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The paper discusses the properties of the nonlinear thermodiffusion 
equation corresponding to the diffusion processes, which occur with a finite 
velocity. In the previous papers, A. J. Janavičius proposed the nonlinear diffu-
sion equation with the diffusion coefficient directly proportional to the concen-
tration of impurities. This equation provides a more exact description of the 
profiles of impurities in Si crystals. The heat transfer in gases carries a greater 
average kinetic energy based on nonlinear diffusion of gas molecules from hot 
regions to the coldest ones with a finite velocity by random Brownian motions. 
In this case, the heat transfer in gases can be described by using nonlinear 
thermodiffusion equation with heat transfer and thermodiffusion coefficients 
directly proportional to temperature T . The obtained approximate analyti-
cal solutions are successfully applied in defining temperature profiles and 
heat transfer coefficients in gases as well as providing opportunities for practi-
cal applications. It has been concluded that heat spreading in gases depends on 
temperature differences and pressure in gases.

Keywords: approximate analytical solution, nonlinear thermal diffu-
sion equation, temperature profiles 

1. INTRODUCTION

In the previous papers, we have discussed the nonlinear diffusion of impurities 
in semiconductors [1], [2], nonlinear thermodiffusion in gasses [3] and  heat transfer 
in metals by electrons [4]  using mathematical methods of similarity variables [1] for 
nonlinear equations. The obtained results are important for engineering applications. 
We assume that the process of heat transmittance in gasses is similar to nonlinear 
diffusion processes described as Brownian movement of atoms in solids spreading with 
a finite velocity. Heat transfer can be described using modified theory of the nonlinear 
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diffusion in solids [1]. In this case, the fre quency of the jumps of diffusing molecules 
[6] depends upon the coordinates, concentration and temperature. The coefficient of 
thermal conductivity of gases can be expressed in the following way [6]:

 (1)

Here λ  – mean values of a free path of diffusing molecules, v – mean 
velocities of molecular movement, vc – molar heat capacity at constant volume, 
ρ – density of gas, n  – number of molecules per unit volume, k  – Boltzmann 
constant, T  – temperature of gases, µ  – molar mass, R  – gas constant, d  – di-
ameter of a gas molecule, mD  – coefficient of thermal diffusion in gases. 

We introduced the equation of thermal conductivity of gases [6] with the non-
linear thermodiffusion coefficient proportional to the temperature:

 (2)

We introduced the constant pressure  for slow heat trans-
mission in gases when decreasing temperature ),( txT is compensated by increasing 
concentration ),( txn of gases. 

Using the heat flow j  for continuity equation [6], we obtained 

  
   (3)

Here constant eD  – thermodiffusion coefficient in environment for the 
specific heat capacity pc  of gases at constant pressure p , eK – coefficient of 
thermal conductivity of environment, eT – temperature of environment,  – pro-
portionality constant for nonlinear thermodiffusion function .

The nonlinear thermodiffusion equation (3) for temperature ),( txT  
00 xx ≤≤ , 

00 tt ≤≤  can be rewritten in a more convenient form 

  
(4)

which mathematically coincides with nonlinear diffusion equation [1]. The numeri-
cal calculations provided in [2] give dependence ),( txn as a straight line in the re-
gion 00 xx ≤≤  , 00 tt ≤≤  and  temperature ),( txT dependence must be similar. 
The jump of a greeter kinetic energy of hotter molecules to the points  λ+x  is pos-
sible only if it exists in the points x . This requirement is equivalent to the approval 
that thermodiffusion must occur with finite velocity. It is very important for defini-
tion of thermal conductivity [3] and diffusion coefficients [1], [2].    

The nonlinear heat conduction equation [7] can be rewritten by introducing 
nonlinear equation 
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(5)

for energy density E . 

The complicated approximate analytical solution [7] ),( txE  of the equation 
(5) cannot be experimentally measured. In our case, temperatures ),( txT  can be 
measured directly and compared to theoretical calculations. 

2. SOLUTION OF THE NONLINEAR HEAT DIFFUSION 
EQUATION FOR ONE-DIMENSIONAL CASE

The solution of (4) can be obtained by introducing similarity variable [5] 
ξ  and function )(ξf

  (6)

which depends on thermodiffusion constant eD  at environment tempera-
ture eT .  By substituting (6) into (4), we obtain nonlinear differential equation

   
(7)

The solution of this nonlinear equation can be expanded by power series, in-
cluding boundary condition at maximum value 0ξξ =

 
(8)

Now equation (7) must be transformed for the new variable z

  
(9)

By requiring that solution )(zf  of nonlinear equation (9) can be expressed by 
power series, we obtain recurrence relations [8] between coefficients na ,  ,...2,1,0=n  
(10)
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3. THE APPROXIMATE ANALYTICAL SOLUTION

In the approximation by polynomials we used expansion restricted by coef-
ficients 3210 ,,, aaaa . From expression (10)   at  2,1,0=n   we obtain the following 
system of equations: 

  (11)

  (12)

  (13)

where in (13) 04 =a . From the boundary condition )0()0( fTT e= at heat maximum 
penetration point we obtain 1)0( 0 == af  .

The solution )(zf  (8) must satisfy the second boundary condition 
Se TfTT =−=− )()( 00 ξξ  at heat source STT == )0(ξ .  Then we obtain

  (14)

The expression of temperature (6), (8) at heat source ST  is obtained

 
 (15)

The approximate solution 

  (16)

is used including the  boundary condition (15)
  

  
(17)

Thermodiffusion coefficients   and experimental [9] va-
lues of heat conductivities eK  in air at normal pressure  and 

moderate temperatures with specific heat  for air density  
 are presented in Table 1.
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 Table 1  
Dependence of Heat Conductivity Ke and Thermodiffusion De  
Coefficients at Temperatures toC   

toC T, K

27 300.15 2.553 2.172
17 290.15 2.485 2.043
7 280.15 2.417 1.919
-3 270.15 2.348 1.798
-23 250.15 2.207 1.565
-53 220.15 1.983 1.237

Using these meanings of eD  and solving (11), (12), (13), (17), we can obtain 
the heat penetration depths (6) tDx e00 ξ=   and profiles (14) for temperature 
differences ee TTT /))(( −ξ . The coefficients  0321 ,,, ξaaa  defining solution (16) 

)(zf  are presented in Table 2. 
Using solutions (16) presented in Table 2, we see that at less values 
eTT /∆  they can by simplified by taking 02

02 ≈ξa  and 03
03 ≈ξa . In this case, 

the parameter eeS TTT
a

/)(1

1
0 −−=ξ  can be obtained from (17). The con-

stants 1a , 2a  practically are not changing at different eTT /∆ . The solutions for  
Ct 0 =-53 C0 in two last rows of Table 2 practically coincide. This means that ap-

proximate solution with 03 =a presented in the last row is sufficiently exact for 
practical calculations. The constant 0ξ , defining a maximum of heat penetration 
depths 0x  proportional to tDe  like for nonlinear diffusion [1], can be expressed 
approximately

 tDx e00 ξ=  ,  eeS TTT
a

/)(1

1
0 −−≈ξ                                  (18)

for 0x ,  0ξ   that is  directly proportional to the T∆  like for the introduced 
amount of heat quantity [6] .  When the temperature of environment is eT ,  where 0x  
is directly proportional to the square root of heat spreading time t  like for nonlinear 
diffusion case [1], we used relation eTT /∆  for the temperature of environment eT  
and the normal room temperature  K   representing the constant source. 

The obtained solutions of equation (9) are presented in Table 2. The experi-
mental heat penetration depths can define thermal diffusion coefficients eD  with di-
mension 12 −sm . In this way, the dependence of ee TTD /  on temperature at constant 
pressure (2) p  can be used. We can find a sufficiently exact solution of the system 
of equations (11), (12) and (13), when 04 =a  and the boundary condition (15) is as 
follows:

eT
Taaa ∆ξξξ =−+− 01

2
02

3
03  ,  eS TTT −=∆ .  (19)

The sufficiently exact solutions )(zf  calculated by Mathcad 2013 are pre-
sented in Table 2 . 
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Table 2

The Dependence of Parameters 0321 ,,, ξaaa  for  
Approximate Solution )(zf  on eTT /∆ , when K

Cte
0

eT K eTT /∆ 0ξ 1a 2a 3a

17 290.15 0.0172 0.041 -0.422 -0.085 -0.0083 0.4195
 7 280.15 0.0535 0.122 -0.449 -0.087 -0.0080 0.4385
-3 -270.15 0.0925 0.202 -0.477 -0.090 -0.0076 0.4579
-23 -250,15 0.180 0.360 -0.533 -0.094 -0.0070 0.500
-53 -220.15 0.3407 0.604 -0.622 -0.099 -0.0061 0.5641
-53 -220.15 0.3407 0.606 -0.623 -0.099 0.0000

The profiles of functions if  and iF  (14) like ee TTT /))(( −ξ  for heat source 
temperature  and the environment temperatures -3,-23 Cte

0   and 
-23,-53 CTe

0  are presented graphically using Mathcad 2013 in Fig. 1 and Fig. 2, 
respectively.  

Fig. 1.  Profiles of functions  )( ξ=zf  and )( ξ=zF  presenting   relative differences  ee TTT /))(( −ξ  
of source  and environment temperatures respectively .

Fig. 2.  Profiles of functions )( ξ=zf  and )( ξ=zF representing relative differences ee TTT /))(( −ξ  
of source   and environment temperatures respectively =et   -23, -53 C0 .
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The profiles in Fig. 1 and Fig. 2 are parallel lines, which are defined by 

 and relations 

  (20)

presented by slowly changing numbers ),( eS TTC  in Table 2. The form of 
the obtained profiles approximately coincides with the profiles of nonlinear diffu-
sion in solids when the diffusion coefficient is directly proportional to concentration 
of impurities for temperature depending on time [10]. The quantity of the heat SQ
introduced in gases from surface with square S can be equally transmitted to gasses

 

 
, (21)

The obtained result is similar to the quantity of the introduced impurities by 
the nonlinear diffusion [11] when impurity concentration SN  at the crystal surface 
stays constant 

05492.0 xNQ S=  .  (22)

In the nonlinear thermodiffusion model, heat transition by the molecules with 
large  eTT /∆  and significantly greater average kinetic energy such as diffusion of 
some impurities in cold gases can be considered. The heat spreading from a point 
source with heat quantity Q  in a one dimensional case in  x  axis is presented by 
changing of temperatures [12] and defined by tDS  

)4/exp(
4

)0,0(),( 2 tDx
tDc

QTtxT S
Sl

S −=−
πρ

,  (23)

at linear material density lρ with  specific heat c .  Here, as in (21) the trans-
ferred heat quantity Q  from the point source at 0=x  is approximately proportional 
to square root of time at the distance tDx S2< . This result is similar to the results 
obtained in [1] where linear diffusion profiles are small at the region 0xx ≈  for non-
linear diffusion. 

4.  RESULTS AND CONCLUSIONS

A similar task and approach have been considered for nonlinear diffusion [2], 
[13], [14] in gases. In this case, the definition of diffusion coefficients, which de-
pend on average values of frequencies of molecule collisions in the frontier region 
of diffusion profiles, has been introduced. For practical calculations of temperature 
profiles, the coefficients  321 ,, aaa  at small  are sufficiently 
exact (19) and approximately coincide with coefficients of solution of nonlinear dif-
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fusion equation [11].  For these values of  eTT /∆  the average meaning of v  for 
approximate (2) ee TTD /  evaluation can be used. For definition of ee TTD / value 
dependence on temperatures and pressures, the values 321 ,, aaa , presented in Table 
2 at , can be used.  By the convergence of the obtained values 321 ,, aaa  
presented in Table 2, we get that for a case of maximum values  the con-
stants 21 ,aa  practically coincide (19) when we take 03 =a . The results presented 
in Table 2 show that heat penetration depths 0x  and 0ξ  (17) are approximately 
proportional to eTT /∆  values. In the case of nonlinear heat conductivity (4), we 
obtained like in the Fourier’s law of heat conduction (21) that the transmitted heat 
quantity is proportional to T∆ . It is very important for practical applications of mea-
sured values eTxxT =≥ )( 0 , 0x , T∆ and analytical solutions (19) for definition of  

eD . Using (21) SQ  we can find temperature of source ST when measurements are 
hard, for example, walls and windows of buildings. Using (21) tDx e00 ξ= , eD   
we can obtain  

2
0

0)(
ξe

eSS D
x

TTSKQ −⋅=   (24)

transmitted heat SQ  by surface S  for  definition of  heat conductivity K from  mea-
surements T∆ , eS TTx ,,0  , calculated (19) 0ξ  and Table 1.
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NELINEĀRĀ TERMODIFŪZIJA GĀZĒS, ESOT VIDĒJĀM 
TEMPERATŪRĀM

A.J. Janavičius, S. Turskienė

K o p s a v i l k u m s

Rakstā tiek analizētas nelineārās termodifūzijas vienādojuma īpašības, 
kas apraksta difūzijas procesus, kuri notiek galīgā ātrumā. Agrākajos darbos 
prof. A. J. Janavičius ir piedāvājis nelineāro difūzijas vienādojumu ar difūzijas koe-
ficientu, kas ir tieši proporcionāls piemaisījumu koncentrācijai. Šis vienādojums 
precīzāk raksturo Si kristālu piemaisījumu profilus.

Siltuma pārnese gāzēs var notikt ar lielāku vidējo kinētisko enerģiju, jo 
nelineārās difūzijas gāzes molekulas no karstām zonām nonāk aukstākās tāpēc, ka 
nejaušas Brauna daļiņas pārvietojas ar galīgu ātrumu. Šajā gadījumā siltumpārnese 
gāzēs var tikt aprakstīta ar nelineārās termodifūzijas vienādojumu, kur siltumpārneses 
un termodifūzijas koeficienti ir tieši proporcionāli temperatūrai T. Iegūtie aptuve-
nie nelineārās termodifūzijas vienādojuma atrisinājumi veiksmīgi tiek izmantoti, lai 
definētu temperatūras profilu un siltumpārneses koeficientu gāzē. Darba rezultāti 
liecina, ka siltuma izplatīšanās gāzēs ir atkarīga no temperatūru starpības un gāzes 
spiediena.
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