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A B S T R A C T

The new quantum waves’ diffusion equation based on Heisenberg uncertainties and De Broglie’s frequencies of waves is presented. The free movement and quantum
diffusion through a rectangular barrier are considered. We find a quantum diffusion coefficient and radii of bound systems. The obtained formula connecting radii
and bound energies of simple quantum systems, such as a hydrogen atom, deuteron and mesons, consisted of quarks.

Introduction

Usually, in quantum mechanical investigations of properties of
elementary particle systems are provided. Only the quantum field
theory of interaction of real particles with virtual particles and anti-
particles represents different fields in physical vacuum. Using quantum
field interaction with particles we can include generation of particles
and antiparticles, and also reactions which can be investigated experi-
mentally. According to Sokolov and Tumanov [1], vacuum oscillations
of the quantum field require to introduce for electrons the effective
radius what can help to explain Lamb shift of atomic levels S2 1/2 and

P2 1/2 [2] in hydrogen. The vacuum oscillations can spread the dot-
electron in some region with the radius Re proportional to Compton
wavelength [1] λe and square root of the fine-structure constant α
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The presented statistical model of quantum mechanics represents an
electron’s movement inside atom like Brownian particle [3] interacting
with fluctuations of electromagnetic vacuum. Taking into consideration
that quantum phenomena have a stochastic character, we propose a
new equation of quantum waves’ diffusion [3] based on Heisenberg
uncertainties and de Broglie waves. The link between uncertainties and
non-locality [2] holds for all physical theories. Heisenberg observed
that quantum mechanics [4] have restrictions of accuracy of in-
compatible measurements, such as position and momentum whose re-
sults cannot be simultaneously predicted. These restrictions are known
as uncertainty relations. Applications of these uncertainties mainly to
measurements are misleading because they suggest that the restrictions
occur only when one makes measurements, but in our case it is not
necessary. Taking into consideration the Lamb shift and Eq. (1.1), we
can say that the problem is more general than quantum mechanics

suggests. The definition of duality of wave-particle and physical para-
meters by probabilities require modifying the classical Schrödinger
equation based on the wave equation and de Broglie waves. We have
proposed the quantum equation connecting stochastic quantum diffu-
sion in physical vacuum and de Broglie waves representing a guiding
field for direction of moving quantum particles.

Diffusion of quantum waves

We assume that the equation of quantum mechanics diffusion can
be derived from the diffusion equation [5]
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applied to the wave function
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In this case, we obtain
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Requiring that the solution must represent some kind of linearly
independent physical ψJ1 and nonphysical ψJ2 solutions
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Free solutions can be presented by introduction [2] of maximum
=x x0 or minimum − =x x π k| | /Δ0 of amplitude for a wave pack or the

following superposition of quantum oscillations (2.4)

= +− − − + −ψ x Ae Be( ) ,J
ikx k x x ikx k x x| | | |0 0 (2.5)

where we can take for the coordinates =x x0 at the maximum xn0max or
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minimum xn0min oscillations
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of the real parts of wave function (2.5). We can represent this wave
function in the point x by decreasing oscillations generated in max-
imum point xn0max. Here we have some train of decreasing waves such
as in a wave packet.

Now we will try to consider the spreading wave in x direction
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This plain wave can be rewritten in the following way as follows

= − − − −ψ x t Ae( , )J
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0
( · ) | |0 0 (2.9)

which satisfies the simple quantum wave Eq. (2.1)
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when =x x0. We can represent this wave function for the point x0 by
spreading oscillations generated in maximum point (2.6) xn0max where
we can find a moving particle with maximum probability in point x0.
Here we have some train of decreasing waves like in a wave packet
where proposed wave function (2.9) can be normalized by integrating
probability density ∗ψ ψ
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The probability of a freely moving particle to be in interval −d x x| |0

is a proportional to =k π
λ

2 which is an important result of the scattering
theory in quantum mechanics [2]. If a low energy beam of particles is
incident on a sphere with radius = −r d x x| |0 0 , then from (2.11) we ob-
tain <k r· 10 or <k rℏ · ℏ0 . Only partial waves with orbital quantum
numbers =l 0 take part in interaction with a sphere and freely moving
particle represented by wave function (2.9) also located in this region.
The velocity of the spreading of these waves can be evaluated requiring

− + + − = − + + −Et px ip x x Et px ip x x| | | |0 1 1 1 0 (2.12)

of equally complex phases when

= + = +t t t x x xΔ , Δ .1 0 1 0 (2.13)

Substituting (2.13) in (2.12) we obtain

− − =E t p x ip xΔ Δ |Δ | 0. (2.14)

For maximum movement >xΔ 0m of the waves packet connected
with particles generated by quantum diffusion in physical vacuum at
wave maximum point x0, we have = =x x xΔ Δ |Δ |m

1
2

1
2 . Then from the

last equation for a nonrelativistic case =E p m/22 , we obtain
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Calculating the square of modulus, ∗v vj J , we obtain that quantum
diffusion stochastic waves train free spreading
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satisfies the conservation of kinetic energy

=∗mv v mv
2J J

2

(2.17)

and momentum mv for a freely moving quantum particle with the
average velocity v and mass m. From here, we can define an assumption
that
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Finding the minimum difference = − = − <x vt n x nΔ n
λ λ λ
2 2 2 from (4.15),

we can determine n, xn0max and x|Δ |n . Also, the free solutions (2.8) and
(2.5) of the quantum diffusion Eq. (2.1) are defined.

From this, for a free space [2], when =ω ck, =E ωℏ , we can obtain
wave function
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which include oscillations in physical vacuum. The free particle with
mass m moving with velocity v by action of classical forces and
quantum forces [6] depending on wave function or in our case on
stochastic waves’ packet generated in physical vacuum at points n λ

2
whose maximums of amplitudes are spreading with velocity v.
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we obtain the quantum stochastic wave diffusion equation [3]
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For free moving particles =k mE2 2
ℏ2 from the last formula, we obtain

the standard nonrelativistic expression
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From the expression of the quantum diffusion coefficient we can get
that a photon is reducible to virtual particles and antiparticles [7].
When an important expressions (2.4), (2.21) are satisfied, a connection
with relativistic virtual processes [7] in physical vacuum
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can be obtained. The last equation shows that a photon can produce
both particle and antiparticle with common mass m2 or annihilation by
virtual processes.We also can obtain the expression of diffusion coeffi-
cient DC from Heisenberg uncertainties for oscillations in physical va-
cuum [3]
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From (2.23) we get
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Multiplying the last equation for ℏ, if de Broglie equation =λ h p/ is
satisfied, we obtain
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After introducing operators to wave processes

̂ ̂= ∂
∂

= − ∇E i
t

p iℏ , ℏ (2.28)

and including the potential energy V r( ) and new functions, depending
on wave →rv and diffusion →rd coordinates

→ = → + → = → → = → →ψ r r r ψ r r ψ r ψ r( ) ( , ) ( ) ( ),JS v d JS v d S v J d (2.29)

we obtain the Schrodinger equation [1,2] for bound states:
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Free solutions (2.4) did not satisfy the Schrödinger equation when
=V r( ) 0 and for a coincidence free solution of (2.5) and (2.30), we

must separate the diffusion processes with different diffusion waves’
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coordinates →rd (2.29).
For bound systems, coordinates of wave→rv and diffusion→rd coincide.

The quantum diffusion of an electron in the hydrogen atom

The quantum diffusion equation in a three-dimensional case can be
obtained using (2.21)
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Here, the diffusion coefficient depends only on mass and is sig-
nificant only for elementary particles like electrons and protons [7]
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This diffusion happens for photons, free particles (2.5) and bound
particles. In the center of forces and in the region [2] where kinetic
energy = −T E V r( ) is negative the wave function is decreasing, like

−r Rexp[ / ]n with a decay length [2]
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For an electron bounded in the hydrogen atom [2,3], we obtain a
Bohr radius
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for a principal quantum number n and energy levels [2,3]
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The last formula can be obtained from (3.3) and (3.4). Now sub-
stituting (3.5) by (3.3) and taking into consideration that

= −=∞ω E Eℏ n n we can find the quantum diffusion coefficient DCn and
the connection between Bohr radius Rn and energy levels En for the
hydrogen atom

= = = = −D
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with principal quantum number n. We have the smallest diffusion
coefficient for the stable ground state when =n 1 and it is rapidly in-
creasing for excited states like n2. The obtained formula (3.6) can be
used for approximate evaluation of quantum systems: atoms, ions,
molecules and point defect’s parameters in solids.

Now radii of some atoms defined by diffusion of electrons in phy-
sical vacuum according to the formula (3.6) can be calculated. Using
the bound energies En of electrons [8] in free atoms H, He, Li, Be in
external shells with energies (13.60; 39.47; 5.39; 9.32) in eV, radii (3.6)
of these atoms in Angstroms ( −10 m)10 are obtained

= = = =R R R R0.529 Å, 0.310 Å, 1.68 Å, 1.28 ÅH He Li Be (3.7)

which were compared with calculations [9,10]

= = = =R R R R0.529 Å, 0.31 Å, 1.67 Å, 1.28 Å.H He Li Be (3.8)

Taking into consideration the presented values, we can suppose that
energies of the external subshell electrons define atomic radii with high
accuracy and depend on the quantum diffusion coefficient DC like some
constant of physical vacuum for an electron and a square of a principal
quantum number n.

Applying this conclusion, we will calculate some nuclear radii. For a
deuteron, where a neutron and a proton are diffusing in region =R R2d

of physical vacuum defined by radius R in the coordinates of the center
of mass, the formula (3.3) must be modified

= =R R
m E

2 ℏ
2 | |
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For the deuteron bound energy [11,12] = −E 2.225 MeVB and re-
duced mass

=
+

m
m m

m m
,n p

n p (3.10)

we obtained = −R 2.158·10 m15 or 2.158 fm. The charge radius [12] of a
deuteron is 2.095 fm.

It is interesting to note that if the radius R is known for the energy of
the bound system consisting of two equal particles from (3.6) for =n 1
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ℏ
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.B
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can be determined. Using (3.11) we can find Bohr’s radii for 1S states of
charmed and bottom mesons using quarks masses and bound energies
of quark and antiquark from the paper [13,7]

= =R fm R fm0.144 , 0.08151CC bb (3.12)

= =R fm R fm0.1704 , 0.05561 .CC bb (3.13)

For toponium [7] with ground state mass =M 347.4 GeVt and top
quark mass =m 179.25 GeVt from (3.3)

= −R fm0.2212·10 .tt
2 (3.14)

Taking masses mq of u and d quarks [7] =m 0.35 GeVu ,
=m 0.35 GeVd and the proton root-mean-charge radius [14]
=R fm0.8621p from (3.3) we obtained bound energy of quarks and

mass of a nucleon

= = − =E M m E0.08416 GeV, 3 0.9658 GeV.B n q B (3.15)

Here we used the approach that every quark is diffusing according
to mass center with reduced mass

=
+

m
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0.5

0.5
.q q

q q (3.16)

The obtained mass of a nucleon is in approximate coincidence with
masses of a neutron

= =m m0.9396 GeV and 0.9382 GeV.n p (3.17)

Quantum diffusion equation solution for tunnel effect for
rectangular barrier

From (3.1) separating variable t in the expression of the wave
function [2]

→ = →∓ψ r t e ψ r( , ) ( )J
iω t

J
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we obtain the quantum waves’ diffusion equations
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for the free movement.
It is possible to present the quantum diffusion equation with po-

tential V r( )
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This equation can be applied for the quantum diffusion in the case
of bound states [14,15]. Now we will obtain the solution of the time-
independent quantum diffusion equation for a rectangular well of an
infinite depth.

Introducing rectangular barrier

= =V V b V(0) ( ) 0 (4.5)

and remarking solutions of (4.4) such as falling and reflected waves at
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barrier =x 00 we get
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kx ikx kx ikx

1 1 1 (4.6)

In the barrier region ⩽ ⩽x b0 of a small extension, we have solution of
(4.4)
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The solution (4.6) for a transmitted wave at =x b can be expressed in
the following way
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Solving the presented equations we get
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Now, the transmission (diffusion) coefficient can be obtained
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where = +N n1 2, = −N nΔ 1.
Taking an approximate value of the denominator, where the width b

of the barrier is large compared to the wave length =λ π κ2 / , ≫κb 1,
we get
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the same expression as in [2]. For this case, from (4.20) we can get the
equivalent expression [10]
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For the obtained solution, we have essential differences of the wave
functions in the barrier region where we have the oscillating function
(4.7) and the essentially different classical solution [2]
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Conclusions

The Heisenberg uncertainty principle connected with the diffusion
equation is a powerful method for explaining of differences between
classical and quantum physics and expand theoretical and practical
applications. According to (2.25) we obtained that frequency of dis-
appearance of an electron in the hydrogen atom = −t1/Δ 0.156·10 s22 1 by
annihilation interacting with virtual positrons in physical vacuum.
They can appear at the distances = −c tΔ 0.192·10 Å2 .

In this case, the electrons cannot move in circular Bohr orbits. Free
movement of quantum particles is stochastic processes and is correlated
with quantum diffusion in physical vacuum (3.2) with decreasing sto-
chastic waves’ packets (2.8). The obtained formulas (3.3), (3.4) can be
used for evaluation of radii of spherical defects in solids. This is im-
portant for the analysis of point defects by X-ray diffraction experi-
ments [16,17], and application to new superdiffusion technologies of
semiconductors production [18]. The wave functions in the potential
region (4.7) are oscillating in different way like for free movement
represented by Eqs. (2.15) and (2.16). In the potential barrier region we
cannot use the assumption that here we have not a spreading of real
particle, but there are virtual processes [19] of particle’s quantum dif-
fusion in physical vacuum. This comment is interesting because in
paper [20] the hypothesis that a particle with mass m takes part in
Brownian motion with diffusion coefficient mℏ/2 obtained from the
second Newton’s law was applied. The wave functions of particles
having continuous trajectories [19] cannot be used to describe the
quantum states.

References

[1] Sokolov AA, Tumanov VS. J Exp Theor Phys 1956;30:802. [in Russian].
[2] Bochm D. Quantum theory. New York: Dover Publications, INC.; 1989. p. 672.
[3] Janavičius AJ. Diffusion of quantum waves. In: 16 international conferences on

mathematical modelling and analysis. University of Latvia, Sigulda, Latvia, May
25–28, 2011. p. 60, Abstracts.

[4] Sokolov AA, Ternov IM. Quantum mechanics and atomic physic. Moscow:
Prosviechenie; 1970. p. 423. [in Russian].

[5] Glicksman ME. Diffusion in solids: field theory, solid-state principles, and applica-
tions. New York: A Wiley-Interscience Publication, John Willey & Sons, Inc.; 2000.
p. 498.

[6] Kotelnikov VA. Adv Phys Sci 2009;179(2):204. [in Russian].
[7] Griffiths D. Introduction to elementary particles. WILEY-WCH Verlag GmbH&Co,

KGaA 2008:470.
[8] Karazija R. The theory of X-ray and electronic spectra of free atoms. An introduc-

tion. Vilnius: Science; 1987. p. 314. [in Russian].
[9] Drake GW. High precision calculation of atomic helium. Phys Scr T 1999;83:82–92.
[10] Roetti C, Clementi E. J Chem Phys 1974;60.
[11] Blatt JM, Weisskopf VF. Theoretical nuclear physics. New York: Dover; 1991. p.

864.
[12] Ericson TEO, Mahalanabis J. Nuclei 1985;322(2):237–9.
[13] Janavicius AJ. Semi-relativistic solutions for charmed and bottom mesons.

Proceedings of scientifics seminar of the faculty of physics and mathematics.
Šiauliai: Šiauliai University; 2005. p. 35.

[14] Rosenfelder R. Phys Lett B 2000;479:381.
[15] Janavicius AJ. Quantum diffusion of electron in hydrogen atom. In: 17th interna-

tional conferences on mathematical modelling and analysis. Institute of
Mathematics of Tallinn University of Technology Estonian Operational Research
Society, Tallinn, Estonia, June 6–9; 2012. p. 55, Abstracts.

[16] Nordlund K, Partyka P, Averback RS. Fully atomistic analysis of diffuse X-ray
scattering spectra of silicon defects. Mat Res Soc Symp Proc 1997;469:199–204.

[17] Janavičius J, Purlys R. Investigation of superdiffusion of metastable vacancies by
Bragg diffraction of X-rays. In: 4rd international conference radiation interaction
with material and its use in technologies 2012. (Program and Materials, Kaunas,
Lithuania), May 14–17; 2012. p. 612–5.

[18] Purlys R, Janavičius AJ, et al. Method of creation of defects using X-ray radiation
and electric field and its application. United States Patent No: US 9,530,650 B2,
Date of Patent: Dec. 27; 2016.

[19] Veltman M. Facts, and mysteries in elementary particle physics. Singapore: World
Scientific; 2003. p. 348.

[20] Nelson E. Phys Rev 1966;150:1079.

A.J. Janavičius Results in Physics 11 (2018) 148–151

151

http://refhub.elsevier.com/S2211-3797(17)31820-X/h0005
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0010
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0020
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0020
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0025
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0025
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0025
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0030
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0035
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0035
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0040
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0040
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0045
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0050
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0055
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0055
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0060
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0065
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0065
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0065
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0070
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0080
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0080
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0095
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0095
http://refhub.elsevier.com/S2211-3797(17)31820-X/h0100

	Particles and quantum waves diffusion in physical vacuum
	Introduction
	Diffusion of quantum waves
	The quantum diffusion of an electron in the hydrogen atom
	Quantum diffusion equation solution for tunnel effect for rectangular barrier
	Conclusions
	References




