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The paper discusses the properties of the nonlinear thermodiffusion
equation corresponding to the diffusion processes, which occur with a finite
velocity. In the previous papers, A. J. Janavicius proposed the nonlinear diffu-
sion equation with the diffusion coefficient directly proportional to the concen-
tration of impurities. This equation provides a more exact description of the
profiles of impurities in Si crystals. The heat transfer in gases carries a greater
average kinetic energy based on nonlinear diffusion of gas molecules from hot
regions to the coldest ones with a finite velocity by random Brownian motions.
In this case, the heat transfer in gases can be described by using nonlinear
thermodiffusion equation with heat transfer and thermodiffusion coefficients

directly proportional to temperature 7 . The obtained approximate analyti-
cal solutions are successfully applied in defining temperature profiles and
heat transfer coefficients in gases as well as providing opportunities for practi-
cal applications. It has been concluded that heat spreading in gases depends on
temperature differences and pressure in gases.

Keywords: approximate analytical solution, nonlinear thermal diffu-
sion equation, temperature profiles

1. INTRODUCTION

In the previous papers, we have discussed the nonlinear diffusion of impurities
in semiconductors [1], [2], nonlinear thermodiffusion in gasses [3] and heat transfer
in metals by electrons [4] using mathematical methods of similarity variables [1] for
nonlinear equations. The obtained results are important for engineering applications.
We assume that the process of heat transmittance in gasses is similar to nonlinear
diffusion processes described as Brownian movement of atoms in solids spreading with
a finite velocity. Heat transfer can be described using modified theory of the nonlinear
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diffusion in solids [1]. In this case, the frequency of the jumps of diffusing molecules
[6] depends upon the coordinates, concentration and temperature. The coefficient of
thermal conductivity of gases can be expressed in the following way [6]:
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Here A — mean values of a free path of diffusing molecules, v — mean
velocities of molecular movement, ¢, — molar heat capacity at constant volume,
p — density of gas, n — number of molecules per unit volume, k& — Boltzmann
constant, T — temperature of gases, 4 — molar mass, R — gas constant, d — di-
ameter of a gas molecule, D, — coefficient of thermal diffusion in gases.

We introduced the equation of thermal conductivity of gases [6] with the non-
linear thermodiffusion coefficient proportional to the temperature:
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We introduced the constant pressure p = n(x,#)kT(x,t) for slow heat trans-
mission in gases when decreasing temperature 7'(x,?) is compensated by increasing
concentration 7(x,?) of gases.

Using the heat flow j for continuity equation [6], we obtained

or . S or
P div(-D, (T )grad(T)), j, =—D,(T) P (3)

Here constant D, — thermodiffusion coefficient in environment for the
specific heat capacity ¢, of gases at constant pressure p, K, — coefficient of
thermal conductivity of environment, 7, — temperature of environment, D,, — pro-
portionality constant for nonlinear thermodiffusion function D, (T').

Thenonlinear thermodiffusionequation (3) for temperature 7(x, ¢) 0 < x < X, >
0 <t <t, can be rewritten in a more convenient form

T _p, {i(r a—Tﬂ , (4)
ot ox\ Ox

which mathematically coincides with nonlinear diffusion equation [1]. The numeri-
cal calculations provided in [2] give dependence n(x,?) as a straight line in the re-
gion 0<x<x,, 0<¢<¢, and temperature 7(x,?) dependence must be similar.
The jump of a greeter kinetic energy of hotter molecules to the points x + A is pos-
sible only if it exists in the points x . This requirement is equivalent to the approval
that thermodiffusion must occur with finite velocity. It is very important for defini-
tion of thermal conductivity [3] and diffusion coefficients [1], [2].

The nonlinear heat conduction equation [7] can be rewritten by introducing
nonlinear equation
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for energy density £.

The complicated approximate analytical solution [7] E(x,?) of the equation
(5) cannot be experimentally measured. In our case, temperatures 7'(x,#) can be
measured directly and compared to theoretical calculations.

2. SOLUTION OF THE NONLINEAR HEAT DIFFUSION
EQUATION FOR ONE-DIMENSIONAL CASE

The solution of (4) can be obtained by introducing similarity variable [5]
& and function f(&)

X _ X
\/DenTe-t \/Det’ (6)
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which depends on thermodiffusion constant D, at environment tempera-
ture 7,. By substituting (6) into (4), we obtain nonlinear differential equation

O ), e oo 7
2a§[fa§]+§a§f 0. (7
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The solution of this nonlinear equation can be expanded by power series, in-
cluding boundary condition at maximum value & =&,

f@)=Sa,E~6)" s f()= S, z=E-. & <250, O

Now equation (7) must be transformed for the new variable z
0 0 0 0

2- | f=—f|+z-=—f+& —=—f=0. )
oz f@zf : azf étOazf

By requiring that solution f'(z) of nonlinear equation (9) can be expressed by
power series, we obtain recurrence relations [8] between coefficients a,, n=0,1,2,...

(10)
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3. THE APPROXIMATE ANALYTICAL SOLUTION

In the approximation by polynomials we used expansion restricted by coef-
ficients a,,a,,a,,a,. From expression (10) at n=0,1,2 we obtain the following
system of equations:

dayay +2at +Ega, =0 (11)
12[13[10 +12a2a1 +a1 +2§0a2 = 0, (12)
24aya; +12a3 +2a, +3&ya; =0, ay =1, (13)

where in (13) a4 =0. From the boundary condition 7'(0) =7, f(0) at heat maximum
penetration point we obtain f(0) =ag, =1.

The solution f(z) (8) must satisfy the second boundary condition
T(=¢y)=T,f(-&,) =Ty atheat source T'({ =0)=Tg. Then we obtain

(T(z)-T.)IT, =az+a,z" +a,z°, z=E-&,. (14)

The expression of temperature (6), (8) at heat source T is obtained

AT

T'=T,1(=8) =T, Z( D"a,é =—, AT =T5 - T,. (15)
6‘

The approximate solution

f3(2)=a +alz+a222 +a3z3, ay =1, (16)

is used including the boundary condition (15)

T T T.-T AT
_ 3 2 _ 28 1 IS 18"t A0 17)
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T, T T

e e

Thermodiffusion coefficients D, =K, /(p-c,) and experlmental [9] va-
lues of heat conductivities K, in air at normal pressure p=1.013-10°N/m? and

moderate temperatures with specific heat ¢, = 0.999-10° S for air density
p =1.293kg / m> are presented in Table 1. kg - K
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Table 1

Dependence of Heat Conductivity K, and Thermodiffusion D,
Coefficients at Temperatures #°C

*C T K K,, 107 D,,1072 m”
— smK K

27 300.15 2.553 2.172

17 290.15 2.485 2.043

7 280.15 2.417 1.919
3 270.15 2.348 1.798
23 250.15 2.207 1.565
-53 220.15 1.983 1.237

Using these meanings of D, and solving (11), (12), (13), (17), we can obtain
the heat penetration depths (6) x, = 50\/D_et and profiles (14) for temperature
differences (T($)-T7,)/T,. The coefficients ay,a,,a;,&, defining solution (16)
f(z) are presented in Table 2.

Using solutions (16) presented in Table 2, we see that at less values
AT /T, they can by simplified by taking a2§02 ~0 and a3§03 ~ 0. In this case,

the parameter &, = —L(T s—1,)/T, can be obtained from (17). The con-
4

stantsa,;, a, practically are not changing at different AT /T,. The solutions for
t °C=-53°C in two last rows of Table 2 practically coincide. This means that ap-
proximate solution with a; = Opresented in the last row is sufficiently exact for
practical calculations. The constant &, defining a maximum of heat penetration
depths x, proportional to \/D_e ¢t like for nonlinear diffusion [1], can be expressed
approximately

1
x():gO‘VDet 9 §0z_a_(TS_Te)/Te (18)
1

for x,, &, thatis directly proportional to the AT like for the introduced
amount of heat quantity [6] . When the temperature of environment is 7, where x,,
is directly proportional to the square root of heat spreading time ¢ like for nonlinear
diffusion case [1], we used relation AT /7, for the temperature of environment 7,
and the normal room temperature 7 =293.15 K representing the constant source.

The obtained solutions of equation (9) are presented in Table 2. The experi-
mental heat penetration depths can define thermal diffusion coefficients D, with di-
mension m°s~" . In this way, the dependence of D,T/T, ontemperature at constant
pressure (2) p can be used. We can find a sufficiently exact solution of the system
of equations (11), (12) and (13), when a, =0 and the boundary condition (15) is as
follows:

AT
—a3&) +ay&) — ay&, =7 ° AT =T —T,. (19)

e

The sufficiently exact solutions f(z) calculated by Mathcad 2013 are pre-
sented in Table 2 .
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The Dependence of Parameters a,,a,,a3,&, for

Approximate Solution f(z) on AT/T,,

when Tg =29515K

Table 2

t,°C T K AT /T, £ a, a, a, AT (T, Ey)
17 290.15 0.0172 0.041 -0.422 -0.085 | -0.0083 | 0.4195
7 280.15 0.0535 0.122 -0.449 -0.087 | -0.0080 | 0.4385
3 270.15 | 0.0925 0.202 0477 20.090 | -0.0076 | 0.4579
23 -250,15 0.180 0.360 -0.533 -0.094 | -0.0070 0.500
53 220.15 | 0.3407 0.604 -0.622 20.099 | -0.0061 | 0.5641
53 22015 | 0.3407 0.606 -0.623 -0.099 0.0000

The profiles of functions f; and F, (14) like (T'(&)—-1T,)/T, for heat source

temperature Tg =295.15 K and the environment temperatures -3,-23 £, ’C and
-23,-53 T, °C are presented graphically using Mathcad 2013 in Fig. 1 and Fig. 2,
respectlvely.

0.2 I I I I

0.15 Teel ]

0.25

Fig. 1. Profiles of functions f(z=¢) and F(z=¢) presenting relative differences (7(£)-T,)/T,

of source Ty =295.15 K and environment temperatures respectively 7, = -3,-23°C.
0.4 | | |
f
F
z
Fig. 2. Profiles of functions f(z=¢&) and F(z = &) representing relative differences (1'(6) —T,)/T,
of source Ty =295.15 K and environment temperatures respectively £, = -23,-53 ’C.
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The profiles in Fig. 1 and Fig. 2 are parallel lines, which are defined by
AT (T ,&) and relations

AT (T, &) =C(Ty.T,)  (20)

presented by slowly changing numbers C(7g,7,) in Table 2. The form of
the obtained profiles approximately coincides with the profiles of nonlinear diffu-
sion in solids when the diffusion coefficient is directly proportional to concentration
of impurities for temperature depending on time [10]. The quantity of the heat
introduced in gases from surface with square S can be equally transmitted to gasses

T, -T
S _"et,0,=05-¢,pVAT =0.5-¢,pAS AT x, . (21)

Qs=K(T)-§

X0

The obtained result is similar to the quantity of the introduced impurities by
the nonlinear diffusion [11] when impurity concentration N at the crystal surface
stays constant

0=0.5492N¢x, . (22)

In the nonlinear thermodiffusion model, heat transition by the molecules with
large AT /T, and significantly greater average kinetic energy such as diffusion of
some impurities in cold gases can be considered. The heat spreading from a point
source with heat quantity Q in a one dimensional case in x axis is presented by
changing of temperatures [12] and defined by \/D_St

0

plcw¢7Z4D5t

at linear material density p, with specific heat ¢. Here, as in (21) the trans-
ferred heat quantity O from the point source at x = 0 is approximately proportional
to square root of time at the distance x < 2\/D_St . This result is similar to the results
obtained in [1] where linear diffusion profiles are small at the region x = x,, for non-
linear diffusion.

T(x,t) - Tg(0,0) = exp(-x? /4Dgt), (23)

4. RESULTS AND CONCLUSIONS

A similar task and approach have been considered for nonlinear diffusion [2],
[13], [14] in gases. In this case, the definition of diffusion coefficients, which de-
pend on average values of frequencies of molecule collisions in the frontier region
of diffusion profiles, has been introduced. For practical calculations of temperature
profiles, the coefficients a;,a,,a; at small AT /T, =0.02,0.5,0.1 are sufficiently
exact (19) and approximately coincide with coefficients of solution of nonlinear dif-
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fusion equation [11]. For these values of AT /T, the average meaning of v for
approximate (2) D,T'/T, evaluation can be used. For definition of D,T /T, value
dependence on temperatures and pressures, the values a;,a;,a;, presented in Table
2 at AT /T = 0.05, can be used. By the convergence of the obtained values a,,a,,a,
presented in Table 2, we get that for a case of maximum values AT /(T,&)) the con-
stants a,,a, practically coincide (19) when we take a; = 0. The results presented
in Table 2 show that heat penetration depths x, and &, (17) are approximately
proportional to A7 /T, values. In the case of nonlinear heat conductivity (4), we
obtained like in the Fourier’s law of heat conduction (21) that the transmitted heat
quantity is proportional to AT . It is very important for practical applications of mea-
sured valuesT(x 2 x,) =T,, X,, AT and analytical solutions (19) for definition of
D,. Using (21) Qg we can find temperature of source Ty when measurements are
hard, for example, walls and windows of buildings. Using (21)x, = &, \/D_e t, D,
we can obtain

Q, =K -S(T —Te)on - (24)

e>0

transmitted heat Qg by surface S for definition of heat conductivity K from mea-
surements AT, X,,1g,T, , calculated (19) &, and Table 1.
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NELINEARA TERMODIFUZIJA GAZES, ESOT VIDEJAM
TEMPERATURAM

A.J. JanaviGius, S. Turskiené
Kopsavilkums

Raksta tiek analiz8tas nelinearas termodifuzijas vienadojuma Tpasibas,
kas apraksta diftizijas procesus, kuri notiek galiga atruma. Agrakajos darbos
prof. A. J. Janavicius ir piedavajis nelinearo difiizijas vienadojumu ar difiizijas koe-
ficientu, kas ir tie§i proporcionals piemaisfjumu koncentracijai. Sis vienadojums
precizak raksturo Si kristalu piemaisijumu profilus.

Siltuma parnese gazés var notikt ar lielaku vidéjo kin&tisko energiju, jo
nelinearas difiizijas gazes molekulas no karstam zonam nonak aukstakas tapec, ka
nejausas Brauna dalinas parvietojas ar galigu atrumu. Saja gadijuma siltumparnese
gazes var tikt aprakstita ar nelinearas termodifiizijas vienadojumu, kur siltumparneses
un termodifuzijas koeficienti ir tieSi proporcionali temperatiirai 7. legiitie aptuve-
nie nelinearas termodiftizijas vienadojuma atrisinajumi veiksmigi tiek izmantoti, lai
defintu temperatiiras profilu un siltumparneses koeficientu gaze. Darba rezultati
liecina, ka siltuma izplatiSanas gazgs ir atkariga no temperatiiru starpibas un gazes
spiediena.
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