>

»

)
,?S/TAS NN

VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS
DEPARTMENT OF COMPUTER SCIENCE II

Master’s thesis

Text analytics for crypto-currency price predictions

Done by:

Pranas Kieras signature

Supervisor:
dr. Linas Bukauskas

Vilnius
2018

Contents
Glossary
Abstract
Santrauka
Introduction

1 Related Work

2 Background information
2.1 Crypto-CUITENCIES . . . « . v v v v v et e e et e e e e e e e e e
2.2 Artificial neural networks oL Lo
2.3 Introductiontodeeplearning o
2.4 Recurrent Neural Networks
2.5 ANNregularization techniques oL
2.6 ANN optimization techniques

3 Algorithm implementation
3.1 High level description of the project
3.2 Initial assessment of tools and techniques
3.3 Onlineresource selection L Lo
34 APlaccessanddatacollection
3.5 DataProcessing e
3.5.1 Removing duplicatesandnoise
3.5.2 Exploringthedataset L oL
353 Cleaningpricedata
3.54 Augmenting pricedatao
3.6 Augmentingtextdata e e
3.6.1 Converting text to INteers v vt
3.6.2 Mapping textual datatopricedata
3,663 Textembedding
3.7 Machine learning model setupo
3.8 EXperiment setup i e e e e
3.9 First model: deep recurrent network with text embedding
39.1 Testingonatoydataset Lo
3.9.2 Bitcointweetsdataset. Lo
393 Mergedtweetsdataseto
3.10 Second model: parallel convolutional neural network with embedding
3.10.1 Testingonatoydataset
3.10.2 Merged tweets dataset Lo
3.11 Third model: deep convolutional neural network with embedding
3.11.1 Testingonatoydataset
3.11.2 Merged tweets dataset
3.12 Fourth model:price based deep recurrent network

12
12
12
13
14
15
16

Conclusions and Recommendations

Plan for future research

References

45

46

47

Glossary

ANN - artificial neural network

CNN - convolutional neural network

RNN - recurrent neural network

LSTM - long short term memory used as memory cells in deep recurrent neural networks.
GAN - generative adversarial network

REST - representational state transfer

GPU - graphic processing unit

CUDA- Compute unified computer architecture

ReLu - rectified linear unit

Crypto-currency - decentralized trust-less currencies usually built on a block chain
MCMC - Markov Chain Monte Carlo, probabilistic machine learning method.
TAN - Tree Augmented Naive Bayes algorithm.

Abstract

This masters thesis is aimed at predicting crypto-currency price movements using social media
data. The main motivations to do this research is the recent developments deep learning and
the vibrant crypto-currency market. Furthermore, the is a lack tools for fundamental analysis
of the currency prices. The experimental part of the work has been split up into 3 parts. The first
part is data collection. For this a REST client application,that draws the tweets related to crypto-
currencies and saves them to a csv file, was created. Price data is also collected for the experiment
using a REST client . The second part of the work is data cleaning an preprocessing. The twitter
feed is cleaned of duplicates that are not relevant to the experiment. Also, the tweets themselves are
cleaned and pruned removing tweets that are too long and too short, promotional tweets and other
noise in the data. The price data is also cleaned and gaps in the data are filled. In the third part the
4 different deep learning models are created. The first one is a multilayer recurrent neural network
with LSTM cells and embedded inputs. The second model is a convolutional neural network with
parallel convolutional layers that also uses embedding for inputs. The third model is a stacked
convolutional neural network with 2 hidden layers and an embedding layer. The final model is a
recurrent neural network that has no embedding layer and operates solely on the price movement
data. The experiments are run on a toy dataset to validate that the model is working properly and
then on the real dataset. The results of the experiments indicates that the social media data is not
enough to predict price movements with any degree of certainty. The main problem is the quality
of the data. The results could potentially be improved if other data sources would be used, that
specialize on investment and crypto currencies.

Santrauka
Kripto valiuty kainy prognozé naudojant teksto analitika

Pagrindinis Sio darbo tikslas - prognozuoti kripto valiuty kainas, naudojant socialiniy tinkly
informacija. Darbe pasitelkiami giliojo mokymosi metodai - rekurentiniai ir konkvoliuciniai neu-
roniniai tinklai. Experimentinéje dalyje sukuriamas duomeny surinkimo skriptas bei igyvendinami
keturi skirtingi giliojo mokymosi modeliai. Tik vienas i§ modeliy sugebéjo uZzfiksuoti Siek tiek
geresnius negu atsitiktinius resultatus su testiniu duomeny rinkiniu. Pagrindiné prasty resultaty
prieZastis - nekokybiSka tekstiné informacija. Juose daug dublikuotos informacijos ir triuk§Smo,
kuri sunku i$valyti automatizuotais skriptais. Kita prasty rezultaty prieZastis - nenuspéjamas kainos
judéjimas, daZnai nesusijes su tuo kas skelbiama socialiniuose tinkluose. Darbo rezultatai galéty
buti pagerinti naudojant tikslensius informacijos Saltinius, kaip specializuotos platformos, kombin-
uojant juos su kainos informacija, kaip ivesti i modeli.

Introduction

The motivation for this masters thesis comes from the recent developments in deep learning. Sys-
tems based on algorithms like Inception and Google translate are showing great results in computer
vision and machine translation. They are outperforming humans in many tasks.

The other source of motivation is the developments in the crypto-currency space. There has been
a lot of money moving into digital currencies and a lot of it was based on subjective factors that
cannot be identified with fundamental analysis.

The speculative nature of the price movements indicates that there is a network effect influencing
the price. This network effect can be tracked through social medial like twitter, facebook or reddit.
The purpose of this thesis is to predicting crypto-currency prices using social media information.
The goals to achieve this purpose are:

1. Create a system to effectively gather and process textual social media data on crypto-currencies.

2. Identify and fix problems in the textual and price data - like missing values, noisiness and
duplication.

3. Find the best deep learning algorithm for price predictions.
4. Find the link between social media data and price movements, if it exists.

There are a few main problems in creating a good price predicition model. Firstly, finding the
right data source is difficult, because there are a lot of options with different characteristics. In this
thesis multiple data sources were considered. The pros and cons of all of them are evaluated by 4
different criteria.

Secondly, most of the main textual data sources are either expensive or do not allow to download
data for the required period. This problem is solved by creating a client applications that draws
live twitter data through their API. This application also handles errors and gathers a continuous
dataset with as few gaps as possible. Furthermore, a client that gathers historical minute by minute
data is created.

Secondly, there are data quality issues that are addressed in this work. The data has gaps and miss-
ing price values and a lot of duplicates. The repeating items are removed and noisiness in the data
is cleaned as much as possible without corrupting the dataset.

Finally, potential deep learning model architectures are prototyped. Then the models are validated
on a toy dataset to check if they can generalize on the given problem. The same models are tuned
by searching and identifying the best hyper-parameters.

The masters thesis is organized into 2 parts. The first part is just a gentle background introduction
into the field of deep learning and crypto-currencies. Some practical and theoretical details are
discussed justifying the decisions made in selecting certain cryopto-currencies, resources or tech-
niques.

The second part of the thesis focuses on the end to end implementation of different models. There
is detailed information on how the data sources are selected and the information is collected. Most
of the challenges that occurred during this stage are specified along with the solutions that helped
to overcome them.

Furthermore, there is a detailed description of the deep learning models that are used. Some jus-
tification for the overall architecture and certain design decisions are laid out. There is also a
comparison of the implemented solutions which highlights the pros and cons of each model and

ways on which they could be improved.

All in all, after running training the 4 models there no direct link was established between the twit-
ter data and price movement. The final validation and test accuracy on all 4 model types were too
low, to prove a strong relationship. However, the simple convolution model with 2 stacked layers
has shown the best results out of all the models that were tested.

1 Related Work

Sentiment analysis is quickly becoming an important topic in text mining and text analytics. It has
wide applications in both academia and business. In recent years there has been a growing interest
in analyzing sentiment for predicting various real world events like sports matches, election results
and stock prices.

In the recent past a few surveys have been conducted to overview the work done in text analytics
for predicting stock market behavior. A recent study by Kumar and Ravi [5] highlight the following
8 types of scientific techniques used in sentiment analysis research:

1. Support Vector Machines (SVM’s)

2. Naive Bayes (NB)

3. k-nearest neighborhood (KNN)

4. Decision tree (DT)

5. Multilayer perceptron

6. Linear Regression (LR)

7. Classification and regression trees (CART)
8. Group method of data handling (GMDH).

The researchers point out these machine learning techniques are well know to deliver good results
for a broad range of Natural Language Processing problems. However, this survey does not men-
tion some of the state of the art techniques like Deep Learning and Recurrent Neural Networks
with Long Short Term Memory [4], which are becoming more popular in real work applications.
In another survey done by Cavalcante, Brasileiro, Souza and Nobrega [1] the biggest emphasis is
put on the same techniques as study [5]. They focus more on applying text mining in the financial
domain. The authors suggest that a major part of successfully predicting stock prices lies in feature
selection and extraction. What is more, they provide evidence that hybrid techniques, like ensem-
ble models, outperform the traditional machine learning algorithms. Once again, the newest trends
in the field, like RNN'’s, are not considered. However, Cavalcante, Brasileiro, Souza and Nobrega
mention that the applications of Deep Learning in financial forecasting are unexplored [5]. From
both surveys done quite recently it is clear that up until now traditional modeling techniques were
more popular for text analytics and financial market predictions. In part, this may be because it
is easier to explain how basic machine learning models work with clear rule sets of how the input
maps to the output. The intrinsic problem with Deep Learning is that currently researchers only
have an intuitive understanding of why and how such models work and there is no clear mapping
from input to output.

Furthermore, by looking at similar studies it is clear that most of them focus on well know and
established machine learning techniques. Song, Kim, Lee, Kim and Youn [18] propose a novel
approach of using Naive Bayes in mining Twitter sentiment. The study focuses on a way to use a
running positive and negative word count and eliminate the use of insignificant words. However,
the authors admit this approach suffers from a hyper-parameter selection problem. Chu, Wong,
Chen and Lee [3] go further and propose to use text mining to extract sentiment from both numeric
and textual data. What is more, they introduce the idea of sentiment-of-topic (SoT’). The authors

9

manage to get good results, by mining a wide range of textual and numeric sources like news
feeds and company revenue reports. On the other hand, the model is quite complex and requires
a lot of fine tuning and expertise in the field of finance. Chousa, Cabarcos and Pico [11] use a
focused approach and collect data only from financial micro-blogging platforms like StockTwits.
They target bloggers who are well established in the investment and trading community. This al-
lows them to filter out a lot of noise that would come from sources like Twitter. The research [11]
utilizes the Stanford CoreNLP Sentiment Treebank to classify the twits into 3 categories. Simi-
lar to Margoudakis and Serpanos [5] the researchers apply Bayesian statistics to extract sentiment
from textual data. However, in their model the authors employ a Markov chain Monte Carlo method
(MCMC) to estimate the conditional probability distribution of network structures that are obtained
by a Tree-Augmented Naive Bayes (TAN) algorithm [11]. The main drawback of this method is
that the training data needs to be manually annotated. Furthermore, MCMC inference is time con-
suming at each TAN construction phase.

Yang, Mo, Liu and Kirilenko [20] propose a completely different approach of genetic programming
optimization for the hyper-parameter search. Similar to [3] multiple sources of data are used (vari-
ous news-feeds along with Twitter). They use network metrics like meta-data in their model. This
enhances the basic sentiment analysis model. Li, Xie, Chen, Wang and Deng [7] use a generic
stock price prediction framework and plug-in six different models. They use the Harvard psycho-
logical dictionary as the base reference for sentiment analysis. The researchers conclude that even
though their model is better than a simple bag of words approach sentiment analysis is not sufficient
to accurately predict stock price movement. Schumaker, Jarmoszko and Labedz [16] use Twitter to
mine the public sentiment for Premier league wins spread predictions. The authors use Opinion-
Finder to categorize tweets into 8 categories: Model 1 — Subjective Negative tweets, Model 2 —
Objective Negative, Model 3 — Subjective Positive, Model 4 — Objective Positive,Model 5 — All
Subjective, Model 6 — All Objective, Model 7 — All Negative, and Model 8 — All Positive. The
study produces good results in matching sentiment to match outcomes. However this is a limited
use case that is difficult to implement for the financial domain. This is because the matches are
one time events and stock prices are continuous. It also indicates that many more factors need to
be taken into consideration, like temporal data and periodicity of the measurement.

The research by Pagolu, Challa, Panda, Majhi emphasize the importance of the effective market
hypothesis [10] in stock price predictions. They use word2vec and N-grams to model tweet sen-
timent. The researchers find a strong correlation between the rise and fall of stock prices and
public sentiment. The article by [8] Nguyen, Shirai and Velcin use Support Vector Machines to
evaluate 6 different methods of data collection: 1) Price Only, 2) Human Sentiment, 3) Sentiment
classification, 4) LDA-based method, 5) JST based method, 6) Aspect-based sentiment. In this
experiment the best results were shown by the Aspect Based Sentiment model. The research fo-
cuses most on data collection and labeling. The authors put less emphasis on the modeling part
presuming that SVM’s are a good enough tool to do the job. Olivera, Cortez and Areal [9] find
that micro-blogging negative sentiment can be a good predictor for price drops. They also find that
positive sentiment may predict price increases but the relationship is much weaker than with neg-
ative sentiment. Checkley, Higén and Alles [2] discuss the importance of time horizons in stock
stock price predictions. They conclude that news can have an immediate impact on prices changes
so picking a very short time horizon is important. Their biggest contribution is using very granular
temporal intervals for sentiment analysis. The authors predict at a 2 minute time horizon. They
provide evidence that in modern stock price forecasting even such short intervals are not enough
as the markets change almost instantly at any news about a particular stock. Researchers in another

10

study also uses StockTwits as the primary source of data [19]. The authors focus on the statistical
properties of twits rather then sentiment. Furthermore, they target micro-blogging sites as their
only source of data. Sun, Lachanski and Fabozzi sets their study apart by develop a model based
on sparse matrix factorization to predict stocks prices.

The related literature review provides a few important insights. Firstly, most of the studies stress
the importance of data collection and preparation and the modeling is usually quite basic. How-
ever there are a few studies like Chu, Wong, Chen and Lee [3] where the models are quite complex
and need a lot of manual tuning. There are only a few articles that use more advanced modeling
techniques and none that use Recurrent Neural Networks with LSTM’s.

Secondly, most studies use micro-blogging services as the data source. This is because such sites
provide real time, limited length semi-structured data. Some studies pull information from Twitter
filtering by hash-tag. Other also use hash-tags, but follow only the well established experts. An-
other data source that was mentioned in literature often is StockTwits mentioned in [2] and [11].
It is a good starting point for data collect.

Finally, most studies use sentiment analysis as their primary decision tool. In this master’s thesis
a few models will be compare. Sentiment analysis is used with more basic techniques to provide
a benchmark for further modeling. More advanced tools such as sequence to sequence mapping
with RNN’s are the main focus of this research.

11

2 Background information

2.1 Crypto-currencies

Crypto-currencies are a relatively new technology, starting in 2009 with Bitcoin and expanding
rapidly during the past 3 years. Bitcoin is still the main crypto-currency with a market cap of
250 billion dollars and a market dominance of 48%. However, many alternative coins are gaining
ground. Protocols like Ehtereum, Ripple, Litecoin have proposed solutions to a lot of the issues
that Bitcoin is facing.

At the moment of writing there are 1373 crypto currencies listed on Coinmarketcap [13]. Most of
them are bellow 1 million dollars in market cap and do not have a big following on social media.
Bitcoin is the most prominent and well established crypto-currency and is the focus of research in
this masters thesis.

There are multiple exchanges that have different prices for the same currency fluctuating 10-20%
between them at any given moment. Binance is one of the most popular exchanges, that is why it
was selected as the source of price information.

2.2 Artificial neural networks

In its simplest form a artificial neural network is a sum of its inputs multiplied by weights in the
synapses connecting those inputs to the neuron in the next layer with a bias value added to it 1.The
output unit returns the result of some activation function f(h), where & is the input to the output
unit see 2.1.

h=Swa;+b @.1)

At its heart ANN’s are just another machine learning model that enables the mapping from a set
of inputs to a set of outputs. ANN’s are valued for their ability to approximate any linear and non
linear functions.

During training artificial neural networks minimize the error between the expected output and the

~
\

(X

X, we, Z

=)

> f(h) »y

Figure 1. The simplest architecture of an Artificial Neural Network with 2 input nodes, and one
neuron.

actual prediction, given an input values. The most widely used error metric in ANN’s is the mean
squared errors or MSE 2.2. This is the metric that is going to be utilized in section 3 to calculate
calculate the cost of a training run.

n

MSE = %Z(Yj —Y;)? (2.2)
j=1

12

The main strength MSE is that the result is always positive and large errors are penalized more
than small ones, which is crucial when working with textual data embedded as integers.

In this master thesis batching is used to facilitate the learning process by not calculating the error
for each training example. Then the error for the batch is calculated by averaging the errors for each
individual training example in the batch. This gives a smoother descent down the loss function.
Gradient descent makes small steps towards a lower value of the cost function. To find which way
the step needs to be taken, the tangent of the loss function is found. It points in the direction where
the loss function is smaller (see figure 2). In this example = would need to decrease by Az to get
to a lower value of the loss function. Backpropogation is the driving force behind all of the deep

Figure 2. the tangent of function f(z) = x? at point z = 2

learning algorithms. It allows the use of gradient descent throughout the whole deep network by
applying the chain rule [4]. The chain rule is a method that calculates the partial derivative of the
error with respect to a weight at any layer from the error in the previous layer and the current values
of the weights.

The output of a each layer is determined by the weights between the layers. The error from the
neurons is scaled by the weights going forward through the network. Since the error at the output
can be calculated, it is possible to work backwards to hidden layers using the weights. If the error
for the output layer is 0}, for each output unit &, then the error for a previous layer j is the output
errors, scaled by the weights between the layers.

The algorithm computes a gradient vector that shows how each weight in the network needs to be
changed in order for the error to decrease.

2.3 Introduction to deep learning

Deep learning is a technique used by many new Al technologies. Simply put DNN is just an ANN
with more than 1 hidden layer. In practice the number of layers can be as many as 1001 [17].
There are many different architectures to deep learning systems, but they all share a common
trait. In their article in Nature [6] LeCun, Bengio and Hinton point out that deep learning allows
computational models that are composed of multiple processing layers to learn representations

13

of data with multiple layers of abstraction. Deep learning improves the the benchmark results in
speech recognition, visual recognition, natural language processing and many other fields. Given
the right architecture enough data and enough computational power deep learning networks can
outperform any traditional machine learning algorithm. The main strength of DL is that it can
uncover hidden structures in data, because of the capacity for approximating even the most complex
functions.

The main drawback of deep learning is that it requires a lot of data and powerful hardware to be
effective. Furthermore, due to their large representation capacity DL networks tends to over-fit the
data and not generalize well with new examples, if the training is carried out incorrectly. However,
there are existing solutions to avoid over-fitting and some of them are used in this master thesis.
The training data also needs to be labeled.

Finally, deep learning has become a go to technique for modern Al applications. Many real world
problems rely on rules that for humans seem like pure intuition and can not be pre-programmed.
For example, classifying pictures of dogs and cats it would be hard to tell a computer each and
every possible difference that the two classes might have. Deep learning solves problems like
these by finding subtle abstract representations for important features like shape of nose and eye
placement while at the same time ignoring huge features, like the size of the body and the scale
of the picture. The same representation capacity is useful in natural language processing. Other
techniques concentrate on small scale features like n-grams and their placement in the sentence. By
having multiple layers of abstraction a deep network can find features that signal abstract relations
like sarcasm, passive aggressive sentiment and similar. The language case is less intuitive than
finding objects in pictures, because language in itself is an abstract representation of the world.
Subjectivity is also a major hindrance since a statement might be perceived as sarcasm by some
and taken for its literal meaning by others.

2.4 Recurrent Neural Networks

Section 2.3 touches upon a variety of deep learning neural network architectures. There are con-
volutional neural networks(CNN’s), generative adversarial networks(GAN’s) and many more. The
main focus of this thesis is on a specific variety called recurrent neural networks (RNN’s) [4]. It
is a type of architecture that is well suited for learning sequential data, where the next item in the
sequence is determined by the previous items. RNN’s process input sequential one element at a
time [6]. The size of the element can be chosen. Some RNN'’s operate on a character by character
basis, other process sequences word by word.

The main problem with recurrent networks is that at each time-step the gradients of the network
grow or shrink. Since the network feeds back on itself after many iterations the gradients tend to
either vanish or explode. Usually RNN’s employ some kind of a memory model, that saves the
hidden state of the network. For example if a network is encoding a sentence it can save that sen-
tence as a representation in memory and then use it when initializing the next sentence. Figure 3
shows a simplified version of a recurrent neural network.

All in all, RNN’s can be seen as very deep neural networks where each layer represents a step in
time. At each time step it gives a prediction for what the next element in the sequence could be.
This makes the learning process of back propagation very similar to any other ANN. There are also
multiple hyper-parameters that can be used to tune this network, like sequence length and number
of iterations. In their book Goodfellow, Bengio and Courville [4] present a few different memory
models. The most widely used is the long short term memory. LSTM is the model that is going

14

Figure 3. A recurrent neural network unfolded in time

to be used in this master thesis. It transfers cell state via a combination of remember and forget
gates, which selectively keep and discard the relevant information for predicting the next item in
the sequence.

2.5 ANN regularization techniques

Regularization is a list of techniques to decrease the test error. In [4] regularization is described
as any modification to a learning algorithm that is intended to reduce its generalization error but
not its training error. This is usually done by regularizing estimators or in other words trading
increased bias for decreased variance in such a way that variance decreases significantly while the
bias increases slightly.

There are many regularization methods. This chapter mentions a few that are used in this masters
thesis. They have been chosen over others, because they tend yield better results when combined
with recurrent neural network models and LSTM’s. Some of these techniques are just common
practices well know to deliver good results for increased generalization. Early stopping is a tech-
nique described in [4]. Most ANN hyper-parameter sets have a U shaped validation and test set
performance curve. This means that at some point the model stops generalizing and begins over-
fitting. Early stopping allows to find hyper-parameters that stops the training just in time. It also
controls the capacity of the model.

The main drawback of the early stop approach is that the validation set evaluation needs to be run
in parallel with training. This is usually done on separate CPU or GPU. Furthermore, when using
early stopping a copy of the best parameters needs to be kept. This regularization approach can be
used either on its own or with other regularization techniques that are discussed in sections ?? and
??. Dropout is another very effective, computationally inexpensive regularization technique [4].
At first glance it may look similar to ensembling as it involves training a large ensemble of deep
neural networks. It done by training the on a subsets of a smaller neural networks constructed
from the original network as displayed in figure 4. The figure shows the most basic deep network
with two input units x; and x5, two hidden units /; and h, and one output unit y. The number
of all possible combinations of sub-networks by dropping non output units is 16. It is clear that
some of the network architectures are unusable as there is no input unit or there is no path from the
input to the output. However, in a larger deep network architecture this problem becomes insignif-
icant, because this type of arrangement become very unlikely as the network becomes wider and
deeper. The main difference between dropout and other ensemble methods is that the sub-networks

15

oF
<)
@‘g

&)

y

i
54

Base network

&) &) &)
@Q@ - 69»%‘%@

oo
&) &

All possible sub-networks from the base network

Figure 4. The list of possible subsets of a neural network that has 5 nodes, where some of the
variations are invalid.

in dropout are not independent and are not trained separately, therefore the computational costs are
insignificant when compared to an ensemble model where there are more than a few deep networks
being trained. The main idea of dropout is to disable some of the non output units in the network
during the training process on different iterations. This way the training is impeded but the overall
generalization capability of the network increases [4].

2.6 ANN optimization techniques

Firstly, a distinction needs to be made between learning and optimization. Learning or training in
the context of artificial neural networks is a process by which the network finds the best weight
set to approximate a predictor function from the data that it has been given. The Deep Learning
Book [4] introduces several model optimization techniques. Deep learning algorithms are highly
influenced by the initial parameter selection. Since they are iterative in nature the final state of the
network is deeply linked to the initial state of the network. Initialization selection can mean the
difference between weather the algorithm converges or not. Even if the training algorithm does
converge bad initialization can lead to an infective training procedure where it takes much longer
that it should to reach good results.

It is not well understood how initialization influences training. An even bigger problem is that
sometimes the initial states of the network that help training are detrimental to generalization. The
only thing know with some degree of certainty is that initial network parameters need to "break
symmetry" between different units [4]. For example if one input unit connects to a few different
hidden units then these hidden units need to have different initialization parameters, otherwise
they will just be complimenting one another and not doing real learning. This leads to a logical
conclusion, that it is best to initialize the network parameters with non-zero random values. As a
rule the weights are initialized by random sampling from the Gaussian distribution. Larger values

16

for weights tend to have better "symmetry breaking" effects. However, if the initial values of the
weights are too large they might "explode" during forward or backward propagation through the
network. This will cause the neurons to always fire no mater how small the inputs are. The opposite
is true for values that are too small. In this case the weights might vanish, so parts of the network
might become "dead" and never fire no matter what the input are.

Another popular optimization algorithm is Adam [4]. It stands for "adaptive moments". It is an
adaptive learning rate optimization algorithm. This is the optimization method of choice in this
master thesis as it is used widely in solving a lot of deep learning problems and has shown to work
well with textual data and RNN’s.

3 Algorithm implementation

3.1 High level description of the project

First the data resources needs to be established. All of the on-line resources are considered. This
includes Twitter, on-line news portals, financial news portals, specialized blogging platforms and
aggregated news API’s.

After selecting the resource an automated data collection script is setup to draw the information.
This script works through REST. It does some initial filtering and cleaning of the data. Processed
on-line data is stored in a csv file. This is done for both the textual and price data.

After collecting all the necessary information the data is preprocessed and explored. It is cleaned
of any duplicates and gaps are filled or removed. Additional variables are created if necessary. The
processed information is then stored on a separate file csv file.

Four types of deep learning models are created:

Online resources REST Client Data storage

Price prediction Machine learning Data processing

Figure 5. A flowchart of the project structure and relationship between different parts.

* The first model is a text based deep recurrent neural network with sequential LSTM cells
and word embedding.

* The second model is a parallel convolutional neural network with 3 parallel layers and soft-
max.

17

* The third is a deep neural network with 2 stacked convolulitional layers and softmax.
* The fourth is a price based deep recurrent neural network with LSTM cells.

After creating the models they are trained and tested with various hyper-parameters to establish the
best configuration for each model.

Finally the best configurations of each network are compared on validation and test accuracy to
establish the best overall performer. If necessary additional models are also created.

3.2 Initial assessment of tools and techniques

The client for data collection was written in python. It uses libraries like "requests" and "twit-
ter". Data processing is done on Jupyter Notebook. Numpy is used for numeric data and tables
are handled with the "pandas" library. Inbuild python IO libraries are used to work with csv files.
Matplotlib, pyplot and seaborn are used for visualizing data exploration exploration steps.

In the modeling part is done with the python library - Tensorflow [14]. It has low level APT’s for
combining different deep learning elements like LSTM, convolution, emedding and softmax. It
allows quick prototyping to test different architectures finding the best ones. It also provides a tool
for visualizing graphs and training progress in Tensorboard. The cost and accuracy graphs as well
as weights and predictions distributions were plotted using this tool.

3.3 Online resource selection

On-line textual resources can be assigned to a few different categories. Firstly, there are the big
news portals like Blomberg, New York Times, Financial Times and others.

The second category is news aggregators like newsApi.org and marketwatch.com. They collect
data from various sources a give an aggregated news stream.

Finally there are also micro-blogging sites like Twitter and StockTwitts. Potentially they are all
good sources, so in this project 4 criteria were established to select the best one:

Reliability how reliable is the source. This means that the content is generated by experts
in their field, the sources are reviewed, fact checked and edited before publishing. Official news
portals score high in this category. However, credible data sources are sparse.

Abundance the sources need to be abundant enough to run a deep learning algorithm. This
means being able to collect at least 10000 separate instances relating to a topic.

Ease of use the API to retrieve the data has to be easily available, preferably through a REST
service. The data needs to be search-able by keyword and date or in case of a stream it should have
a filter.

Data quality the data needs to be standardized, each item in the dataset needs to have the
same basic atributes like text, time-stamp and id.

A primary evaluation of the data-sources shows that StockTwits and Twitter are the most suit-
able source for the purposes of this thesis. These results are reinforced by the 2 articles that used

18

Table 1. Information sources compared by their reliability, abundance, ease of use and data quality

Reliability = Abundance Ease of Use Data Total
quality

NY Times 9 4 3 3 19
Bloomberg 7 5 8 7 30
NewsApi 9 6 3 8 26
MarketWatch 9 4 6 5 22
Twitter 3 10 9 8 30
StockTwits 6 6 9 9 30

StockTwits and the 3 articles that use Twitter as their main source of information in Section 1.
However, Twitter was chosen over StockTwits as the main data-source, because it is able to produce
much more information than StockTwits. The focus of this work is to use deep learning methods
to make price predictions and a more abundant but less reliable source is favored. Twitter also has
a much better API that allows streaming the incoming messages, whereas StockTwits has a service
which needs to be called constantly and only returns the last 30 items posted on the topic.

The minute by minute price data is retrieved from a blockchain info website [15]. It is the only
API that allows minute time steps. However the data has quality issues like missing values. Hourly
price data for 6 months is retrieved from coinmarketcap [12] where the data quality is much better
but the minimum time interval is 1 hour.

3.4 API access and data collection

The first thing necessary to stream data from twitter is an account and an API key. They can be
easily obtained from their website. For this thesis the "twitter" python library was used. It has
streaming capabilities, which allow to create a python generator to draw tweets as they are posted
and save them to a file. It allows to use keywords and hash tags to filter the steam. The REST
response contains many fields that are not used in this masters thesis so the script only collects the
following fields:

* id is a unique identifying marker for each tweet.

* text is the textual content of the message.

* created_at is the date and time at which the message was created in a yyyy-mm-dd hh-MM-
ss format.

* hashtags are the hash-tags that are used in the tweet from the ones used in the filter.

* user is the unique identifyer of the creator of each tweet.

Twitter does not allow retrieving historical data so only new tweets can be retrieved. The tweet
data collection script is run for 22 days from 2017-11-25 to 2017-12-15.

The minute by minute price data is collected from blockchain.info. Their service returns minute
by minute data for 6 hours. The script iteratively collects the price data for the same period as the
tweets collection script. The REST call returns a unix timestamp, an opening price, closing price,
high price and low price. Since only the closing price is relevant the script saves 2 columns:

* timestamp the date and time in a yyyy-mm-dd hh-MM-ss format.

19

* price the closing price for the period.

Their API only supports the Bitcoin price, therefore only Bitcoin data is collected.
The hourly price data is collected from coindesk. They allow the possibility to download csv files
with historic data. The fields in the dataset are: currency_name, price, timestamp and volume.

3.5 Data Processing

During the 22 day data collection stage a total of 757.9 MB of raw twitter data relating to Bitcoin
was collected with a total of 3828270 tweets. The script got stuck at some stages of the collection
process leaving chronological gaps. Some of them were for just a few second long and some lasted
for a few hours. This was then taken into account when processing the twitter feed. The minute by
minute price data also has gaps which were filled during data processing.

3.5.1 Removing duplicates and noise

The firs cleanup step is to remove duplicated tweets from the dataset. There are two types of dupli-
cation to consider. Firstly, there are the hard-duplicates. These tweets are duplicated in "tweet_id",
meaning that they are the same tweet that appears in the dataset multiple times. This might occur
due to a glitch in twitter api or in the data collection script itself. All of the hard-duplicates are
removed removed. After this 3781342 tweets are left in the dataset.
A much greater proportion of all the tweets are the soft-duplicates. These are the tweets that differ
in tweet_id but have the same "tweet" field.
The easiest approach would be to remove all duplicates. But that destroys some information about
the dataset, as duplicates are usually the tweets that got re-tweeted by other people without addi-
tional comments. However, this could be an argument for their significance being larger as more
people found them important enough to spread around. This is especially true for crypto-currencies
where most of the price changes comes not from hard numbers, but the associated hype and net-
work effects.
This is why the soft-duplicates should be handled with a little more consideration, . For example
out of all 3828270 tweets on bitcoin only 1289377 are non soft-duplicates (33.6%). However, most
of the duplicates are just a few items. In figure 6 the most common duplicated tweets are shown.
The chart 6 shows that most of the soft-duplicated tweets come from a few sources. There are
196440 of the first most duplicated tweet it makes up 5,1% of the total dataset. The text reads:
"RT @TravWeav: Bought 1,500 bitcoin in 2011 for $2.87 each. I will pick 5 random people who
retweet this and give one to each of y...”. The wording reads that this is some kind of a bitcoin
givaway, so basically spam. In the top 20 tweets there are about 18 that could be classified as spam.
They all either have the words "Bitcoin givaway", "random people who re-tweet this and give one
to each” or just "giving away" and "bitcoin" somewhere in the content. It seems that they skew the
dataset and the distribution towards tweets with spam content. So all of the duplicated tweets have
the before words "bitcoin" and "giveaway" or "give-away" or "give away" are removed.
After removing the non-relevant soft duplicates there are 1378461 tweets left in the dataset. This
cuts out about 64% of the tweets from the dataset.

20

200000

175000

150000

125000

100000

Count

75000

50000

25000

T SEE WHY THI

RT @buellerff: Bought 563 bitcoin in 201
RT @btc: Bitcoin Giveaway #2: As promise
RT @kucoincom: Retweet this post after f
RT @kucoincom: Retweet this post after f
RT @TravWeav: Bought 1,500 bitcoin in 20
RT @ico_report: The Largest Channel abou
RT @buellerff: Bought 563 bitcoin in 201
RT @DavidLetternan: | bought 3,500 bitco
RT @ico_report: The Largest Channel abou
RT @ico_report: The largest channel abou
RT @SilviaXSmile: T Get Insider Informat
RT @realsheepwolf: SINTV: #cryptocurrenc
RT @vintagebazaarOB: #Bitcoin and #Altco

RT @WolfOfCryptoSph: Another Successful

£
H
-
E
i:)
@®
E
2
=
g
=
2
g
8
o
<
2
H
©
@
&

RT @TravWeav: Bought 1,500 bitcoin in 20

RT @dJoshwilkyyy: Bought 1,500 bitcoin in

RT @btc: Bitcoin Giveaway: Once Bitcoin

RT @CNSSupport: CyberMonday FOREX VPS -

RT @realsheapwolf: 0 $INTV

Figure 6. Histogram of the top 20 most duplicated tweets by sorted by number of occurrences

3.5.2 Exploring the dataset

The next step in cleaning the data is cleaning the text. The tweets contain a lot of noise. There are
a lot of duplicates not covered by section 3.5.1. Some tweets are the same apart form a link or a
cyphered text and could also be removed as duplicates.
Firstly, the punctuations are removed from the tweets. The list of punctuations are used from the
python string library. In language translation or text generations punctuations would be left, but
for price predictions they are just noise. All letters are converted to lowercase sot that words like
Bitcoin and bitcoin would mean the same thing.
Secondly, the words that contain the letters "http’ in a sequence and the words that are more than
25 letters long are removed. This lowers the amount of unique words in the dataset as most of the
links and cyphered words are there only once, this will be useful when it comes to embedding.
Thirdly, after removing punctuations there are still some undesirable characters or character com-
binations left. All of the new line characters like characters and various combinations that represent
pictograms are removed.
After removing the punctuations and other noise there are 454477 unique words in the dataset.
On one hand this is a lot considering that the whole English language has about 1000000 words.
However, there are a lot of words that are misspelled. Also many words are not part of the Oxford
English dictionary and are used only on the Internet.
Figure 7 shows the distribution of words sorted by the number of times they are used in the cleaned
tweets dataset. Bitcoin is clearly the most dominant word in use, mentioned 880421 times which
can be attributed to it being used as a hash-tag. After that there generic English words like the,
to, it and similar. Out of the top 50 words the ethereum, cryptocurency, blockchain and futures

21

800000

600000

Count

400000

200000

you
oypto
with

it

1

this
ethereum
at

are
now
wva
how
will
new
what
be
your
here
news
free
as
Just
get
like
one

cryptocurrency
eth

amp

that

ico

buy

trading

more

by

bitcoin
blockchain
bitcoins
futures.

Figure 7. Top 50 words sorted by the number of times they are used in the dataset

prevalence is specific to this domain. There are 310112 words in the dataset, that are only used

70000
80000
50000
40000

30000

Number of tweets

20000

10000

- o eI 4 n o P~ L=l @ o - o] =3 wn o o~ =] [] & g Q3]] &] Q 2 » N =

Figure 8. Distribution of tweets by their length in the bitcoin dataset

once. This makes up 68.2% of all the unique words. Most of them are either misspelling, numbers
or mangled words. It would be a good idea to remove them , but among them are words that might
be significant and a deep neural network should be able to distinguish between the ones that are
relevant unique words and ones that are not.

The tweets differ in length. In figure 8 looking at the tweets the distribution is quasi normal with no
deep outliers. The tweets length varies from 1 to 33. The shortest tweets up to 3 words are removed
as they do not useful information. The mean value is 13.1 and the mode is 12. The shortest tweets
of length 1 and 2 are removed as they are not long enough to carry any meaningful content.

22

3.5.3 Cleaning price data

The minute by minute price data has a lot of discrepancies. The main problem is missing values.
There are up to 1 hour periods where the data is missing. Since blockchain.info is the only site
where such data is available it is not possible to augment it from other sources. To fix the gaps
simple averaging is used.

In figure 2 an excerpt of the data has a missing value in time step 2017-12-02 02:02:00. The

Table 2. Missing time step values in the price dataset

Time Price
2017-12-02 02:00:00 10840.86
2017-12-02 02:01:00 10850.9
2017-12-02 02:03:00 10837.39

missing value is calculated by averaging the price for the previous end next time step. The fixed
value is shown in figure 3.
In case the values are missing for more than 1 consecutive time step the period the middle value

Table 3. Fixed missing time step value in the price dataset

Time Price
2017-12-02 02:00:00 10840.86
2017-12-02 02:01:00 10850.9
2017-12-02 02:02:00 10844.15
2017-12-02 02:03:00 10837.39

in the period is filled with the average from the available values in the previous and next period.
This process is repeated iteratively until all the values are filled.
Another problem in the price data are duplications. For some reason the API returns multiple
values for some steps. If the price value for the duplicates are the same then one of them is
removed, else the last duplicated value is left.

In table 4 an excerpt of the price data is shown. There are missing and duplicated values. This

Table 4. Duplicated price data example

Time Price
2017-11-09 18:41:00 7173.26
2017-11-09 18:42:00 7176.68
2017-11-09 18:42:00 7176.68
2017-11-09 18:43:00 7160
2017-11-09 18:44:00 7168.51

is fixed by first removing the duplicated values and then iterating through the data and filling the

23

missing values with averages of the previous and further time period. This is not ideal, but for a
recurrent neural network to work it needs to be continuous. The fixed data is shown in table 5.

Table 5. Fixed duplicated price data

Time Price
2017-11-09 18:41:00 7173.26
2017-11-09 18:42:00 7176.68
2017-11-09 18:43:00 7160
2017-11-09 18:44:00 7168.51

3.5.4 Augmenting price data

Once the text is preprocessed the the textual data is assigned to price data. This is done by com-
posing a map. One price point maps to multiple text sources for the period previous to the price
evaluation point. The goal is to have multiple text sources mapping to one price value.

Also latency is considered. The messages do not influence the price at the moment that they are
posted - some time needs to pass. A hyper-parameter for preprocessing data is used called latency.
The default value for it is 1 minute, but various latency intervals are tried in the course of training.
The simplest type of problem is classification. The network is trying to decide weather the price of
the crypto-currency will rise and fall in the next period given the textual input. Additional variables
need to be created. If the price rose compared to the previous time step the value of the column is
1 if the price fell the value is 0.

1 forp; —pi-1 20
Cps pio1) = ' 3.1
0 forp;—p;i_1 <0

In 3.1 the method of assigning the change value is shown. Here C' is the function that represents
the change from the previous time step, p; is the price at the current time step and p;_; is the price
at a previous time step. If the prices are equal 1 is assigned as only decreasing price values are
assigned 0.

The other type of problem is regression. The network is trying to predict the both the direction and
the magnitude of the change.

C(pi,pi_l) = (1 —) x 100 (32)

The price data is augmented with the column the value for each row is calculated in 3.2.

3.6 Augmenting text data
3.6.1 Converting text to integers

In order to feed the textual data into the recurrent neural network it cannot be in textual form.
For this it needs to be converted into numbers. There are multiple ways on how to do it. It is

24

possible to one-hot-encode it, but in this case the vector length for each word would be the same
as the dictionary length so it is not very efficient. Another way is to use embedding. This means
converting each word into into an integer and creating a dense representation of a tweet.

The first step is to create a list of all the word in the textual corpus. So the tweets are split at
spaces in the text. Some tweets have tabs and multiple spaces, for this the created array needs to
be cleaned of excessive spaces.

The second step is creating a dictionary from the word list. This is done by iterating through the
word set and assigning the iteration step value starting from 1. This way each word will have a
unique integer representation that is can be processed by the network.

The third step is converting the textual tweets into an integer array. All the need to be of the same
size. This is done by selecting a sequence length. In this case it is the length of the longest tweet
word count. A zero value array of sequence length is initialized and the tweet integer array is
projected on the end of the 0 array. In figure 9 the full process from raw tweet text to a fixed size

‘Cancellation of hard fork means less uncertainties in the long run and only temporary drop in prices. #btc #Segwit2X ‘

Clean text, remove punctuations

Cancellation of hard fork means less uncertainties in the long run and only temporary drop in prices #btc #Segwit2X

Convert text to integer array

18564, 12372, 9243, 3706, 8742,36607, 22991, 13360, 14286, 5533, 412, 33754, 26448, 37305, 1174, 32008, 16077

Embed array into fixed length 0 vector

Y

0,0,0,0,00,0,00,0,0,0,0, 18564, 12372, 9243, 3706, 8742, 36607, 22991, 13360, 14286, 5533, 412, 33754, 26448, 37305,
1174, 32008, 16077

Figure 9. An sample full sentence converted to an integer array with padding.

embedding is shown. This is an actual tweet from the dataset embedded using a dictionary created
from the dataset. The beginning of the input is padded with 0, which are a neutral number, which
the neural network ignores as it is found in most tweets. The network iterates over the zeros and
gets to the actual tweet words represented by integers.

3.6.2 Mapping textual data to price data

In order for the network to learn tweets need to be assigned a label which the recurrent neural
network will use in training. The first thing to consider is the realistic time scale at which a tweet
relates to a price. It cannot be instantaneous and realistically a tweet has the strongest relation to a
price in the future.

The twitter dataset has time values in the in second precision. On the other hand the price data
comes in every minute. To make things easier the twitter data is rounded up to the next minute so
that an example time of 2017-11-09 18:41:12 is rounded to 2017-11-09 18:41:00.

A price map is created to map the price change to the twitter text. The mapping algorithm takes a
latency parameter in minutes. This allows to create datasets with different latency.

3.6.3 Text embedding

The tweets that are converted to integers need to be embedded to save space on the model. Ten-
sorflow has an embedding API. It takes the length of the dictionary and the desired length of
embedding and converts it into a sequence. This API finds words that are used in similar context

25

and places them close to each other in the multidimensional plane. So instead of using one hot
encoding and having very sparse and memory consuming one-hot vectors a dense representation
is used where the input words is encoded in a n dimensional space where n < wordcount. A toy
example in figure 10 shows how this is done. Words with similar meaning will be embedded into
vectors that have a similar length and direction.

In the graph bi-grams are encoded. Combinations like "two days" and "few days" will be close to

b - sonsticliye dialg. ¢
' mﬁg Ehtlﬁiis-:uss.inn
100 - o days
' £-:,| days
75 1
5.0 1
25 1

0.0 -

dowa rds home

-2.5 1 ﬁgw%

-2 0 2 4 G B 10 12 14

Figure 10. A plot of a bi-gram embedding in a 2-dimensional plain

each other and far from combinations like "toward home" and "way home". Having encoded the
words into their coordinates in this multidimensional plain allows for this information to be passed
into a ANN.

3.7 Machine learning model setup

Machine learning can be formulated as a classification or regression problem. The first is easier
as it only requires to guess which way the price is moving. The success of this type of model can
be measured by both cost and accuracy. Cost is calculated by a mean squared error 2.2. Accuracy
is just the measure of how many classifications the model got right in comparison to the whole
dataset. The regression tries to predict an exact amount of change. The cost function is calculated
the same way, however the accuracy cannot be calculated as it will almost always be 0.

Since there are multiple tweets in a single time step the data mapping for can be either one-to-one
or many-to-one. For the most basic model a one-to-one mapping is tried. For the rest of the models,
the many-to-one mapping is used. Here the time the tweets are aggregated at each time step into
a single text that is mapped to a price point. This is a valid approach for both the classification
and regression type models. It does take into consideration the order of the tweets. However more
information is bound to get lost and the number of tweets would not play an important role in the
model. Another major drawback of this approach is that it would shrink the dataset considerably
as multiple tweets would fall under the same price point and the number of total data mappings
would fall by the average of the number of tweets at each time step. However, this model has a
strong dependency on the order of the tweets, as they all fall chronologically at each time step.

26

Each model has multiple hyper-parameters. The one that is unique to this project is latency. As
information posted on a social media network usually does not have instantaneous results the tweet
mapping to a price point can be delayed. This can be done in multiple ways. The first one is
a simple latency parameters in minutes. Another approach is to aggregate the price change of a
period, because the minute by minute changes might be too stochastic and will not have a direct
relation to the tweets. Furthermore, some news might have an impact the next minute where as
other tweets have a more delayed effect.

Two types of deep learning models are used. Recurrent neural networks have the following hyper
parameters:

* LSTM size how many LSTM cells are coupled together for the model.

* Embedding size indicates how big the embedding of the sequence should be.

* Number of layers - how many hidden layers there are in the network.

* Learning rate how big are the steps that the training algorithm takes at each training itera-
tion.

* Batch size indicates how big the batches are for training

* Keep probability indicates the rate of dropout being used.

* Number of epochs indicates how many times the training algorithm iterate through the data.

* Latency variable decides how many time-steps the tweets and the price relationship is lag-

ging.
Convolutional neural networks have these additional parameters:

* Padding can either be "same" or "valid".
* Strides how big a stride does a convolutional filter make.
* Filter size how big the filter is.

These are all tuning knobs for the model and a wide range of them needs to be tried out to find
the best performing predictor. Every model is tried out with multiple hyper-parameter sets and the
best performing set is selected.

3.8 Experiment setup

Three different datasets are used in this project. One is a toy dataset of tweet sentiment that is
used to check if the network architecture is valid. If the model train and validation error is going
decreasing the model is trained on the second dataset.

The second dataset is the tweets collected over a 22 days period. They are mapped to a data-time
value which is used to map them to the 3rd dataset.

The third dataset is a price list for the 22 days in mentioned before. This is a price to date-time
mapping which is used to create labels for the 2nd dataset.

The fourth dataset is a 6 months hourly price change collection. It is used to run the price prediction
on just the price movement. The data is split into training, test and validation sets with a 8:1:1 split.
The validation dataset is used during training as a reference for the training algorithm. As training
progresses and the training loss decreases it is expected that the validation error would decrease as
well. When the model is fully trained and the best hyper parameter set is found it is tested on the
test dataset.

In the experiment GPU enabled Tensorflow is used. The graphics card is a 4 GB Nvidia GeForce
960M with 680 CUDA cores.

27

3.9 First model: deep recurrent network with text embedding

3.9.1 Testing on a toy dataset

The first model is a multilayer recurrent neural network. The textual inputs are first embedded
so that each word integer would be represented not by a one-hot encoding, but by a dense n-
dimensional representation where n is less than the total word count in the dataset. The overall
architecture is show in figure 11. After the input data has been embedded it is passed to an "rnn"
layer, which is an abstraction for a multilayer multi-Istm cell with dropout applied to the output of

each layer.

Finally, the "rnn" output goes into a "fully connected" layer. The outputs of this layer are used

cost frain accuracy

% N "s‘_n.n

labels
predictions train

Sy,

train

keep_prob_1 rnn fully_connected

save

&
9

trafigpose
concat
P
h‘*ﬂb
train
save

embeding

®
|

inp?Uts

train

Figure 11. First deep learning model - a RNN with an embedding layer and LSTM cells.

train
save

| fc-weights
' fe-biases

to calculate the mean squared error of the batch. Also sigmoid activation is applied to the same

output and it is used to calculate the "accuracy".

The model uses Adam optimizer to train the network. This training algorithm adapts the weights

depending on how the big the training step needs to be [4].

This network is tested by giving it a know problem to classify the sentiment of tweets for a labeled

airline review dataset. The hyper parameters for the this are:
number of epochs is 20
batch size is set to 64
embeding size is set to 32
sequence length is 36
number of Istm cells per layer is 128
number Istm layers is 1
learning rate is 0.001
keep probability for dropout is 0.7

The input vector at each iteration has a shape of (batch size, sequence length) and the output shape

28

is (batch size, 1). The initial setup is basic, but suffficient to check if the network is reducing the
training and validation cost.
The training stage runs for 106 seconds and the last validation accuracy is 0.77. Figure 12 shows

accuracy. ‘cost

0.220 -

1.00 7 0.180 -

0,900 0.140
0.100

0.800 - 0.0600 -
0.0200 |

0.700 -0.0200

0.000 1.000k 2.000k 3.000k 0.000 1.000k 2000k 3.000k

- training set - validation set

Figure 12. Training and validation results of the first deep learning model on a toy dataset.

the accuracy and cost of the train and validation data sets. The model is training and generalizing
because the training and the validation accuracy is going up and the cost is going down. However,
the model begins to over-fit at iteration 1500. This would be a good place stop training on a real
dataset.

On the test run the prediction accuracy is at 0.81 so over 81% of the test data was classified cor-
rectly. Looking at the predictions distribution during the training run in 13 the algorithm starts of
at random guessing, as the distribution is spread evenly between 1 and 0.The last iteration most of
the predictions cluster around 1 and 0, meaning that the algorithm is more and more sure of what
the prediction needs to be.

Figure 13. Prediction distribution of the first model on the toy dataset.

29

3.9.2 Bitcoin tweets dataset

The second step is to try out the working model on the real dataset of tweets collected over 3 weeks
and the price changes that happened after those tweets were posted. All of the hyper-parameters
are the same as in the previous run, only the batch size is set to 1000, because the training dataset
consists of 1378461 tweets and price mappings. The sequence length is set to 33 which is the
number of words in the longest tweet.
Also an additional hyper-parameter for latency is used and it is set 1 minute, meaning that the
prediction is made for the price movement 1 minute after that tweet was posted. Otherwise the
architecture is the same with 1 LSTM layer and 128 LSTM cells per layer.

The training for the second experiment runs for 2804 seconds and yields worse results than the

accuracy 'cost
0.750 0.300 ——,/_,_,_,-oﬂ"""'"
b
0.650 0.200
0.550 0.100
0.450 0.00
0.000 3.000k 6.000k 9.000k 0.000 3.000k 6.000k 9.000k

training set - validation set

Figure 14. Training and validation results of the first deep learning model on a bitcoin dataset.

toy dataset The cost and accuracy in figure 14 show that both runs improved on the training data,
but only the first run improved on the validation data. It is model for Bitcoin tweets is over-fitting.
The training cost and accuracy are improving but the validation accuracy stays the same and the
cost is increasing. This indicates that the model is not generalizing and is memorizing the training
dataset.

Looking at the predictions distribution in figure 15 the model does not seem to be as certain of
which one of the 2 values it should choose. It starts of by mostly yielding predictions around 0.5
and slowly spreading it out with peaks forming at 0.5, 0.0 and 1. However the predictions are not
as clear cut as with the toy dataset.

To minimize over-fitting and get better generalization it is possible to impede the training algorithm
optimization by tuning the dropout parameter so that the dropout layer would disable some of the
connections going into the next layer. In the next run the dropout value is set to 0.5, also to improve
the model capacity the number of layers is increased to 3. This allows for the model to find more
complex hierarchical structures in the data which a 1 layer network might not do.

For the next training run the other hyper parameters stay the same, except for the number of epochs
which is lowered to 10. If there is no improvement with the changes applied to the network it might
indicate that there is something wrong with the training data structure.

The third run of the training algorithm takes 3673 seconds and yields a test result of 0.502, which
is better than run 2, but the improvement is clearly just by chance as parameters like validation
accuracy and cost show a decline in the results.

The results for run 3 are shown in figure 16. The cost and accuracy are smoothed for the trend to be

30

Figure 15. Prediction distribution of the first model on the bitcoin dataset.

more visible. The fact that the training run cost and accuracy are jumping around so much might
indicate that the learning rate is too high and the changes in the weights by the current learning rate
overshoot the the target on the cost function. However, it is clear that training cost is decreasing
and accuracy is increasing, but the opposite is true for the validation set.

The predictions distribution as shown in figure 17 indicates that the training is even worse at

accuracy cost
0.700
[0.280
0.660
0.260
0.620
0,580 0.240
0.540 0.220 -
0.500 0.200
0.460 0.180
0.000 1500k 3.000k 4.500k 0.000 1500k 3.000k 4.500k

- training set - validation set

Figure 16. Training and validation results of the first deep learning model with 3 hidden layers on
a bitcoin dataset.

predicting the results as most of the predictions cluster around 0.5. This means that the training
process cannot find a way towards a lower point on the cost function so it over-fits the data by
minimizing the cost by assigning predictions with values between the 2 possible targets 0 and 1.
Figure 18 shows that the training process in the two cases finds a different weight matrix in the
fully connected layer. This is in part due to the fact that the 3rd run was done with 3 hidden layers.
The weights in the 3rd run cluster around -0.10 and 0.10 which, this indicates that the learning
algorithm failed to capture a complex approximation function and in part explains the different

31

1000

2000

3000

4000

5000

-0.3% 025 -015 -005 005 015 025 035 045 055 065 075 085 08 105 115 125 135

Figure 17. Prediction distribution of the first model on the bitcoin dataset.

prediction distributions on the 2 runs.

1500
2500
3500
4500
5500
6500
7500
8500
9500
10500

Figure 18. Weights distribution comparison of the first model on the bitcoin dataset with 1 and 3
hidden layers.

3.9.3 Merged tweets dataset

The tweet by tweet mapping to a price change shows improvements for the training cost but if fails
to generalize and the validation error and accuracy stay the same or decline during training. One
possible reason for that is that when mapping each tweet to a price change value it might introduce
an imbalance to the dataset. There are time steps where there are as many as 70 tweets in one
minute and on other time steps there are as low as 18 in one minute. Overall the dataset is quite
well balanced with 52:48 proportion of positive and negative price changes. However, with tweet
by tweet mapping the balance shifts to 57:43.

This problem can be partially solved by merging the tweets at each time-step into a single text.
This will decrease the number of data points in the dataset, but it will remove the imbalance and
even out the significance of each time step in the training.

The biggest problem that occurs with merged tweets is that the word count in a single data-point
increases. Figure 19 shows the diffference in word word count distributions for merged and non

32

merged datasets. The longest text in a non-merged dataset in 33 words. The longest text in a merged
dataset is 2053. However, only a 237 texts are longer than 400. To keep the model smaller the texts
that are shortened to dropping the beginning of the text and leaving the last 400 words.

The model is run with these hyperparameters:

3= 2000
0 1750
1500
5 25 5
E‘ o 1250
T 20 S
€ 2 1000
£
£® g ™
10 500
250
5
0
0 100000 200000 300000 400000 500000 600000 700000 0 5000 10000 15000 20000 25000
tweet number tweet number

Figure 19. Tweet length distribution comparison between merged and non-merged datasets

number of epochs is 10
batch size is decreased to 250
embedding size is the same at 32
sequence length is raised to to fit the input vectors 400
number of Istm cells increased to 512
number of rnn layers is set to 3
learning rate is 0.001
keep probability for dropout is 0.7
Merging the tweets does not yield lower costs or higher accuracy on the validation set. The algo-

accuracy 'cost

0.850 0.300 —/_/—J

0.750 T
0.200

0.650
0.100

0.550

TR,
0450 m““w 0.00
0.000 2000 4000 6000 8000 0.000 2000 4000 G000 B00.0

training set - validation set

Figure 20. Training and validation results of the first deep learning model with 3 hidden layers on
a merged bitcoin dataset.

rithm is predicting with with around 0.5 accuracy which is the same as random guessing. The cost
function for training and validation sets diverges at iterration 250 so the training algorithm starts
to over-fit the data again. Changing the training data structure and the hyper-parameters does not
improve the generalization of the model.

33

The prediction distribution in figure 21 moves from clustering around 0.5 at the beginning of train-
ing, to evening out and forming small peaks around 0.0 and 1.0 at the end of training. However,
this does not result in improved accuracy and cost on the validation set.

Figure 21. Prediction distribution of the first model on the merged bitcoin dataset.

3.10 Second model: parallel convolutional neural network with embedding

The second model is a convolutional neural network with 3 parallel convolutional layers. Similar
to the first model the input is embedded. Then the dimensions are expanded from (batch size,
sequence length, embedding size) to (batch size, sequence length, embedding size, 1) in order to
fit the convolutional model. The expanded input is fed into each of the paralel models seperately.
The convolutional layers haven 8, 16 and 32 filters and kernel sizes of (5, 5), (4,4), (3, 3) respec-
tively. The output at each layer is fed into separate max pooling layers with a pool size of (2,2)
and a strides of 2 each. The outputs of the max pooling layer are concatenated along the zero axis,
creating a tensor of (batch size, sequence length, embedding size, total number of filters). Dropout
is then applied and the tensor is reshaped to (batch size, sequence length * embedding size * total
number of filters). The reshaped tensor is fed into the fully connected layer which applied a sig-
moid and outputs a tensor of (batch size, 1) as a prediction vector for each of the items in the batch.
The architecture of the model is shown in figure 22. The cost is used as input for Adam Optimizer
training operation.

3.10.1 Testing on a toy dataset

First the model is tested with the toy dataset to check if it can learn and produce similar general-
ization to the rnn model. The hyper-parameters for the toy dataset:

number of epochs is 20

batch size is 64

embedding size is 32

sequence length is 36

34

cost wrain accuracy

\ g y
labels
predictions wain
@ e

#
F
train

save
keep_prob_1 dropout train fully_connected (0 fweights
fo-biases

init
B

Reshis pe
shape train

%,
Gancat

ar6ell L TE
Ll \9‘5 Blipg
&

el

train max_pooling2... train max_paoling2... train

B

i B

i 8
train

conv2d save i conv2d_3 i
init
4
-
‘train
conv2d_1 3 conv2d_2 save
init
- Expanggi' l
dim train
&
r'd
[
. train
embeding save
init
i
inplits

train

Figure 22. Convolutional neural network with 3 paralel convolutional layers

learning rate is 0.0005

keep probability for dropout is 0.6
The model trains for 93 seconds on the toy dataset and gives a test accuracy of 0.776. This is
slightly worse than the first model but the difference is not significant and could be changed with
some hyperparameter tunning. The cost and prediction accuracy during training are similar to the

accuracy ‘cost

1.05 0.220
0.950 0.180

0.140
0.850 0,100
0,750 0.0600

0.0200
0.650 -0.0200

0.000 1.000k 2000k 3.000k 0000 1000k 2.000k 3.000k

- training set - validation set

Figure 23. Training and validation results of the second deep learning model on a toy dataset.

first model. However, in figure 23 the validation cost evens out at iteration 2000 and does not start

35

to grow indicating that the model generalizes better and does not start to over-fit the data as much.
This is a desirable result as the first model suffered from over-fitting with the bitcoin tweets dataset.
In figure 24 the weights distribution change is shown for the training run. The weights are initial-
ized at around O and as the training progresses the distribution flattens around 0, maintaining a
quasi-normal distribution curve. This is the desired result for training with the real dataset.

Figure 24. Weights distribution of parallel convolutional network on toy dataset

3.10.2 Merged tweets dataset

The model is then run on the merged tweets dataset with parameters:

number of epochs is 20

batch size is 100

embedding size is 32

sequence length is 400

learning rate is 0.001

keep probability for dropout is 0.7
It takes 1655 seconds for the model to train and it gives a test accuracy of 0.498. Again the results
are the same as random guessing. The cost for the training dataset decreases until it reaches about
0.1 and then it hovers around that value, however the validation cost after dropping to about 0.3
start increasing from the 600th iteration (see fig. 25). The validation accuracy follows the training
accuracy, but then flattens and stops generalizing. The training accuracy increases to about 0.8
where it evens off and the validation accuracy plateaus at 0.45, which is even worse than random.
This might be caused to the class imbalance.

The predictions distribution for this run are shown in figure 26. During the course of the training
run the predictions spread out across a range between -0.5 and 2.3. This result shows that the net-
work does not optimize even on the training run as the values would be expected to cluster around
0.0 and 1.0 for the 2 possible classes in the dataset. Running the training for more epochs could

36

accuracy. 'cost

0.800
0.800
0.600

0.600
0.400 0.400 7
0.200 - 0.200
0.00 0.00

0.000 6000 1200k 1.800k 0000 6000 1.200k 1.800k

- training set - validation set

Figure 25. Training and validation results of the second deep learning model on a merged bitcoin
dataset.

have improved the training accuracy and cost, but the validation cost stopped decreasing so any
gains with the training set would have come at a cost of over-fitting.
The weights distribution (see fig. 27) for this training run is almost a bell curve which would be

300
500

700

900

1100
1300
1500
1700
1900
2100
2300

Figure 26. Predictions distribution of parallel convolutional network on toy dataset

expected, enabling some of the connections at the expense of others, creating paths in the network
for the relevant data to flow. However, this does not result in good performance on either the train-
ing nor the validation sets.

All in all, the second type of the deep learning model does not show any improvement in generaliz-
ing and correctly predicting the validation dataset over the first recurrent network model. Usually
deep learning models are good at finding hierarchical abstractions in textual data. This was shown
with the toy dataset where both models with no parameter tuning and low network depth could
make predictions with about 0.8 accuracy.

37

MALALL |
T m,

Figure 27. Weights distribution of parallel convolutional network on toy dataset

3.11 Third model: deep convolutional neural network with embedding

The third model is also a convolutional neural network. However instead of having multiple parallel
convolutional layers this model stacks them sequentialy and the output of the first layer becomes
the input of the next layer.
The high-level architecture of the model is shown in figure 28. The first layer is the input. This is a
2 dimensional vector of batch size and sequence length. The input is fed into the embeding layer.
Each word in the sequence is then embedded into an integer array of a selected length. This makes
3 dimentional tensor of batch size, sequence length and embedding size.
The dimensions of the outputs are then expanded to 4 dimensions to fit the first convolutional layer.
It has 32 filters and a kernel size of (5,5) with "same" padding and a relu activation function.The
outputs of the convolutional layer are fed into the max pooling layer, which has a pool size of (2,2)
and a strides of 2.
The tensor is further fed into the second convolutional layer with 64 filters, kernel size of (5,5),
"same" padding and relu activation. The outputs are again fed into a max pooling layer with the
same configuration as the previous one.

The outputs of the last layer are then reshaped to 2 dimensions (batch size, 1) and dropout is
applied. The results are fed into a fully connected layer with no activation function. The results
have 1 prediction for each item in the batch. Mean squared error is calculated for Adam optimizer

to do gradient descent on. The predictions themselves are used to calculate the accuracy of the
batch.

3.11.1 Testing on a toy dataset

First this model is tested on the toy dataset with the following parameters:

number of epochs is 10
batch size is 100

38

cost train accuracy

labels

predictions
train

logits

»53
g
train
save
dense-weig...
dense-biases

keep_prob dropout train dense

A008

Resha pe
shape train

&
&
&
&
max_pooling2... train
k)

conv2d_1 conv2d_2 train

max_poolin... train

train
save

conv2d

ExpandDi...
dim train

F
&
train
save

embeding

inputs
train

Figure 28. Convolutional neural network with 2 hidden layers

embedding size is 32

sequence length is 36

learning rate is 0.001

keep probability for dropout is 0.7
The training runs for 63.24 seconds and gives a final test accuracy of 0.83. This is the highest
testing accuracy for any of the models. However, this improvement might have just occurred ran-
domly.

The cost function indicates that the training might have been stopped prematurely as it was still
on the decline. Since this is a toy dataset no tunning was done. Even without finding a minimum
value of the cost function the predictions for the validation set reached around 0.7. Figure 29 shows
that the validation accuracy did not start increasing until iteration 800, the same is applicable for
the cost.

Finally, the the predictions also indicate that the model was able to generalize quite well as the
predictions (as shown in fig. 30) started at random guessing and in the final iteration of training
were clustered around 0.0 and 1.0. However, it is clear from the cost function that the peaks around
the desired locations are still not prominent indicating that the model is not certain of the choices

39

accuracy 'cost

0.800 0.250
0.200
0.800
0.150
0.100
0700
0.0500
0.600 0.00
0.000 2000 4000 600.0 800.0 1.000k 0.000 3000 600.0 900.0

- training set - validation set

Figure 29. Training and validation results of the third deep learning model on a toy dataset.

Figure 30. Weights distribution of deep convolutional network on toy dataset

it is making. This might have changed with more training iterations.

3.11.2 Merged tweets dataset

This model is then tested on the merged tweets dataset. The model was tested with many hyper
parameter sets and the following one was found to give the best results on the training an validation
sets:

number of epochs is 10

batch size is 100

embedding size is 32

sequence length is 400

learning rate is 0.001

keep probability for dropout is 0.7
The experiment runs for 906 seconds and gives a final test accuracy of 56.7 percent. This is higher
than any previous architecture. The result is not conclusive and is not high enough to indicate

40

that there is definitely is a link. However, looking at all previous runs which yielded test scores of
around 0.5, this is a clear improvement.
Furthermore, the prediction accuracy for the validation set does not seem to improve much and

accuracy ‘cost
1.05 -
0.300
0.950
0.850 0.200
0.750
0,650 0.100
0.550
1 0.00
0450
0.000 600.0 1.200k 1.800k 2.400k 0.000 6000 1.200k 1.800k

- training set - validation set

Figure 31. Training and validation results of the third deep learning model on a merged bitcoin
dataset.

jumps around between 0.45 and 0.6 durinf the whole test run. Comparing figure 31 to other train-
ing runs the cost and accuracy functions do not jump around as much and are more consistent. The
training accuracy increases steadily to 0.95 and the train cost decreases to around 0.05. The algo-
rithm does not generalize very well, but it does seem to find some element of correlation between
the textual data from twitter and the price movement.

Figure 32 shows the prediction distribution for the training run. The first few epochs in the train-

Figure 32. Predictions distribution of deep convolutional network on bitcoin dataset

ing start out at guessing around 0.5 and from about iteration 1000 the predictions spread out and
cluster around different values during training. In the final few hundred iterations the algorithm

41

forms small peaks around 1.0 and 0.8 and spreads in between all values from -0.5 to 1.5. Of course
the label values are either 0.0 or 1.0 so not having an activation function that squashes the outputs
between 0.0 and 1.0 gives more room for error, however, after just a few iterations the algorithm is
able to compensate for the big outputs by adjusting the weights.

The weights distribution for the training run is shown in figure 33. It starts of around 0.0 and dur-

0.0500

0.0500
-0.100
-0.150

-0.200

0.000 2000 4000 6000 8000 1.000k 1.200k 1400k 1600k 1.800k 2.000k 2200k 2400k
Figure 33. Weights distribution of deep convolutional network on bitcoin dataset

ing the training run spreads out to a more normal distribution that spans from -0.25 to 0.2 during
the course of training, although most most of the weights still cluster around 0.0.

From all the models the deep convolutional network yields the best results with both the validation
set and the test set. Further research needs to be made, because the results are not good enough to
conclude the dependence between the tweet text and price movement.

The biggest problem with the twitter dataset is that there is a lot of noise which the algorithm is
not able to cut through. Also there is the question weather twitter in general is a good data source
for such experiments. After doing data exploration most of the tweets turned out to be duplicates
and the rest are often not substantial enough to find any links to the price. Thirdly, the nature
of the crypto-currency market is very stochastic and driven by irrational factors rather than solid
information. Finally, the tweets often follow the price changes and not vice versa.

3.12 Fourth model:price based deep recurrent network

The final model is a recurrent neural network. However, it does not operate on tweets but just on
the price. The aim is to predict the price given only the price in the previous time-steps. It operates
on a minute by minute data same as the tweets dataset. The overall architecture for the model is
shown in figure 34. The main difference from the rnn constructed in section 3.9 is that it does not
have an embedding layer. It is replaced by just stacking the prices as scalar values and feeding that
as input into the first layer of the rnn.

The inputs are a tensor of shape (batch size, sequence length, 1). This is then transposed to make
the row vector into a column vector. The rnn itself is a stack of 3 Istm layers with the size of 256

42

Istm cells each. The inputs are of size 32 steps each step containing a single price point. The batch
size is set to 500, the learning rate is 0.001 and the dropout keep probability is 0.7. Also the other
difference between to the other rnn’s in this thesis is that it does not calculate accuracy as it predicts
the price movement in percent and not as a binary O if the price decreased and 1 if the price stayed

the same or increased.

Furthermore, the price data is not totally clean so there are spikes between minute time intervals

cost train accuracy

keep_prob_1

Y,{-;s.
3 L e
labels
predictions train

train
train save
rnn save fu "Y_COI'IFIECtEd L1000 foe-weights

L ! fe-biases

Y

trar‘mpose
concat

inputfé{

Figure 34. Deep recurrent neural network with no embedding layer.

of 10 percent and more. The data is normalized so that all the price changes that are above 2 per-
cent in either direction are rounded down to -2 or 2 percent respectively. Figure 35 shows how the
distribution looks like after the outliers values have been squashed.

The training results are shown in figure 36. The cost function goes down sharply in the first 500

percent change %

50000 100000 150000 200000
price point

Figure 35. Bitcoin minute by minute price changes for the whole training period, with big values
rounded to -2.0 and 2.0 percent.

iterations for both training and validation sets. After reaching a minimum value of around 0.001 it

43

goes up sharply then again gradually goes down. This is not expected because the spike happens
at the 4th epoch meaning that the data was already iterated through 4 times.
The weights distribution change indicates that the network goes through a lot of different weight

cost

0.220 \

0.180
0.140

0.100

0.0600 \
0.0200 A l A |L. Lad

L

. h

-0.0200

0.000 1.000k 2.000k

3.000k

- training set - validation set

Figure 36. Training and validation results of the fourth deep learning model on a merged bitcoin

dataset.

Figure 37. Weights fourth model after running it on the bitcoin dataset

combinations during training and the changes in weights are abrupt as can be seen in figure 37.
Normally the weights would change slowly but this is not the case in this training run.

The results prove that price alone is not a good way to predict the price change percentage. The
abnormal cost chart might be caused by the price movements which are abrupt and oftentimes
parabolic for Bitcoin. Another factor might be the exchange from where the price data was ob-
tained, where there are often speculative price movements that might reach 10% between 2 minute
intervals. The poor results of this training run speak for the currently unpredictable nature of
Bitcoin price and the many expectations and fears that are prevalent in the market.

44

Conclusions and Recommendations

This masters thesis focuses on predicting price data from textual sources. Twitter was used as the
only textual data source for the experiments as it was the most suitable for such an analysis(see
section 3.3). About 60% of twitter data are re-tweets and duplicates. This could be avoided by
selecting more detailed filter criteria for data collection.

Most of the models that were created tend to show good results on the training data, but not vali-
dation data due to over-fitting.

The data source selection was not optimal, as the training and test results were quite low, with the
trained model predicting the price change almost randomly (around 50%).

The best performing model out of all was the deep convolutional neural network with 2 hidden lay-
ers in section 3.9. It yielded 56.7% prediction accuracy on the test dataset. The worst performing
model was the deep parallel convolutional neural network in section 3.10 with a test accuracy of
48%.

The price alone for is not enough to make good predictions on the price movement. For the period
that the data was collected the price increased four-fold which skews the results. Minute intervals
had flash bubbles and flash-crashes of up to 10% which is a result of unpredictable market condi-
tions and data discrepancies.

Better data textual information sources are needed to either augment the twitter data or replace it
completely. Specialized platforms would be a better option for textual data, even though they do
no have as much information as twitter.

In minute by minute intervals tweets are often caused by price movement and not the other way
around, therefore better data to price mapping needs to be found.

45

Plan for future research

The link between twitter data and bitcoin price is not clear and there are things than can be im-
proved upon in this masters thesis.

Firstly, the quality of the data needs to be improved. The current data collection model has many
flaws. The twitter data collection gets stuck at times for a few hours, leaving gaps resulting in
increasingly worse predictions. The price data is also not consistent with multiple gaps and dupli-
cates that need to be filled by averaging adjacent price points.

Twitter was proven to be really noisy, with many duplicated tweets. This could be changed by using
a different textual data source. Stocktwits is an option, however the stream of data there is much
lower than on twitter and it would take at least 1 year to collect as much information. A combina-
tion of various sources could be used, from news to social media, to price data in combination as
inputs into the deep learning models.

Alternative crypto-currencies to Bitcoin could be used for prices predictions. Also a holistic
crypto-currency model could be created, where all the movements in the market are evaluated,
most other coins have a close price relationship to Bitcoin.

Hybrid architectures could be used in deep learning, like combining colvolutional and recurrent
layers.

46

References

[1] Rodolfo C. Cavalcante, Rodrigo C. Brasileiro, Victor L.F. Souza, Jarley P. Nobrega, and
Adriano L.I. Oliveira. Computational intelligence and financial markets: A survey and future
directions. Expert Systems With Applications J., (55):194—211, 2016.

[2] M.S. Checkley, D. Afién Higén, and H. Alles. The hasty wisdom of the mob: How market
sentiment predicts stock market behavior. Expert Systems With Applications J., (77):256-263,
2017.

[3] Victor W. Chua, Raymond K. Wonga, Fang Chen, Ivan Ho, and Joe Lee. Enhancing portfolio
return based on sentiment-of-topic. (54):817—841, 2017.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[5] B. Shravan Kumar and Vadlamani Ravi. A survey of the applications of text mining in finan-
cial domain. Knowledge-Based Systems J., (114):128—147, 2016.

[6] Yann LeCun, Yoshua Bengio, , and Geoffrey Hinton. Deep learning. Nature J.,
(521):436—444, 2015.

[7] Xiaodong Li, Haoran Xie, Li Chen, Jianping Wang, and Xiaotie Deng. News impact on stock
price return via sentiment analysis. Knowledge-Based Systems J., (69):14-23, 2014.

[8] Thien Hai Nguyen, Kiyoaki Shirai, and Julien Velcin. Sentiment analysis on social media for
stock movement prediction. Expert Systems With Applications J., (42):9603—9611, 2015.

[9] Nuno Oliveira, Paulo Cortez, and Nelson Areal. Stock market sentiment lexicon acquisition
using microblogging data and statistical measures. Decision Support Systems J., (85):62-73,
2016.

[10] Venkata Sasank Pagolu, Kamal Nayan Reddy Challa, Ganapati Panda, and Babita Majhi. Sen-
timent analysis of twitter data for predicting stock market movements. Power and Embedded
System J., 2016.

[11] Juan Ramén Pifieiro-Chousa, M. Angeles Lopez-Cabarcos, and Ada Maria Pérez-Pico. Ex-
amining the influence of stock market variables on microblogging sentiment. Journal of
Business Research J., (69):2087—2092, 2016.

[12] Online resource. Coin market cap, 2017. https://www.blochchain.info.

[13] Online resource. Crypto currency market cap listing, 2017. https://coinmarketcap.com/all/
views/all/.

[14] Online resource. Tensorflow homepage and documentation, 2017. https://www.tensorflow.
org/api_docs/python/.

[15] Online resource. Website that provides historical minute by minute data, 2017. https://www.
blochchain.info.

47

http://www.deeplearningbook.org
https://www.blochchain.info
https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/all/views/all/
https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/api_docs/python/
https://www.blochchain.info
https://www.blochchain.info

[16]

[18]

[19]

[20]

Robert P. Schumaker, A. Tomasz Jarmoszko, and Chester S. Labedz Jr. Predicting wins and
spread in the premier league using a sentiment analysis of twitter. Decision Support Systems
J., (88):86-74, 2016.

Noam Shazeer, Azalia Mirhoseinia, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. Cornel University Library J., 2017.

Junseok Song, Kyung Tae Kim, Byungjun Lee, Sangyoung Kim, and Hee Yong Youn. A novel
classification approach based on naive bayes for twitter sentiment analysis. KSII transactions
on the internet and information systems J., 11(6):2996—3011, 2017.

Andrew Sun, Michael Lachanski, and Frank J. Fabozzi. Trade the tweet: Social media text
mining and sparse matrix factorization for stock market prediction. International Review of
Financial Analysis J., (48):272-281, 2016.

Steve Y. Yang, Sheung Yin, Kevin Mo, Anqi Liu, and Andrei A. Kirilenko. Genetic program-
ming optimization for a sentiment feedback strength based trading strategy. Neurocomputing
J., (264):29—41, 2017.

48

	Glossary
	Abstract
	Santrauka
	Introduction
	Related Work
	Background information
	Crypto-currencies
	Artificial neural networks
	Introduction to deep learning
	Recurrent Neural Networks
	ANN regularization techniques
	ANN optimization techniques

	Algorithm implementation
	High level description of the project
	Initial assessment of tools and techniques
	Online resource selection
	API access and data collection
	Data Processing
	Removing duplicates and noise
	Exploring the dataset
	Cleaning price data
	Augmenting price data

	Augmenting text data
	Converting text to integers
	Mapping textual data to price data
	Text embedding

	Machine learning model setup
	Experiment setup
	First model: deep recurrent network with text embedding
	Testing on a toy dataset
	Bitcoin tweets dataset
	Merged tweets dataset

	Second model: parallel convolutional neural network with embedding
	Testing on a toy dataset
	Merged tweets dataset

	Third model: deep convolutional neural network with embedding
	Testing on a toy dataset
	Merged tweets dataset

	Fourth model:price based deep recurrent network

	Conclusions and Recommendations
	Plan for future research
	References

