
database management system. This thesis does substantially cover relational and non-relational
speed comparison on data insertion, change, deletion and extraction.

The end-goal of this thesis is to construct a model, which can help to create a tool that can
manipulate and extract raw bitemporal data in relational and non-relational database solutions.
Created proof-of-concept will help to shape assorted bitemporal performance tests and measure
them against variety of metrics.



1 Related work

As previous scientific research states bitemporal modeling is a design technique, used for saving
and extracting historical data that evolve over time. This model is used for storing two different sets
of time instances - valid and transaction times. By using two dimensional model we can actually
"go back" to the past and see what was the state of an object, more precisely, of its properties,
at that point in time. Figure 1 shows us a visualization of bitemporal data. Rectangles represent
objects and their validity in time.
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Figure 1. Transaction and valid times example

1.1 Time dimensions

Bitemporal data stores two dimensional time intervals, meaning we have two attributes defining
validity of tuple [28]. Firstis VT - valid time is actual time of object factual validity [29]. Other
time attribute is TT? - transaction time which is responsible for time tuple is actually valid [29].
Having these two attributes we can tell the state of an object in the past. For example, we have a
warehouse database which supports bitemporal model. Also, we have inventory records that are
bitemporal as well. Having TT and VT we can tell what was the inventory and some point is the
past.

1.1.1 Valid time

Valid time presents the factual time, during which the object is valid. It can be set in any time
interval [26]. For example, Jane worked at Company A from 2013 to 2016. Judging by our current
year 2018, we can state that Jane no longer works at Company A, but is working somewhere else.

1.1.2 Transaction time

Transaction time marks the fact, during which the object is processed in database [25]. Usually
TT is interpreted as DBMS operation duration interval. Besides, it is unlike VT, TT start time must

Valid time
2Transaction time



not be set in future [20]. To this fact, one of the most obvious consistency constrains of both VT
and TT is that period beginning of the interval should not be larger than ending interval.

1.2 Bitemporal entity

Entity can be called bitemporal if it has support for two dimensions of time [26]. First dimen-
sion must be VT, whereas second is TT. Following table 1 shows basic example for bitemporal data
in comparison to temporal seen in table 2.

Id | Name | VIT_START | VIT_END | TT_START | TT_END
1 | Peter | 2017-01-01 | 2018-02-16 | 2017-01-01 | 2018-02-16
2 | John | 2018-02-17 00 2018-02-16 00

Table 1. Sample bitemporal table

Temporal entity loses transactional dimension. It has support for only one time dimension -
VT. In table 2 we can not tell when record was changed, therefore, we can not "restore" object’s
state changes.

Id | Name | VIT_START | VT_END
1 | Peter | 2017-01-01 | 2018-02-16
2 | John 2017-02-17 00

Table 2. Temporal entity that represents employee’s validity

Moreover, snapshot entity (see table 3) is a traditional structure, that has none of time dimen-
sions [25]. It is most commonly shown as conventional relation, where validity of tuple can be
determined by its physical existence in database. Conventional relation has no way of determining
whether relations instance is valid or it was physically created.

Id | Name
1 Peter
2 | John

Table 3. Snapshot entity that stores employees

1.3 Bitemporal data types

Various DBMS have vast majority of time-related data types. All of them have different pur-
pose, but only few can be applicable to temporal model [28]. Since bitemporal database concept
requires at least four more additional time-based columns, data types should be selected carefully.

First of all, time-related types can have different allocation sizes and if incorrect type is se-
lected, system can face performance or compatibility issues. In this table (see table 4) you can see
comparison of different date and time types [12].



Name Size Format Time resolution
timestamp | 8 bytes | yyyy-mm-dd hh:mm:ss 1 microsecond
timestampz | 8 bytes | yyyy-mm-dd hh:mm:ss Z 1 microsecond
date 4 bytes | yyyy-mm-dd 1 day

time 8 bytes | hh:mm:ss 1 microsecond
timez 12 bytes | hh:mm:ss Z 1 microsecond
interval 16 bytes | dd day hh hours mm min ss sec | 1 microsecond

Table 4. PostgreSQL date and time data types

In addition to this, time-related data types have precision parameter [12]. It is primarily re-
sponsible for increasing time resolution. By default PostgreSQL stores timestamp instance as a
eight-byte integers, but changing precision parameter to a higher value, will result in floating-point
number storage, which maybe be useless. For example, timestamp column with highest precision
can be defined like this (see listing 1):

vt_from timestamp (6) without time zone

Listing 1: Highest precision timestamp

1.4 Data definition principles

To create a bitemporal entity, table with four additional columns should be created. First pair
is for valid time dimension, other - transaction time dimension. Both valid and transaction times
are intervals, which means that they must have a beginning and end values. Also, ending columns
(VT_END, TT_END) must have NULL requirement constraints - end date can be empty. Despite
that, start date (VT_START, VT_END) can not be empty, it must have NOT NULL constraint.

Furthermore, columns must be date-typed. Every DBMS has vast variety of date types. For
example, PostgreSQL has fairly large selection of time-based types (see table 4 in previous subsec-
tion). Regardless of DBMS, basic bitemporal data definition concepts still remain the same. Either
new columns are added via ALTER statement or they appear in DDL statement.

Let’s examine table 5, in which table’s structure is defined. It has four timestamp columns,
which represent bitemporal dimensions. Structurally, entity only differs in having additional columns.
Nonetheless, defining hollow columns is not enough. Bitemporal data flow functionality, defined
in next subsection, should also be implemented.

Column | Type Properties
id bigserial PK

name varchar(255) | NOT NULL
surname | varchar(255) | NOT NULL
salary numeric DEFAULT 0
vt_start | timestamp NOT NULL
vt_end | timestamp NULL
tt_start | timestamp NOT NULL
tt_end timestamp NULL

Table 5. Example of bitemporal entity



1.5 Data flow

In order to have a better understanding of bitemporal data flow we have to imagine an infor-
mation flow, where nothing is deleted and where all prominent data management operations are
outsourced to either inserting new tuple or updating existing one. Let’s examine a specific exam-
ples (see tables 6, 7 and 8) and give each operation a brief description.

In table 6 we perform DELETE operation. Row is identified by PK* "Id", which value is
1. This record should be eliminated. This will result in UPDATE operation which will change
bitemporal attributes. When tuple is deleted, we need to void the valid time, by assigning a discrete
value to it. If we need to do immediately, then current timestamp is assigned. Furthermore, it can
be a different value set in the future. For example, employee handed his resignation letter (see table
6), which was processed at TT_END = 2018-02-16 and finally voided on VT_END = 2018-02-17.

Id | Name
1 | Peter

VT_START
2015-01-01

VT_END
2018-02-17

TT_START
2015-01-01

TT_END
2018-02-16

Table 6. An example of bitemporal deletion

Next is UPDATE operation (see table 7). This operation is rather complex, because any change
to tuple’s attributes will result in the spawning of a new record. For example, if person wishes to
change his name, a new row should be created (with new name). This is somewhat similar to
DELETE operation. However, UPDATE creates, a new row with values and bitemporal time
intervals (shown in table 7). In the example, Peter changed his name to John on 20/8-02-16. New
name became valid at 2018-02-16 and is yet to be voided.

Id | Name | VIT_START | VT _END | TT START | TT _END
1 | Peter | 2017-01-01 | 2018-02-16 | 2017-01-01 | 2018-02-16
2 | John 2018-02-17 00 2018-02-16 00

Table 7. An example of bitemporal modification

In INSERT operation (see table 8) we need to be account for bitemporal intervals. They should
be changed according to bitemporal rules. When tuple is inserted, valid time is assigned. Usually it
is the time, when the object is created. For example, we want to record calendar events with specific
times and meeting places. For each instance, we need to create a row, which will have different
valid times (shown in table 8). This would make meetings valid at the different points time. Since
meetings were inserted in the database the same day and they still are valid, TT_START is equal
to 2018-03-01 and TT_END is NULL.

Id | Name Place VT_START | VT_END | TT_START | TT_END
1 | Peter Office 2018-05-03 00 2018-03-01 00

2 | John Home 2018-02-16 00 2018-03-01 00

3 | Jack | University | 2018-02-10 00 2018-03-01 00

4 | Joseph Home 2018-04-11 00 2018-03-01 00

5 | Aaron Online 2018-05-29 00 2018-03-01 00

Table 8. An example of bitemporal insertion

3PK - Primary key
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2 Relational databases

In modern world are plenty of non-temporal databases. Vast majority of them support ISO/IEC
9075-1:2016 [1]. Standard consists of three basic principles.

e DDL - Database definition language
e DML - Data manipulation language
e QL - Query language

All three of them play significant role in bitemporal relational database concepts.

2.1 Database engine

As an example let’s take a look at database management system engine and outline basic com-
ponents. Since we use PostgreSQL [12] DBMS throughout this thesis, we will focus on Post-
greSQL internal engine below. It’s also worth mentioning that components presented below can
apply to different relational database engine. In figure 2 we can observe basic components of
PostgreSQL core engine.

Storage

Data

Snared Memory Files

-
‘ - - -
Shared Bufiers WAL

Files

i - - -
Other Buffers
Log files

3

|

Archive
Utilities Files

[ . ] q Archiver Autovacuum
Writer - [ Checkpointer ] Process :] - [Stals Cclleclcr] [ Launcher -
| ; !

Figure 2. Example of PostgreSQL database engine

Below are crucial components used in nowadays PostgreSQL DBMS.

e Shared Memory is memory reserved either for caching, WAL* cache or temporary transac-
tion logs.

— Shared Buffer is used for disk IO minimization

— WAL is temporary buffer between memory and actual data files. WAL plays crucial
role in data recovery.

e Data Files are actual data structures - catalogues, tables, indexes, procedures, triggers, etc.

“In computer science, write-ahead logging (WAL) is a family of techniques for providing atomicity and durability
(two of the ACID properties) in database systems.

11



3 NoSQL databases

In this section various NoSQL database types will be discussed. In addition to this, a brief
definition of NoSQL concept will be presented. Lastly, a brief comparison of database types will
be shown.

3.1 Whatis NoSQL?

A NoSQL database environment is non-relational and largely distributed database system that
enables rapid, ad-hoc organization and analysis of extremely high-volume, disparate data types [7].
NoSQL databases are sometimes referred to as cloud databases, non-relational databases, Big Data
databases and a myriad of other terms and were developed in response to the sheer volume of data
being generated, stored and analyzed by modern users (user-generated data) and their applications
(machine-generated data) [7]. In general, NoSQL databases have become the first alternative to
relational databases, with scalability, availability, and fault tolerance being key deciding factors
[18]. They go well beyond the more widely understood legacy, relational databases in satisfying
the needs of today’s modern business applications [7].

3.2 Key-value store

Key-value databases generally uses stores primitive structured associative data. The relation-
ship between key and the value is always one-to-one. However, there could be many keys in the
collection with same name.

Every single value in the associative array embody a varied length string. It does not depend on
data modeling nor structure constraints. Some times values could be URI’, BLOBs®, geographical
coordinates or text value.

Dominant key-value databases are:

e Redis [24]
e Memcached [19]
e Oracle NoSQL Database [5]

Following image (shown in figure 3) will help to illustrate how keys and values are stored.
Keys are displayed on the left, whereas value are shown on the right. Arrows represent one-to-one
connection between objects. Notice that key "User entity" can repeat.

SUniform Resource Identifier
Binary large object

12



Figure 3. Example of key-value store database

3.3 Document-oriented database systems

Document-oriented database systems also known as document stores are well known schema
free storage. The more complex data gets, the harder it will be to store. However, document-
oriented system solves this issue by allowing user to store relatively complex data in schema-free
manner. Furthermore, it supports multidimensional columns - arrays, multi-typed columns and
nesting.

In addition to this, document-oriented systems inherited concepts from key-value stores. How-
ever, main advantage of document stores are querying. It’s apparent that key value systems are
limited to querying by the key. Document-oriented system can do more than that, for example:
perform queries on loosely oriented structures, indexing and ad hoc queries. Example shown in
figure 4 define simple relationship between 3 document records, in there we can observe schema-
less data, that can be handled by document-oriented database.

Leading document-oriented databases are:

e CouchDB [3]
e MongoDB [17]

e Elasticsearch [4]

contact document

_id: <ObjectId2>,
user_id: <ObjectIdl>,
phone: "123-456-789@",
email: "xyz@example.com”

Py

e b
_id: <ObjectIdl>,
username: “123)()/2"“\ access document

user document

}

_id: <ObjectId3>,
user_id: <ObjectIdi>,
level: 5,

group: "dev"

}

Figure 4. Example of document database
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3.4 Graph-oriented databases

Graph-oriented databases adopt graph theory and semantic querying in order to map, store and
process relationships between data. It can be viewed as connection of nodes and edges. Main
advantage of such system are relation calculation efficiency.

A graph database does not compute data relationship at query time, but rather store is a main
peace of information, to be read instantaneously. It allows you to pass through large amounts of
relationships in efficient amount of time. Following example (look at figure 5) illustrates possible
relationship between data.

Popular graph-oriented databases are:

e OrientDB [21]
e InfiniteGraph [23]

e AllegroGraph [15]

OF name:
1S_FRIEND., Q Zushi Zam
'

",

% cuisine:
) Sushi

location:
LOCATED_IN New York

Figure 5. Example of graph database

3.5 Object-oriented database management systems

Object-oriented database management systems or object databases are system that store values
as objects. Object can be modeled according to conception of object-oriented paradigm. However,
such databases are are still in development. There has been complains of performance problems,
lack of decent indexing system.

On the other side, the object persistence is easy to program, and complex data objects are
surprisingly natural. Object-oriented data sample can be found in figure 6. Where a simple one-to-
many relationship is shown.

Popular object-oriented databases are:

14



e ObjectDB [3]

e GemStone/S [17]

Customer

Figure 6. Example of object database

3.6 Column-oriented databases

Column-oriented serialize data into columns. Such systems are designed for parallelism and
speed. A column of a distributed data store is a NoSQL object of the lowest level in a keyspace.
For example, in figure 7 illustrates Apache Cassandra basic architecture [8]. We can see three main
level of hierarchy. First is keyspace which references the main project name. Second is column
family which is equivalent to entity object. Last level is column where the main data is actually
store. It uses three attributes to define a column - name, value and timestamp.

Major column-oriented databases are:

e Apache Cassandra [8]

e Google Bigtable [16]

Keyspace

" Column family

-~

Column

m Value Timestamp
..~ )
‘-.\ l_l

Figure 7. Example of column database
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3.7 NoSQL database type comparison

All listed NoSQL types are known and used in specific conditions. However, a primitive anal-
ysis covering performance, scalability, flexibility and complexity can be performed. In general
NoSQL databases focus on speed - almost all types have high performance. Similar can be said
about scalability and flexibility of the system. The only category where NoSQL can be weak is
complexity of data. Moreover, in most systems data is usually semi-structured and provides less
complicated definition. In table 9, we can find summarized result of comparison.

Type Performance | Scalability | Flexibility | Complexity
Key-value store High High High None
Column Store High High Moderate Low
Document Store High High High Low
Graph Database Variable Variable High High
Object-oriented Moderate High High High

Table 9. Comparison of NoSQL database types table

16



4 NoSQL properties

This chapter will cover basics of NoSQL database concepts such as schema-less modeling,
CAP theorem, big data support, horizontal and vertical scaling.

4.1 Schema-less model

Schema-less design allows to define flexible structures of data [9]. Storing data without inter-
mediate knowledge of data types or relationships [9]. This allows you to archive ease of mainte-
nance. However, having schema-less designed system can lead to ambiguity, which can cause lack
of constraints and poor data integrity.

JSON’ example shown in (see figure 8) illustrates schema-full design because the column con-
straints are enforced. For example, field "name" can not be empty.

{

rlidrl H
"auid"™: "Ellelled-e344-460d4d-aB00-dT7cbe3d08502",
"name": "Joe™,
"surname™: "Johnson",
llacell: TIEOTI
}
{
rlidrl H
"auid™: "5599%9a004-8dea-4355-8f65-b2235bd06459",
"name"™: "Peter™,
"surname": "Peterson",
llacell: r|5'_r|

Figure 8. Example of schema-less

Following example (see figure 9) shows a schema less definition which uses two separate col-
lections to store data. This creates certain ambiguity between data structures which can confuse
developer.

nidgn,
"uuid"™: "6lZellbd-e344-460d-a800-dT7cbe3d08502",
"name": "Joe",

"zurname™: "Johnszon™,

nageT: wagw

"full name"™: "Peter Peterson”
Figure 9. Example of schema-less model

4.2 Big Data support

Big Data is term outlining complexity of managing enormous data sets. Managing such data
with traditional tools (e.g., relational databases) is inefficient. However, NoSQL provides a way to
potentially handle big data.

Usually Big Data can be defined using these properties [14]:

7JavaScript Object Notation
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High data velocity — lots of data coming in very quickly, possibly from different locations.

Data diversity — various data structures: structured, semi-structured or unstructured.

Data size — sheer amount of data that leads to terabytes or petabytes in size.

Data complexity — geographical data storage and management is not trivial.

4.3 Database scaling concepts

In this chapter will cover basics of database scaling and comparison between them. These
concepts are scale-up and scale-out. Since two of them correspond to different configuration, they
both are applicable for certain case uses. In this thesis, few uses cases are described in detail.

4.3.1 Scale-out

Scale out also known as horizontal scaling, has capability to scale adding more nodes the
architecture, making parallel computing faster [13]. Prices of mid-range machine has dropped
and scaling out became cheaper method of making system bigger and faster [13]. This technique
frequently employs use of low-cost computer components which scale system both in capacity and
performance.

Figure 10. Example of scale-out

When talking about database scaling, relational horizontal scaling is not applicable. However,
NoSQL is the perfect candidate for scale-out. With significant growth of data, it’s impossible to
construct such machine that would be able to withstand a huge amount of data input and output.

4.3.2 Scale-up

To scale vertically (or scale up) means addition of resources to a single node in a system,
typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of
existing systems also enables them to use virtualization technology more effectively, as it provides
more resources for the hosted set of operating system and application modules to share [13]. Taking
advantage of such resources can also be called "scaling up". Application scalability refers to the
improved performance of running applications on a scaled-up version of the system [13].

18



Figure 11. Example of scale-up

4.4 CAP Theorem

CAP stands for Consistency, Availability and Partition tolerance [10]. As it was mentioned be-
fore, nowadays we have sheer amount of rapidly growing data that it a challenge to store, compute,
manage and maintain. In addition to this, there is countless amount of software available. CAP
concept can help to choose particular system, according to three main attributes. Figure 12 illus-
trates three main components of CAP theorem. However, CAP points out, that modern NoSQL
systems, do not satisfy all three conditions of theorem [10].

Consistency

Partition

Availability Tolerance

Figure 12. CAP theorem

4.4.1 Consistency

Consistency states that all nodes of the cluster must have the same state of data at the given time
[10]. In other words, data should be synchronized amongst nodes. Any read operation must return
exact data. In addition this, a system must have consistent state during a transaction, otherwise
it rollback is performed. Same property can be found in ACID® characteristics. Therefore, this

8 ACID - (Atomicity, Consistency, Isolation, Durability) is a set of properties that guarantee that database transac-
tions are processed reliably.
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property can be applied not only to NoSQL, but to relational database systems as well.

4.4.2 Availability

This property requires operations to be stateful. This means that operations must return pass/-
fail marks [10]. To archive availability means given system has to be operational 100% of the
time.

4.4.3 Partition Tolerance

System continues to work neglecting partial failure [10]. Distributed systems have multiple
instanced of database and do not have SPOF’. If one node fails, the entire distributed system
should converge. A system that is partition-tolerant can sustain any amount of failure that paralyze
the entire network [10].

SPOF - Single point of failure
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5 Goal and objectives

The main goal of this thesis is to create comprehensive NoSQL/SQL bitemporal database analy-

sis from implementation and performance perspectives. It is quite important to know how database
management system handles certain types of data. In our case, data saved is never deleted and addi-
tional values are appended. This that certainly can complicate how we view and analyze data. Nev-
ertheless, data selection is as important as storage. Therefore, this thesis explores one of the way

we can see bitemporal data. Finally, as for proof-of-concept, various relational and non-relational

bitemporal performance test cases will be performed, analyzed and compared. For achieving goal
these objective criteria must be met:

Analyze bitemporal manipulation techniques (insertion, change, deletion)
Inspect bitemporal data extraction techniques (coalescing, slicing)

Implement database association algorithm, that will allow to manipulate variety of different
relational and non-relational systems;

Outline assorted bitemporal data extraction operations and implement one of them

Perform thorough comparison among NoSQL systems and find one(s) suitable for bitempo-
rality.

Investigate how to increase performance of bitemporal data manipulation and extraction
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6 Model

In this chapter, the data model, bitemporal interactions and algorithms are explained. Also,
theory of storing bitemporal data in NoSQL system is outlined. The essential difference comes
down to storing the two time dimensions as fields for existing document structures.

6.1 Extending database

By extending non-bitemporal database it is possible to achieve bitemporality. This approach
seems to have one of the most popular onces. Due to fact that most the database functionality can
be reused, you only need ensure data integrity and provide proper query language.

However, this approach deemed to have multiple disadvantages. First of all, by using non-
bitemporal database, this solution inherently becomes non-bitemporal in the sense that non-bitemporal
restrictions becomes bitemporal ones. Secondly, solution become harder to maintain and support.
Lastly, making sure that performance state is at its best becomes a challenge.

6.2 Bitemporal operations

Extending relational database schema to hold bitemporal may seem like the way to go, however
it is not enough. Bitemporal model states [29] that it should have proper data integrity contains as
well as proper query domain. Following section will lay the ground plan for bitemporal operations.

6.3 Comparison of time

James F. Allen back in 1983 introduced thirteen basic comparison predicates for temporal in-
tervals [2]. These base comparison serve as backbone to bitemporal operations.

Let’s say we have time interval 7', where 7 and 75 are interval’s start and end respectively. In
the table 10 we can observe main comparison predicates used in bitemporal operations.

Predicate Operation

start(T)) = start(Ty) A end(Ty) = end(Ts)
end(Ty) < start(Ty)

end(Ty) < start(T})

(start(Ty) > start(Ty) A end(Ty) <
start(Ty) A end(Ty) < end(T3))
(start(Ty) > start(Ty) A end(Tz) <
start(T1) A end(T3) < end(Th))

Ty equals Ts
T} before 15
T, after 15
T1 during 75

end(Ty)) V (start(Ty) >

T contains 75 end(Ty)) Vv (start(Ty) >

Ty overlaps T

start(T)) < start(Tz) A end(Ty) > end(T3)) A end(T1) < end(Ts)

Ty overlapped by T3

start(Ty) < start(Ty) A end(Ty) < end(T1)) A end(T3) < end(T})

T} meets T end(Ty) = start(T5)

T} met by T end(Ty) = start(T})
T starts T start(1Ty) = start(Ty) A end(Ty) < end(T3)
Ty started by 7o | start(Ty) = start(T)) A end(Ty) < end(T})
T; finishes 75 start(Ty) > start(Ty) A end(Ty) = end(Ts)
T finished by 7o | start(Tz) > start(1y) A end(T3) = end(1y)

Table 10. Time comparison predicates
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Some of these predicates will be used in the implementation phase (in chapter 7).

6.4 Coalescing

The idea of coalescing was introduced by [27]. To demonstrate coalescing in action let’s review
table 11, containing library book log. This entity has reader’s name, book’s name and temporal
attributes. For the sake of simplicity temporal intervals are expressed in years.

Name | Book From | To
Jack | Moby-Dick 2015 | 2018
Jack | Moby-Dick 2018 00
Jane | Don Quixote 2010 %9
Tom | Ulysses 2017 00
Andy | To Kill a Mockingbird | 2010 | 2017

Alain | The Great Gatsby 2017 00

Martin | Pride and Prejudice 2010 | 2012

Table 11. Data before coalescing operation is performed

Result of coalescing operation is shown in table 12.

Name | Book From | To
Jack | Moby-Dick 2015 00
Jane | Don Quixote 2010 o0
Tom | Ulysses 2017 00
Andy | To Kill a Mockingbird | 2010 | 2017
Alain | The Great Gatsby 2017 00

Martin | Pride and Prejudice 2010 | 2012

Table 12. Data after coalescing operation is performed

6.5 Vertical slice

Time slicing can be visualized as a vertical line splitting "Transaction time" axis in half. In
figure 13 we can observe red vertical line splitting two plots, thus making a transaction time slice
operation. For sake of simplicity full dates are omitted from the plot, leaving only day value.

Slicing can basically tell you the valid state of object at given amount in time. As an example
(look at table 13), at transaction time 11 we can observe that Jack had valid book from 10** to 15"
of October, after that book ownership was given to Jill. Please note that table’s 13 data corresponds
to previous figure 13.

Name Book Valid time Transaction time
Jack | Moby-Dick 2017-10-10 - oo 2017-10-10 - 2017-10-15
Jack | Moby-Dick | 2017-10-10 - 2017-10-15 2017-10-15 - oo
Jill | Moby-Dick 2017-10-15 - 2017-10-15 - oo

Table 13. Bitemporal relation for transaction time slice
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Valid time

10

4 6 8 10 12 14 16
Transaction time

Figure 13. Transaction valid time slicing visualization

Pseudo-SQL vertical slice query in listing 2 shows a way bitemporal query can be written. In
the query keywords "VALIDTIME AS OF TIMESTAMP" followed by a timestamp "2017-10-
11" identifies valid time slice command. In practice this query should be converted into database

query language command.

VALIDTIME AS OF TIMESTAMP "2017-10-11"

SELECT "Name", "Book", "Valid_time" FROM Books

Listing 2: Vertical slice query example

So after slicing you will get this result as shown in table 14:

Name Book Valid time
Jack | Moby-Dick | 2017-10-10 - 2017-10-15
Jill Moby-Dick 2017-10-15 - oo

Table 14. Result of slicing transaction time

This means that Jack owner book from 5t October until 10** of October until Jill finally became

the owner from 10" of October.

6.6 Horizontal slice

Alternatively, you can slice "Valid time" axis to intersect its dimension values. This slice is

visualized in figure 14.
Below (see table 15) you can observe that sample used in horizontal slice.

Name Book Valid time Transaction time
Jack | Moby-Dick 2017-10-10 - oo 2017-10-05 - 2017-10-10
Jack | Moby-Dick | 2017-10-10 - 2017-10-15 2017-10-15 -

Jill | Moby-Dick 2017-10-15 - oo 2017-10-10 - co

Table 15. Bitemporal relation for valid time slice
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Figure 14. Valid time slicing visualization

As discussed in section 6.5, keyword ""TRANSACTIONTIME AS OF TIMESTAMP" iden-
tifies valid time slice. In pseudo-SQL horizontal slice query (look at listing 3) can be written like
this:

TRANSACTIONTIME AS OF TIMESTAMP "2017-10-11"
SELECT "Name", "Book", "Transaction_time" FROM books

Listing 3: Vertical slice query example

Such operation will yield this result outlined in table 16:

Name Book Transaction time
Jack | Moby-Dick | 2017-10-05 - 2017-10-10
Jill Moby-Dick 2017-10-10 - co

Table 16. Result of slicing valid time

6.7 Bitemporal slice

Lastly, bitemporal slicing needs Valid time point and transaction as time point input. It will
result in snapshot state of an object. This can illustrated here in figure 15:

Name Book Valid time Transaction time
Jack | Moby-Dick 2017-10-10 - oo 2017-10-10 - 2017-10-15
Jack | Moby-Dick | 2017-10-10 - 2017-10-15 2017-10-15 - oo

Jill | Moby-Dick 2017-10-15 - 0o 2017-10-15 - oo

Table 17. Bitemporal relation for transaction and valid time slices

As a result (refer to table 18) we can see that at a bitemporal time-slice on a valid time of
October 15" and as of a transaction time of October 11*" resulted in Jill being the owner of the
book at that point in time. In pseudo-SQL vertical slice query (look at listing 4) can be written like
this:
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Figure 15. Transaction and valid time slicing visualization

TRANSACTIONTIME AS OF TIMESTAMP "2017-10-11"

AND
VALIDTIME AS OF TIMESTAMP "2017-10-15"
SELECT "Name", "Book", "Transaction_time" FROM books

Listing 4: Bitemporal slice pseudo-query example

Name Book
Jill | Moby-Dick

Table 18. Result of slicing transaction and valid time dimensions
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6.8 Data definition

A unit of data being saved to NoSQL databases can be loosely described as a document. Within
it, this document can have a number of properties, represented using key-value pairs. Some of those
properties can be other documents. A simplified BNF!? can be found at listing 5.

<symbols> := "character[character...]"
<key> := <symbols>

<value> := <symbols>|<document>
<field> := <key>:<value>

<document> := {<field>[<field>...]}

Listing 5: A simplified BNF explaining the main relationships in the data

A given document is made up of individual fields. Each field is a key-value pair, where the key
is a sequence of characters and the value is either a sequence of characters or another document,
nested within the first one. The values can only be series of symbols because all data is serialized
into text form prior to storage. Because nesting documents is possible, a given document d € D
(where D is the set of all documents) might be a nested structure, such as in figure 16, where each
tree node represents a different document.

Transaction
time start
node

Transaction
time end
node

Valid time

Root node start node

Child Node
Child Node

Parent Node

Valid time
end node

Figure 16. A nested document structure, each node is a separate document.

6.9 Output data association

The existing document models being stored into NoSQL databases are not bitemporal. They
can have temporal properties among the document fields, but there is no guarantee. It makes sense

OBNF (Backus Normal Form or Backus—Naur Form) is one of the main notation techniques for context-free gram-
mars, often used to describe the syntax of languages used in computing, such as computer programming languages,
document formats, instruction sets and communication protocols. It is applied wherever an exact description of a
language is needed.
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to describe how a NoSQL document would look after being made bitemporal.

Because the database only stores documents with serialized data in their fields, the addition
of 2 temporal dimensions can be described as adding 4 more values to the document (transaction
start, transaction end, validity start and validity end). The bitemporal document, made up of the
original with 4 more additional values can then be described as

d; = (d,ts,te,vs, ve)

, where d € D and the remaining 4 represent the temporal values described, respectively.

The databases do not store tuples of 4 dimensions, but only singular documents. To reduce the
set of required data into a single document, the document description BNF can be extended with
listing 6. Now, the document is required to contain all possible bitemporal value fields.

<field_tt_start>:="tt_start":<symbols>

<field_tt_end>:="tt_end":<symbols>

<field_vt_start>:="vt_start":<symbols>

<field vt_end>:="vt_end":<symbols>

<document>:={<field_tt_ start><field_tt end><field vt_ start><
field_vt_end>

<field>[<field>...]}

Listing 6: The BNF extension used to store bitemporal data

Lets call the set of these extended documents V. While theoretically, D C V, from a purely
technical standpoint, a random collection of symbol values that make up a field key for any doc-
ument can take the form of a temporal key as well, meaning, that any NoSQL database that can
store documents d € D can also store documents v € V.

6.10 Association algorithm

Having the defined sets D and V/, the required association algorithm that is executed at the
moment of storage can be described as the projection:

f:D—=V

The algorithm of this projection executes is made less trivial by the series of nested document
structures that can make up a document tree at the time it is being saved. Such an algorithm
should take the current #_start, tt_end, vt_start, vt_end values of a document’s child documents
into account when deciding on the values to assign. A recursive algorithm ¢(d, dts, dte, dvs, dve)
is described at 1. The values dts, dte, dvs, dve represent defaults for transaction start, transaction
end, validity start, validity end respectively.
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Algorithm 1. Make a nested document structure bitemporal prior to insertion.
Require: d € D
curr_node <= DFS(d)
if lcurr_node.tts then
curr_node.tts <= nvl(min_child_tts(curr_node), dts)
end if
if lcurr_node.tte then
curr_node.tts <= nvl(max_child_tte(curr_node), dte)
end if
if lcurr_node.vts then

curr_node.tts <= nvl(min_child_vts(curr_node), dvs)
end if
if lcurr_node.vte then

curr_node.tts <= nvl(max_child_vte(curr_node), dve)
end if
if curr_node = d then

return d
else

t(d,dts, dte, dvs, dve)
end if

The basic idea is that when a document contains child documents nested into it, those child
documents need to dictate the interval ranges of the bitemporal properties of that document. The
default values supplied to the function (dts, dte, dvs, dve) are needed for nodes that have no more
children to rely on for their intervals. In general, this algorithm should make sure, that any given
parent document will have a validity start and transaction start no later than the earliest of its
children and will have a validity end and transaction end no sooner than the latest of its children.
The utility function nvl(a, b) returns the second argument if the first one is an empty set, otherwise
it returns the first. One thing to be noted about the functions min_child... and max_child... is that
because the document tree is traversed in a depth-first manner (using the DF'S'! algorithm), all
of the children of a given document will already have all 4 dimensional values assigned to them
before the parent gets inspected. Therefore, it is possible to only check the immediate children of
any document at that stage and still get the valid values required. The conditional blocks checking
for the presence of known keys are a safeguard in case a bitemporal dimension was already defined
for the data, as the algorithm would not want to override those.

The association algorithm complexity by time is loosely defined. Let’s define it for n document
trees with an height of h and an average layer width of w. Then,

O(n,w,h) = n* (O(DFS) x 4w * h)

, where O(DF'S) is the algorithm complexity by time of the standard tree-search DFS algorithm.
The complexity for a single document tree is multiplied by n to measure it for n trees. For a single
tree, the algorithm is repeated on every layer, meaning that the complexity for a single layer needs
to be multiplied by h. On a single layer, 4 temporal values are written by checking all descendants
of a specific node, for an average of w per layer. Lastly, to get to that node for assignments, a DFS
needs to be performed, this is added for every layer.

" Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures.
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7 Implementation

This chapter introduces proof-of-concept for relational and non-relational databases. In the be-
ginning application is visualized. Following section outline point out environment, sample dataset.
Later you can observe how bitemporal data is stored in various databases from performance and
implementation perspective. For the rest of this chapter bitemporal slicing performance is ana-
lyzed. In the last section, you can read comparison summarized results.

Previous scientific research has shown that storing bitemporal data in relational database is
non-trivial task and strictly depends on database management system. Non only it requires manual
intermission, but it’s dependable on programming language as well. However, storing and extract-
ing bitemporal data in non-conventional database management system is challenging task. Also,
for comparison purpose, relational database PostgreSQL is included in the test cases as well.

7.1 Application architecture

Following figure 17 shows basic overview of application used to measure performance.

@ Tests.dll

¢} Tests.MongoDB
() Tests.Pos

““““ ; BitemporalDetector.dll

............

|||||||
-------------------------

=

Externals

Figure 17. Bitemporal application overall architecture

e Test assembly is an entry point to application, executing various types of integration and
performance tests.
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e Contracts interfaces and abstract classes used throughout the project

¢ BitemporalDetector interprets given pseudo commands into database language.

¢ BitemporalData prepares given dataset for data manipulation into given data source
e PostgreSQL project holds PostgreSQL related algorithms to achieve bitemporality.
e MongoDB project holds MongoDB related algorithms to achieve bitemporality.

e Ultils bitemporal utilities and helper collection

e SqlParser is a helper project that parses SQL standard queries.

e External sources is various NoSQL and SQL data adapters used thought out this project

7.2 Testing

To test given model hypotheses xUnit testing framework [33] was selected. xUnit lets you
write easier test cases using .NET framework. As a result a series on test collections were created,
spanning from bitemporal insertion to data slicing operations. In order to organize multitude of
tests various test traits were assigned - "Slicing", "Insertion", "Change", "Deletion".

7.3 CLI application

Alternatively, there is a command line interface application. Application can accept multiple
parameters and produce certain output. Using command parameters application can differentiate
between database types and import formats. Listing 7 shows what command parameters user can
select.

./Bitemporality.exe database_type import_format
file_location [config file_location]

Listing 7: Command’s parameter description

So far only options for database_type are "MongoDB, "CouchDB" or "Redis". Also, "im-
port_format" can be either "CSV" or "JSON". Following parameter is actual file location. Last ap-
plication’s parameter is optional. In configuration file user can specify database connection string.
However, if nothing is specified, application will connect to local database without authentication.

7.4 Testing environment
As a test machine, a computer with these hardware parameters was used:
e CPU: Intel Core 17 6700, 3.8 GHz

e Memory: DDR4 16 GB

Disk drive: 256 GB rapid solid-state drive.

e OS: Microsoft Windows 10

Programming framework: C# based on .NET 4.6.1
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7.5 Dataset

In order to test different database performance, a dataset containing 167939 rows was used [6].
Test data contains complete baseball batting and pitching statistics from /871 to 2014. Description
of sample data can be found in table 19.

Column | Description

playerID | Player ID code

yearID | Year

stint | player’s stint (order of appearances within a season)

teamID | Team

1gID | League

Pos | Position
G | Games
GS | Games Started
InnOuts | Time played in the field expressed as outs

PO | Putouts
A | Assists
E | Errors

DP | Double Plays

PB | Passed Balls (by catchers)

WP | Wild Pitches (by catchers)

SB | Opponent Stolen Bases (by catchers)

CS | Opponents Caught Stealing (by catchers)
ZR | Zone Rating

Table 19. Description of test dataset

7.6 Dataset parsing

Dataset was presented in CSV!? format. Therefore, parsing utility was created. It allows to
convert this dataset file of baseball fielding data to MongoDB, PostgreSQL and other formats. It
supports CSV-to-BSON'?, CSV-to-SQL, CSV-to-POCO" type of parsing. Following code snippet
(see listing 8) will parse CSV value structure into BSON.

public static IEnumerable <BsonDocument> ParseCSVToBSON(string[] content)
{
var headers = content

.First ()

.Split(7,7)

.AsParallel ()

.Select(item => item)

.ToList();

12Comma-separated value

BBSON (Binary JSON) is a computer data interchange format used mainly as a data storage and network transfer
format in the MongoDB database

Plain old CLR object (POCO) is a simple object created in the Common Language Runtime (CLR) of the .NET
Framework which is unencumbered by inheritance or attributes.
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var result = content.Skip(l). AsParallel (). Select(value =>
{
var bson = new BsonDocument() ;
int index = 0;
bson.AddRange (value
.Split(’,”)
.Select(element => new BsonElement(headers[index++], element)));

return bson;

1)

return result;

Listing 8: Parsing CSV into BSON format

Algorithm takes CSV file headers, assigns them to a list. Then it loops though file, skipping
headers. During loop it creates new BsonDocument instance with BsonElement items accordingly.
It is worth mentioning that element keys are taken from CSV header list according to array index
at the time. Final result is a collection of BSON objects. All content iterations operation are done
in parallel using .NET LINQ®" library to decrease dataset preparation time.

7.7 Valid and transaction time values

As for this moment, application supports only new bitemporal data. This means that, if tool
encounters an object without bitemporal domains, it will append them accordingly to the final
collection. Bitemporal domains are added to intermediary BSON data before insertion. Following
algorithm (see listing 9) shows how addition BSON elements are added to initial data.

public static BsonDocument AddTimeDimensions(this BsonDocument content,
DateTime validTime)

content["vt_start"] = validTime;
content["vt_end"] = DateTime.MaxValue;

content["tt_start"
content["tt_end"]

[a—

= DateTime . UtcNow ;
DateTime . MaxValue ;

return content;

Listing 9: Code snippet that adds time dimensions

There’s an additional aspect of this: by default tuple is considered valid, therefore transaction
time as well as valid time ends should be of maximum value. Although, if you need to insert tuple
with customer bitemporal parameters, it’s possible to do so. There is a method overload that does
accept valid and transaction time DateTime intervals as parameters.

Furthermore, UTC!® timing is recorded and used throughout application. It’s important to use
globally coordinate time and not store additional information about timezones. It is done to avoid
major data inconsistencies. If a need arises, application could convert dates back to user in a
preferred timezone.

SLanguage-Integrated Query
16Coordinated Universal Time
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7.8 MongoDB implementation

Connecting to MongoDB works though a connector class MongoClient which requires a sin-
gleton connection. All operations done with .NET framework are asynchronous. For successful
connection to database, we can use listing 10 code.

var client = new MongoClient () ;
var database = Client.GetDatabase (databaseName) ;

Listing 10: Code snippet that allows to connect to MongoDB

Next snippet shows collection insertion into document-store. MongoDB inserts BSON!" in-
put. Therefore, all storage data must be converted to BsonDocument class object before insertion.
Listing 11 shows main insertion method for MongoDB.

var collection = Database.GetCollection <BsonDocument>(collectionName) ;
await collection.InsertOneAsync (document);

Listing 11: Inserting collection into MongoDB

7.9 CouchDB implementation

CouchDB uses similar .NET connection wrapper as MongoDB. It is called MyCouchClient
[32]. Listing 13 shows how database connection can be opened.

‘ var couchClient = new MyCouchClient(address, databaseName); ‘

Listing 12: Connecting to CouchDB

Inserting data into CouchDB happens in similar manner as Mongo. However, database stores
document data differently. CouchDB uses plain JSON as storage type. Since application had
to parse plain JSON, a parsing library was used - Json.NET [22]. It helped to properly parse
application’s input into JSON. In listing 13, you insertion can be initiated.

‘ Client.Documents.PostAsync(data); ‘

Listing 13: Inserting collection into CouchDB

7.10 Redis implementation

For successfully connection to Redis database a StackExchange [31] interaction library was
used. It allowed to connect and perform operations on Redis key-value store. In listing 14, you can
see how it can be implemented.

var redis = ConnectionMultiplexer.Connect(address);
RedisDatabase = redis.GetDatabase () ;

Listing 14: Connecting to key-value database Redis

In order to insert data into Redis key-value store, it was decided that a single object’s JSON
data will represent value and key will be value SHA1 hash result. Therefore, all objects with
corresponding hashes could be stored. Listing 15 uses System.Security. Cryptography utility library
to compute hash value for a given JSON input. Inserting key-value sets into Redis happens through
a setter method which takes key and value as its parameters.

17Binary JSON
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var thumbprint = Utils .GetSHAl(data);
RedisDatabase . StringSet(key, data);

Listing 15: Inserting into Redis

7.11 PostgreSQL implementation

PostgreSQL [12] was used as main relational database management system. In addition to that,
to SQL Parser [11] library was used to manipulate SQL queries into .NET data structures. In or-
der to query bitemporal data in .NET, Dapper [30] framework was used. Dapper is micro-ORM
library that let us perform queries from .NET platform with less overhead and with balanced conve-
nience. Moreover, any interaction with bitemporal PostgreSQL database goes though ADO.NET’s
NpgsqlConnection connection (see listing 16).

using (var connection = GetConnection())

{

await connection.ExecuteAsync(query, data);

}
Listing 16: PostgreSQL Dapper query

7.12 Insertion benchmarking

In order to compare different NoSQL database types, several data insertion tests were per-
formed. Tests used fairly large dataset and powerful machine in closed environment. However, this
thesis only covers singe node testing. In the future, it would be beneficial to test NoSQL scale-out
and compare performance amongst nodes in the cluster.

7.12.1 MongoDB import

Following picture 18 shows MongoDB insertion statistics. Both test suites were executed on
mirrored collection, containing same data, but with different indexing strategy. Additionally. you
can take a look at execution times. It’s quite predictable that collection without bitemporal indexes
will perform write operations a bit quicker.

BMicro Object-Relational Mapper
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4 of Bl Tests (14 tests)
A 7 () Tests.MongoDb (14 tests)
] Qﬂ? MongoDblnsertBitemporalData (14 tests)
4 o Test_MongoDb_nsertBiternporalData_Withindex (7 fests)

v’_f Test_MongoDb_InsertBitemporalData_Withindex(time:
T:::? Test_MongoDb_InsertBiternporalData_WithIndex(time:
v’_f Test_MongoDb_InsertBitemporalData_Withindex(time:
-\wj? Test_MongoDb_InsertBiternporalData_WithIndex(time:
v’_f Test_MongoDb_InsertBitemporalData_Withindex(time:
-\ff Test_MongoDb_InsertBitemporalData_Withindex(time:
v’_f Test_MongoDb_InsertBitemporalData_Withindex(time:

"1995-10-01")
"1997-10-01")
"1999-10-01")
"2001-01-08")
"2005-01-06")
"2016-01-06")
"2017-12-30")

4 o Test_MongoDb_nsertBiternporalData_Withoutindex (7 tests)
T:::? Test_MongoDb_InsertBiternporalData_Withoutindex(tirne: "1995-10-01")
v’_f Test_MongoDb_InsertBitemporalData_Withoutindex(time: "1997-10-01")
-\wj? Test_MongoDb_InsertBiternporalData_Withoutindex(tire: "1999-10-01")
v’_f Test_MongoDb_InsertBitemporalData_Withoutindex(time: "2007-01-08")
-\ff Test_MongoDb_InsertBitemporalData_Withoutindex(time: "2003-01-08")
v’_f Test_MongoDb_InsertBitemporalData_Withoutindex(time: "2016-01-08")
v’_f Test_MongoDb_InsertBitemporalData_Withoutindex(time: "2017-12-30")

Figure 18. MongoDB insertion test suites

[3:53.578] Success
[3:53.578] Success
[5:53.578] Success
[2:57.051] Success
[0:24.640] Success
[0:24.713] Success
[0:24.575] Success
[0:25.634] Success
[0:24.529] Success
[0:24.658] Success
[0:28.302] Success
[2:56.5327] Success
[0:24.719] Success
[0:24.6560] Success
[0:24.440] Success
[0:24.912] Success
[0:26.142] Success
[0:24.357] Success
[0:27.307] Success

As aresult (shown in figure 19) we can observe that on average storage of "Fielding" collection
doesn’t take much space. For almost 2 millions of records, it only take 300 MB of disk storage.
Besides, indexing doesn’t introduce any storage issues - only 20 MB in size is considered normal

of an amount of data inserted.

Collection Name “ Documents Avg. Document Size Total Document Size

fielding_index 1,175,566 3039B 3407 MB

fielding_no_index 1,175,453 3039B 3407 MB

Num. Indexes

Figure 19. MongoDB bitemporal collections

Total Index Size

19.5 MB

11.1 MB

In addition to this, we can see (look at figure 20) very low usage of both CPU and memory.

Total runtime in MongoDB accounted is 25.28 seconds on average.

4 Process Memory (MB)
305

o]
4 CPU (% of all processors)
100

GC W Snapshot

Figure 20. Result of profiling MongoDB

Private Bytes
395

100
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7.12.2 PostgreSQL import

Figure 21 shows PostgreSQL bitemporal write results. It’s done in similar manner with Mon-
goDB tests. Additionally, we can compare you can take a look at execution times. It’s quite appar-
ent that relational PostgreSQL will take significantly more time than document system, therefore

write operations are much more slower here - almost 2.4 slower than MongoDB (outlined in figure
18).

4 o Bl Tests (14 tests) [12:02.875] Success
4 +f @ Tests.PostgreSOL (14 tests) [12:02.875] Success
4 o PostgreSqlinsertBitemporalData (14 tests) [12:02.875] Success

4 o7 Test PostgreSOLInsertBitemporalData_Withindex (7 tests) [f:12.318] Success

o/ Test_PostgreSOLInsertBitemporalData_WithIndex(time: "1995-10-01") [(:53.015] Success
o/ Test_PostgreSCOLInsertBitemporalData_WithIndex(time: "1997-10-01") [(:52.991] Success
o/ Test_PostgreSQLInsertBiternporalData_WithIndex(time: "1993-10-01") [0:53.327] Success
o Test_PostgreSOLInsertBitemporalData_WithIndex(time: "2001-01-06") [(:55.637] Success
o/ Test_PostgreSOLInsertBitemporalData_WithIndex(time: "2005-01-06") [(:51.802] Success
o Test_PostgreSOLInsertBitemporalData_Withindex(time: "2016-01-06") [(:51.317] Success
-\4_,? Test_PostgreSCLinsertBitern poralData_WithIndex(time: "2017-12-30") [0:54.230] Success
4 o7 Test_PostgreSQOLinsertBitemporalData_Withoutindex (7 tests) [5:50.556] Success
o/ Test_PostgreSOLInsertBitempaoralData_Withoutindex(tire: "1995-10-01")  [0:49.484] Success
o Test_PostgreSOLInsertBitemporalData_Withoutindex(time: "1997-10-01")  [0:49.022] Success
o/ Test_PostgreSOLInsertBitemporalData_Withoutindex(time: "1999-10-01")  [(:42.817] Success
o Test_PostgreSCLInsertBitemporalData_Withoutindex(time: "2001-01-06")  [0:42.691] Success
o/ Test_PostgreSOLInsertBitempaoralData_Withoutindex(tire: "2005-01-06")  [0:52.861] Success
o Test_PostgreSOLInsertBitemporalData_Withoutindex(time: "2016-01-06") [0:51.736] Success
o Test_PostgreSOLInsertBitemporalData_Withoutindex(time: "2017-12-30")  [(:42.885] Success

Figure 21. PostgreSQL insertion test suites

Furthermore, in here same indexed vs. non-indexed testing strategy was used. You can see than
non-index inserts are moderately quicker.

Block I/0 Block /0
50000 20000
WReads WReads
40000/ {MliHits 15000 || SHIts
30000
10000

20000
10000 3000

0 0

(a) PostgreSQL IO with bitemporal indexes (b) PostgreSQL 10 without indexes

If we examine these graphs (figures 22a and 22b) we clearly see significant drop of 10. Graph
of the measures IO of indexes bitemporal relation while graph on the left take IO readings of plain
non-indexed inserts.

On the other hand, transaction number for PostgreSQL remained the same. If we examine
figures 23a and 23b, we can tell that on average there were around 7000 transactions per second
registered. Alternatively, you can desire this hypothesis from previously shown Figure 18 where
execute were approximately the same.
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7.12.3 Other NoSQL database results

In figure 24 we can observe CouchDB memory and CPU usage that fluctuate over time of data
insertion. At the start of data insertion, we can clearly see the growth in RAM, whereas CPU is
almost fully utilized. With intensive utilization of CPU and memory, CouchDB managed to insert
all 167939 documents in 48.31 seconds, which is fastest result.

4 Process Memory (GB)

1

0

4 CPU (% of all processors)

100

Figure 24. Result of profiling CouchDB

GC W Snapshot

Private Bytes

1

100

However, Redis performed the least, with insertion lasting over 8 minutes. In figure 25, we can
observe slight CPU usage with moderate amount of RAM used.

4 Process Memory (MB)

325

0

4 CPU (% of all processors)

100

- _——

GC W Snapshot

Private Bytes

325

100

Figure 25. Result of profiling Redis

7.12.4 Summary of example insertion results

Summarized results of performed data insertion tests can be found in table 20.

Name Database type | Time elapsed (s) | Memory usage | Processor usage | Disk IO
CouchDB Document store 48.31 Moderate High High
MongoDB | Document store 88.52 Low Low Moderate
PostgreSQL | Relational 175.50 Low Low Moderate
Redis Key-value store 518.09 Moderate Low High

Table 20. Comparison of NoSQL insertion performance
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CouchDB and MongoDB performed fastest. While PostgreSQL was twice as slow to insert
bitemporal dataset. Test results in table 20 were taken of non-indexed entities. Benchmarks per-
formed in section 7.13.1 will take indexing and other bitemporal data operations into account.

7.13 Change and deletion benchmarking

Following figures 26 and 27 outline test suite results. At the beginning preparation bitemporal
data is inserted then part of the is deleted, while other part is updated. Below is more detailed
description of performance test steps:

e Insert bitemporal dataset (described in section 7.5) with transactional time "2018-01-01" and
"2018-01-02"

e Delete data inserted on "2018-01-01" when it is valid on "2017-07-05"

e Update Zone Rating value to 1 on data inserted "2018-01-02" when it is valid on "2017-05-
05 ”n

Since for updates and deletes we are using different transaction times ("2018-01-01 " and "2018-
01-02"), it ensures that bitemporal operations results will be segregated and no double updates or
inserts will occur.

4 off ) Tests.PostgreSQL (8 tests)
4 7 PostgreSOLDeleteBiternporalData (2 fests)
A \'f PostgreSOL_Delete BitemporalData (2 fests)
Qﬁ Postgre50L_Delete_BitemporalData(tableMame: "fielding_index", transactionTimeValue: "2078-01-02 00:00:00", validTimeValue: "2017-07-03")
Qﬁ Postgre50L_Delete_BitemporalData(tableName: "fielding_no_index", transactionTimeValue: "2018-01-02 00:00:00", validTimeValue: "2017-07-03")
4 7 PostgreSOLUpdateBitemporalData (2 fests)
4 v PostgreSOL_Update BitemporalData (2 fests)
ﬂ PostgreS0L_Update_BitemporalData(tableMame: “fielding_index”, transactionTimeValue: "2018-01-01 00:00:00", validTimeValue: "2017-05-05")
qﬁ? Postgre50L_Update_BitemporalDataltableMame: "fielding_no_index", transactionTimeValue: "2018-01-01 00:00:00", validTimeValue: "2017-03-05") [0:46.117] Success
4 PostgreSqlPrepBitemporalData (4 tests) [4:41.245] Success
4 o PostgreSQL_Insert_BitemporalData (4 tests) [4:41.245] Succes
«/ PostgreSQL_Insert_BitemporalData(table: "fielding_index", vtValue: "2017-05-05", ttValue: "2018-01-01") 4
o/ PostgreSQL_Insert_BitemporalData(table: "fielding_index", vtValue: "2017-07-05", ttValue: "2018-01-02")
J PostgreSQL_Insert_BitemporalData(table: "fielding_no_index", vtValue: "2017-05-05", ttValue: "2018-01-01")
Q-V PostgreSQL_Insert_BitemporalData(table: "fielding_no_index", vtValue: "2017-07-05", ttValue: "2018-01-02")

Figure 26. PostgreSQL end-to-end data manipulation

4 o () Tests.MongoDb (8 tests)
4 +f MongoDbDeleteBiternporalData (2 fests)
4 of Test_MongoDbDeleteBitemporalData_WithIndexAsync (1 fest)
+/ Test_ MongoDbDeleteBitemporalData_WithIndexsync(sliceType: Bitemporal, tt: "2018-01-02 00:00:00", vt "2017-07-05")
4 o Test_ MongoDbDeleteBitemporalData_Withoutindex (1 test)
J Test_ MongoDbDeleteBiternporalData_Withoutindex(sliceType: Bitemporal, t: "2018-01-02 00:00:00", vt: "2017-07-05")
4 +f MongoDblnsertAndUpdatePreTests (4 fests) [1:43.413] Success
4 o Test_MongoDb_InsertBitemporalData_ForUpdate (4 rests) [1:43.413] Success
o/ Test_MongoDb_InsertBitemporalData_Forlpdate{collectionName: "fielding_index", vtValue: "2017-03-05", ttValue: "2018-01-01")
+f Test MongoDb_InsertBitemporalData_Forlpdate{collectionName: "fielding_index", vtValue: "2017-07-05", ttValue: "2018-01-02")
+f Test_MongoDb_InsertBitemporalData_Forlpdate{collectionName: “fielding_no_index", viValue: "2017-05-05", ttValue: “2018-01-01")
Q{? Test_MongoDb_InsertBitemporalData_Forlpdate(collectionName: "fielding_no_index", vtValue: "2017-07-05", ttValue: "2018-01-02")
4 v/ MongoDbUpdateBitemporalData (2 fests)
4 of Test_ MongoDbUpdateBitemporalData_WithIndex (1 fest)
+f Test MongoDbUpdateBitemporalData Withindex(sliceType: Bitemporal, tt: "2018-01-01 00:00:00", vt “2017-05-05", value: "Testing")
Fi Qf Test_MongoDbUpdateBitemporalData_Withoutindex (7 fest) [0:22.136] Success
of Test_MongoDbUpdateBitermnporalData_Withoutindex(sliceType: Biternporal, tt "2018-01-01 00:00:00", vt: "2017-05-05", value: "Testing") [0:22.136] Success

Figure 27. MongoDB end-to-end data manipulation

As a side note, judging by total test execution time, MongoDB was three times faster than
PostgreSQL. Following section will in dive more details.
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7.13.1 Data manipulation summary

Bitemporal data manipulation are summarized in table 21. Table is sorted by bitemporal oper-
ation, description and execution time in ascending order.

Name Bitemporal operation Description Time elapsed (s) Memory usage Processor usage Disk usage
MongoDB INSERT Indexed timestamps 26,004 Low Moderate High
PostgreSQL  INSERT Indexed timestamps 71.944 High High High
MongoDB INSERT Non-indexed timestamps 25.702 Low Low Low
PostgreSQL  INSERT Non-indexed timestamps 68,681 High Low  Moderate
MongoDB UPDATE Indexed timestamps 27.940 Moderate Very high  Moderate
PostgreSQL  UPDATE Indexed timestamps 51.724 Moderate Very high High
MongoDB UPDATE Non-indexed timestamps 22.136 Moderate High  Moderate
PostgreSQL  UPDATE Non-indexed timestamps 46.117 Low High Low
PostgreSQL DELETE Indexed timestamps 3.020 Moderate Moderate High
MongoDB DELETE Indexed timestamps 6.780 Moderate Low Moderate
PostgreSQL DELETE Non-indexed timestamps 0.767 Low Moderate Low
MongoDB DELETE Non-indexed timestamps 3.819 Low Low Moderate

Table 21. Comparison of NoSQL data manipulation performance

Some preliminary conclusions can be aggregated from this:

MongoDB bitemporal operations are faster under in similar conditions

Bitemporal deletion in PostgreSQL yields betters results

Indexed collections in PostgreSQL and MongoDB take more CPU and disk 10

Insertion time for MongoDB is 3 times faster than relational storage

Update in both MongoDB and PostgreSQL has very high CPU usage

7.14 Indexing strategy

Indexing bitemporal relation in a balanced manner can be quite cumbersome. When developing
this proof-of-concept, it became quite clear how to best select indexing strategy. Finding a balance
between write and read operations are no less quite important. As of now, it best to put separate
compound indexes on time intervals - valid time and transaction time. Following picture (look at
figure 28) will show summary of indexes created in MongoDB.
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bitemporal.fielding_index socuments 1.2mM woexes 3

Indexes

Name and Definition Type Size Usage Properties Drop
- 11.1 me
_id REGULAR e—— () since Sat Dec 30 2017 UNIQUE
4.4 ve .
t_start tt_end REGULAR — 61 since Sat Dec 30 2017 COMPOUND m)
40
vi_start vt_end REGULAR — 14 sin 2 COMPOUND w

Figure 28. MongoDB bitemporal indexing strategy

While this collection has 2 million documents, index only take few megabytes of storage. In
addition to this, data manipulation operations were not significantly affected by these indexes.

Another aspect of this is that indexed are of descending timestamp. Even though search criteria
are not affected by ascending or descending type of order, but ordering of data does. It mainly
affects MongoDB sort() function and PostgreSQL ORDER BY clause. Thus, it was decided to
give priority to latest data in the entity. However, there could be use cases when extracting old data
is more vital. In that case, it would be a good idea to add double indexes - with ascending order,
while other should be descending.

7.15 Indexes in practice

After NoSQL entity is created, there is an option to add indexing. By default bitemporal prop-
erties of MongoDB collections are automatically indexed. However, there is an option to turn it
off. It has proven to be useful for running various indexed vs. non-indexed tests. Listing 17 shows
to descending indexes are created on both valid and transaction timestamp intervals.

collection .Indexes.CreateOneAsync (Builders <Fielding >.IndexKeys
.Descending(_ => _.tt_start)
.Descending (_ => _.tt_end)

)3

collection .Indexes.CreateOneAsync (Builders <Fielding >.IndexKeys
.Descending(_ => _.vt_start)
.Descending (_ => _.vt_end)

)

Listing 17: MongoDB indexing snippet

On the other hand, PostgreSQL requires to write more explicit SQL statements. Follow listing
18 shows how indexed are created in PostgreSQL database.

var tasks = new]|]
{
connection . ExecuteAsync (@"CREATE_INDEX_IF_NOT_EXISTS,  @VT_Index, ON_,
@Table_USING_btree (vt_start DESC, vt_end_DESC)", data),
connection . ExecuteAsync (@"CREATE_INDEX IF_NOT_EXISTS_ @TT_Index, ON_,
@Table_USING_btree (tt_start_ DESC, tt_end_DESC)", data)
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1
await Task.WhenAll(tasks);
Listing 18: PostgreSQL indexing snippet

Please note that both of listing 17 and 18 are using multi-threading for the creation of bitemporal
indexes. That means that creation of index on application layer is parallelized on both MongoDB
and PostgreSQL.

7.16 Slicing operations

Slicing operation is one of the most used data extraction technique in bitemporal databases. It
introduces a way to look at the data in different time dimensions. As a proof of concept, application
is able to test these scenarios:

e Slice valid time dimension

Slice transaction time dimension

Slice valid and transaction time dimensions

Indexed valid time dimension slice

Indexed transaction time dimension slice

Indexed valid and transaction time slice

7.16.1 Slicing without indexes

An application will produce bitemporal query that is later sent to MongoDB for execution.
Let’s consider following example. On the left side (look at figure 29a) you can notice that index
scan is performed, resulting in much more robust data extract time. Whereas figure 29b performs
rather poorly, almost twice the time is long on full document scan.
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FETCH

DETAILS

IXSCAN
COLLSCAN
tt_start -1_tt end -1
1175453
no
DETAILS
DETAILS
(a) Result of query MongoDB (b) Result of query MongoDB without indexes

We can learn from this that indexing strategy mentioned in section 7.14, without a doubt, is
an important part of bitemporal query execution. If incorrect indexing strategy is selected, perfor-
mance of any query can significantly degrade. Obviously, full column scan for huge collections
will always going to be delaying. However, in this we see that it more twice slower than regular
index scan.

7.16.2 Slicing benchmarking

In these benchmark tests without indexes will be omitted. Following examples, encompass
vertical, horizontal and bitemporal slicing.
7.16.3 Vertical slicing results

Vertical slicing operation described in section 6.5 were performed on MongoDB against 1175666

documents in the collection.

Query Performance Summary

1175566 1519
1175566 no
1175566 Query used the following index:

t_start 1t_end

Figure 30. Vertical slicing statistics

To visualize this, we can see clear transaction time index hit on bitemporal dimensions in "field-
ing_index" collection. Figure 30 shows that index scan took 649 milliseconds, while document’s
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schema fetching completed in 453 milliseconds.

FETCH

DETAILS

IXSCAN

tt_start -1_tt end -1
no

DETAILS

Figure 31. Vertical slicing performance

7.16.4 Horizontal slicing results

Horizontal slicing bitemporal query, in a collection of 1175666 documents found 167938 docu-
ments. Since valid time dimensions timestamps were scattered, less data was fetched. Thus it took
this query significantly less time to execute.

Query Performance Summary

167938 198

167940 no

167938 Query used the following index:
vi_start 'v'I_eI'IC

Figure 32. Horizontal slicing statistics

Figure 33 shows that index scan only took 141 milliseconds, while document’s schema fetched
in as little as 20 milliseconds.
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DETAILS

IXSCAN

wdex Mame: vi_start -1_vt_end -1

DETAILS

Figure 33. Horizontal slicing performance

7.16.5 Bitemporal slicing results

Bitemporal slicing operation accounts for two time dimensions. As a result, 167938 documents
were fetched.

Query Performance Summary

Documents Returned: 167938 Actual Query Execution Time (ms). 2663
ndex Keys Examined: 1175566 Sorted in Memory: no
Documents Examined: 1175566 Quuery used the following index:

tt_start 1_end

Figure 34. Bitemporal slicing statistics

To visualize this, we can see clear index hit on bitemporal dimensions in "Fielding" collection.
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FETCH

DETAILS
IXSCAN
{ 1175566 ] o
tt start -1 _tt end -1
no
DETAILS

Figure 35. Bitemporal slicing performance

However, bitemporal slice was one of slower MongoDB queries in these test. Figure 36 shows
that index scan only took 959 milliseconds. But fetching data completed only after 1584 millisec-
onds.

7.16.6 Slicing in PostgreSQL

For the sake fo full comparison PostgreSQL slicing was introduced and measured. Refer to
figure 36 for more detailed results.

f ™ Tests (20 tests) [13:39.005] Success
4 o {} Tests.PostgreSOL (20 tests) [13:39.005] Success
> of PostgreSqlinsertBiternporalData (74 tests) [13:16.128] Success

4 of PostgreSqlPerformanceTests (§ tests) [0:22.877] Success

4 Qﬂ Test_MongoDblnsertBitemporalData_Withindex (3 fests) [0:17.816] Success

o Test_MongoDblinsertBitemporalData_WithIndex{bitemporalQuery: "TRANSACTIONTIME AS OF TIMESTAMP 4"2017-12-31\" SEL"...) [0:13.322] Success

o/ Test_MongoDblnsertBitemporalData_WithIndex(biterporalQuery: "VALIDTIME AS OF TIMESTAMP \"2001-01-06\" AND TRANS"...) [0:02.291] Success

o Test_ MongoDblnsertBitemporalData_Withindex(biternporalQuery: "VALIDTIME AS OF TIMESTAMP 1,"2001-01-06\" AND TRANS"...) [2] [0:02.203] Success

4 ﬂ Test_MongoDblnsertBitemporalData_Withoutindex (3 tests) [0:22.877] Success

est_MongoDblnsertBitemporalData_Withoutindex(bitemporalQueny: "TRANSACTIONTIME AS OF TIMESTAMP \"2017-12-31" SEL"...) 0:14.227] Success

9 P P Y
est_MongoDblnsertBitemporalData_Withoutindex(bitemporalQuery: "VALIDTIME AS OF TIMESTAMP \"2001-01-064" AND TRANS"...) [0:05.086] Success

g p P Y
est_MongoDblnsertBitemporalData_Withoutindex(bitemporalQuery: "VALIDTIME AS OF TIMESTAMP \"2001-01-064" AND TRANS"...) [2] [0:03.564] Success

g p P Y

Figure 36. Result of PostgreSQL bitemporal queries

As previous results have shown, it quite expected index queries would perform much more
faster. Unsurprisingly, it is the case for PostgreSQL (see figure 36). However, PostgreSQL per-
formed slower than NoSQL outlined in the previous sections.
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7.16.7 Data slicing summary

Various bitemporal data slicing is listed in the table 22 below. Table is sorted by slice type,

index strategy and elapsed time in ascending order. Better performing system is in bold.

Name Operation Slice type Indexed Time elapsed (s) Memory usage Processor usage Disk usage
MongoDB SELECT Vertical Yes 1.102 NA NA NA
PostgreSQL  SELECT Vertical Yes 13.322 NA NA NA
MongoDB SELECT Horizontal Yes 0.16 NA NA NA
PostgreSQL  SELECT Horizontal Yes 2.291 NA NA NA
PostgreSQL. SELECT  Bitemporal Yes 2.203 NA NA NA
MongoDB SELECT  Bitemporal Yes 2.54 NA NA NA
MongoDB SELECT Vertical No 2.102 NA NA NA
PostgreSQL  SELECT Vertical No 14.227 NA NA NA
MongoDB SELECT Horizontal No 0.16 NA NA NA
PostgreSQL  SELECT Horizontal No 5.086 NA NA NA
PostgreSQL. SELECT  Bitemporal No 3.564 NA NA NA
MongoDB SELECT  Bitemporal No 3.887 NA NA NA

Table 22. Summary of slicing performance for MongoDB and PostgreSQL

Here we can observe that MongoDB bitemporal data slicing almost always beats relational
database. In similar environmental conditions, MongoDB on total is almost four times faster than
PostgreSQL. However, in some cases relational database is faster. For instance, in case of bitempo-

ral slicing both of them score a similar mark. This can be positively identified, because bitemporal
slice is one of most used operation in bitemporal databases. On contrary, in this thesis we outlined
JOINless queries. If we take bitemporal JOIN into account, relational database performance can
deteriorate with every single table joined, while NoSQL will not have the same issue.
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Conclusions and Recommendations

As a result of this thesis, all core aspects of storing bitemporal data were analyzed. Leading
types of non-relational data stores were mentioned in detail. Followed by pointing out benefits of
having schema-less and horizontally scaled architecture to archive better performance and avail-
ability. In addition to this, thesis model was presented. It helped to archive end-goal of final work -
comparing relational performance to non-relational for bitemporal data operations. This paper only
covered few database type implementations - relational, key-value store and document-oriented
systems. Bitemporal operations, such as insertion, change, deletion and slicing were implemented
on multiple database management systems. A benchmark test suites bitemporal operations capabil-
ities for different NoSQL/SQL engines, revealing that non-relational databases less time to execute.
In this last chapter, the most important results of this thesis were summarized and the topics worth
investigating further are discussed.

Another contribution of this thesis is an investigation of different approaches for achieving
bitemporal support including existing database systems. As for the future of this topic, a lot more
metrics have to be taken into account. In addition to that, it would be beneficial to run these
performance test on a big scale. Even though, in this paper all tests were contained within the
single machine, a scale-out test would make valuable addition to the research.

Nonetheless, making even more diverse system bitemporal NoSQL database system analysis
would add some value as well. This research tried to cover bitemporal operations in PostgreSQL
and MongoDB in great detail. However, taking into account diverse variety of NoSQL variety, this
was out of the scope. Moreover, slicing operations could be extended - adding support of more
bitemporal predicates.

After testing performance of various databases, few conclusions can be drawn. First of all,
most of bitemporal data manipulation operations are faster in NoSQL databases. With exception
to bitemporal deletion, where PostgreSQL yielded better results. Next, MongoDB outstandingly
performed with bitemporal data insertion. Document system is three times faster than relation
database. Speaking of computer resources, both of databases took significant amount of CPU
power and IO for bitemporal change. All-in-all, judging from various performance metrics - time,
CPU load, indexing, it can be said that NoSQL does better job doing executing bitemporal opera-
tions.
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