
Liet. mat. rink. LMD darbai, 50, 2009, 247–252

Restrictions for loop-check in sequent calculus
for temporal logic with until operator

Adomas BIRŠTUNAS
Vilnius University, Faculty of Mathematics and Informatics
Naugarduko g. 24, LT-03225 Vilnius, Lithuania
e-mail: adomas.birstunas@mif.vu.lt

Abstract. In this paper, we present sequent calculus for branching-time temporal logic with until operator.
This sequent calculus uses efficient loop-check techinque. We prove that we can use not all but only several
special sequents from the derivation tree for the loop-check. We use indexes to discover these special
sequents in the sequent calculus. These restrictions let us to get efficient decision procedure based on
introduced sequent calculus.

Keywords: sequent calculus, branchnig-time temporal logic, until operator, loop-check.

1. Introduction

Usual sequent calculi with cut rule are practically unusable in automated environment.
So, sequent calculi with analytic cut, or infinitary rule, or some kind of the loop-check
must be used to get a decision procedure. Unfortunately, such a sequent calculi are
inefficient and need additional modifications to get more or less usable decision pro-
cedure. One of the possibilities is constructing sequent calculi with an efficient loop-
check (as it is done for some modal logics in [3]), or (if it is only possible) loop-check
free calculi (as it is done for KD45 logic in [1]).

There is known sequent calculus for linear temporal logic with until which is cut
free and invariant free sequent calculus [2]. Another cut free and invariant free sequent
calculus for branching-time temporal logic with until operator may be find in [5] (as
a special fragment of the presented sequent calculus for BDI logic). Both calculi
requires loop-check to get decision procedure. In the first paper, loop leads only to
non-derivable sequent. In the second paper, loop leads to non-derivable seuent or to
special loop-axiom. We will define restrictions for a loop-check applicable for both
cases. In this paper we concentrate on the branching-time temporal logic with modal
operators: ◦ (’next’), A(φ ∪ ψ) (’in all futures until’) and E(φ ∪ ψ) (’in at least on
future until’). Restrictions allows us to use only special sequents in a loop-check.

We define formula in a usual way. In details logic semantics is described in [5].
DEFINITION 1. We say that sequent S is an ancestor of the sequent S′ in the deriva-

tion tree, if there exist sequence of the sequents S1 = S,S2, . . . ,Sn = S′ that for every
i = 1,2, . . . (n − 1), sequent Si is a conclusion and sequent Si+1 is a premise of some
rule application.

248 A. Birštunas

DEFINITION 2. We say, that we have a loop S � S′ in the sequent derivation tree
if the following conditions are true:

– sequent S is an ancestor of the sequent S′;
– S′ may be obtained from S by rule (Weak) application: S

S′ (Weak).

DEFINITION 3. We say, that sequent S′ is a loop-axiom if there exists sequent S

satisfying the following conditions:
– S � S′ is a loop in the derivation tree;
– between sequents S and S′, there exists such a rule (AU − L) or (EU − L)

application, that its right premise is sequent S′ ancestor.

We have sequent calculus for branching-time temporal logic, which uses loop-
check [5]. Sequent calculus has logical rules and the following rules:

ψ,� → � φ,◦�(φ ∪ ψ),� → �
�(φ ∪ ψ),� → �

�(U-L) ◦� =
{◦A, if � = A

¬ ◦ ¬E, if � = E

� → ψ,φ,� � → ψ,◦�(φ ∪ ψ),�
� → �(φ ∪ ψ),�

�(U-R) � ∈ {A,E}
� → �◦� → ◦�

(◦) � → �
�,�′ → ��′ (Weak)

(� is at most one formula).
DEFINITION 4. Sequent calculus for branching-time temporal logic with infer-

ence rules (∨L), (∨R), (&L), (&R), (¬L), (¬R), (AU − L), (EU − L), (AU − R),
(EU − R), (◦), (Weak), with a loop-axiom and with an axiom �,φ → �,φ we call
sequent calculus P T L1.

2. Restrictions for the loop-check

There is known decision procedure (described in [5]) for sequent calculus P TL1. Un-
fortunatelly, this procedure use direct loop-check technique to detect non-derivable
sequent, or to detect loop-axiom.

In other words, we have to deal with two types of the loops. One is a loop-axiom
(Definition 3) which may lead initial sequent to be derivable. For this type of the loop
we use term loop-axiom. Other is a simple loop, which is not a loop-axiom, and leads
initial sequent to be non derivable. For this type of the loop we use term ’nonderivable’
loop. We use term loop to denote both types of the loop. All restrictions for loop check
presented in this paper are applied for both loop types.

DEFINITION 5. Sequent S is primary if S has the shape �,◦� → �,◦� and for-
mula sets �,� contains only propositional variables, � ∩ � = ∅.

DEFINITION 6. Sequent calculus with inference rules (∨L), (∨R), (&L), (&R),
(¬L), (¬R), (AU − L), (EU − L), (AU − R), (EU − R), (◦p), with a loop-axiom
and with an axiom �,φ → �,φ we call sequent calculus P T L2.

� → �i

�,◦� → �,◦�1, . . . ,◦�n

(◦p),

where �,� contains only propositional variables and � ∩ � = ∅.

Restrictions for loop-check in sequent calculus for temporal logic with until operator 249

Simple speaking, rule (◦p) may be applied only for primary sequent.

LEMMA 1. Sequent S is derivable in sequent calculus P T L1 if and only if sequent
S is derivable in sequent calculus P T L2.

Now we introduce sequent calculus P T L3 wich uses loop-check only for sequents
those are some premises of the rule (◦p) application. This modification reduces the
number of the checked sequents in the derivation tree.

DEFINITION 7. Loop S � S′ is a ◦-loop if there exist primary sequents S1,S
′
1 in

the derivation tree, and S1 is obtained from the sequent S, and S′
1 is obtained from the

sequent S′ by rule (◦p) applications (i.e., S
S1

(◦p), S ′
S ′

1
(◦p)).

DEFINITION 8. We say, that sequent S′ is a ◦-loop-axiom if there exists sequent S

satisfying the following conditions:
– S � S′ is a ◦-loop in the derivation tree,
– S � S′ is a loop-axiom.

DEFINITION 9. Sequent calculus with inference rules (∨L), (∨R), (&L), (&R),
(¬L), (¬R), (AU − L), (EU − L), (AU − R), (EU − R), (◦p), with ◦-loop-axiom
and with an axiom �,φ → �,φ we call sequent calculus P T L3.

LEMMA 2. Sequent S is derivable in sequent calculus P T L2 if and only if se-
quent S is derivable in sequent calculus P TL3 .

Now we prove some lemmas to introduce main restrictions to the loop-check used.
First, we define subformulas and prove some features for them.

DEFINITION 10. We define formulas F extended set Ext(F) as follows:
– Ext(A(φ ∪ ψ)) = Ext(◦A(φ ∪ ψ)) = {A(φ ∪ ψ),◦A(φ ∪ ψ)},
– Ext(E(φ ∪ ψ)) = Ext(¬E(φ ∪ ψ)) = Ext(◦¬E(φ ∪ ψ)) =
Ext(¬◦¬E(φ∪ψ)) = {E(φ ∪ ψ),¬E(φ ∪ ψ),◦¬E(φ ∪ ψ),¬ ◦ ¬E(φ ∪ ψ)},

– otherwise Ext(F) = ∅.

DEFINITION 11. We write F ⊆sf G to define that F is subformula of G.
We use extended term subformula: if F ∈ Ext(G), then also F ⊆sf G.

It is evident, that if F ⊆sf G and G ⊆sf F , then F,G ∈ Ext(F) = Ext(G).

DEFINITION 12. Formula F is proper subformula of G (we write F ⊂sf G), if
F ⊆sf G and formula G length is greater then formula F length.

DEFINITION 13. Formula F in sequent S is ground if for ever formula G ∈ S,
formula F is not a proper subformula of G (F �⊂sf G).

250 A. Birštunas

It is evident, that if formula F is ground in sequent S and F ⊆sf G for some formula
G ∈ S, then F,G ∈ Ext(F) = Ext(G).

LEMMA 3. If F ⊂sf G, and G ⊆sf H (or F ⊆sf G, and G ⊂sf H), then F ⊂sf H

or formulas F,G,H ∈ Ext(F) = Ext(G) = Ext(H).

Proof. It is evident, that F ⊆sf H . Therefore, F ⊂sf H (satisfies lemma) or
H ⊆sf F . In the second case, we get that F,G,H ∈ Ext(F) = Ext(G) = Ext(H),
because H ⊆sf F ⊂sf G ⊆sf H (or H ⊆sf F ⊆sf G ⊂sf H).

We have to notice that F has one of the shape: A(φ ∪ ψ),◦A(φ ∪ ψ),
E(φ ∪ ψ),¬E(φ ∪ ψ),◦¬E(φ ∪ ψ),¬ ◦ ¬E(φ ∪ ψ) if Ext(F) �= ∅.

LEMMA 4. If S � S′ is a ◦-loop and T is any sequent inside this loop, then any
ground formula F in sequent T is such, that Ext(F) �= ∅.

Proof. Since S � S′ is a ◦-loop, there exists such a sequent S′
1, that S′

1 is obtained

from the sequent S′ by rule (◦p) application (S ′
S ′

1
(◦p)).

There exists ground formula G ∈ S, that F ⊆sf G. G ∈ S′ and ◦G ∈ S′
1, because

S � S′ is a ◦-loop. There exists ground formula H ∈ T , that ◦G ⊆sf H .
We have, that F ⊆sf G, G ⊂sf ◦G, ◦G ⊆sf H . So, according to Lemma 3,

F ⊂sf H (we get a contradiction, because F is ground formula in T), or F,G ∈
Ext(F) = Ext(G) �= ∅ (satisfies lemma).

LEMMA 5. Suppose, that S � S′ is a ◦-loop in the derivation tree constructed ac-
cording sequent calculus P T L3. If F is ground formula in sequent S or in sequent S′,
then for every sequent T in ◦-loop S � S′ there exist formula F ′ ∈ Ext(F), which is
ground in T .

Proof. Every rule premise contains only subformulas of the rule conclusion.
Case 1) Ground formula F ∈ S. Then F ∈ S′, because S � S′ is a ◦-loop.
Suppose, that formula F is not ground on some sequent T inside the ◦-loop S � S′.

So, there exist ground formula G ∈ T , that F ⊂sf G.
There exist ground formula H ∈ S, that G ⊆sf H . According to Lemma 3, F ⊂sf

H ∈ S (contradiction for F being ground in S), or G ∈ Ext(F) and G is ground in T

(satisfies lemma). We got that if F is ground in sequent S, then for any sequent T in a
◦-loop S � S′ there exist formula F ′ ∈ Ext(F) which is ground in T .

Case 2) Ground formula F ∈ S′. Suppose, that formula F is not ground on some
sequent T inside the ◦-loop S � S′. So, there exist ground formula G ∈ T , that F ⊂sf

G.
There exist ground formula H ∈ S, that G ⊆sf H . According to Lemma 3, F ⊂sf

H or G ∈ Ext(F) (satisfies lemma). In the case F ⊂sf H , we have that H ∈ S′,
because S � S′ is a ◦-loop. Formula F is ground in S′. Therefore, F �⊂sf H , and we
get a contradiction, because F ⊂sf H .

Restrictions for loop-check in sequent calculus for temporal logic with until operator 251

CORROLARY 1. If we have derivation tree satisfying the following items:
– we have rule application with conclusion T and premise T ′,
– there exist ground formula F in the sequent T ,
– there is no ground formula F ′ ∈ Ext(F) in sequent T ′.
Then Lemma 5 says, that sequent T is not inside any ◦-loop S � S′.

Proof goes straightforward from Lemma 4 and Lemma 5.
Simple speaking, if some ground formula was deleted during some rule application

(in bottom-up direction), then we do not need to check any sequent below that rule
application in order to catch a loop. The main problem is to identify such a situation,
because every time we delete some ground formula, at least one new ground formula
appears.

Rules (in calculus P T L3), those may satify above conditions, is (AU −L), (AU −
R), (EU − L), (EU − R), then we take left premise (nonmodal case), or rule (◦p).
So, we can add special indexes for until operators to catch such a situation.

We add different upper-indexes for every different subformula A(φ ∪ψ), E(φ ∪ψ)

in the initial sequent S. The bottom-index will be a set of indexes. The bottom-index
is defined according to the following rule:

if we have that Ai
U(φ ∪ψ) ⊂sf A

j
V (γ ∪κ) (or Ai

U(φ ∪ψ) ⊂sf E
j
V (γ ∪κ), Ei

U(φ ∪
ψ) ⊂sf A

j
V
(γ ∪ κ), Ei

U
(φ ∪ ψ) ⊂sf E

j
V
(γ ∪ κ)) then j ∈ U and V ⊂ U .

It means that every ground formula F in any sequent S have until operator with
empty set as its bottom index: Ai

∅(φ ∪ ψ), ◦Ai
∅(φ ∪ ψ), Ei

∅(φ ∪ ψ), ¬Ei
∅(φ ∪ ψ),

◦¬Ei
∅(φ ∪ ψ), ¬ ◦ ¬Ei

∅(φ ∪ ψ).
Indexes are some kind of the histories, because they store information abaut applied

rules. Histories are one of the possible instruments used to make efficient loop-check
(some calculi with used histories may be found in [3,4]).

DEFINITION 14. Sequent calculus with inference rules (∨L), (∨R), (&L), (&R),
(¬L), (¬R), (AU − L∗), (EU − L∗), (AU − R∗), (EU − R∗), (◦∗

p), with ◦-loop-
axiom and with an axiom �,φ → �,φ we call sequent calculus P T L4.

ψ∗,�∗ δ→ �∗ φ,◦�
j
U (φ ∪ ψ),� → �

�
j
U (φ ∪ ψ),� → �

�(U-L∗) ◦� =
{◦A, if � = A

¬ ◦ ¬E, if � = E

�∗ δ→ ψ∗,φ∗,�∗ � → ψ,◦�
j
U(φ ∪ ψ),�

� → �
j
U(φ ∪ ψ),�

�(U-R∗) � ∈ {A,E}

�∗ ◦δ→ �∗
i

�,◦� → �,◦�1, . . . ,◦�n
(◦∗

p),
�,� contains only propositional variables

� ∩ � = ∅.

Left premise of the rule (AU − L∗), (EU − L∗), (AU − R∗), (EU − R∗), (◦∗
p)

is sequent S′ and conclusion is sequent S. If there is some subformula A
j
U(φ ∪ ψ)

or E
j
U (φ ∪ ψ) in sequent S and there is no such subformula (with upper-index j) in

sequent S′, then δ = + and bottom-index j is removed from sequent S′. Otherwise,
δ = ∅ (and �∗ = �,�∗ = �,φ∗ = φ,ψ∗ = ψ,�∗

i = �i).

252 A. Birštunas

Simple speaking, if we got a sequent marked with +, we know, that some ground
formula was just deleted and loop cannot appear here. If we delete some ground for-
mula (we also delete some index j), we must get some new ground formula. These new
ground formulas will be formulas containing modalized subformula with emptyset as
their bottom index.

LEMMA 6. Sequent S is derivable in sequent calculus P T L3 if and only if se-
quent S is derivable in sequent calculus P TL4 .

The proof is straightforward from Corollary 1.

LEMMA 7. For any sequent S, decision procedure based on sequent calculus
P T L4 terminates in finite time.

We obtain an efficient decision procedure for branching-time temporal logic if we
use sequent calculus P T L4 with restricted loop-check (for both loop types). Because
of the restrictions during loop-check we check only sequents marked by ◦ and only till
the first sequent marked with + (in top-down direction).

3. Conclusion

In this paper, we prove that some restrictions for loop-check for branching-time tem-
poral logic with until operator may be applied without loosing derivability. We prove
that any ground formula is modalized and stable in any ◦-loop. These restrictions let us
to construct sequent calculus with efficient loop-check, because (during loop-check)
only several special marked sequents must be checked.

References

1. A. Birstunas. Efficient loop-check for KD45 logic. Lith. Math. J., 46(1):1–12, 2006.
2. J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, F. Orejas. A cut-free and invariant-free sequent

calculus for PLTL. Lecture Notes in Computer Science, Vol. 4646. Springer, Berlin/Heidelberg, 2007,
pp. 481–495.

3. A. Heuerding, M. Seyfried, H. Zimmermann. Efficient loop-check for backward proof search in some
non-classical propositional logics. In: Tableaux 96. LNCS, Vol. 1071. 1996, pp. 210–225.

4. M. Mouri. Constructing counter-models for modal logic K4 from refutation trees. Bull. Section of
Logic, 31(2):81–90, 2002.

5. N. Nide, S. Takata. Deducton systems for BDI logic using sequent calculus. In: Proc. AAMAS’02,
2002, pp. 928–935.

REZIUMĖ

A. Birštunas. Apribojimai cikl ↪u radimui sekvenciniame laiko logikos skaičiavime su until operatoriumi

Darbe pateiktas sekvencinis skaičiavimas skaidaus laiko logikai su until operatoriumi, kuris naudoja efek-
tyv ↪u cikl ↪u radimo mechanizm ↪a. Darbe

↪
irodyta, kad cikl ↪u radimui gali būti naudojamos ne visos, o tik

tam tikros specialios išvedimo medžio sekvencijos. Mes naudojame specialius indeksus toms specialioms
sekvencijoms aptikti. Šie apribojimai leidžia mums sukonstruoti efektyvi ↪a išvedimo paieškos procedūr ↪a,
paremt ↪a pristatytu sekvenciniu skaičiavimu.

Raktiniai žodžiai: sekvencinis skaičiavimas, skaidaus laiko logika, until operatorius, cikl ↪u radimas.

