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INTRODUCTION

During the last few decades there were lots of advances in the physics of ultra-cold
atoms and quantum optics [1]. Now it is possible to prepare and control ultra-
cold atomic gases very precisely. This allows to do precision experiments on the
resulting quantum systems. Cooling methods make it possible to decrease a tem-
perature of atomic gases down to the order of nano-Kelving or even less. In 1997
the works in atom cooling and trapping were awarded by the Nobel prize to S. Chu,
C. Cohen-Tannoudji and W. D. Phillips [2, 3, 4]. Such success in this field allowed
to experimentally observe a Bose-Einstein condensation (BEC) in 1995. Because of
this, E. A. Cornell, C. E. Wieman and W. Ketterle were awarded by another Nobel
prize in 2001 [5, 6].

Ultra-cold atom systems can be applied to simulate condensed matter phenomena
[7, 8, 1]. Moreover, creation of optical lattices for ultra-cold atoms started an ex-
perimental study of quantum computers and quantum information that can allow
to understand quantum correllations and quantum entanglement more deeply. One
of important quantum effects is a phase transition from a superconductor to a Mott
insulator [9]. The superconductive phase exhibits very strong quantum correlations
while the Mott insulator phase is convenient in quantum computing because of fixed
number of atoms in each lattice site. It is possible that the first quantum comput-
ers, designed as quantum simulators [10], will be created using ultra-cold atoms in

optical lattices.

Quantum computers and quantum simulators could solve some complicated prob-
lems that arise in condensed matters and high-energy physics. For the most time it
is very difficult to numerically model correllated many-body quantum systems. In
such cases quantum simulators may help to save time and money. Some examples
of correlated quantum systems are Hubbard and spin models. While the Hubbard
model does not approximate the condensed matter well, it can be used to describe
ultra-cold atom dynamics in optical lattices. Since there is a big variety of optical
lattices, one can construct a lot of different Hubbard models that exhibit many dif-
ferent quantum effects. On the other hand, some of such models simplify to various
systems of interacting spins. Because of this, we can use ultra-cold atoms in optical
lattices to simulate various spin models and solve related problems in condensed
matter physics. Similar spin systems can also be simulated using ultra-cold ions.
Since ions have a charge, it is easy to trap and cool them. It is also easy to manipu-
late and observe them. In addition, it is easy control and change various parameters

of both ultra-cold atom and ion systems.

The ultra-cold atoms are usually electrically neutral and the conventional magnetic



field does not affect them in the same way as it affects point charges. Various meth-
ods have been used to create artificial magnetic field and simulate two-dimensional
systems that exhibit the quantum Hall effect (QHE). One such way is to implement
rotating systems [11, 12, 13, 14, 15, 16]. Another way is to create light-induced
geometric potentials [17, 18]. Large magnetic fluxes can be created by shaking
the lattice potential [19, 20, 21, 22] or implementing a laser-assisted (pseudo-)spin
coupling [17, 18, 23, 24, 25, 26, 27, 28, 29].

Since it is possible to create artificial magnetic field for ultra-cold atoms in optical
lattices [17], we can use such lattices to explore fractional Hall effect. This effect is
already analyzed in two-dimensional systems, but there are still some unanswered
questions like how to observe anyon and other correlated states. In optical lattices

we can easily observe and explore this effect [30].

In this work we deal with two different aspects of artificial magnetic fields for ul-
tracold atoms in optical lattices. In the first part we describe single-particle physics
of ultra-cold atoms in optical lattices that have hexagonal geometry. We briefly de-
scribe the famous Haldane model: a two-dimensional hexagonal lattice with broken
time-reversal symmetry which leads to a presence of the artificial magnetic field.
This model was already experimentally realized [20]. Then we we describe our orig-
inal work [31] on a three-level extension of the Haldane model. We derive the Bloch
quasi-momentum space Hamiltonian, compute it’s spectrum and analyze topologi-
cal properties of the resulting energy bands by calculating Chern numbers for each

band.

In the second part of the work we introduce an optical lattice with a different kind of
artificial magnetic field which produces non-staggered magnetic flux [32]. We desribe
how such optical lattice can be created using the real non-artificial magnetic field
gradient and multi-frequency radiation that perturbs ultracold atoms trapped in this
system. We also show how topologically rich is the band structure of the introduced
optical flux lattice. This novel technique for creating the artificial magnetic field
differs from the others we mentioned in the way that it produces stronger magnetic
field. This allows to more easily realize the integer QHE. We show how the resulting
band structure exhibits a Landau-level like levels with unit Chern numbers. In
addition we show a few different topological phases with different distribution of

Chern numbers.



Main objective of the thesis

To explore the QHE of two different types of artificial magnetic fields (staggered and
non-staggered) for ultracold atoms in optical lattices by describing the dice optical
lattice and the optical flux lattice and calculating topological Chern numbers of

their energy bands.

Goals and tasks of the work

1. To introduce the dice lattice, a theoretical three-level extension of the two-
level Haldane model, by deriving a lattice Hamiltonian in the Bloch quasi-

momentum space using tight-binding model.

2. To calculate the band structure of the dice lattice and analyze its topological

properties by calculating the topological Chern number for each band.

3. To present a theoretical model of an optical flux lattice created using multi-
frequency radiation and develop an effective Hamiltonian using stroboscopic

approximation.

4. To calculate the band structure of the resulting flux lattice and analyze its
topological properties by calculating the topological Chern number for several

lowest energy bands.

Statements to defend

1. The two-level Haldane model can be extended to a three-level model using dice
optical lattice by applying the laser-assisted tunneling between the nearest

neighbor sites.

2. The extended three-level Haldane-like model produces an easy access to topo-
logical semimetal phases and topological bands with Chern numbers higher

than one.

3. The optical flux lattice with non-staggered magnetic flux can be realized using
two-level atoms trapped in a magnetic gradient and perturbed by a multi-
frequency radiation which resonantly couples internal states in different spatial

positions.

4. The model of the flux optical lattice created using multi-frequency radiation
exhibit topologically rich bands that in some cases resemble Landau levels and

in other cases contain Chern numbers higher than one.
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Scientific novelty

. One of the simpliest two-dimensional lattice with artificial magnetic field is the
famous Haldane model [33], which is already experimentally implemented [20].
The model produces topologically non-trivial bands that are characterized by

non-zero topological invariant Chern number.

. The Haldane model is essentially a two-level model in the momentum space,
because its hexagonal geometry consists of two triangle sub-lattices. In the
disertation it is suggested to use the dice geometry, which consists of three
triangle sub-lattices. This produces a theoretical three-level analogue of the
Haldane model which exhibits rich band topology of Chern numbers that are

larger than one in modulus.

. Optical flux lattices are new types of optical lattices with different type of
artificial magnetic field. In conventional optical lattices the artificial magnetic
field is usually staggered which means it is nonzero, but its flux over some
elementary cell or superlattice cell is zero. In optical flux lattices, the magnetic

flux is nonstaggered.

. Non-staggered magnetic flux in optical flux lattices adds up over lattice cells
and resembles uniform magnetic field. In this way optical flux lattices can
produce Landau-like levels. In certain cases a set of the lowest bands of the
optical flux lattice may exhibit rich topology, described by Chern numbers

that are larger than one in modulus.
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1 REVIEW OF OPTICAL LATTICES AND ARTIFICIAL
MAGNETIC FIELDS

1.1 Review of literature

Let us review various literature on a physics of ultracold atoms in optical lattices
and artificial magnetic fields. The physics of ultracold atoms in optical lattices and
the most important research that was made in this area are best presented in the
review article by M. Lewenstein et. al. [1] and in the book Ultracold Atoms in
Optical Lattices by M. Lewenstein et. al. [34]. More specifically, the physics of
artificial magnetic fields for ultracold atoms are presented in a review article by J.
Dalibard et. al. [17]. Here we summarize the main literature that is cited in the
identified sources and review the various phenomena that ultracold atoms in optical

lattices exhibit and developments that were made in this area of physics.

Over the last 20-25 years there were several important discoveries in quantum op-
tics and atomic physics that revoliutionized the science of ultracold atoms. Over
the years researchers in quantum optics and atomic physics reached a high levels in
quantum engineering — preparation, manipulation, control and detection of quan-
tum systems. Cooling of atoms have reached a level of very low temperatures and
precision. Because of the developments in the laser cooling of atoms S. Chu [2], C.
Cohen-Tannoudji [3] and W. D. Phillips [4] were awarded the Nobel Prize in 1997.
Such achievements allowed to experimentally observe Bose-Einstein condensation
(BEC) in 1995 [35, 36]. In 2001 E. A. Cornell and C. E. Wieman [5] and W. Ket-
terle [6] received the Nobel Prize for the successful Bose-Einstein condensation in

dilute gases of akali atoms.

In addition to the mentioned experimental research there was a lot of theoretical
research, such as the proposals of quantum cryptography [37], quantum commu-
nication [38, 39], quantum computer [40] and discovery of the quantum factorizing
algorithm [41]. These works motivated experimental studies of quantum information
[42].

The combinations of the experimental studies of quantum optics and atomic physics
and theoretical and experimental studies of quantum information let to massive
progress in the research of quantum correlations and quantum entanglement. A part
of experimental and theoretical research of cold atoms, molecules and ions focused
to quantum information and quantum simulators — quantum computers that have a
purpose of simulating quantum many body systems that cannot be simulated using

conventional classical computers [10].
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The physics of ultracold atoms now study various interesting phenomena that mim-
ick condensed matter physics. There are many specific directions of study such as
1D systems [43, 44, 45|, spin-boson model [46, 47], 2D systems [48], Hubbard and
spin models [49, 50, 51, 52, 53, 54, 55|, spin glasses [56, 57, 58, 59|, large effects
induced by small disorder [60], high T, superconductivity [50, 61, 62, 63], frustrated
antiferromagnets and spin liquids [64, 65, 66|, systems with higher spins [67, 68, 69],
fractional quantum Hall effect (FQHE) [70, 71, 72, 73, 74, 75, 76] and lattice gauge
fields [77, 29, 78, 79].

For the basics of quantum optics and atom optics the books Introduction to Quantum
Optics, From the Semi-classical Approach to Quantized Light by Gilbert Grynberg
et. al. [80], Elements of Quantum Optics by Pierre Meystre and Murray Sargent
III [81], Atom Optics by Pierre Meystre [82] and Quantum Optics by Werner Vogel
and Dirk-Gunnar Welsch [83] are recommended. For the review of Bose-Einstein
Condensation the book Bose-Finstein Condensation by Lev Pitaevski and Sandro

Stringari [84] is recommended.

1.2 Forces acting on ultracold atoms

Before talking about ultra-cold atoms in optical lattices and how an artificial mag-
netic field is created for them, we need to understand how atomic gases are cooled
down and how atoms in such gases are manipulated. We begin with a simple model
of a two-level atom in electromagnetic field. We will describe what forces act on
such atom and how they can be used to create optical lattice — a spatially periodic

potential.

A general Hamiltonian of a two-level atom in electromagnetic field consists of three
terms [82]:

Here the first term Hp describes a center of mass motion and internal levels of the
atom. Let us denote the ground internal state by |g) and the excited internal state
by |e). If we fix the ground state level energy to zero, then H,iop, is explicitly written
as o

Hy = BYYi + Fuvgle) (e|.

Here p is atomic momentum, M is mass. fiw is energy of the excited state |e).

The second term Hp describes the electromagnetic (EM) field. Usually this term is

16



expressed in creation and annihilation operators:

— § : T
HF = hwkﬁak’eak’e.
k,e

Here we sum over all modes of the electromagnetic field that are numbered by the
wavelength k and polarization €. In ultra-cold atom systems one or more EM modes
are filled up macroscopically, so they are treated clasically. Because of this we split
Hy into two parts:

Hy = Hy, + Hg.
Here Hi, describes the classical EM field while Hr consists of all other modes.

The third term Har describes interaction between the atom and EM field. We use

electric dipole approximation and express it as
Hap = —d - E(r,t). (1.2)
Here d is the electric dipole moment of the atom,

d = dec (le)(g] + [g){el) - (1.3)

The vector e, points along axis of the dipole.

Ultra-cold atoms are usually manipulated by monochormatic electromagnetics fields

created by lasers. The classical electric field of such lasers is written as
E(r,t) = e(r)E(r) cos [wt — O(r)]. (1.4)

Here w is the electromagnetic field frequency, e(r) is poloarization vector, £(r) is
slowly varying field amplitude and ®(r) is phase. In a long-wavelength approxima-
tion we treat the atom as a point particle and the radius-vector = in (1.2) and (1.4)

points to the atom center of mass position.

We split the interaction term Hap into two terms in the same way as we did with
the HFI
Hap = Hpr, + Hjpgr. (1.5)

The first term H sy, describes the dipole interaction with the classical electromagnetic
field. In the long-wavelength approximation the electric field operator E’(’r,t) in
(1.2) is the classical field Ey (7, t) expressed in (1.4). By substituting (1.4) to (1.2)

we get the explicit expression of Hay,:
Har = hQgr(7r) {cos [wt — ®(r)] |e){g| + H. c.} . (1.6)

17



Here “H. c.” denotes the Hermitian-conjugate expression of the first term in the sum
inside the parentheses “{}”. In (1.6) we introduced Rabi frequency:
E(r)

Qr(r) = —dlec - e(r)] — (1.7)

This quantity measures interaction strength between the atom and the classical

electromagnetic field.

The second term Hag in (1.5) couples the internal atomic states with other modes
of the electromagentic field, that are not filled up. This term describes the spon-
taneous emission of photons from the atom. Usually, this effect is included via

phenomenological parameter, a spontaneous emission rate I'.

Let us explore the quantum mechanical motion of the described tow-level atom in the
given electromagnetic field using Heisenberg’s equation of motion for the momentum
operator p:
dp 1
— = —[p, Hx + Hayl. 1.8

We calculate an average force F' acting on the atom as the expectation value of

(1.8):
po (), »

Following [82] we find that in the end there are the two most important forces acting

on the atom: the dissipative force Fyisip and the reactive force Fieact:

P

Py = Wb o (T2 + B2 0
2

Eeact = 1o v (QR) (111)

282+ (/224082

Here ¢ is detuning of the electromagnetic frequency from the resonant frequency wy
of the internal atomic states:
0 =w — wp. (1.12)

The ki, present in the dissipative force Fyisip is the wavevector of the plane wave

(1.4). Here effects of Hagr are indirectly included via the spontaneous emission rate

I.

The dissipative force Fyisip is responsible of electromagnetic pressure which de-
creases the kinetic energy of the atom. This force has important role in cooling
processes. The dipole force Feact is important in description of optical atom traps
and creation of optical lattices, because it is proportional to the gradient V(Q%)

and is non-zero only if the Rabi frequency g and subsequently the electric field
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intensity I oc Q% vary in the space.

1.3 Cooling of atomic gases

Here we briefly describe the two most important methods of cooling of atomic gases:
the Doppler cooling and the evaporative cooling. The first method is usually used
in the beginning of a cooling process. The second is used in the end. Other cooling
methods are described in [3, 82].

Let us consider an atom moving with a velocity vy in the following field of a

monochromatic electromagnetic wave, created by a laser:
E(r,t)=ecos(wt—k-r). (1.13)

In the long-wavelength approximation we insert the center of atom mass and get
E(r,t) = el cos|(w—wp)t]. (1.14)

Here k- r = k - vyt = wpt and wp describes the frequency shift which is a result of
the Doppler effect. The detuning § changes to dp = § —wp. If the atom moves in the
opposite direction than the electromagnetic wave, it experiences larger electromag-
netic field frequency. If the atom moves in the same direction as the electromagnetic

wave, it experiences the opposite effect.

Suppose that the laser is red-detuned (§ < 0). Then slower atoms in the atomic gas
cloud that move in the opposite direction to the electromagnetic wave experience
the wave with the frequency which is close to the resonance frequency wy. Faster
atoms will experience the wave which has a frequency further from the resonance.
Because of this the atoms that move in the opposite direction to the wave are slowed
down more than the atoms that move in the same direction to the wave. In this
way we can slow down the atoms by combining two counter-propagating waves that
both are red-detuned. For weak electromagnetic waves, the dissipative force Fysip
simplifies [82]:

Fhoppler & —20100. (1.15)

Here p is the resulting friction coefficient.

There is a temperature limit of the Doppler cooling because of spontanaeus emission
of other atoms in the atomic cloud. The limit depends on a type of atoms. For alkali
atoms this limit is of the order of several hundreds of micro-Kelvins. In order to

cool the atomic cloud further other methods must be applied.
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In the end of a cooling process one usually employs the evaporative cooling. The
idea of such cooling is very simple: the trap barrier is lowered for a certain amount of
time and the atoms with higher kinetic energy simply evaporate away. This process

allows to decrease the atomic cloud temperature down to the order of nano-Kelvins.

1.4 Magnetic and optical traps

Almost all atomic gases in low enough temperatures make a phase transition to a
solid state. The exception is helium, which stays in a liquid phase if we decrease a
temperature while maintaining pressure. It may look that ultra-cold gases should
not exist. However, we should mention that the transition to the solid state happens
mostly because of three-body interactions [84]. If we decrease the density of atomic
gases enough (to 10" — 10" cm™3), then we also decrease a chance of three-body
collisions to happen. In this way we can maintain a gas state. In order to reach
quantum regime, the temperature needs to be very low (about of an order of 1076
kelvins). In addition, the atomic gas cloud must be separated from other materials,
because the atoms from the cloud may collide with the atoms of other materials
and cause a phase transition from gas to solid state. Polarization of atom spins also
helps to maintain the gas phase, because this increases repulsive interaction between

the atoms.

We can satisfy mentioned requirements by collecting and cooling down low-density
atomic gases with polarized spins inside a magnetic and/or optical traps. Such
systems are long-lived (usually about several seconds before evaporating away from
the trap or condensint into the solid state) compared to an average time between
two-body collisitions that allow the temperature to distribute evenly in the atomic

cloud.

Magnetic traps work because of Zeeman effect. In order to understand how they
work, let us consider Alkali atoms. These types of atoms have only a single outermost
electron. In the ground state, the projection of the full electron angular momentum
J to the z axis is 1/2. Then we can categorize such atoms into two groups according
to their nuclear angular momentum. Any alkali atom has an odd number of protons.
If such atom also has an odd number of neutrons, then it is a fermion. Otherwise it
is a boson. The full atomic angular momentum is F' = I + J. Depending on I, the
projection values of F' are F' = I +1/2. If there are no magnetic field, a degeneracy
between both hyperfine levels is eliminated by interaction between electron angular

momentum and nuclear angular momentum:
Hy=al - J.
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Here a is an interaction strength.

In the presence of a magnetic field B = Be, we include additional term:
th =al -J + 2MB<]ZB

This term splits each hyperfine energy level into a several sub-levels depending on the
nuclear angular momentum I. Here up is Bohr’s magneton. For example, for 2Na
and 8"Rb, the nuclear angular momentum is I = 3/2 and both hyperfine levels split
into 8 sub-levels: two levels with mprp = +2 and two levels each for m = —1,0, 1.
In the limit of very strong magnetic field the splitted levels approach two levels
E = +upB. Moreover, the interaction between the atoms in different hyperfine
levels can be different and this allows to create many different interacting ultra-cold

atomic systems.

A magnetic trap is created by using a magnetic field B(r) which varies spatially. In
a situation when the adiabatic approximation holds — when the moving atom stays
in the same internal state — the total energy of the atom depends on the magnetic
field. If the atoms have lower energy where the magnetic field is stronger, they will
move to the direction of the increasing magnetic field. If the atoms have lower energy
where the magnetic field is lower, they will move to the direction of the decreasing
magnetic field. From Maxwell’s equations we know that it is impossible to create a
static magnetic field with a maximum, so we are left with the second choice. The
magnetic trap contains only the atoms that are in such internal state that they move
to the direction of the decreasing magnetic field. For *Na and 3Rb the internal
states are ' =2, mp =+4+2,+1 and F =1, mp = —1.

Another type of atom trap is the optical trap. The reactive force Fyeaet in (1.11) can

be expressed as a gradient of a potential function Vog(r):

Eeact(r) - _v‘/eff(r)a

hé 02 /2
‘/e (T):?ln(l+m) .

The effective potential Vog(r) is a result of electromagnetic field of a laser.

Observe that for a small Rabi frequency, the effective potential is approximately
proportional to % and as a consequence it is proportional to the intensity of the
electromagnetic field:

Ver(r) oc [E(r)”.

If the laser is red-detuned (6 < 0), the atom will have lower potential energy where

the electromagnetic field intensity is higher. If the laser is blue-detuned (§ > 0),
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Figure 1.1: A simple one-dimensional optical lattice, created from two counter-
propagating lasers. The green line is the potential V(r) which is proportional to
the intensity of the electromagnetic field of the resulting standing wave. Here V; is
a maximum of the potential, a = 7 /ky, is the lattice constant. The red line is the
electric field value of the created standing wave at some specific time moment.

the atoms will experience lower potential energy where the intensity is lower. The

effective potential then can be expressed as
Veg(r) = sgn(0)V(r) = £V (r).

Here V(r) is a dipole potential — a positive function, proportional to the electro-
magnetic field intensity. The effective potential Vig(r) is then either V(r) or —V(7)
depending on the sign of the detuning §.

The optical trap is created by using red-detuned laser. The lasers, used in ultra-cold
atom laboratories, have a Gaussian profile and the atoms will move to the where
the laser has the maximum intensity. In this way, using one or more overlapping
lasers we can contain atoms in a specific region of space. Usually the optical traps

are stronger than magnetic ones.

1.5  Optical lattices

Since the created optical potential V' (r) is proportional to the intensity of the elec-
tric field |E(r)|*> we can now create simple periodic potentials by using standing
waves. For example two counter-propagating waves produces the potential which is

proportional to
g2 ’ei(wt—kLz) 4 gilwtthLe+g) 2‘
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Figure 1.2: Square optical lattice

Then the potential V (r) is expressed as

V(r) = Vysin® (ka + g) : (1.16)

Here ¢ is a possible phase difference between the counter-propagating waves. Such
periodic potential is presented in the fig. 1.1 and describes a one-dimensional optical

lattice with a lattice constant a = 7/kg.

A simple two-dimensional square lattice is created by using two pairs of counter-
propagating waves that are perpendicular to each other. In this case the produced
optical potential is

V(r) =V [sin®(kyx) + sin®(kry)] - (1.17)

Such form of two-dimensional potential is corrent in case the is a slight frequency
difference between two standing waves, so the fast-varying interference term can be

ignored.

In order to create a simle hexagonal or triangle lattice, we can use three lasers with

wavevectors (see fig. 1.3):

k k
Bi= (et VBe,), k= t(es—VBe,), ky=hie,

The total electric field is
3
E(r,t) = e.Ey Y expli(k; 7 —wt+¢))].
j=1
Here the lasers are linearly polarized along the z dimension. We can make a simple
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Figure 1.3: Laser beams configuration when creating a hexagonal or triangle optical
lattice. The sum of the wavevectors ki, ko and k3 is zero.

translation in space and time and eliminate the phases ¢;. The resulting effective

dipole potential has a form

V(r) = Vou(r) = Vol f(r)* o | E(r, 1) (1.18)
Here
f(r)=1+exp(ib; -r) +exp[i(by + by) - 7],
v(r) = 3+ 2cos (by - ) + 2cos (by - 1) + 2cos [(by + by) - 7]
and

kg—k1:b1+b2, kg—klzbl.

The created dipole potential for the hexagonal /triangle lattice is presented in fig. 1.4.
The effective potential Vig(r) = £V (7) describes either the hexagonal lattice or
the triangle lattice. If the lasers are red-detuned, then we get the triangle lat-
tice, Veg(r) = —V (7). If the lasers are blue-detuned, we get the hexagonal lattice,
Ver(1) = V(7).
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Figure 1.4: Optical potential for a hexagonal or triangle lattice. Left: the dipole
potential v(r). Right: effective lattice potential along the line y = 0. If the laser
is red-detuned (§ < 0), then Vig(r) = —Vyv(r) and we get the triangle lattice. If
the laser is blue-detuned (6 > 0), then Vig(r) = Vov(r) and we get the hexagonal
lattice.

2 CALCULATION METHODS AND ANALYSIS USED IN THIS
WORK

2.1 Periodic quantum systems
2.1.1 General eigenproblem and Bloch states

The first step in any quantum mechanical problem is to find relevant eigenvalues
and eigenstates of a Hamiltonian of a quantum system. In other words, the first

step is to solve the stationary Schrodinger’s equation (SE):
Hy = Ev. (2.1)

Here H is the Hamiltonian — the quantum mechanical energy operator of a quantum
system. Usually, for periodic quantum systems, one starts with a single-particle
problem and then moves to many-body problems. In this work we explore only
single-particle effects in two-dimensional systems. We will describe the analytic and
numeric methods to explore such systems in great detail. In this way this chapter

will also act as a great reference of solution methods for similar quantum problems.

A quantum mechanical particle in a periodic system — either an electron in a solid

state or an ultra-cold atom in optical lattice — is described by a Hamiltonian which
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as elementary cell

Q

Q2| = area

Figure 2.1: General 2D elementary cell: a region in R? bounded by the parallelogram
made from the elementary lattice vectors a; and as. The cell is denoted by €2, its
area by [€)| and the integration element by df2.

includes kinetic and potential energy. In the coordinate representation it has a form

h2
H=——V*+V. (2.2)

2m

Here A is the reduced Planck’s constant, M is particle’s mass, V2 is the 2D laplacian,
r € R? is a 2D radius-vector, which is a position of an electron in a solid or a center
of mass of an ultra-cold atom in an optical lattice. V' is a potential which is periodic
with respect to a lattice vector vy, V(r + r,) = V(7). The general lattice vector

r, € R? is expressed in the elementary lattice vectors ai,a, € R? as
Ty = NG + Naas. (2.3)

Here n denotes two integer indices, n = (ny,n2), n1,ns € Z. The region bounded
by the parallelogram made from the elementary lattice vectors a; and as is called

the elementary cell and is denoted by €2 (see fig. 2.1). Its area is denoted by
Q] = / 40 = |a; x as). (2.4)
Q

Here df2 is the integration element inside the elementary cell 2. The area |{2| in

(2.4) is expressed as the integral of unit function over the whole elementary cell.

Let us introduce a reciprocal lattice vector

G = m1b1 + m2b2. (25)

26



Here by, by € R? are elementary reciprocal lattice vectors, that satisfy
bi ;= 27'('57;]', Z,] = 1, 2. (26)

Note that we don’t put an index m = (mq, msy) to the reciprocal vector G, because
we don’t use the symbol G for other quantities and there are no such ambiguity as
with the vectors r and r,. From eq. (2.6) we get convenient identity, which we will

use later: exp(G - ry,) = 1.

The eigenvalue equation of the presented Hamiltonian is explicitly written as

R, B
—5 VA Vi = B (2.7)

Here v is the particle’s wavefunction and E' is the corresponding energy.

The eq. (2.7) is defined over the whole coordinate space » € R?, which complicates
the problem. Since the potential is periodic, we simplify the problem using Bloch’s

theorem, which states that the solution wavefunction ¢ (eigenfunction) has the form

V(1) = Yr(r) = * ug(r). (2.8)

Here we introduced the Bloch’s wavevector k which is one of quantities to number
different solutions to the eq. (2.7). The new function wuy has the same periodicity as
the potential V:

Uk(r + 7Tp) = ug(r). (2.9)

As one can see, the Bloch’s theorem (2.8) states that the eigenfunction 1 is a product
of two terms. First term is the phase factor where the phase linearly depends on
the position r. Second term is the periodic function wug, which is called the periodic
part of 1. Since the eigenfunctions 1y are now numbered by k, we also need to
number corresponding energy values E = E(k). The wavefunction of the form (2.8)

is called Bloch wavefunction.

The Bloch’s wavevector k is defined over the First Brillouin Zone (FBZ), which is a

Wigner-Seitz primitive cell in the reciprocal space.

From the equations (2.8) and (2.9) we find that the eigenfunctions v, satisfy the

condition
Ur(r 4+ 1) = F ey (r). (2.10)

This means that we can focus our attention to a single elementary cell instead of
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the whole coordinate space R?. We reformulate our eigenvalue problem (2.7) to

2
TV Vi = B(R) b @.11)

with the Bloch-periodic condition (2.10).

Sometimes it is convenient to formulate this eigenproblem in terms of the periodic
functions ug. By inserting (2.8) into (2.11) we get

2

h
—5- (Vuk + 2ik - Vg, — kB*ug,) + Vg, = E(k)uy,. (2.12)

Here k? = k - k is a squared length of the Bloch wavevector k.

2.1.2  Discrete problem: tight-binding model

The discrete description of opticall lattices uses tight-binding approximation, which
in principle always leads to a finite-dimensional Hilbert spaces. The tight-binding
approximation is used very widely to describe many-body effects, so usually one
starts from particle creation and annihilation operators. We don’t directly analyze
many-body states, but we still use creation and annihilation operator language,
since on single particle level it is equivalent to the usual one-particle Hilbert space

description.

The tight-binding approximation limits the full quantum mechanical Hilbert space
to a set of states that are localized near each lattice site. In this way we have
convenient set of basis states and this set can be made into a finite set by chooosing
suitable boundary conditions for the whole lattice. An example of such boundary
conditions are periodic boundary conditions: we pick certain numbers of elementary
cells in each dimension and wrap the whole lattice into two-dimensionall thorus.
Such description can give very good description of bulk lattice properties if we

include enough elementary cells in each dimension.

In general we start with a set of lattice sites positioned in the points r;, where j
numbers each elementary cell. For more complex lattices a single elementary cell may
contain more than one lattice site. It becomes convenient to use different indices for
an elementary cell and specific sites and states in it. We will use a two-dimensional
vector n = (nq1, ng) with integer indices ny and ny to denote the elementary cell and
additional index s to denote different type of lattice sites. In this way we describe
the position of each lattice site by the vector r,, ;. Using this we denote creation and
annihilation operators by ¢f(r,, ;) and ¢(r,, ). This notation is useful when we don’t

want to specify a specific site and use general position vector . Then we will write

28



cf(r) and c(r), where the only requirement is that the vector = is not arbitrary, but
points to some lattice site. In addition, it is convenient to pick a specific site in the
elementary cell as a reference point to describe position of the that elementary cell.
We do this by choosing specific s, for example s = 0 (if zero is in the set of possible
values of s) and denote 7,0 = 7,. In this way the vectors r,, coincide with the
lattice vectors defined in (2.3).

Having introduced the creation and annihilation operators we now can build the
general Hamiltonian H of a lattice. The dynamics of a single particle is described
with terms of the form t, ¢n oc'(Tns)c(Tn o). Such terms remove the existing
particle from the site 7,/ ¢ and create another particle in the site r,, 5. Effectively,
this process, called hopping, moves existing particle from one site to another. ¢, s n/ &
are called hopping parameters, that describe hopping rate and any additional phases
that may appear when particle moves from one lattice site to another. Usually the
hopping parameters don’t include diagonal terms t,, s, s (With n = n’ and s = ')
as they describe the on-site energy and a possible additional potential. These terms

are separated and denoted by another letter, for example €,, s =t 5.m-

For a single particle in a lattice the general tight-binding Hamiltonian is written as

H = Zansc Tis)C(Ths) Z trnsn/s el (Prs)C(Trr s (2.13)

TLS?’L 8

Here the second term excludes the terms with n = n’ and s = s as they are
expressed in the first term. If we don’t have any kind of external potential or
magnetic field, we have fully periodic quantum system and the on-site energies don’t
depend on the index n. In the same way the hopping parameters t,, s,/ depend

only on the difference n — n'.

The core idea of tight-binding approximation is to cut off hopping parameters be-
tween lattice sites that are not near each other. Most of the time only the nearest
neighbour (NN) sites are considered, but sometimes we include the next-nearest
neighbour (NNN) sites into analysis as such terms may become important in order

to describe certain lattice properties.

The single-particle physics are analyzed by switcing into k-space. We do this using

Fourier transform of the creation and annihilation operators cf(r) and c(r):

—ik-r
§ rn s n>

1k: rn

\ﬂ\

c(rn.s) \/_ ;
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Here N is the total number of elementary cells in a quantization volume, meaning
that if NV; is the number of cells in one dimension and N, is the number of cells in
another, the total number of cells is N = N;N,. After this transformation the index

n is changed into k. For single-particle case, the Hamiltonian H becomes diagonal

H:ZHk
k

and problem is simplified to the eigenvalue problem of the block Hj, which can be

in k. Then we write

represented as a square matrix, which has the same size as the number of lattice
sites in a single elementary cell. We will denote matrix representation of Hy by Hy.

Eigenvalues of Hy form energy bands, denoted by E, (k).

2.1.3 Wannier states

Although Bloch functions (2.8) are eigenfunctions of the single-particle Hamilto-
nian and form a full basis in the quantum mechanical Hilbert space, they are not
convenient when we explore certain types of optical lattices. Here we introduce
alternative basis of Wannier functions that are constructed using Wannier func-
tions [85, 86, 87, 88] that are built from solutions to the equation (2.11) with the
corresponding boundary conditions (2.10). In addition, the Wannier functions es-
tablich a relation between the first-principles description (2.7) and the tigh-binding
approximation (2.13).

Let us pick a specific energy band n which is separated from other bands by band

gaps. The Wannier function Wg,, is defined as a Fourier transformation of Bloch

Wrn(r) =4/ (%2 /F . A’k e F Ry (7). (2.14)

Here we integrate over the first Brillouin zone. If we pick a large but finite number

states Y -

of elementary cells and introduce periodic boundary conditions for the whole lattice,

then we change the integration into a finite sum:

Wera(r) = \/]\}_u > e Ry (r). (2.15)
cells k

Here N, is the total number of cells in our lattice. In addition, we have the same

number of k-points in the first Brillouin zone.

Such Wannier functions have several important properties:
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o Wg, are periodic functions with respect to the index R:
WR,n(”') = WR+R’,n(r + R/)

Here R’ is a lattice vector. This property shows that each Wannier function
is its own translated copy. If we know the Wannier function for for one ele-
mentary cell, we easilty find others by translating it by the lattice vector R/.

This allows us to denote the Wannier functions simpler:
Wo(r — R) := ¢ra(r).
o Wg,, is not uniquely defined. If we change overal phases of the Bloch functions,

V(1) = exp(inn) Vi (r). (2.16)

then we construct a different set of Wannier functions. In addition, if we have
several overlaping energy bands, then, before constructing Wannier functions,

we can mix the Bloch functions:

Vb (T ZU(’“’ Yt (T (2.17)

Here U™ is unitary matrix, which mixes the Bloch functions in each k-point.
A phase choice (2.16) for a Bloch functions from a single energy band is a
specific case of Bloch function mixing (2.17) when the matrix U*) is diagonal

unitary matrix.

o Wannier functions Wg,, form an orthogonal basis for a Hilbert space subset

for a selected energy bands.

Non-uniqueness of Wannier functions is a complication and it would seem that
they are not very useful. However, it is shown that it is possible to choose the
matrices U®) in such a way that the resulting Wannier functions are maximally
localized around lattice sites [88]. Such optimal matrices U*®) can be constructed
using some criteria or measure of Wannier function localization. Such measure can

be a functional

(P — (r)2). (2.18)

This parameter measures the localization of all Wannier functions, defined in a single
elementary cells and numbered by the index m. Here by (r) and (r?) we denoted the

quantum expectation values of the coordinate operator  and the squared coordiante
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operator r:

(r) = (0,m|r[0,m),
(r2) = (0, m|r2|0, m).

Here |0,m) is a ket vector corresponding to the Wannier function W,,, = Wy ,,. In
order to the find maximally localized Wannier functions, we have to minimize the

functional (2.18) by choosing optimal unitary matrices U®).

The maximally localized Wannier functions have certain important properties:

o If the initial single-particle Hamiltonian has a time reverse symmetry, then
there are no initial magnetic field and the maximally localized Wannier func-

tions ¢, (r) are essentially real (ignoring the global phase factor).

o Maximally localized Wannier functions decrease exponentially if we move away
from their centers. In the same way corresponding matrix elements of the

Hamiltonian between these Wannier functions also decrease.

All the properties of Wannier functions allow us to use them as a basis for the

tight-binding approximation.

2.1.4 Tight-binding model from Wannier functions

When we construct a set of maximally localized Wannier states |R, m), we can use
it as a basis for the tight-binding approximation. Because of localization, the matrix
elements of the Hamiltonian between Wannier functions that are further away from
each other are close to zero and can be ignored. When we construct the Hamiltonian

in the Wannier function basis, we express a general state vector as

U) = crm|R.m). (2.19)

Rm

Here cp,, are the expansion coefficients. Using this expansion and the fact, that
Wannier states are orthonormal, we transform the Shrodinger’s equation, H|¥) =

E|U) into a system of equations for the expansion coefficients cg,,:

> crm(R,m|H|R m) = Ecgm. (2.20)

! /
R''m

Here (R, m|H|R', m') are matrix elements of the Hamiltonian in the Wannier basis.
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It is convenient to write the resulting Hamiltonian in the Wannier basis in a form

with separated diagonal and off-diagonal elements:

H=> cpmRs)(Rs|+ Y trmmw/Rm)(R m| (2.21)
Rm (R,m)#(R',m’)

Here eg,, = (R, m|H|R, m) are the diagonal matrix elements and tg, g/ are
the off-diagonal matrix elements. The diagonal matrix elements correspond to the
average Wannier state energies. The off-diagonal matrix elements describe hoppings

between the lattice sites.

The single-particle tight-binding model (as described in the section 2.1.2) is con-
structed by identifying the Wannier function index R with the lattice vector r,,, the

index m with the sublattice index s and substituting

|R,m) <R/, m/’ — (Tn,S)C(Tn’,s/)>
ERm — En,s;

tR,m,R’,m’ — tn,s,n’,s’-

In this way we get the tight-binding Hamiltonian (2.13).

Note that this way of building the tight-binding model works only for a single-
particle case. If your model includes interaction terms, you need to start from
the second-quantized version of initial Hamiltonian in the coordinate representation
and then use Wannier basis in order to calculate not only the on-site energies and

tunneling parameters, but also interaction terms.

2.1.5 Topological Chern number
If a certain energy band F, (k) does not touch the nearby energy bands,
| En (k) — Ensi (k)| # 0, (2.22)

then we can define a topological invariant, call Chern number. We express the n-
th band Chern number ¢, using the TKNN (Thouless-Kohmoto-Nightingale-Nijs)

formula:

_1
27 JrBz
. 6(uk7n| 6\uk7n> 8<uk,n| 8|uk7n>
b "(k’)_l( Ok, Ok, ok, 0k, )

A%k F, (k), (2.23)

Cn

(2.24)
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Figure 2.2: Schematic example of energy bands. The red color indicates the filled
energy bands. The green color indicates the empty bands. Here Ep is the Fermi
energy, A,, is the band gap between the n-th and (n + 1)-th bands.

Here F, (k) is the Berry curvature of the n-th energy band, which is defined using
the periodic parts |ug,) of the Bloch functions. We integrate this curvate over the
whole FBZ. An alternative way to express the Berry curvate F, (k) is to use the

Berry connection A, (k) — a gauge field in the FBZ:

F.(k)=e, Vi x A,(k),
An(k) = <uk’n|ivk|uk,n>.

The gauge field A, (k) describes the parallel transport of the eigenstates |ug,) in

the reciprocal space.

The topological Chern number ¢, has several important properties:

¢y is strictly integer, ¢, € Z.

o If the n-th energy band touches at least one of the nearby (lower or higher)

energy band, then ¢, is undefined.

e ¢, is robust to lattice perturbations under the condition that the n-th energy
band does not touch any of the nearby energy bands. This means that the
Chern number ¢, can only be changed during a phase transition when the n-th

band touches another energy band and then separates again.

o If there is a phase transition, then all the bands that are participating in that
transition (all bands that touch and then separate) have a property that the
sum of all Chern number of such energy bands is constant. This means that
the Chern number can be “exchanged” between bands by a process of touching

and separating.
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Physical interpretation ¢, is closely related to the quantum Hall conductivity.
Let us assume that the atomic gas cloud is perturbed by an additional force field
F(r). As an example, in a solid state systems such field can be a created using a
conventional electric field E(r). Such external force field created non-zero density

current j(r). In general, this density current depends linearly on the force field

F(r):

Here ¢ is a conductivity tensor. Its off-diagonal component ., = oy is called the
Hall conductivity. Suppose we have n filled bands, that are separated by a band
gap A, from the empty higer bands (see fig. t2.2). Then the Hall conductivity is
proportional to the sum the Chern number of the filled bands:

oy X Zci. (2.25)
i=1

This means that Chern number ¢, indicates how much Hall conductivity changes
when we fill the n-th band. If the n-th band is not fully filled up or if there are no
energy gap between the n-th and (n + 1)-th bands, then the Hall conductivity oy
not precisely defined by (2.25).

Mathematical interpretation We can express the Chern number directly in the
gauge field A, (r) using Stokes theorem on (2.23-2.24):

1

Cn =g~ - A(k) - dk. (2.26)
This expression of ¢, shows that if the gauge field A, (r) is continuouos over the
FBZ, then the corresponding Chern number ¢, is zero. In order to explain this we
mentally separate the contour integral in (2.26) into two parts: the part around the
FBZ and the contribution of possible singularities. The former part is identically
zero because of periodicity of A(r). The latter part may give a non-zero contribution
(we will give explicit examples in the end of the chapter on the optical Dice lattice).
If the field A, (r) is continouos then it doesn’t contain any singularities and the

total contribution to the Chern number ¢, is zero.

The Chern number ¢, characterizes a topological structure of the complex fiber
bundle built up from the eigenstates |uy ). Each ket vector |ug,,) is defined up to
arbitrary overall phase choice. We can restrict this phase choice, so |ug ) becomes
continuous in the FBZ. Then by moving the state vector around some closed curve

in the FBZ we get additional Berry phase. This phase doesn’t depend on our choice
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of phases (as long as this choice gives a continuous field of ket vectors |ug,,)). If we
move the state vector around the whole FBZ, we get a Berry phase which is now a

multiple of 27r. This multiplication constant is the Chern number c¢,.

Classification of topological phases From (2.25) we see that we can classify
different topological matter phases according to the Chern numbers ¢; and the band

gap A, into four groups:

o Topologically trivial insulator — the sum of the Chern numbers of the filled

energy bands is zero, ) . ¢; = 0, and there is non-zero band gap A, > 0.

o Chern insulator (or a topological insulator) — The Chern number sum is not

zero, » . ¢; # 0, and there is still the non-zero band gap, A, > 0.

o Topologically trivial metal or semi-metal — the Chern number sum is zero,
Y. ¢ =0, and the Fermi energy level is not in the band gap. This happens
when either the Fermi energy level is inside a gap or if there are no band gap
at all (A, =0).

o Chern metal or semi-metal — Chern number sum is non-zero, » . ¢; # 0, and
the Fermi energy level is not inside a band gap (again: either there is no band

gap or the Fermi energy level is inside a partially filled band).

One of the most interesting topological phasese are Chern insulators. In such cases
we can observe Quantum Hall Effect (QHE). Suppose we start filling up the bands
from the lowest one. When the Fermi energy level is inside the band gap, then the
Hall conductivity oy doesn’t change. When the Fermi level crosses the energy band,
the Hall conductivity changes from one quantized value to another according the

Chern number of the band.

Chern metal and Chern semi-metal phases can also be interesting to study. Howeber,

in such cases the Hall conductivity og may not be quantized.

2.2 Numerical calculation of band structure
2.2.1 Dimensionless units

For numerical analysis it is convenient to switch to dimensionless units. In general

the procedure is to express the position r and energy quantities like the potential
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V' and the total energy E as

T =TTy,
V= VEd,
E=EE,.

Here rq and Eq are the chosen distance and energy units respectively. 7, V and E are
the resulting dimensionless position, potential and energy respectively. By choosing

rq we immediately define the dimensionless gradient and Laplacian operators

V=vrgl,
V= @27”;2.
In the similar way we define dimensionless lattice vectors, reciprocal lattice vectors

and Bloch’s wavevector. Explicitly, k = l;:rgl. Also, by choosing the energy unit E

we also automatically choose units of frequency and time.

In the new units the eigenvalue equation for the BLoch wavefunction ¢y, (eq. 2.11)

becomes

—aV2y + Vb, = E(k)tg. (2.27)

In the same way the eigenvalue equation for the periodic part ug (eq. 2.12) becomes

In both equations (2.27), (2.28) we have the same dimensionless parameter

h2

N 9.29
& oM2E, (2:29)

This parameter depends on the choice of units rq and Ejy.

Note that for the rest of this document we drop the tilde from the dimensionless
units. The only exceptions will be short discussions about specific choices of dimen-

sionless units.

2.2.2  Finite difference method for rectangle lattice

In this section we present how to numerically calculate energy spectrum of a particle
in rectangle lattice using simple finite differences. The finite difference method
(FDM) is probably the simplest way to discretize partial differential equations. Here

describe the describe the application of second-order approximation of first and
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second derivatives to a discretization of the Schrodinger’s equation, which is a linear

second-order partial differential equation.

The elementary lattice vectors of a rectangle cell are a; = a,e, and ay = a,e,. The
elementary reciprocal lattice vectors are by = (27/a,)e, and by = (27/a,)e,. The

Brillouin zone is a rectangle

<k < & (2.30)
Qg ay
T s

Ty, < I 2.31
TSk (2.31)

The eigenvalue equation for the Bloch functions 1, in dimensionless form is
—aV2y, + Vb = E(k)iy. (2.32)

The Bloch’s theorem allows us to only consider a single elementary cell and the
Bloch-periodic condition (2.10) simplifies to boundary conditions with additional

phase factors (squezed boundary conditions):

wk(aﬂm y) = eikzazwk“)’ y)7 (233)
V(T ay) = iy (z,0). (2.34)

We define a grid on the elementary cell. The grid consists of a set of points (z;, y;)
with

Gy
Z:._’ :()7 7N337
X ’LNI 7

ay .
Yi = I~ ]:Oa 7N
J Ny Yy

Here the = coordinate of each discretization point is numbered by the index ¢, which
runs from 0 to N,. The y coordinate is numbered by the index j, which runs from 0
to N,. i = 0 corresponds to the left side of the elementary cell, i = N, corresponds
to the right side. In a similar way, j = 0 corresponds to the bottom of the elementary
cell and j = N, corresponds to the top. Observe that o = 0, yo = 0, zn, = a5
and yn, = a,. In total we have (N, + 1) x (N, + 1) discretization points. Let
us denote the distances between nearest discretization points in each dimension by
h, = ay/N, and h, = a,/N,.

In order to make the equation (2.32) simpler, we drop the Bloch wavevector index k
(we will leave it only in F(k) and boundary conditions). We denote the wavefunction

1 values in each discretization point (z;,y;) by ¢ ; = ¥(x;,y;). In the same way we
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denote the potential values by V;; = V(z;, y;).

In order to discretize the laplacian V29 we use the second-order central difference

formulas for the second derivatives:

[_a%p] : (i1 + ¢ 2;;)  ashy =0 (2.35)
~ 75 \Wit1,5 i—1, — i, as Ny , .
00? | gy ymy; N2
0% 1
{8 2} ~ 12 (Vi1 +Yijo1 — 24 ;) ashy, — 0. (2.36)
Y" o=z y=y; y

Here the limit h, — 0 (h, — 0) is equivalent to N, — oo (N, — o00). Combining
these expressions we find that the laplacian V24 in the point (;, y;) is approximated
by

1
n2

Yy

1
(V2] ~ (Vigrj + i1y — 2 5) + 5 (Wijp1 + i1 — 21 5)

T=14,Yy=Y;
as h, — 0 and h, — 0. In this way we discretize the eigenvalue equation (2.32) and
get

1
_aﬁ (Yig15 + Yic1; — 240 5)

T

1
a3 (Vi j41 + Yijo1 — 240 )

Y

+V; i j = E(k); ;. (2.37)

Herei=0,...,Nyand j =0,...,N,.

The equation (2.37) contains coefficients 1); ; with indices that are negative or higher
than N, (N,) values of ¢ (j). In order to eliminate such coefficients we discretize
the boundary conditions (2.33)-(2.34):

Un,.j = €M1y 5, (2.38)
¢i,Ny = eikyayd)i’o. (239)

We see that the resulting expressions (2.38)—(2.39) connect the left size of the elemen-
tary cell with the right side and the bottom side with the top side. This means that
we can ignore the right and top sides (the coefficients with i = N, or j = N,)). So we
number our system of equations (2.37) by ¢ =0,...,N, —land j =0,...,N, — 1.
Each time we encounter a coefficient 1, ; with ¢ = N, or j = N,, we use (2.38)-
(2.39) to replace them: ¢y, ; = exp(ikza.)vo;, Vi, = exp(ikyay)io. In the same
way we replace coefficients 1; ; with i = —1 or j = —1: ¢_; ; = exp(—ikzaz)¥n, 15,

i1 = eXp(—iky@y)%,Nyq-
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In the end we have a set of linear equations

20 (B2 + by %) + Vig] i
—ah 2y — ah i

—ah,*i 1 — ah, 20 = B(k), (2.40)

where 7 = 0,...,N, — 1,7 =0,...,N, — 1. Together with the equations we have

the following boundary conditions

U, ;= ey 5, (2.41)
YiN, = ey o, (2.42)
Y15 = e_ikIaI¢Nz—1,ja ( )

(2.44)

i1 = e_ikyay%',Ny—l-
If we start with the eigenvalue equation for the periodic part u,
—a (V?u+ 2ikVu — k*u) + Vu = E(k)u, (2.45)

we also need to discretize the gradient Vu. For this we use the following second-order

central difference formulas for the first derivatives:

ou 1
{ﬁ_ﬂj —— ~ 2n, (Uis1g = ti-15)  asha =0, (2.46)
ou 1
ay ~ op Wit —Wiga) - ashy = 0. 247
|:ay:| A— th (U J+1 Uy 1) as ny ( )

Here we denoted u;; = u(z;,y;) (in the same way as ¢0). The eigenvalue equation

(2.45) is then approximated by

[2& (h;2 + h;Q) + ak? + ‘/i’j] Ui j
+« (-h;2 — lkxhgl) Uiy1,5 + o (—h;Q + lk'a;hgl) Ui—1,5
+o (—hy_2 — lk’yhzjl) Uj 5+1 + « (—h;z + lk'yh;l) U j—1 = E(k)u%] (248)
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Herei=0,...,N, —1and j=0,...,N, — 1. The boundary conditions are

Un, j = Uo,j, (2.49)
Ui, N, = Ui 0, (2-50)
U_1j = UN, -1, (2.51)
Uj—1 = Ui N,—1- (2.52)

For numerical calculations we need to represent the resulting system of linear equa-
tions (2.40) in a matrix form. This can be achieved by introducing a single index [

which is calculated by
=14+ 75N, 1=0,...,N, — 1, j=0,...,N, — L (2.53)

The index ! runs from 0 to N,N, — 1. The mapping (¢, j) — [ defined by (2.53) is
bijective and suitable for our goal. The resulting matrix is Hermitian and has the
size N x N, where N = NN, is the total number of non-equivalent discretization
points in the elementary cell. One can observe that the matrix is sparse. There are
no more than 3 non-zero elements in each row (or column). These properties apply

to both types of eigenvalues (both for v, ; and u; ),

The spectrum is calculated by calculating several lowest eigenvalues of the matrix.
For smaller matrices (N < 10000) we ignore its sparsity and use the LAPACK
numeric library [89], which is suitable for such case. For larger matrices (/N > 10000)
we use PETSc [90, 91, 92] and SLEPc [93, 94, 95] numeric libraries, which can handle

large and sparse matrices.

2.2.3 Fourier series method

The finite difference method, described in the previous section, is weak in two re-
spects. First, it is simple only for rectangular cells. Although it can be extended to
triangular and hexagonal lattices, the finite difference schemes become more com-
plex. Second, in order to get a better approximation one needs to take a larger
number of grid points, which leads to a larger matrices and longer computation.
One way to overcome the second problem is to take higher-order approximations.
However, the higher-order finite difference shcemes require to couple grid points that
are further away from each other and this makes the resulting matrices less and less
sparse. Moreover, the higher-order approximations are not easy to implement in

more than one dimension.
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An alternative way to solve a general 2D (not neceserally rectangle) eigenproblem

—aV3 + Vb, = E(k)y, (2.54)
Y(r +r,) = eik'rr¢k(r) (2.55)

is to use Fourier expansion of the periodic part of the Bloch wavefunction y:
uk(’r) = Z Uk,’GeiG'r. (256)
G

Here uy ¢ are Fourier coefficients, indexed by a reciprocal lattice vectors G. The

inverse transformation is
1 —iG-r
Uk,G = T7~7 dQ uk(r)e . (257)
9] Jo

Here €2 denotes the elementary cell over which we integrate. || is area of the

elementary cell and df2 represents area unit used in the integration.

The presented form of ug satisfies the Bloch-periodic condition (2.55) identically

while the eigenvalue equation (2.54) becomes

Oé|k + G|2Uk7G + Z VG_G/UJk’G/ = E(k)UhG (258)
G/

Here Vi denotes the Fourier coefficients of the potential function V:
1 —iG-r
Vo =-—= [ dQV(r)e : (2.59)
€2 Ja

In order to calculate the Fourier coefficients u ¢ numerically we take a finite number
of reciprocal lattice vectors G = m1b; + mobs. Usually we limit the integers m; and
ma by

—Max < ma,my < Mipax.

In this case we get (2Mpax + 1)? coefficients. The resulting matrix is real and
symmetric. Non-diagonal elements comes only from the potential via its coefficients
Ve_g'- The good choice of M., depends on the potential V' and on the number
the lowest of bands we require. If the potential V' is very oscillating, it has higher
Fourier coefficients that are significant and must be included. If we are calculating
a large number of bands or if we are interested in higher bands we have to take
larger value of M., to capture such bands. This is because the periodic parts
ugof eigenfunctions of higher bands are more oscillating over the period and has

higher significant Fourier coefficients. For simple optical lattices the potential is
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created with standing laser waves and, so usually it is described by a combination
of a sine and cosine functions. In such cases there are a finite number of non-zero
Fourier coefficients V. In addition, ultracold atoms in optical lattices usually are
not excited to higher bands because of low temperature and their wavefunctions are
not very oscillating over the elementary cell. This allows to take a small value of
M ax (up to 10).

2.2.4 Fourier series method in coordinate representation

The Fourier series method is based on the momentum representation of a stationary

Schrodinger’s equation.

Here we start with a finite-dimensional Hilbert space which we get after limiting a

number of reciprocal lattice vectors G:
G = m1b; + myby, —Mpax < mi,my < Mipay.
We denote the total number of reciprocal lattice vectors by IV,
N = (2Mppax + 1), (2.60)

and the set of these reciprocal lattice vectors by G.

Observe that the Fourier series of the periodic part ug (eq. 2.56) is now equivalent

to a basis choice of
pa(r) =@, (2.61)

The periodic part is now expressed as

ur(r) = Z ¢ (r)ukg- (2.62)

Geg

Before we continue, let us introduce a specific type functions é,, that can be called

“finite-dimensional” delta functions:

5a(r) = ﬁ S éalr —a). (2.63)

Geg

These functions behave like Dirac delta functions, except they work only with func-

tions, constructed from our finite basis (2.61):
[ a0si)1) = f(a). (2.64)
Q
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The equation (2.64) also shows that d,(r) act as coordinate representation basis

function.

Let us define a finite set of elementary cell points

_J1a1 + Jaas

L= < = 1 =0,...,2Mpax, jo =0,...,2Mpax. 2.65
T; oMo+ 1 , WAl R ) J2 ( )

There are in total N points — the same number as reciprocal lattice vectors G. We
denote this set of grid points by R. The set R is the grid (not neceserally rectangle)

on the elementary cell €.

The points R have one imporant property: the “finite-dimensional” delta functions

dq(7) constructed on this set of points form an orthogonal set. Observe,

YD [ dQe(r — i) (r —rj)

Geg G'eg 9!
_ Z Z WG o —iGT / 4 e—i(G=G)r
GeG G'eg Q
=1 Z G (ri—T;51) (2.66)
Geg

The phase in the summand of the last line is explicitly

1
" 2Mopax + 1
S o
1 (Jr —J1) iy (j2 — 75) '
IM oy + 1 IM oy + 1

G- (rj—rj) (bymy 4 bamy) - [(j1 — J1)a1 + (J2 — jy)as]

=27 [m

If j1 = 75 and jy = j}, then G - (rj — rj) = 0 and the sum in (2.66) simply gives
the total number of grid points (2Myax + 1)%. Otherwise all the exponents add up

to zero. Thus we have
D G = (2M oy + 1)%05 5. (2.67)
Geg

Note that other choices of grids on the elementary cell may give a non-orthogonal

sets of “finite-dimensional” delta functions.

The orthogonality property (2.67) allows us to use the “finite-dimensional” delta

functions dq(r) with @ = r; as the new basis:

Vg L1 e,
0j(r) == ———0,.(r) = G (r=mj), 2.68
1) e+ 17" T ML 1 |Q|c,zege o
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This “coordinate-representation” basis allows us to combine the Fourier method and

the coordinate representation.

In practice, we construct the kinetic energy and/or momentum operators in the
Fourier basis. Then we use the numerically constructed unitary matrix to transform
from this basis into the coordinate-like basis, defined by the functions (2.68). In this
new basis we include potential and other operators, that have simple expressions in
the coordinate represenation. We use this method in the numerical band calculation

of the optical flux lattice (chapter 4).

2.3 Numerical calculation of Chern number

In this section we summarize the numerical algorithm [96] that we use to calculate
the Chern number of energy bands of the Dice lattice (chapter 3) or the total mag-
netic flux of the optical flux lattice (chapter 4). This algorithm is useful in case the
band structure calculation is expensive — it allows to use a small grid of k-points in
the FBZ.

Let us assume that the lattice in question is rectangle and the k-points form a

rectangle grid:

by = i k= i i=1,....N, j=1,....N,. (2.69)
a, N, Y a,N, Y

Here a, and a, are sizes of the rectangle elementary cell in the x and y dimensions.
N, and N, denote the numbers of k-grid points in the k, and k, dimensions (don’t
confuse these numbers with the similar ones defined in the section 2.2.2). Usually
we pick N, and N, in such a way that each elementary cell in the k-grid is close to
a square: 2m/(a;N,) = 27/ (a,Ny).

Let us define normalized link variables between the eigenstates |ug,) in the k-grid:

U0 (k) — e N en Uk 8kin) 2.70
(k) B [tk Ak (2:70)

Here the vector Ak points to the nearby k-point on the grid depending on the com-
ponent of U™ (k). If we consider the component Uén)(k), then Ak = 2me,/(a,Ny).
In the same way, if we consider the component U;”)(kz), then Ak = 2me,/(a,N,).

These link variables are well-defined if (ug ,|tuk+akn) 7 0.

Now we can define a field on the k-grid:

F.(k) = —iln [Ux(k)Uy <k: + GQ—XZex) Ut (k: + Q—Wey) Uyl(kz)} . (2.1
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Figure 2.3: Discrete k-grid in the FBZ. We calculate the discrete Berry curvature
F,(k) by multiplying the phases, ¢ = ¢1 + ¢2 + ¢35 + ¢4 of each link variable (after
fixing the gauge for at least presented four grid points).

Since the link variables U,(k) and U,(k) are normalized, the logarithm in (2.71)
returns overal phase of the multiplication of the four presented link variables (mul-
tiplied by the imaginary unit i). We chose the value of logarithm from the interval
between —im and ir. One can notice that (2.71) is a discrete analogue of the Berry
curvature F, (k) (eq. 2.24). We compute the numerical value of the Chern number

by summing the discrete field F, (k) over all k-grid points:

Cp = % E, (k). (2.72)

This “numerical” Chern number does not depend on our gauge choice: we can use
any phases for the eigenstates |ug,). Another important property of &, is that by
definition (meaning: up to the numerical precision) it is integer, independent on

how many grid points we choose.

In practice, we don’t have normalize link variables U, (k) and U, (k). Since the dis-
crete Berry curvature Fn(k:) depends only on the overall phase of the multiplication
of link variables, we can simply multiply all the required link variables (2.71) and
then extract the phase. On the other hand, if we want to add separate phases of
each link variables, then we get the correct overall phase only if we fix the gauge.
By looking into the eq. 2.71 more closely, we can notice that we build up the dis-
crete Berry curvature by adding up phases around a small rectangle loop near each
k-point on the grid (see fig. 2.3). In the limit N,, N, — oo, we get ¢, — ¢,. Since
the numeric Chern number ¢, can have only integer values (up to the numerical
precision), then it cannot get close to the actual Chern number ¢, continuously.
By making the grid finer and finer, the value of ¢, jumps from one integer value to
another while it reaches the correct one. In this way we can numerically calculate

the exact value of Chern number ¢,
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3 DICE OPTICAL LATTICE AS AN EXTENSION OF
HALDANE MODEL

3.1 Haldane model

Let us review Haldane model before we continue with introducing its extension.

The original Haldane model [33] is a two-dimensional hexagonal lattice. The hon-
eycomb structure can be viewed as two interpenetrating triangular lattices (see
fig. 3.1).

The lattice is described by tight-binding model with two types of hoppings. There
is a real hopping matrix element between nearest-neighbors on different triangular
sublattices. The second type of hopping is between the next-nearest neighbors and

couples each triangular sublattices separately.

We add a periodic local magnetic field in the direction perpendicular to the 2D plane
of the lattice. The field has the full symmetry of the lattice. In addition the total
flux over the unit cell is zero. Because of this the next-nearest neighbor hopping
matrix elements acquire a non-trivial phase and become complex. This results in

two energy bands that acquire nonzero Chern numbers.

The significant feature of the Haldane model is that it describes a two-dimensional
lattice that exhibits nonzero Chern numbers (and thus a nonzero quantizuation of
the Hall conductance oy) in the absence of an external magnetic field. In other
words, the Haldane model is an example of how quantum Hall effect can appear as

an intrinsic property of a band structure without external magnetic field.

Originally, Haldane mentioned that it is unlikely that his model will be physically
realized [33]. However, in recent years it was experimentally realized using ultracold

fermions [20].

3.2 The Dice optical lattice model
3.2.1 Lattice geometry

We consider a dice lattice, which consists of three triangle sub-lattices. One of them
is called the hub sub-lattice. It is coupled to other two rim sub-lattices, that in turn
are not coupled with each other. Let us denote the hub sub-lattice by B and the
rim sub-lattice by A and C. The vectors that connect the nearest lattice sites are
(fig. 3.2):

b= SetVie), 8= e —VEe,) b= —ae..  (3)
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Figure 3.1: Hexagonal optical lattice of the Haldane model. The blue and yellow sites
correspond to two triangular sub-lattices A and B. Solid lines show nearest-neighbor
couplings between these sub-lattices. Dashed lines show next-nearest-neighbor cou-
plings in each sub-lattice. The primitive lattice vectors are a; and as. Nearest sites
are connected with the vectors d;, d, and d3.

where a is the distance between two such sites. The basic lattice vectors
a; = a(3e, +V3e,)/2, ay=a(3e, —V3e,)/2 (3.2)

make a rhombic elementary cell. Using these vectors we define a set of lattice vectors
Tn = N1a1 + noasy (with integers ny and ng) spaning the hub sub-lattice B (Bravais
lattice). The two rim sub-lattices are defined in the following way. The first rim
sub-lattice A is shifted from the hub sub-lattice B by the vector §; in such way that
sub-lattices A and B alone make a honeycomb lattice. The second rim sub-lattice
C is shifted to the opposite direction by —d; (see fig. 3.2). Let us introduce a set of

vectors, that span all the lattice sites:
Tns =Tn + 351- (33)

Here the index s = 0, &1 labels the three sublattices. The sites of the hub sub-lattice
(s = 0) coinside with the lattice vectors: 7,9 = 5. The sites of the rim sub-lattices
A and C shifted by £é4, i.e. vy 41 =7, + 01 and 7, 1 =1, — 1.

It is convenient to introduce an additional lattice vector as = a; — a,. A set of the
three lattice vectors a; (i = 1,2, 3) together with the opposite vectors —a; connect
all next-nearest lattice sites, and can be related to §; as: a; = 81 — 93, ay = 6y — O3

and as = (51 — 52.
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by

Figure 3.2: Left: dice lattice. The blue, green and red sites correspond to three
different triangular sub-lattices A, B and C. Solid lines show couplings between the
sites A and B. Dashed lines show couplings between the sites B and C. The primitive
lattice vectors are a; and a,. Nearest sites are connected with the vectors d;, &
and d3. Right: hexagonal first Brillouin zone of the reciprocal lattice defined by the
primitive reciprocal lattice vectors b; and b,. Two inequivalent corners are at the
points K (red) and K’ (blue).

The basic reciprocal lattice vectors

_27r

3a

2

b (e +V3e,), by= o (e — V3e,) (3.4)

are orthogonal to the lattice vectors, a; - a; = 2md;;, 7,7 = 1,2. The first Brillouin
zone is hexagonal with two inequivalent corners K and K’ positioned at K =
(2b; + by)/3 and K’ = (b; + 2by)/3. In terms of the Cartesian coordinates these

points are given by

2 2
K = 9—2(36:,3 +V3e,), K = 9—2(3635 —V3e,), (3.5)

as one can see in fig. 3.2.

3.2.2  Tight-binding model

We shall make use of the tight-binding model in which the single particle states |7y, 5)
represent the Wannier-type wave-functions localised at each lattice site 7y, 5, with
s = 0,=£1 being the sub-lattice index. In the language of the second quantisation
these single-partice states read |ry, s) = ¢! (7y s)|vac), where |vac) is the Fock vacuum
state, cf(ry, ) and c(r, ) being the creation and annihilation operators of an atom

in the corresponding localized state.
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The full Hamiltonian of the system consist of three terms,
H = H, + Hy + Hs. (3.6)

The first term H; describes the laser-assisted tunneling of atoms between the sites
of the hub sublattice B (s = 0) and its nearest neighbouring sites that belong to the
rim sublatices A and C with s = +1:

3
H]_ = Z Z J(S) Zeips'(Tn+S5i/2)CT(:ron)c(,rn + 861) + H c., (37>
1

n s==+1 i=

where J) are the coupling amplitudes. The laser assisted tunneling (considered in
refs. [18, 26, 97, 17, 98, 99]) is accompanied by the transfer of the recoil momentum
ps with s = £1, to be labelled simply by p+ = p+;. In the present situation p, can
generally differ from p_ because the transitions between the different sublattices
can be induced by different lasers. Note that the nearest neighbour hopping alone

is sufficient to generate fluxes through rhombic plaquettes

®; = +(py —p-)-ai/2, (3.8)

with a; representing a diagonal vector of the plaquette in question. Yet the magnetic

flux over the whole hexagonal plaquette remains zero.

The second term Hy takes into account the tunneling between the next-nearest

neighbouring sites belonging to the same sublattice with s = 0, £1:

3

Hy = Z Z J§) Z M (rps)c(rns +a;) + H.c. (3.9)

n s=0,+1 i=1

This term describes the usual (not laser-assisted) hopping transitions between near-
est sites in each of the three triangular sublattices, and Jés) with s = 0,+£1 are the
correspoding matrix elements for the tunneling between the atoms belonging to the
s-th sublattice.

The third therm Hj desribes the energy mismatch for the particles populating the

different sublattices:

Hy = Z Z £sC (Tr.s)c(Ths). (3.10)

n s=0,%+1
The on-site energies ¢ are the diagonal matrix elements of the Hamiltonian in the
basis of the Wannier states. Without a loss of generality we can take the on-site

energy of the hub sublattice B to be zero: ¢y = 0. The on-site energies of other rim
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sublattices are to be labelled as €41 = 4.

Since the first term H; involves complex phase factors that depend on the elementary
cell number n, the full Hamiltonian H is not translationary invariant. Yet, we will
transform the annihilation operators according to ¢(ry o) — ¢(rnpo) and c(ry ) —
c(Tn.s) exp(—ips - ) with s = £1, and perform the corresponding transformation
for the creation operators. This gauge transformation makes the full Hamiltonian

(3.6) translationary invariant.

Transition to the reciprocal space is carried out by introducing new operators
. 1 .
cs(k) = — c(Tns)e ®™m  o(r,) = — cs(k)elF 3.11
(k) = = > elra) (rms) = 7 L alb (3.11)

together with the Hermitian conjugated creation operators cl (k). Here N is a num-
ber of elementary cells in the quantisation area, and the vectors r,, = 7, o are located
at the sites of the hub lattice. In terms of the new operators the Hamiltonian (3.6)

splits into its k-components:

ci (k)
H=Y H(k), Hk)=]c(k) dk) k) |HE)| oF) |, (12
k c_(k)
where H(k) is a 3 x 3 matrix:
e+ 20 f(k—py) JHg(k—p./2) 0
Hik)=| JBg"(k—p./2) 275" f (k) J gk —p_/2)
0 JO g (k—p_/2) e +2J5 f(k—p-)

(3.13)

It is convenient to add an extra phase factor to the transformed operators cs(k) —

cs(k)eP=591/2 In that case the functions

3 3
fk) =Y cos(k-a;), g(k)=c*o) e ko (3.14)
i=1 i=1
entering Eq. (3.13) are translationally symmetric in the reciprocal space

flk+G)=fk), gk+G)=yg(k), (3.15)

where G = nib; + ngby is a reciprocal lattice vector, n; and no being integers.
Consequently the matrix-Hamiltonian H (k) is also fully tranlationary invariant in
the reciprocal space H(k) = H(k + G). Furthermore, the functions f(k) and g(k)
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obey the following reflection properties

f(k)=f(=k), g(k)=g(-k). (3.16)

All this helps to consider various symmetries of the matrix-Hamiltonian (3.13).

3.3 Phases of non-interacting fermions
3.3.1 Chern numbers and symmetries of the system

Since the momentum-space Hamiltonian (3.13) represents a three level system, there
are three energy bands E,(k), where n = 1,2,3, and associate to each of them an
integer Chern number ¢, = 1,2,3. We also identify two possible band gaps. The
first band gap Aj, is defined between the first (n = 1) and second (n = 2) bands
and the second band gap A is defined between the second (n = 2) and the third
(n = 3) bands.

The Chern number ¢, for the n-th band is defined as a surface integral of a Berry

curvature over the first Brillouin zone (FBZ) [?, 18]:

1

27 JrBy

Cn = d*k F, (k). (3.17)
The Berry curvature F, (k) can be expressed in terms of the eigenvectors |u, ) of
the Hamiltonian (3.13) as

F.(k) =i (%w"’k') (a%yw”””) —i (Gik:yw"’k') (%'u”’k>) . (3.18)

It is well defined as long the eigen-energies E,(k) are not degenerate for any fixed
value of k. Therefore the Chern number ¢,, can be ascribed to the n-th band if the
latter does not touch any other bands. If the Fermi energy is situated in a band gap,
the Chern number is directly related to Hall conductivity due to chiral edge states
of the occupied bands [100] via o,, = —e?c,/h [101]. For numerical calculation we
make use of the discretised version of the Berry curvature (3.18), as described in

[96].

For both rim sublattices A and C, we set on-site energies of to be symmetrially

shifted away from the zero point ¢, = —e_ = e. We also take the tunneling
amplitudes to be equal J*) = J&) = J, J2(+) = J2(0) = JQ(_) = Jy and assume
the recoil momenta to be opposite p, = —p_ = p for both rim sublattices A and

C. The choice of opposite recoil momenta ensures the maximum flux, because the
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magnetic flux through a rhombic plaquette ®; given by Eq. (3.8) is proportional to
the difference of these vectors. Under these conditions, the matrix representation of

the k-space Hamiltonian becomes

e+2Jf(k—p) Jg(k—p/2) 0
H(k)=| Jg*(k—p/2) 2.5 f (k) Jg(k +p/2) : (3.19)
0 Jg*(k +p/2) —e+2Lf(k+p)

This form of the Hamiltonian exhibits some symmetries. The first symmetry involves
inversion of the onsite energies ¢ — —¢ follwed by the unitary transformation that
changes the first row with the third one (i.e. interchanges the rim sublattices A and
('), as well as the momentum inversion k — —k. Using the reflection properties
of the functions f and g given by Eq. (3.16), one arrives at the same Hamiltonian
(3.19). The second symmetry is J — —.J, which is a simple gauge transformation.
Using these two symmetries we see that the change Jo — —.Js gives H(k) — —H (k).
To sum up, all the three mentioned symmetries are: (¢ —» —¢,H — H), (J —
—J,H — H) and (Jo = —Jo, H — —H).

3.3.2  Numerical analysis

In this section, we numerically study the Chern phases of non-interacting fermions.
In order to present dependence of the Chern number on the parameters ¢, J, Jo
and p we adopt a similar presentation of the phase diagram scheme as in [99]. We
choose the energy unit to be the nearest-neighbour tunneling amplitude J. For
the recoil momentum p, we express the p, component in the units of K, and the
component p, in the units of K, where K is one of the FBZ corners, defined in
(3.5). In all the phase diagrams we present the dependence of the Chern number
¢ = n(ps, py) on the components of the recoil momentum p using different colours
for each possible values of ¢,. The areas corresponding to a topologically trivial
phase with a zero Chern number are shown in green (¢, = 0). On the other hand,
the areas corresponding to non-trivial Chern phases are shown in yellow (¢, = 1),
red (¢, = 2), cyan (¢, = —1) and blue (¢, = —2).

First we characterise topological properties of the band structure if there are no
next-nearest neighbour coupling (Jo = 0). In the fig. 3.3 we show the Chern number
phase diagrams for ¢ = J. One can identify regions where Chern numbers are
{c1,¢2,c3} = {0,0,0}, {—1,2,—1} and {1,—2,1}. In the first type of the regions
(green colour) we have topologycally trivial regions. In other regions we have non-
zero Chern numbers with band gaps Ao = Ay = 0. Analysis of a band structure

in these regions shows that the bands do not overlap with each other, as one can see
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Figure 3.3: Chern number dependence on the recoil momentum p in the case ¢ = J
and J, = 0. In the left panel we present the phase diagram of the lowest band Chern
number c¢;. In the right panel we show corresponding phase diagram for the middle
band. Since the sum of Chern numbers over all three bands is zero, the third band
gives the same phase diagram as the first one (¢; = ¢3). The green regions correspond
to the Chern number zero. The yellow, red, cyan and blue regions correspond to
the Chern numbers 1, 2, -1 and -2 respectively. By the hexagon we show the FBZ
in the p-plane.

in fig. 3.6 presented in the next chapter. These are regions corresponding to semi-
metallic Chern phases. Note that in the case J, = 0, the change p — p + G, where
G is the reciprocal lattice vector, correspond to a gauge transformation. Thus there
is a symmetry (p — p + G,H — H). In the phase diagram (fig. 3.3) we also show
the FBZ in the p-plane, which is a hexagon with two inequivalent corners positioned
at the points K and K'.

Now let us analyse effects of the non-zero next-nearest neighbour coupling. For this
we set Jo = 0.3J and ¢ = 2J. The Cher number phase diagrams are presented in
the fig. 3.4. We can see regions with the Chern numbers corresponding to trivial
phases {0,+1, F1} and {£1,0, F1}. In both regions we can find points where there
is non-zero band gaps Ajp > 0 and/or As3 > 0. This shows that there exist
topological Chern insulating phases. For example in the point p = K, we have the
Chern numbers {0, —1,1} and with the band gap between the middle and highest
bands Agz &~ 0.26J. By positioning the Fermi energy in the gap between the second
and third bands we get the Chern insulating phase. Another interesting point is
p = 2K, which gives the Chern numbers {—1,0, 1} and the band gaps A5 =~ 1.55J
and Asz &~ 0.54.J. The bottom and top bands have non-zero Chern numbers, while
it is zero for the middle band. Depending on the filling there are two types of

topologically non-trivial phases. If the Fermi energy is positioned in one of the band
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Figure 3.4: Chern number dependence on the recoil momentum p in the case € = 2.J
and Jo = 0.3J. In the left panel we present the Chern number ¢; of the lowest band,
while in the right panel we show the Chern number ¢y of the middle band. For the
third band (not shown here) we have c3 = —(¢; 4+ ¢2). The green, yellow, red, cyan
and blue regions correspond to the Chern numbers 0, 1, 2, -1 and -2 respectively.
By the smaller hexagon we show the FBZ, which was in the case J; = 0. Since the
introduction of non-zero J; changes the periodicity of the p-dependence, we also
show a bigger hexagon, which is now the FBZ in the p-plane.

gaps, we get a topological insulating phase. If the Fermi energy is in the middle
band by partially filling it, we get Chern metallic phase. Note that in the case of
non-zero NNN couplings (J2 # 0) the translation symmetry in the recoil momentum
p is smaller than in the case of zero NNN couplings: one has to shift the momentum
by 2G rather than G. In the phase diagram fig. 3.4 we show this by extending the
FBZ, which is now a bigger hexagon.

There are more types of Chern phases when the coupling J; is larger than in the
previous discussion and comparable to the on-site energy . For ¢ = Jy, = 0.5J
we find insulating phases with Chern numbers {1, £1,F2} and metallic phases
with Chern numbers {42, 0, 72} (fig. 3.5). For example in the point p = 2K we
get Chern numbers ¢; = ¢ = —1 and ¢3 = 2 with band gaps Ajs ~ 0.61J and
Ag3 ~ 0.54.J. Another interesting point is p = (2K, K,) where the Chern numbers
are ¢y = —2, ¢ = 0 and ¢3 = 2 (white point in the fig. 3.5). The bulk spectrum in
this point is given in the fig. 3.6. Note that there is a gap A3 =~ 1.35J between the
lowest and highest bands. In this gap we have a middle band with the zero Chern
number. By setting the Fermi energy in this gap one gets the Chern metallic phase

with the Chern number ¢; = —2.
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Figure 3.5: Chern number dependence on the recoil momentum in the case ¢ = 0.5.J
and Jo = 0.5.J. Left: Chern number ¢; of the lowest band. Right: Chern number ¢,
of the middle band. The colour scheme is the same as in the figs. 3.3 and 3.4. The
white point is p = (2K, K,) where the Chern numbers are ¢; = —2, ¢ = 0 and ¢
(see the spectrum in the fig. 3.6).

Figure 3.6: Bulk lattice spectrum, projected to k, = 0 and plotted from k, =
—3K, to 3K,. From the fig. 3.2 we see that such kind of projection captures both
inequivalent FBZ corners together with the centre point. Left: the spectrum for the
point p = K of the phase diagram for the case with no NNN-coupling (fig. 3.3). We
show that the energy bands do not overlap and give semi-metallic phase if we fill the
first one or the first two bands. Right: the spectrum for the point p = (2K, K,)) of
the phase diagram fig. 3.5. There are two bands with non-zero Chern numbers 42
separated from the third band with the zero Chern number by the gap A3 ~ 1.35J.
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3.4 Analytic Chern number calculation
3.4.1 Berry connection

The Berry connection of the n-th band is defined as [102, 99|

where |ug,,) is denotes the n-th eigenvector of the matrix (3.13). We can express
the Berry curvature (3.18) as the z component of the field B, = V x A, namely
F,.(k) = e, - B,. Now using the Stoke’s theorem we change the integral featured in
Eq.(3.17) over the FBZ to the contour integral around the FBZ,

1 1 1
— koFn(k:)%—yg dk:-An——Zyg dk - A, .
FBZ singul

27 Jrpy s 2
where the last term excludes any contribution due to the gauge dependent singular
points of the vector potential [99]. Since the k-space Hamiltonian (3.13) and its
eigenstates are periodic in the FBZ, A,, is also periodic. Thus the contour integral
around the FBZ (the first term on the r.h.s. of the above equation) is zero. However
the Berry connection A, may contain unphysical singular points represented by
the second term in above equaion. The Chern number then can be calculated by

integrating A, around each excluded singular point [99], giving

1
= — dk- A 21
=Y yél . (3.21)

where the sum over all singular points.

3.4.2 Momentum space Hamiltonian and its eigenstates

Let us establishing a general structure of the eigenstates for the matrix Hamiltonian
H(k), Eq.(3.19). For this we introduce a basis of our three-level system [s), with

s = 0,+£1, and rewrite the matrix Hamiltonian in the state-vector notation as

H(k)= > |s)du(k)(s|+ > (Is)ga(k)e*®(0] + H.c.), (3.22)

s=0,£1 s==+1

where dg(k) stands for the diagonal matrix elements:

ds(k) = se + 2Jof (k — sp) . (3.23)

o7



The off-diagonal matrix elements are represented in terms of the amplitude g4 (k) =
g+ (k) and the phase ai;(k) = ax(k) as:

Jg(k Fp/2) = gi(k:)eio‘i(k) (3.24)

Since there is no coupling between the A and C sublattices, one can perform a

k-dependent unitary transformation eliminating the phase factors
|s) = |s, k) = |s)ye>®) s = 41,

and leave the basis vector |0) unchanged (|0) = |0, k)). In the new basis the Hamilto-
nian (3.22) is characterised by real and symmetric matrix elements. Its eigenvectors

can be cast in terms of these vectors with real coefficients C,, (k) :

kn) = D Cus(R)]s, k)= > [5)Cp(k)el*®), (3.25)

s=0,%1 s=0,£1

Combining Eqgs. (3.20) and (3.25), one arrives at the following expression for the

Berry connection

A, (k) == sCr (k)Vio,(k). (3.26)

s==1
This result together with Eq. (3.21) will be subsequently used in determining the

Chern numbers.

3.4.3 Determination of the Chern numbers: general

To determine the Chern number given by (3.21), one needs to find a behaviour of
the vector potential at its singular points. Singularities of the vector potential can
emerge at the points where the phase of the coupling matrix element g. (k)e'@+*)
given by eq. 3.24 is not determined. This happens if the function g(k — p+/2) goes
to zero. The function g(k) given by eq. 3.14 is zero at the corners of the FBZ,

namely at two inequivalent points K and K’. Thus there two pairs of points
K,=+p/2+ K, K|, =+4p/2+K'. (3.27)

at which the function g(k F p/2) goes to zero and its phase a+(k) is undefined.
Let us determine the coupling matrix elemement g (k)e'®+®*) in a vicitity of these

points. Combing egs. 3.14 and 3.24, the amplitude and phase of the coupling element
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reads up to the first-order in the dispacement vector g, i.e. for qa < 1 with ¢ = |q|:
s
Oéi(Ki + Q) ~ g — ©, (328)

qat, ar(KL+q)~ —g + o, (3.29)

e
<
<

9+(K+ +q) =

N wno| w

9+ (K. +q) =

where ¢ is a phase of the complex number ¢, + ig, = ¢e'¢. Integrating over a small

circle centered at q = 0 surrounding each singular point of the phase, one finds:

% dg- -V, (Ky+q) =27
la|—0

yg dg-V,as(K/ +q) =27
la|—0

These equations together with eqgs. 3.21 and 3.26 provide the following result for the

Chern number

=Y s [C2(KL)—C2 (KL, (3.30)

s=+1
where the different signs appear due to the opposite phases in the phases appearing
in eqs. 3.28 and 3.29. Therefore to find the Chern number one needs to determined
the coeficients Cj, ; entering the state-vector at the points K and K. If C7 . =1
the particular singular point contributes to the Chern number of the n-th band. In

the following we shall consider two different situations.

3.4.4 Determination of the Chern numbers: specific cases

The case where p = G Suppose first that the difference in the recoil momenta
coincides with the inverse lattice vector p = G. In that case the coupling completely
vanishes both for k = K. and also for k = K/.. At these points g(k — p/2) =
g(k+p/2) = 0, so all the states |s), s = 0, &1 are decoupled, and thus the eigenstates
are the bare states |s). The corresponding eigen-energies of the matrix Hamiltonian
H(k), Eq.(3.22), coinside with its diagonal elements d,(k) for k = Ky and k = K/,
Furthermore, for p = G one has f(k — p) = f(k) = f(k + p), giving ds(k) =
se +2J5f (k). Therefore both for k = K, and k = K., the eigenstates are ordered
in the same manner dyy(k) > do(k) > d_1(k). Thus the Chern number given by
eq. 3.30 is identially equal to zero. In this way, for p = G the system does not
exhibit any topologically non-trivial phases. This is because in that case the flux
over the rhombic plaquettes ®; = +p - a; is zero (modulus 27), and there is no

breaking of the time-reversal symmetry.
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3.4.5 The case where p # G

Forp # G situations is as follows. If k = K or k = K/, one has g(k Fp/2) =0
and g(k £ p/2) # 0, so only the phase o (k) is undefined. Consequently, the
Hamiltonian (3.22) splits into two independent parts with |£) decoupled from |0)
and |F). Thus only the state |£) contributes to the Chern number, the other two
states giving no contribution to it. To find the Chern number it is important to
identify to which dispersion branch belongs the state |+) at two momentum point
k = K. and k = K/,. If it belong to different dispersion branches, the difference
C? (K.) — C% (K.) is non-zero and contributes to the Chern number in eq. 3.30.
In the following we explore this issue in more detail without including the NNN-
hopping to the Hamiltonian (3.19) or (3.22).

Assuming J, = 0 and the on-site energy € becomes the only independend parameter

with J being only the energy unit.

€ Jg(k —p/2) 0
H(k)=| Jg*(k—p/2) 0 Jglk+p/2) | . (3.31)
0 Jg*(k +p/2) —e

As an illustration we pick p = K for which the numerically calculated Chern num-

bers are ¢; = 1, co = —2 and ¢3 = 1. First we consider the point k = K, or
k = K’ for which g(k — p/2) = 0. Furthermore, g(k + p/2) = ....for k = K, and
g(k+p/2) = ... for k = K_. Therefore for k = K, the eigenvalues are ... . On

the other hand, for k = K, the eigenvalues are ...

The function g(k) is zero and has undefined phase in the points k = K and k = K’,
while the function g(k+ K) is zero in the points k = 0 and k = K’ — K. The point
K' — K is equivalent to the point K, so we consider only three points in the FBZ:
ki =0, k; = K and k3 = K'. Near each of these point the Hamiltonian (3.31)

becomes

H(q) ~ 52 sls)(s| +3J (H—)(Ol + |O)%qae_i“"<—| + h. C.) : (3.32)
H(K +q) = 5Zs\s><s| + ;an (J4)e (0] + |0)e'*(—| + h.c.), (3.33)
H(K'+q)~ 5Zs|s><s| +3J (|+)%qaei‘p<0\ +10)(—| + h. c.) : (3.34)

s==+

Here we ignored the constant phases +7/3 that come from the expansions (3.28)

and (3.29) of the function g(k), because it is not important in the Berry connection
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(3.26). Moreover, it can be eliminated by a simple k-independent transformation

near each point k;, 1 = 1,2, 3.

From (3.32)—(3.34) we see that in the first point k; = 0 only the phase a_(q)|4—0 =
—¢ is undefined. In the second point k; = K both phases ay (K + q)|qas0 = —¢
and a_ (K + q)|4—0 = ¢ are undefined. In the third point k3 = K’ only the phase
ai(K' 4 q)|4a—s0 = ¢ is undefined.

Having all the required phases we can now check the behaviour of the coefficients
Cn.+(k). We have to solve eigenvalue equations of the Hamiltonians (3.32)—(3.34)
in the corresponding points k;, ¢« = 1,2, 3 by setting g = 0.

First we consider the first point k; = 0. From the Hamiltonian (3.32) we get

eigenvalues E® = Lle +/(37)" + (%)2 and E® = —¢ with the corresponding

required eigenvector coefficients C,, ~ = 0 for the first two eigenvalues and C,, — =1

for the third eigenvalue. In order to find to which energy bands these eigenvalues

belong we must order them to the ascending order. First we note that if the on-site
_ 32

energy value is ¢y = TQJ the get E(© = E) so the corresponding bads touch

each other and the Chern number is undefined. For 0 < € < ¢3. The eigenvalues
are ordered as ie — (3J)% + (%)2 < —e < 3e4 (3J)% + (%)2 This gives the
coefficients €'y = = U5 _ = 0 and C, _ = 1. For € > ¢, the eigenvalues are ordered as

—e < te—4/ (3J)° + (%)2 < ze+4/ (3J)° + (%)2 and the coefficients are C; _ =1
and Cy_ = C3_ = 0. From this analysis we find that for 0 < € < gy the Berry
connection As(k) of the middle band has a singularity at the point k = 0. For
€ > g¢ this singularity moves from the middle band to the lowest one and the Berry

connection A;(k) gets a singularity.

Similar analysis of the Hamiltonian (3.33) shows that the Berry connections A; (k)
and Aj(k) always have singularities in the point k = K. The corresponding non-

zero coefficients are C; _ =1 and Cs, = 1.

Finally the third Hamiltonian (3.34) gives a similar results as the first one (3.32).
For 0 < & < g the Berry connection A, (k) has singularity in the point k = K’ with
Cy4+ =1 and for € > gy, A3(k) has a singularity in the same point with C5 | = 1.

Now we can combine this analysis with the phases a4 and write Berry connection

(3.26) of each band near all their singular points:

« For(0 <e <eggwehave Ay (K+q) ~ —V,p, As(q) = Vap, As(K'+q) =~ Vgp
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and A3(K + q) = —V4¢p. The Chern numbers (3.21) are

1
= —— dg - A{(K =1
C1 ot T 50 q 1( +q) ;
_ d A()—lygd As(K'+q) = -2
Co = o . q 2\q o - q 2 q)= )
1
= dg - As;(K =1.
C3 7 q-A3;(K +q)

o Fore > ¢y we have A;(q) = Vyp, A1(K +q) = —Vqp, A3(K +q) = —Vgp
and A3;(K'+ q) =~ Vgp. In this case the Berry connection A, (k) does not
have any singularities, while other connections A;(k) and As(k) have two
each. In these Berry connections the two singularities compensate each other.

Thus all Chern numbers are zeroes.

We see that in the on-site energy interval from 0 to gg = %iJ the dispersion bands
contain non-zero Chern numbers ¢; = ¢3 = 1, co = —2. In the point gq there is a
phase transition which distributes the Chern number ¢y = 2 to other bands, which
gives all the Chern numbers equal to zeroes. At higher on-site energy values we
loose all topological phenomena. Finally with an additional numerical analysis we

approximately got the same value of gg.

We calculated Chern numbers for the case without no NNN-hopping for the specific
recoil momentum value p = K. We can get similar results for different corners
of the FBZ in the p-plane as well. For an arbitrary point p this analysis becomes
difficult, because in general we get four points where one or both of the phases
a4 are undefined. Additionally the sorting of Hamiltonian eigenvalues in each of
these points becomes complex because of dependence on three parameters — the
on-site energy € and the components of the recoil momentum p (and NNN-hopping
amplitudes if we include them). However, all Chern numbers in principle can be

calculated analytically because it requires to diagonalise at most 2-by-2 matrices.
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Summary

We considered ultra-cold atoms in a two-dimensional dice optical lattice in a tight-
binding approximation. We created an artificial magnetic field using a laser-assisted
tunneling between the nearest neighbor sites. In this way we engineered staggered
magnetic fluxes. The dice optical lattice represents a triangular Bravais laattice
with a three-site basis consisting of a hub site connected to the two rim sites. In
this way our model can be intepreted as an extension of the famous Haldane model

which is reproduced if one of the two rim sublattices is eliminted.

We demonstrated that the proposed upgrade of the Haldane model created a signif-
icant added value, including an easy access to topological semimetal phases relying
only on the nearest-neighbor coupling, as well as enhanced topological band struc-
ture featuring Chern numbers higher than one leading to physics beyond the usual

quantum Hall effect.
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4 OPTICAL FLUX LATTICE CREATED USING
MULTI-FREQUENCY RADIATION

4.1 Two level atom with frequency comb coupling
4.1.1 General model

Let us consider an ultra-cold spin-1/2 atom in a magnetic field gradient along the x
direction. The resulting Zeeman effect gives a position-dependent detuning between
the spin up | 1) and down ||) states. Assuming the gradient to be linear, it splits
the internal atom levels as ~ zos3, with o3 = | 1)1 | — | $){} | (see fig. 4.1). The
Hamiltonian of the atom in this regime can be written as

P’ Az)

+

Hy=
07 oM 2

g3. (41)

Here the first term is a kinetic energy of the atom, in which p and M is a momentum
and a mass of the atom. The second term describes the magnetic Zeeman shift
represented by the potential function A(z), which we assume to be linear in z in

the spatial region of interest: A(z) = Ag + A'z.

Let us introduce a Raman coupling between the internal atomic states of the form

Vy,t) =Vy Z [eikoyefﬁnwt + efikoyefi(2n+l)wt] | 1){(1|+H.c. (4.2)

n

The first term couples the internal states with a frequency comb electromagnetic
wave, which is a superposition of plane waves of even frequencies 2nw propagating
along y direction. Similarly, the second term corresponds to a coupling with fre-
quency comb of odd frequencies (2n + 1)w propagating in the opposite direction.
Both frequency combs couple internal atomic states resonantly in different positions
along = direction (fig. 4.1). In writting Eq.(4.2) we have assumed that variations of
the wave vectors and amplitudes of plane waves corresponding to different frequency
components are negligible. Therefore we have taken pick a single value of the wave
number ky and a single value of the coupling strength V. The coupling given by

(4.2) has then a periodic time dependence with a period T' = 27 /w.

Time evolution is described by the Schrodinger equation

o,
iho [ () = HO(0)), (4.3)

where

H(t) = Hy+ V(y, 1) (4.4)
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Figure 4.1: Coupling of two linearly shifted internal atomic states | 1) and | J)
with two frequency comb wave-packets. The first frequency comb propagates along
the y direction and couples the internal states with even multiples of the Floquet
frequency w (green colour). The second frequency comb propagates in the opposite
direction and couples the internal states with odd multiples of w. The atom is in
resonant with frequency combs in different positions along the x direction.

is the full time-dependent Hamiltonian, and

[(r, ) = Y (D))

=1

is the full atomic state-vector containing contributions due to both internal states
| JT) and also center of mass wave-functions ¢4+(r,t). From (4.2) we see that the

coupling V' (y, t) is periodic in y with a period of 27 /ky.

It is convenient to switch to a different gauge by changing the local phases of the
atomic spin states | 1) — exp(—ikoy/2)| 1), | {) — exp(ikoy/2)| ). From this it
follows that | ) (1| — exp(ikoy)|{4)(T|. Thus the coupling (4.2) transforms to

Viy,t) = Viy,t) = Vo 3 [eoremi2net L omiCosler] ||y (4| L Hoe  (4.5)

n

The momentum p also changes, p — p+hkoose, /2, so the unperturbed Hamiltonian

(4.1) in the new gauge is

A(z)

Hy

(p + hkoose, /2)” + 3. (4.6)

T oM
On the other hand, going to a new gauge the coupling V(y, t) has a twice smaller
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period 7 /ky. Subsequently, when exploring energy bands and their topological prop-

erties, this will prevent problems arrising from using a twice larger elementary cell.

4.1.2 Coupling as a series of pulses

We assume that there are enough plane waves in each frequency comb, so we can
represent them as two overlapping series of short pulses in time. In the limit of
the infinite summation over n from —oo to oo, we can change the first sum of the

complex exponents in the coupling (4.5) to the Dirac comb function
pl p ts in th pling (4.5) to the Di b functi

(e o]

Z e Bl = 7 Z it —Tl), (4.7)

n=—0o0 l=—o0

where 7 denotes a half period 7 = T'/2 = m/w. The second sum has an additional

phase factor, which modifies the Dirac comb by including alternating signs:
D et — 2 N (—1)!5(t — 7). (4.8)
n=-—oo l=—00

We now rearrange all the terms from the both sums (4.7) and (4.8) in the coupling
(4.5) into two groups containing even and odd value of the index {. In the first group
the exponent exp(—inl) equals to a unity, while in the second group it is equal to a

minus unity. In this way we rewrite the coupling (4.5) as

V(ty) =Vi(y)r > 6t —71) + V_(y)T > 6(t — 7). (4.9)

evenl odd!l

Here we introduced new operators
Vi(y) = Vo (€% £ 1) [|)(1| + H.c. (4.10)

In this way we separated the spatial and temporal dependencies in the coupling

(4.5).

4.2 Stroboscopic time evolution
4.2.1 Effective coupling

Let us consider the time evolution in a single period from t = 0 —e€ to t = T — € with
¢ — 0. Such evolution includes the first kick V, at the beginning of the period ¢, =0
and the second kick V_ in the middle of the period t_ = 7 and the free evolution

66



at other times. In this time interval one can represent the evolution operator as a

product of four terms:

U(T,0) = lin% U(T —¢€,0—¢)=UU_UyU,. (4.11)
€E—
Here )
Up = exp (—%f{(ﬂ') (4.12)

is the evolution operator over the half period 7, generated by the unperturbed
Hamiltonian Hy. Other two operators U, describe two different kicks at the time

moments t4:

U, = exp (—%Vg> . (4.13)

We assume that the Floquet frequency w is sufficiently larger than the recoil fre-
qUency Wree = Erec/h = hk3/2M, so the momentum p of the atom varies sufficiently
slowly in each period. Therefore we treat the momentum as a C-number during the
evolution of the system from ¢t = 0 —¢e to t = T'— e. Then we rearrange terms in the

full time evolution operator (4.11) and approximate it by

i1
Ueﬁ = exXp {—% [m (p + hkoO’gey/2>2 + ‘/eff:| T} s (414)

where Vg is an effective coupling, given by

exp <—%‘/effT) = el _eTioshs/2yy (4.15)

Here we introduced a function f3(r) = 7A(z)/(hw). From now on we set Ay = 0

and denote

A/
=
This allows to express the function f3 as
fs(r) = . (4.16)

The introduced parameter § has an inverse length dimension and characterizes nat-

ural distance along the x direction.

Let us write the effective coupling V.g in a form

h
‘/éﬁ‘ = 50’ : Q, (417)

where o = (01, 09, 03) is a three-dimensional vector with Pauli matrices oy = |])(1
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| + Hec., oo = i| ){(T| + Hc. and 03 = | 1) (1| — | 4)({ | as components. Here also
Q = (21,92,93) = Q(r) is an effective magnetic field. In this way the effective
coupling (4.17) is characterised by three real functions €;, ¢ = 1,2,3. Note that
this effective potential does not have component near the unit matrix I. In fact,
since the four exponents in the right hand side of (4.15) represent four subsequent
rotations in a three-dimensional Euclidean space, the product of these exponents also
represents a three-dimensional rotation. The resulting rotation can be expressed as
an imaginary exponent of a pure Pauli vector o - €2. This allows us to write the

effective coupling in the given form (4.17).

The effective magnetic field can be presented in analytic expressions by denoting
the operator (4.15) as

i . . .
exp (_ﬁ%ﬁT) = Qo — 101q1 — 102q2 — 103¢s3. (4.18)

Here qo, ¢1, ¢2 and g3 are real functions of the coordinate r = (z,y). Comparing

(4.15) and (4.18) and multiplying four matrix exponents we find:

Jo = cos f1cos focos f3, (4.19)
q1 = sin fi cos fy cos (koy + f3) — cos fisin fo sin (koy) , (4.20)
g2 = sin fi cos fasin (koy + f3) + cos fi sin fo cos (koy) , (4.21)
g3 = cos f1cos fysin f3 — sin fi sin fs. (4.22)
Here we introduced two additional functions,
fi(y) = 2mvg cos (koy) , (4.23)
fa(y) = 2wy sin (koy) - (4.24)

Knowing the functions (4.19)—(4.22) we take a logarithm of (4.18) and find the
effective magnetic field

Q= wﬁﬂ_l arccos qo. (4.25)
q

Here we defined a three dimensional vector q as (qi,¢2,q3) and its norm by |q]|.
From (4.25) we see that the the effective magnetic field can also be expressed in

1

its absolute value 2 = ||Q2|| = wr~"arccos qp together with a normalized direction

vector N = q/||q||-

The resulting effective magnetic field (4.25) and the effecitve coupling (4.17) are
periodic along the both x and y directions. The spatial periods are a, = 2/ and

a, = m/ko respectively. The effective coupling functions €, {25 and 3 are presented
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Figure 4.2: Coupling components (a) ;(7), (b) Qa(r) and (c) Q3(r) in the adiabatic
case, Vo = 0.2bhw with Floquet frequency hw = 10Feon and gradient g = 0.6kg.
The corresponding eigenvalues of the coupling are presented in the fig. 4.3(b). Here
the coordinates x and y are expressed in units of k.
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in the fig. 4.2. We choose the Floquet frequency w to be ten times higher tha the
recoil energy, Aiw = Fieon. This helps the stroboscopic time evolution to be more
precise. Moreover, we choose such gradient of the original magnetic field, that we
approximately get a square elementary cell: 5 = 0.6ky. This simplifies and stabilizies
all numerical calculations. Finally, in the fig. 4.2 we present the effective coupling
in the case of adiabatic regime, Vj = 0.25hw. In this case the absolute value of the

effective coupling almost does not change (see fig. 4.3).

4.2.2 Figen-structure of the effective coupling

Let us parametrise the coupling field €2(7) in the spherical co-ordinates Q(r), 6(r)
and ¢(r):

Q
cosf = 53 = ﬁ, (4.26)
tan ¢ g—? - % (4.27)
Following [?] we write the effective coupling (4.17) in a form
h cosf e ?sinf
Verr = §Q [ e?sinf  —cosf ] ' (4.28)
The eigenvalues of the effective coupling (4.28) at a point r are
Vi(r) = ng(r). (4.29)

See fig. 4.3, where the eigenvalues of the effective coupling (4.28) are presented for
three cases of the Raman coupling strength. The first case corresponds to a weak
Raman coupling, V5 = 0.05Aw. The spectrum V. () is close to a spectrum of ~ o3z
and has a small gap. We expect this regime be not suitable for adiabatic time
evolution because of high loses. The second case, V = 0.25hw, produces almost flat
bands V. (r) with big gap between them compared to band widths. We expect this
regime to be suitable for adiabatic time evolution. The last case describes strong
Raman coupling, such that the bands are again separated by a small gap and close

to touching each other.
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Figure 4.3: Eigenvalues Vi (7) of the effective coupling in the cases of (a) weak
coupling Vj = 0.05Aw, (b) regime for adiabatic motion Vj = 0.25fw and (c) strong
coupling Vo = 0.45hw. In all three cases Floquet frequency is w = 10FE ccon/h and
gradient is 3 = 0.6ky. Here the coordinates x and y are expressed in units of k.
The eigenvalues are expressed in the units of Aw. Only one window of eigenvalues
is shown between —fuw /2 and hw/2.
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Figure 4.4: Geometric flux density B = B, in the adiabatic regime with the Floquet
frequeny hw = 10F i, the coupling strength Vo = 0.25Aw and the gradient § =
0.6kg. The form this flux density does not depend on the gradient [ as it just scales
with corresponding lattice constant a, = 2/0.

4.2.3 Adiabatic approximation

We consider adiabatic motion of the atom in one of its two internal states. The pro-
jection of Shrodinger’s equation with the effective coupling (4.17) gives a geometric

vector potential,

h
Ai(r) = 15 (cos — 1) Vo, (4.30)
and a geometric scalar potential

2

10}
W(r) = — [(sindVe)* + (V6)?] . (4.31)
8M
The geometric vector potential AL(r) produces a synthetic magnetic flux density
B.(r) = VXxAL(r). The geometric vector potential A4 (7) may contain Aharonov-
Bohm type singularities, that give rise to a synthetic magnetic flux over a single
elementary cell:
1
oy = —— dr - A (7). 4.32
=y arAu) (4.32)
Singularitites appear in the points where § = w. Then the angle ¢ and its gradient
V¢ are undefined and cos = —1. The term cos@ — 1 in (4.30) is not zero and does
not remove the undefined phase V¢. In our case we get two singularities that do
not compensate each other, so the synthetic magnetic flux over a single elementary
cell is 2.
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Figure 4.5: Dispersion surfaces for (left) Vo = 0.175Aw and (right) Vo = 0.25Aw.
Here Floquet frequency and gradient and gradient are Aiw = 10FE,econ and 5 = 0.6kg.
The first case (left) shows dispersion near a phase transition point, where Chern
numbers are exchanged between the first and second bands. The second case (right)
shows dispersion in the case of adiabatic regime with the effective coupling ()
presented in the fig. 4.2. Here the Bloch wavevector components k, and k, are

expressed in the units of ky. The energy is expressed in the recoil energy units
Erecoil-

The geometric flux density B(r) = B (r) and the geometric scalar potential W (r)
in the case of adiabatic regime (fuw = 10 Ereco, Vo = 0.25hw, 5 = 0.6k) are presented
in the fig. 4.4. The total synthetic magnetic flux in a singe elementary cell here is
27 and is independent of the Floquet frequendy w and the gradient 5. The flux has
a value 27 in the range of the coupling strength 0 < Vj < 0.5hw.

4.2.4 Band structure and Chern numbers

We explore topological properties of the flux lattice, generated by the effective cou-
pling (4.17), by numerically calculating band structure and Chern numbers. Again
we choose the Floquet frequency to be ten times larger than the recoil energy,
hw = 10ELecon and the gradient of the original magnetic field such that we approx-
imately get a square lattice, § = 0.6ky. First, let us consider the adiabatic regime,
Vo = 0.25hw. In this case the Chern numbers of the first five bands are equal to
one (see fig. 4.6). Thus the Hall conductivity should monotonically increase when
filling these bands. This resembles the Quantum Hall effect involving the Landau
levels. One would expect that higher bands also have Chern numbers one. However

we could not prove that, because of loss in the calculation precision when going to
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Figure 4.6: Left: dispersion surfaces, projected onto the k, axis for Vy = 0.25hw. As
in other figures, here hw = 10F ccon and 5 = 0.6kq. Right: band gap phase diagram
for hw = 10E,econ. Here vy = Vi /hw.

the higher bands.

Next, we check what happens when we leave the regime Vy = 0.25hw where the
adiabatic potential is the most flat, and consider lower and higher values of the
coupling strength Vj. Near Vj = 0.175hw we find a topological phase transition with
Chern numbers exchanging between the two lowest energy bands. Lower values of
the coupling strength makes the lowest band have Chern number zero, ¢; = 0, the
second band have Chern number two, co = 2, while the topological properties of the
higher bands does not change (up to our calculation precision). Near Vj = 0.3hw
we find another phase transition. But this time the Chern numbers are exchanged
between the second and the third bands. After that point the Chern numbers are
distributed as ¢y = 1, co = —1, ¢3 = 3, ¢4 = 1, ... This phase transition is interesting,

because the Chern number jumps by two units.

In the fig. 4.5 we show the dispersion surfaces near the first phase transition, V) =
0.175hw and in the case of adiabatic regime, Vj = 0.25Aw. In the first case we can
see one cone on the corner of the first Brillouin zone. The second case shows that
there is a gap ~ 0.27F o1, Which is comparable with the width of the first band
~ 0.68 Frecoii- During this phase transition the second and third bands close and

open in two different points in the first Brillouin zone simultaneously. This explains
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Figure 4.7: Chern number dependence on vy = Vy/hw for f = 0.6kg and fw =
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why the corresponding Chern numbers jump by two units.

Finally, we explore the band gap dependence not only on the coupling strength V4,
but also on the gradient 3. In the figure 4.7 we present how the Chern numbers of
the first three bands depend on Vj. The figure 4.6 shows how the band gap between
the first and second bands depends on the same parameters. Notice that in the
same middle region the band gap is nonzero, but gets smaller when the gradient

decreases.
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Summary

We described a novel technique for creating an artificial magnetic field for ultracold
atoms using a periodically pulsed pair of counter-propagating Raman lasers that
drive transitions between a pair of internal atomic states: a multi-frequency coupling
term. Together with a magnetic field gradient, this creates a rectangular lattice with

a non-staggered magnetic flux.

The described and analyzed model an optical flux lattice uses a temporally pulsed
Raman coupling. Usually, techniques that rely on a temporal modulation of Hamil-
tonian parameters lead to heating problems. Our method is applied to atoms that
are not initially in any optical lattice, so there are no initial constraints on modula-

tion frequency to avoid transitions between original Bloch bands.

We calculated the resulting Bloch bands and explored their non-trivial topology.
The analyzed optical flux lattice produces several Landau-like lowest energy bands.
Under certain choice of lattice parameters the lowest bands have unit Chern num-
bers. In addition, the lattice may also produces rich topological bands that have

Chern numbers largen than one in modulus.
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CONCLUSIONS

. The considered dice lattice represents a triangular Bravais lattice with a three-
site basis consisting of a hub site connected to two rim sites. As a consequence,
the dice lattice supports with three energy bands. In addition, the dice lattice
contains staggered artificial magnetic field. Thus our model can be interpreted
as a generalization of the paradigmatic Haldane model which is reproduced if

one of the two rim sublattices is eliminated.

. The proposed upgrade of the Haldane model a creates significant added value
such as (i) an easy access to topological semimetal phases relying on only near-
est neighbour coupling and (ii) enhanced topological band structures featuring

Chern numbers higher than one.

. The described and analyzed model an optical flux lattice uses a temporally
pulsed Raman coupling. Using the stroboscopic approximation we derived an

effective Hamiltonian which describes a 2D lattice with non-staggered magnetic
field.

. The analyzed optical flux lattice produces several Landau-like lowest energy
bands. Under certain choice of lattice parameters the lowest bands have unit
Chern numbers. In addition, the lattice may also produces rich topological

bands that have Chern numbers largen than one in modulus.
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APPENDIX

Chern numbers from the topolocial perspective

In this appendix we will very briefly describe how Chern number are related with
topology. In order to avoid giving a lot of mathematical derivations we will limit
ourselves only to the specific definitions that are most relevant to our case of 2D
lattices that exhibit integer QHE. For more discussion on how tolopogy is used in
physics we recommend to see the books Topology and Geometry for Physicists by
Charles Nash and Siddhartha Sen [103] and Geometry, Topology and Physics by
Mikio Nakahara [104]. For more mathematical discussion we recommend the classic
book General Topology by John L. Kelley [105].

Topology is one of the core area of mathematics which usually comes immediately
after axiomatic description of mathematical sets. At the most basic level topology
gives the most abstract notions of a point in a space (not necesserally an Euclidean),
neighborhood of a point, continuity, closed sets, open sets, closures of a set, bound-
aries, interiors, connectedness and compactness. Almost every mathematician and

physicist use topology implicitly when talking about mentioned notions.

Let us begin with the basic definition of a topological space. Let X be any set and
let 7 be a collection of subsets of X. Note that X may be either finite or infinite,
so 7 may also contain either finite or infinite subsets. The pair (X,7T) is called a

topological space if and only if (by definition):

« the empty set () and the whole set X belong to T (0 € T,X € T),
 any finite or infinte union of elements of 7 also belong to T,

« any finite (and only finite) intersection of elements of T also belong to 7.

The set X is also called topological space (meaning that mathematicians imply the
collections of sets T, but simply don’t write the full pair (X,7)). The elements of

T are called open sets. The elements of the topological space X are called points.

We can now turn to the first important notion: continuous mapping. A function
f mapping from one topological space X to another Y is called continuous if the
inverse image of an open set in Y is an open set in X. One can check how this
definition works specifically with a simple real functions R — R on a real number
line and see that it corresponds to usual definitions given in various calculus books.
The topological definition is simply a more abstract version which can be used to a

much larger group of different types of mappings between more abstract spaces.
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Equipped with this basic notions we can go to the core topic of topology: homeo-
morphisms and topological invariants. The main idea in topology is to study spaces
that can be continuously deformed into one another. Let us take two topological
spaces X and Y. Then a map f from X to Y (f : X — Y) is called a homeo-
morphism if it is both continouos and has an inverse which is also continuous. The
spaces X and Y are called homeomorphic with each other. From the definition we
see that if f is homeomorphism, so is the inverse f~!. Moreover, if we introduce
the third topological space Z, then provided that X is homeomorphic to Y and Y
is homeomorphic to Z, then X is also homeomorphig to Z. The last three prop-
erties show that we can characterize all topological spaces into equivalence classes:
a pair of spaces X and Y belong to the same equivalence class if they are homeo-
morphic. The characterization is done using topological invariants — mathematical
objects that characterize each class of equivalent topological spaces. The topolog-
ical invariants can take many forms: they can be integers such as dimension or a
Chern number as it is used in the main text of the dissertation. They can also be
certain properties such as connectedness or compactness. They can even be whole

mathematical structures such as groups.

We can now continue and introduce manifolds, or more specifically differentiable
manifolds. Intuitively, a manifold M is a topological space which locally looks like
Euclidean space R™ (where n is a dimension of the manifold M), but not necessarilly
globally. This means that we can continuously map an open set of M to an open
set of R™. If we have two overlapping open sets M; and My of M and continuously
map them to two open sets A; and Ay of R® by f; : M7 — Ay and fo : My — Ao,
then there is a mapping from A; to Ay given by f, 0 f . If we have a collection of
such open sets of M that covers the whole manifold M and all mapping between the
resulting open sets of R™ are infinitelly differentiable, then we call M a differentiable

manifold.

As an example we can consider a sphere. We can define can define an open set on it
by taking the whole sphere and excluding the poles: this is M;. Then we can define
spherical angles # and ¢ as coordinates: they give a mapping f; to an open set A;
of R2. In a similar way we can define another spherical coordinates by choosing a
different pair of opposite sphere points as poles: this provides Ms, fo and As. One
can check that the mapping between the open sets A; and A, of R” is infinitelly
differentiable. Thus a sphere is a two-dimensional differentiable manifold. Observe,
that in this case we can’t use only one set of spherical angles # and ¢, because ¢ is

not defined in the poles, so the sphere is not globally homeomorphic to R”.

We skip such notions as orientability and now go directly to fiber bundles. Like a
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manifold, a fiber bundle is, in intuitive terms, a topological space which is locally
a product of two spaces (but not necessarily globally). The simple example is the
Mobius strip. Let us take two one-dimensional manifolds: a line segment and a
circle. The product of these spaces is a cylinder. This is a product space globally
and locally. On the other hand, the Md&bius strip is a product of a line segment and
a circle locally, but not globally.

A fibre bundle consists of a topological space E (called the total space), a topological
space X (called the base space), a topological space F' (called the fibre) and a pro-
jection I1 : E— X. The local triviality of the bundle E' is reflected by a set of open
neighborhoods U, covering X, meaning that for each U, there is a homeomorphism
¢o : II71(U,) — U, x F. In the previous example of the Mébius strip, the base
space X is a circle and the fibre I is a line segment. For each point x on the circle
there is the fibre II7!(z). This example should give some understanding on how
fiber bundles are defined.

A fiber bundle F is said to be a vector bundle if its fibre F' is a vector space R™ or

a complex vector space C".

Let us now consider a two-dimensional lattice in a tight-binding approximation.
The eigenstates of a single-particle Hamiltonian are Bloch wavefunctions indexed
by the Bloch wavevector k. This wavevector is defined over the FBZ which is a two-
dimensional torus T2. In the k-space representation the Hamiltonian is described by
a collection of Hermitian operators H (k) in the n-dimensional Hilbert space, where
n is the total number of bands. In other words for each k we a have Hilbert space
Hyp = C". The collection of spaces Hj forms a complex vector bundle on the base

space T".

In the tight-binding models the full vector bundle is always trivial, meaning it is al-
ways homeomorphic to T? x C". In an insulator we divide the bands into two groups:
the filled bands and the empty bands. It may happen that the filled bands can form
a subbundle of T? x C" which is non-trivial. This non-triviality is measured by the
Chern numbers of each filled band and is related to the integer QHE as explained
in the chapter 2.1.5. The definition, interpretation and calculation methods of a

Chern number are already given in the main text of the dissertation.
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[VADAS

Per paskutinius kelis desimtmecius buvo pasiekta nemazai pasiekimy labai salty ato-
my ir kvantinés optikos fizikoje [1]. Siuo metu jmanoma tiksliai paruosti ir valdyti
labai salty atomy dujas. Tai leidzia atlikti tikslius kvantiniy sistemy matavimus.
Saldymo metodai leidZia pasiekti atomy dujy temperatiiras iki keliy nano-Kelviny
eilés ir net mazesenes. 1997 metais uz darbg ir pasiekimus atomy saldymo ir laiky-
mo fizikoje S. Chu, C. Cohen-Tannoudji ir W. D. Phillips buvo apdovanoti Nobelio
premija [2, 3, 4]. Sie pasiekimai leido eksperimentiskai stebéti Bose-Einsten kon-
densacija. 2001 metais E. A. Cornell, C. E. Wieman ir W. Ketterle uz tai buvo
apdovanoti Nobelio premija [5, 6].

Labai salty atomy sistemos gali buti naudojamos kaip kiety kuny ir kondensuo-
tu sitemy simuliatoriai [7, 8, 1]. Be to, optiniu gardeliy sukurimas labai saltiems
atomams pradéjo kvantiniy kompiuteriy ir kvantinés informacijos eksperimentinius
tyrimus. Sie eksprimentai leidzia tyrinéti kvantines koreliacijas bei kvantinj susietu-
ma. Vienas i$ svarbesniy tiriamy efekty yra fazinis virsmas i$ superlaidininko fazés
1 Mott izoliatoriaus faze [9]. Superlaidininko fazé pasizymi itin stipria koreliacija.
Tuo tarpu Mott izoliatoriaus fazé patogi kvantiniams kompiuteriams, nes atomai
turi fiksuota skaiciy kiekviename gardelés mazge.

Kvantiniai kompiuteriai ir kvantiniai simuliatoriai [10] gali padeéti iSspresti kai
kuriuos sudétingus uzdavinius kondensuoty medziagy bei dideliy energijy fizikoje.
Pavyzdziui, itin koreliuotos daugiadalelinés kondensuotos sistemos yra per sudétin-
gos tyrinéti skaitmeniskai su kompiuteriu. Labai Salti atomai optinése gardelése gali
buti naudojami kaip tokiy sistemy simuliatoriai ir taip pagelbéti suskaic¢iuoti jvairius
reikalingus dydzius.

Labai salti atomai paprastai yra elektriskai neutralus. Todél jie nejaucia jprasto
magnetiniu lauko kaip taskinés dalelés (tai yra jie nejaucia Lorentz’o jégos). Per
pastaruosius metus buvo sugalvota nemazai budy kaip sukurti dirbtinj magnetinj
lauka. Vienas is budy yra sukti labai salty atomy dujy debeséli kartu su gardele ir
nagrinéti visa sia sistema besisukancioje koordinaciy sistemoje [11, 12, 13, 14, 15, 16].
Kitas dirbtinio magnetinio lauko sukurimo budas yra naudoti lazeriy spinduliuote,
kuri sukuria geometrinius potencialus [17, 18]. Magnetiniai srautai taip pat gali buti
sukurti periodiskai purtant gardelés potenciala [19, 20, 21, 22].

Kadangi dirbtinj magnetinj lauka labai Saltiems atomams optinése gardelé yra
imanoma sukurti, mes galime tokias sistemas naudoti tyrinéjant sveikajj ir trupme-
ninj kvantinius Hall’o efektus. Labai Salti atomai optinése gardelése yra vienas i$
budy giliau tyrinéti Siuos efektus.

Siame darbe tyrinéjame dvi skirtingas labai alty atomy gardelése sistemas. Pir-
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moje dalyje aprasome viendalelines labai Salty atomy dvimateéje dice optinéje gar-
deléje savybes. Si gardelé geometriskai atrodo kaip losimo kauliuky rinkinys (dice),
pasizymi Sesiakampe geometrija ir yra Haldane modelio, kuris jau yra eksperimen-
tiskai jgyvendintas [20], iSplétimas.

Antroje dalyje pristatome optine gardele, kuri pasizymi magnetiniu srautu, kuris
nekeicia zenklo (non-staggered fluz) elementariuose gardelés mazguose. Mes apraso-
me kaip tokia gardelé gali buti sukurta naudojant jprasto magnetinio lauko gradienta
ir dazniy $uky spinduliuote. Sioje darbo dabo dalyje mes iStyrinéjame Sios garde-
lés dirbitinio magnetinio srauto savybes bei juostinés sandaros topologines savybes.

Parodome kaip gardelés juostiné sandara pasizymi Landau lygmeny savybémis.

Pagrindinis disertacijos tikslas

[styrinéti kvantinj Hall’o effekta esant kintamo Zenklo ir nekintamo Zenklo dirbti-
niams magnetiniams laukams, kuris veikia labai Saltus atomus optinése gardelése,
skaiciuojant dice optinés gardelés ir optinés srauto gardelés energijy spektrus bei

atitinkamus Chern’o skaicéius.

Disertacijos uzdaviniai

1. Pateikti ir aprasyti dviejy lygmeny Haldane modelio iSplétima j tris lygmenis
— dice optine gardele — iSvedant gardelés Bloch’o Hamiltoniang stipriojo rysio

artinyje.

2. Istyrinéti dice optinés gardelés juostinés sandaros topologines savybes suskai-

¢iuojant jos energiju spektra bei atitinkamus Chern’o skaicius.

3. Pateikti ir aprasyti srauto gardele, kuri sukuriama naudojant daznio Suky

spinduliuote, ir iSvesti efektyvy Hamiltoniang naudojant stroboskopinj artinj.

4. Suskaic¢iuoti srauto gardelés juostine sandara ir iStyrinéti jos topologines sa-

vybes suskaiciuojant keliy zemiausiy juosty Chern’o skaiciy.

Ginamieji teiginiai

1. Dviejy lygmeny Haldane modelis gali buti ispléstas j trijy lygmeny modelj
naudojant dice optine gardele ir lazeriais sukeltus Suolius tarp artimiausiy

gardelés mazgy.

2. Ispléstas trijy lygmeny Haldane tipo modelis pasizymi topologinémis puslaidi-
ninkio bei kitomis fazémis, kuriuos aprasomos topologiniais Chern’o skaiciais

moduliu didesniais uz vienetg.
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3. Optiné srauto gardelé su nekintamo zenklo magnetiniu srautu gali buti sukurta
naudojant dviejy lygmeny atomus, veikiamus jprasto magnetinio lauko gradi-
entu ir daznio Suky spinduliuote, kuri rezonansiskai sukabina atomo lygmenis

skirtinguose erdves taskuose.

4. Darbe pateiktas optinés srauto gardelés modelis pasizymi topologiskai turtinga
juostine sandara, kuri kai kuriais atvejais atitinka Landau tipo lygmenis ir

kitais atvejais turi topologinius Chern’o skai¢ius moduliu didesnius uz vieneta.

Darbo naujumas ir aktualumas

1. Vienas is paprasciausiy dvimaciy gardeliy su dirbtiniu magnetiniu lauku yra
gerai zinomas Haldane modelis [23], kuris jau yra eksperimentiskai jgyvendin-
tas [20]. Sis modelis pasizymi topologiskai netrivialiomis energijos juostomis,

kurios yra apibudinamos topologiniais Chern’o skaiciais nelygiais nuliui.

2. Impulsiniame atvaizdavime Haldane modelis yra is esmeés dviejy lygmeny sis-
tema. Siame darbe mes pateikiame Sio modelio iSplétima j tris lygmenis nau-
dodami “Dice” (losimo kauliuko) geometrija. ISpléstas modelis pasizymi to-
pologiskai turtingesne juostine sandara, kuri gali turéti topologinius Chern’o

skaicius moduliu didesnius uz vieneta.

3. Optinés srauto gardelés yra naujo tipo optinés gardelés, kurios pasizymi nekin-
tancio zenklo magnetniu srautu (non-staggered fluzx). Darbe aprasome tokio

tipo gardele, sukuriama naudojant dazniy sSuky spinduliuote.

4. Nekintancio zenklo magnetinis srautas optinése gardelése pasizymi pastovaus
magnetinio lauko savybémis. Dél to, optiniy srauto gardeliy juostiné sandara
gali pasizyméti Landau lygmeny savybémis. Kai kuriais atvejais nagrinéjama
srauto gardelé taip pat pateikia topologiskai turtinga juostine sandara, kurig

apibuiding Chern’o skaic¢iai moduliu didesni uz vieneta.

Autoriaus indélis

Disertacijos autorius atliko visus analitinius ir skaitmeninius tyrimus. Autorius pa-
rasé visas kompiuterines programas skaitmeniniams tyrimams. Autorius parasé visa
disertacijos teksta ir sukuré visus paveikslélius. [ tai nejeina disertacijos publikacijos,

kurios yra pridétos disertacijos pabaigoje.
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1 Optiniy gardeliy ir dirbtinio magnetinio lauko apzvalga

1.1 Atoma veikiancios jégos

Kad galétume suprasti kaip atomy dujos yra Saldomos ir laikomos gaudyklése bei
kaip sukuriama optiné gardelé yra svarbu panagrinéti jégas, kurios veikia paprasta
dviejy vidiniy lygmeny atoma, esantj elektromagnetiniame lauke.

Bendru atveju vieno atomo, elektromagnetinio lauko ir saveikos tarp ju hamil-

tonianas susideda i$ triju daliy [24]:

o Pirmasis narys Hy apraso atomo masés centro judéjimg ir vidines busenas.
Pasirinke Zemesnés atomo vidinés busenos |g) energija lygia nuliui, atomo

hamiltoniana uzrasome kaip

2

Hy = ;’W + Fwolee] (1.2)

Cia |e) yra suzadinta vidiné atomo biisena, kurios energija lygi g, p — judesio

kiekis ir M — masé.

o Antrasis narys Hp apraso elektromagnetinj lauka. Hy paprastai isreiskiamas

per atsiradimo ir iSnykimo operatorius kiekvienoje lauko modoje suma

HF = Z hwkﬁal,eak’ﬁ y (13)
ke

kur k yra modos bangos vektorius, o € — poliarizacija. Salty atomy fizikoje
dazniausiai viena arba keletas elektromagnetinio lauko mody yra makrosko-
piskai uzpildytos ir gali buti jtrauktos j dinamika kaip klasikinis laukas. Tokiu

atveju elektromagnetinio lauko hamiltoniang iSskaidome j dvi dalis:
Hyp = Hy, + Hg, (1.4)

kur Hy, apraso klasikinj elektromagnetinj lauka, o Hgr sudaro visas kitas modas.

o Treciasis narys Har apraso atomo saveika su elektromagnetiniu lauku. Apsi-

ribodami elektrinio dipolio artiniu, §j operatoriy uzrasome kaip

Hap = —d - E(r,t), (1.5)
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kur d yra atomo elektrinis dipolinis momentas:

d = de¢ (le)(g] + |g){el) - (1.6)

Cia e; yra vienetis vektorius nukreiptas iSilgai kvantavimo krypties.

Labai salti atomai paprastai veikiami lazeriy kuriamomis monochromatinémis elekt-
romagnetinémis bangomis, kuriy klasikinj elektrinj lauka galime apytikriai uzrasyti
kaip

E\(r,t) = e(r)E(r) cos [wt — P(7)] , (1.7)

kur w yra bangos daznis, e.(r) — poliarizacijos vektorius, £(r) — létai kintanti lauko
amplitudé, o ®(r) — bangos fazé. Reikai paminéti, kad Naudodami ilgabangj artinj
(long-wavelength approzimation), klasikinio elektrinio lauko operatoriy pakeic¢iame
atomo masés centro koordinadiy ir laiko funkcija EL(’I", t) = EL(r = Tagom, t).
Atitinkamai kaip ir elektromagnetinio lauko (1.3), atomo saveikos su lauku ha-

miltoniana (1.5) isskaidome j dvi dalis:
Hap = HaL + Har - (1.8)

Pirmasis narys Hpp, yra atsakingas uz dipoling atomo sgveika su klaskiniu elekt-
romagnetiniu lauku. Pasinaudoje klasikinio elektrinio lauko israiska (1.7), $j narj

isreiskiame kaip
Har, = hQ(r) {cos [wt — @(7)] le)(g] + h.c.} . (1.9)

Cia jvedéme viena i$ svarbiausiy atomo optikoje dydj — Rabi daznij

E(r

Qr) = —dlec - e(r)] % , (1.10)
kuris apibudina atomo saveikos su klasikiniu elektromagnetiniu lauku stipruma.
Antrasis saveikos (1.8) narys Hag sukabina atomo vidiniy lygmeny sistema su vi-
somis kitomis neuzpildytomis elektromagnetinio lauko modomis ir apraso savaimine
spinduliuote atomui pereinant is suzadintos busenos |e) i nesuzadinta |g). Paprastai
sio nario jtaka atomo judéjimui elektromagnetiniame lauke apibudiname fenomeno-
loginiu parametru — savaimines spinduliuoteés sparta I'.

Toliau nagrinékime atomo, esancio aprasytame klasikiniame elektromagnetinia-
me lauke (1.7), judesio kiekio momento operatoriaus p dinamika, kuria apraso Hei-
senberg’o judéjimo lygtis

dp 1

— = —|p, Hx + Har . 1.11

ar ~ ip P at Ml (L11)
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Vidutine jéga F', kuri veikia atoma, galime suskaiciuoti kaip jo judesio kiekio ope-

ratoriaus p laikinés isvestinés kvantmechaninj vidurkj

F = <%> . (1.12)

Cia pilno vidutinés jégos iSvedimo, kurj galima rasti [24], nepateiksime. Paminésime
tik dvi svarbiausias jégos komponentes — disipacine jéga Fuisp ir reaktyvia (arba

dipoling) jéga Fleact:

r 02/2
F, issip — hky,— > 1.1
disslp M2+ (T/2)2 4+ Q22 (1.13)
Q2
Eeact = o V( ) (114)

2024+ (T/2)+Q2/2°

Cia § yra elektromagnetinio lauko daznio w isderinimas lyginant su rezonansiniu
atomo dazniu wy:
d=w—wp, (1.15)

o ki — ploksciosios elektromagnetinés bangos vektorius. Reikia paminéti, kad nors
dinamikoje energijos operatorius Hagr ir nedalyvauja, jo jtaka jtraukiame per spin-
duliuotes sparta I'.

Pateikta disipaciné jéga Fyisip yra atsakinga uz elektromagnetinés spinduliuotés
slégi, kuris mazina atomo kinetine energija ir yra svarbi nagrinéjant atomy dujy
Saldymo procesus. Sios jégos priklausomybeé nuo isderinimo § turi Lorenco funkcijos
forma. Dipoliné jéga Fi...; yra svarbi nagrinéjant optines atomy gaudykles ir optines
gardeles. Galime pastebéti, kad Si jéga yra proporcinga Rabi daznio kvadrato gra-
dientui V(Q?), todel ji nelygi nuliui tik tuomet, jeigu elektrinio lauko intensyvumas

erdvéje kinta.

1.2 Atomy dujy saldymas

Siame skyrelyje trumpai aprasysime du svarbiausius atomy dujy Saldymo budus:
Doppler’io saldyma (Doppler cooling) ir garinimo Saldyma (evaporative cooling).
Pirmasis paprastai atlickamas atomy Saldymo proceso pradzioje, o antrasis — pa-
baigoje. Kiti Saldymo budai (Sysiphus cooling, subrecoil cooling) placiau aprasyti
(3, 24].

Nagrinékime atoma, judantj grei¢iu vy monochromatinés elektromagntinés ban-

gos elektriniame lauke

E(r,t) =elcos(wt —k-7).
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Naudodami ilgabangj artinj, atomo masés centro padéties vektoriy tiesiog jstatome

i Sio elektrinio lauko iSraiska:
E(r,t)=el cos|(w—wp)t] ,

kur k-r = k-vyt = wpt. Cia wp yra dél Doppler’io efekto atsirades daznio poslinkis.
Atitinkamai lazerio elektromagnetinés bangos daznio iSderinimas (1.15), nuo kurio
priklauso atoma veikianti disipaciné jéga (1.13), pasikeicia j dp = § — wp. Taigi dél
Doppler’io efekto, atomas, judantis pries elektromagnetinés bangos sklidimo kryptj,
jaucia didesnj bangos daznj. Priesingai, atomas, judantis ta pacia kryptimi kaip ir
sklindanti elektromagnetiné banga, jaucia mazesnj bangos daznj.

Sakykime lazerio elektromagntiné banga yra isderinta j raudonaja puse (6 < 0).
Tokiu atveju létesni atomai, judantis pries elektromagnetine banga, dél Doppler’io
efekto jaus banga, kurios daznis yra artimesnis rezonansiniui atomo dazniui w. Gre-
tesni atomai jaus banga, kurios daznis yra toliau rezonansinio daznio. Dél to, ato-
mai, judantis pries bangg, yra labiau stabdomi, nei greitinami, judantis ta pacia
kryptimi kaip ir banga. Siuo atveju Saldymas vyksta sudedant dvi viena pries kitg
skilndancias elektromagnetines bangas, iSderintas j raudonaja puse. Esant pakan-

kamai silpnoms bangoms, disipacinés jégos iSraiska (1.13) supaprastéja [?]:
FDoppler ~ _277,00 ) (116>

kur n yra ,trinties” koeficientas.

Deél savaimines spinduliuotés ir atsitiktinés fotony, iSspinduliuoty kity dujose
esanciy atomy, sugerties Doppler’io saldymas turi tam tikra apatine temperaturos
riba, kuri priklauso nuo atomy riisies. Sarminiams elementams §i temperatiira yra
keleto Simty mikro-Kelviny eilés. Norint atomy dujas atsaldyti iki Zemesniy tem-
pratury, reikia naudoti kitus saldymo budus, pavyzdziui Sysiphus Saldyma, kuriam
paaiskinti dviejy vidiniy atomo lygmeny neuztenka.

Atomy dujy saldymo pabaigoje paprastai naudojamas gana paprastas garinimo
saldymas. Atomy gaudyklés potencialinis barjeras yra kuriam laikui sumazinamas
taip leidziant didesnés kinetineés energjos atomams is jos pabégti. Sis saldymo budas

leidzia pasiekti itin mazas nano-Kelviny eilés temperaturas.

1.3 Magnetinés ir optinés gaudyklés

Beveik visos saveikaujanciy atomy sistemos pakankamai zemose temperaturose per-
eina j kieto kuno faze. Isimtis gali buti Helio atomai, kurie islieka skystoje fazéje

jeigu mazindami temperatura nedidiname slégio. IS pirmo zvilgsnio pastebime, kad
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labai Salty atomy dujos ir Bose-Einstein’o kondendatai negaléty egzistuoti. Taciau
reikia paminéti, kad peréjimas j kietojo kuno faze yra labiausiai jtakotas dél trijy
kuny susidurinéjimy [?]. Taigi pakankamai sumazinus atomuy tankj (paprastai Bose-
Einstein’o kondensate atomu tankis yra 10'® — 10" cm™) galime sumazinti trijy
kuny susidurinéjimy daznj ir islaikyti dujine faze. Tokiu atveju, kad buty svarbus
kvantiniai reigkiniai, atomy dujy temperatura turi ypa¢ maza ( 1079 K eilés). Be to,
atomy dujos turi buti laikomos toliau nuo kity medziagy, nes atomai gali su jomis
susidurinéti ir taip sukelti fazinj virsma is dujinés j kieto kuno faze. Islaikyti dujine
faze taip pat padeda sukiniy poliarizacija, kuri sustiprina stuma tarp atomuy.

Minétos salygos sudaromos surenkant ir atsaldant labai grynas mazo tankio ato-
my dujas su poliarizuotais sukiniais magnetinéje gaudykléje arba optinéje gaudyk-
léje. Sistema pakankamai ilgai iSbuna tokioje nepusiausvyroje busenoje (paprastai
apie keleta sekundziy) lyginant su laiku tarp dvieju kunuy susidurinejimais, kurie
leidZia temperaturai tolygiai pasiskirstyti atomy dujy debesélyje.

Magnetiniy gaudykliy veikimas remiasi Zeeman’'o efektu. Kad galétume supras-
ti tokiy gaudykliu veikimo principus, panagrinékime sukinines Sarminiy elementy
savybes. Sarminiai elementai turi tik viena iSorinj elektrona ir Zemiausiosje buse-
noje pilno elektrono judesio kiekio momento J projekcija i z asj lygi 1/2 (Planc’o
konstantos i nerasome). Itraukiant ir branduolio judesio kiekio momenta, atomus
galime suskirstyti j dvi grupes. Jeigu atomo branduolio neutrony skaicius yra lygi-
nis, tai zinant, kad protony skaicius yra nelyginis, atomas yra bozonas. Kitu atveju
atomas yra fermionas. Pilno atomo judesio kiekio momento F' = I + J projekcijy
vertes, priklausomai nuo branduolio judesio kiekio momento I, galime suskirstyti j
dvi grupes: F' = I +1/2. Kol néra magnetinio lauko, energijos iSsigimima tarp abie-
ju hypersmulkiosios strukturos lygmeny pasalina elektrono judesio kiekio momento

saveika su branduolio judesio kiekio momentu:
th:aI-J, (117)

kur a yra saveikos konstanta.

Esant magnetiniam laukui prie saveikos (1.17) turime pridéti papildoma narj
thZCLI'J—f—Q,uBJZB (118)

kuris kiekviena hypersmulkiosios spektro sandaros lygmenj suskaldo j keleta polyg-
meniy, priklausomai nuo branduolio judesio kiekio momento I. Cia pg yra Bohr'o
magnetonas, o magnetinis laukas yra nukreiptas isilgai z asSies. Pavyzdziui, natrio
2Na ir rubidzio 8"Rb atveju I = 3/2 ir abu hypersmulkiosios sandaros lygmenys su-

skyla j astuonis polygmenis: du lygmenis su mprp = £2 ir po du lygmenis kiekvienu
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kitu atveju: m = —1,0,1. Labai stipraus magnetinio lauko riboje abiejy suskilu-
siy lygmeny energijos artéja prie dvieju lygmeny F = +ugB. Saveika tarp atomy
kiekviename lygmenyje gali buti skirtinga. Tai leidzia nagrinéti nemazai skirtingy
saveikaujanciy salty atomy dujy sistemy.

Aptarto tipo atomams magnetiné gaudyklé sudaroma sukuriant erdvéje kintan-
¢io stiprumo magnetinj lauka B(r). Esant salygoms, kai galioja adiabatinis artinys
— atomas, judédamas erdvéje, islieka toje pacioje vidinéje busenoje — atomo ener-
gija priklauso nuo magnetinio lauko erdvinio kitimo. Jeigu stipréjant magnetiniam
laukui atomo energija mazéja, atomai judés magnetinio lauko stipréjimo kryptimi.
Kitu atveju, jeigu stipréjant laukui energija didéja, atomai judes lauko silpnéjimo
kryptimi. Kadangi vakuume negalime sukurti statinio magnetinio lauko, kuris tu-
réty maksimuma (tai iSplaukia is Maxwell’o lygéiy), tai pirmuoju atveju sudaryti
magnetinés gaudyklés negalime. Lieka tos vidinés busenos, kuriose esantys atomai
juda magnetinio lauko silpnéjimo kryptimi. Natrio ir rubidzio atveju tokios busenos
yra F'=2 mp=+42,+1ir FF=1, mp = —1.

Toliau aptarsime optiniy gaudykliy veikimo principus. Prisimine praeitame sky-
relyje pateikta atoma veikiancios dipolinés jégos Fieact iSraiska (1.14), pastebime,

kad ja galime perrasyti kaip tam tikros potencinés funkcijos Vog(7) gradienta:

Freact(r> = _v‘/eff<r)
ho 02/2
Vige(r) = —In {14+ ———— | . 1.19
ff( ) 9 Il( +52+(F/2)2> ( )
Si funkcija (1.19) yra efektyvus potencialas, atsirades dél lazerio elektromagnetinio
lauko.
Galime pastebéti, kad esant esant pakankamai mazam Rabi dazniui, efektyvus
potencialas yra apytikriai proporcingas Rabi daznio kvadratui, tuo paciu ir elektrinio
lauko intensyvumui:

Vasr(r) ~ |E(r)]2. (1.20)

Jeigu lazerio lauko daznis yra iSderintas j raudonaja puse (6 < 0), atomas turés
mazesne energija erdvés taskuose, kuriuose elektrinis laukas yra stipresnis. Priesingu
atveju (6 > 0), atomai turés turés mazesne energija taskuose, kur laukas silpnesnis.

Efektyvy potencialg yra patogu perrasyti
Vere(1) = sgn(d) V(r) = £V (r),

kur V' (r) — dipolinis potencialas, proporcingas elektrinio lauko inensyvumui, yra tei-
giama funkcija. Efektyvus potencialas Vg(r) atitinkamai yra lygus arba priesingas

jam priklausomai nuo isderinimo 9.
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1.1 pav.: Paprasciausia vienmaté optiné gardelé, sukurtyg dviejy vienas pries ki-
ta bégandiy ploksdiy elektromagnetiniy bangy. Zalia kreive pavaizduotas dipolinis
potencialas V(z). Cia Vj yra potencialo gylis, o0 @ = 7/k;, — gardelés konstan-
ta. Raudona kreive pavaizduotas elektrinio lauko, kuriancio tokj potencialg, kitimo
désnis.

Optiné gaudyklé paprasciausiu atveju sukuriama naudojant j raudonaja puse is-
derintg lazerio lauka (6 < 0). Zinant, kad lazerio elektrinis laukas statmenai bangos
sklidimo krypciai turi Gauss’o funkcijos forma, atomai judés link lauko maksimu-
mo. Taip naudojant viena arba daugiau persiklojanciy lazeriy pluosty priverc¢iame
atomus likti optinéje gaudykléje. Paprastai optinés gaudyklés yra stipresnés uz

magnetines.

1.4  Optinés gardelés

Zinodami, kad atoma veikiantis dipolinis potencialas V () yra proporcingas elektro-
magnetinés bangos elektrinio lauko intensyvumui |€(7)|? (1.20), paprasciausia perio-
dinj potencialg sukuriame is stovinc¢iosios bangos — dviejy vienas pries kita béganciy
bangy superpozicijos:

V(r) ~ &2 |ei(wt—kL-a:) L otk 40) 9

)

V(r) = Vysin®(ky, -z + @),

kur £, bangos vektoriaus modulis, o ¢ ir (;3 = ¢/2 nurodo galima faziy skirtuma tarp
bangy. Toks periodinis potencialas yra vienmaté optiné gardelé, kuri pavaizduota
1.1 pav. Gardelés konstanta — atstumas tarp gretimy gardelés mazgy — yra a = 7 /ky.

Paprasciausia dvimate opting gardele sukuriame naudodami daugiau persiklo-

janciy stovincéiy bangy. 1.2 pav. pavaizduota kvadratiné optiné gardelé, kurios

101



o o ° ° ° o o
- e—lk:L:c ~ e

® 'k:.
e—l LY

1.2 pav.: Kvadratiné optiné gardelé
dipolinis potencialas yra
V(r) =V [sin®(kux) + sin®(kvy)] - (1.21)

Reikia paminéti, kad tokia elektriniy lauky intensuvumo sudétis teisinga tuomet, kai
abiejy stovinciy bangy dazniai yra Siek tiek iSderinti. Tokiu atveju papildomo greitai
kintancio interferencinio nario galime j dinamika nejtraukti (atlikti vidurkinima laike

ir apsiriboti tik létai kintanciais nariais).
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2 Tyrimo metodai naudojami siame darbe

2.1 Periodinis potencialas ir Bloch’o teorema

Pirmasis zingsnis bet kokiame kvantinés mechanikos uzdavinyje yra isspresti vienos

dalelés stacionariaja Schrodinger’io lygti

Hly) = E[Y), (2.1)

kur H yra sistemos hamiltonianas — pilnutinés energijos operatorius. Si lygtis ki-
taip vadinama hamiltoniano tikriniy verc¢iy lygtimi ir jos sprendiniai sudaro galimas
sistemos busenas |¢), kuriose tiksliai zinoma energija. Kadangi hamiltonianas yra
ermitinis (hermitian), tai jo tikriniai busenos vektoriai sudaro pilna baze visoje nag-
rinéjamos kvantinés sistemos Hilbert'o erdvéje. Zinodami tokia pilng buseny baze
ir ju energijas galime nagrinéti laikinius uzdavinius (spresti laikine Schrédinger’io
lygti) bei konstruoti jvairius didelio daleliy skaic¢iaus modelius.

Nagrinékime vienos kvantinés dalelés judéjimg dvimaciame periodiniame poten-
ciniame lauke V'(7), kuris nepakinta atlikus transliacija per vektoriu R = nja; +
NoQs:

Vir+R)=V(r), (2.2)
kur n; yra sveikieji skaiciai. Toks periodinis potencialas vadiamas gardele, vektoriy
rikinys a; vadinamas gardelés vektoriais, o ju ilgiai |a;| - gardelés konstantomis.
Staciakampis gretasienis, kurj sudaro gardelés vektoriai vadinamas elementariuoju

narveliu. Pilnas vienos dalelés hamiltonianas bedimensiniuose dydziuose

H:—?Mww) (2.3)

yra transliaciskai invariantinis per gardelés vektoriy R. Tai reiskia, kad hamiltonia-
nas komutuoja su transliacijos operatoriumi Tg, kurj galime apibrézti per judesio

kiekio operatoriy p:
[H, Tr] =0, Tr =exp(—ip- R). (2.4)
Pasinaudodami operatoriaus Tgr poveikio | bangine funkcija 1 (r) = (r[y) Teiloro

(Taylor) eilutés skleidiniu pagal R, galime nesudétingai parodyti, kad Sis operato-

rius, veikdamas j bangine funkcija, pastumia ja per vektoriy R:

Try(r) =¢(r — R). (2.5)

Kvantinés mechanikos uzdaviniuose dazniausiai reikalaujame, kad ieSkoma sistemos
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banginé funkcija buty tolydi ir turéty tolydzias isvestines, taigi toks skleidimas Tei-
loro eilute yra teisingas.

Kadangi nagrinéjama kvantiné sistema yra periodine, mes reikalaujame, kad per-
stumtos per vektoriy R banginés funkcijos modulio kvadratas arba dalelés padéties

tikimybés tankis nepasikeity:

[Treb(r)]* = [(r)]* (2.6)

Sios banginés funcijos savybés ir zinojimas, kad transliacijos operatoriaus tikrinés
vertés yra exp(—ik - R), leidZia Sio operatoriaus poveikj banginei funkcijai uzrasyti
tokiu budu

Tri(r) = exp(—ik - R)i(r), (2.7)

kur k yra tikriné judesio kiekio operatoriaus verté. Si savybé parodo, kad bangine

funcijg galime isskaidyti j eksponenting ir periodine per gardelés vektoriy R dalis:

(1) = exp(ik - r)ug(r) . (2.8)

Tokios formos busenos funkcija vadiname Bloch’o funkcija, o tokios formos sprendi-
nio uzrasyms esant periodiniam potencialui - Bloch’o teorema. Sia funkcija nume-
ruojame indeksu k - Bloch’o banginiu vektoriumi. Trumpai tariant Bloch’o teorema
teigia, kad dalelés, esancios periodiniame potenciale banginé funkcija yra moduliuo-
ta eksponentiné funkcija.

Is Bloch’o funkcijos formos (2.8) matome, kad ji nesikei¢ia perstumus Bloch’o
banginj vektoriy k per atvirkstinj vektoriy G' = n1by +nob,. Cia b; yra atvirkstinés

gardelés vektoriai, kurie pasirenkami taip, kad buty tenkinama salyga
a; bj = 27—‘-5i,j . (29)

Toks Bloch’o funkcijos periodiskumas atvirkstinéje gardeléje reiskia, kad mums uz-
tenka nagrinéti tik dalj visy galimy k reiksmiy arba kitaip tariant mums uztenka
apsiriboti pirmaja Brillouin’o zona.

Bloch’o teorema padeda kvantinés mechanikos uzdavinj supaprastinti iki elemen-
taraus narvelio realioje erdveje. Kitaip tariant, pasinaudodami stacionariaja Sch-
rodinger’o lygtimi, galime uzrasyti lygti periodinei funkcijai ug(r). Papraséiausias
budas sia lygti uzrasyti yra paveikti Bloch’o funkcija (2.8) judesio kiekio operatoriu-
mi p zinant, kad jis koordinatiniame atvaizdavime uzrasomas kaip —iV. Diferenci-

juodami Bloch’o funcija ¥ (7) pastebime, kad periodinés funkcijos ug(r) atskyrimas
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nuo eksponentés atitinka pakeitimg V — V + ik. Taigi lygtis siai funkcijai yra
1
—§(V + ik)Qukm(r) + V(’I")Ukm(’f‘) = Ek,nuk,n(r) . (210)

Sia lygti uzrasome kiekvienai skirtingai k reikdmei pirmojoje Brillouin’o zonoje ir
pilnas sistemos hamiltonianas tampa diagonalus pagal indeksg k. Kadangi bendru
atveju si tikriniy verciy lygtis gali duoti be galo daug sprendiniy, mes taip pat
ivedame papildoma indeksa n joms numeruoti.

Tikriniy energijos verciy rinkinys tam tikrai fiksuotai n reiksmei (k, E) erdvéje
sudaro pavirsiy, kurj vadiname dispersijos juosta, o visa tokiy pavirsiy rinkinj visoms
n reikSmeéms vadiname dispersija. Visy tikriniy energijos verciy Ey,, ir atitinkamy
tikriniy busenos vektoriy |i¢x,) (arba atitinkamy periodiniy daliy |ug,,)) rinkinj

vadiname juostine sandara.

2.2  Wannier busenos

Nors Bloch’o funkcijos (2.8) yra tikrinés sistemos hamiltoniano busenos ir suda-
ro pilng sistemos Hilberto erdvés baze, jos néra patogios nagrinéjant labai Saltus
atomus optinése gardelése, ypac tiriant daugiadalelinius reiskinius, kuomet daznai
naudojamas stipriojo rysio artinys. Siame skyrelyje jvesime ir panagrinésime kitg
ortogonaliy baziniy funkciju — Wannier funkciju — baze [25, 26, 27, 28|, kuri yra
patogi minéetame artinyje.

Wannier funkcija ¢ () apibréziame kaip Bloch’o buseny v, (7) Fourier trans-

\% 9 .
Orn(T) = ”W /BZd k exp(—ik - R)y . (7), (2.11)

kur integruojame per pirma Brillouin’o zona. Raide V' Zymime elementaraus narvelio

formacija,

realioje erdvéje plota. Jeigu, jvede periodines krastines salygas, nagrinéjame baigtinj
elementariy narveliy skaiciy, tai turime kvantuotas Bloch’o banginio vektoriaus k

vertes ir integralg (2.11) pakei¢iame suma
1
Orn(T) = —= exp(—ik - R)Ygn(T), (2.12)
TN 2

kur raide N pazyméjome skirtingy k verciy pirmojoje Brillouin’o zonoje skaiciy,
kuris lygus pilnam elementariy narveliy skaic¢iui kvantavimo turyje.

Taip apibréztos Wannier funkcijos ¢g,(r) turi keleta savybiy:

e ¢rn(r) yra periodinés funkcijos pagal indeksa R:

Orn(T) = ORir (T + R). (2.13)
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Cia R’ yra gardelés transliacijos vektorius. Si savybé parodo, kad kiekviena
Wannier funkcija yra viena kitos per tam tikra elementariy narveliy skaicéiy
perstumta kopija. Taigi, zinodami Wannier funkcija viename elementariame
narvelyje, kitas suzinome atlike jos transliacija per gardelés vektoriy R’. Tokia

siy funkcijy savybé leidzia jas zZymeéti paprasciau:
On(r — R) = ¢ra(r). (2.14)

» ¢rn(r) néra unikaliai apibréztos. Pasirinkus Bloch’o funkeijy rinkinj su kito-

mis globaliomis fazémis

V(1) = exp(iien) Ve (r) . (2.15)

ju modulio kvadrato nepakeiciame |1, (7)|* = |thr. ()|?, taciau i ju sukonst-
ruojame jau kitokias Wannier funkcijas. Jeigu mes nagrinésime keleta disper-
sijos juosty, kurios yra persiklojusios viena su kita, tai bendru atveju, pries
konstruodami Wannier funkcijas, galime pradines Bloch’o funkcijas sumaisyti,

t. y. paimti jy superpozicijas:

Ve (T ZU(k Yin(T), (2.16)

kur U®) yra unitari matrica, kuri sumaiso Bloch’o biisenas viena su kita kiek-
viename pirmosios Brillouin’o zonos taske k. Vienos dispersijos juostos atveju
formule (2.15) galime laikyti kaip atskiru formulés (2.16) atveju, kai §i matrica

yra diagonali.

Toks Wannier funkcijy neunikalumas néra patogus daugiadaleliniuose skaic¢iavimuo-
se. Vis délto, yra parodyta, kad unitarias matricas U*) jmanoma pasirinkti tokias,
kad galutinés Wannier funkcijos buty maksimaliai lokalizuotos ties ju centrais [?].
Kad galétume rasti optimalias matricas U®), kurias naudodami sukonstruotume
maximaliai lokalizuotas Wannier funkcijas, reikia apibrézti kriterijy arba paramet-
ra, kurio pagalba galétume nustatyti Siy funkcijy isplitimg. Toks parametras gali

buti funkcionalas

Q=2 ((r)m— (")) . (2.17)

kuriuo apibréziame visy Wanier funkcijy viename elementariame narvelyje deloka-
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lizacija. Cia pazyméjome

(r)m = (0,m|r|0,m)

(r?),, = (0,m|r?|0,m)

Kitaip § funkcionalg galime perrasyti Q = Y o2, kur o, - vidutinis m-tosios
Wannier funcijos iSplitimas. Norint rasti maksimaliai lokalizuoty Wannier funkcijy
baze, jvestas funkcionalas turi buti minimizuotas atitinkamai parenkant tinkamas
unitarias matricas U®),

Maksimaliai lokalizuotos Wannier funkcijos, kuriy iSplitimai o,, yra minimalus

turi keletg labai svarbiy savybiy:

o Jeigu pradiné stacionari Schrodinger’io lygtis (2.1) yra simetriska laiko inver-
sijos atzvilgiu, tai sistemoje magnetinio lauko néra ir maksimaliai lokalizuotos
Wannier funkcijos ¢, (r) yra realios nekreipiant démesio j globaly fazinj dau-
giklj.

o Maksimaliai lokalizuotos Wannier funkcijos tolstant nuo jy centry padéciy ma-

zéja eksponentiskai. Analogiskai mazéja ir hamiltoniano matriciniai elementai

tarp toliau iSdéstyty Wannier funkcijy.

2.3 Stipriojo rysio modelis

Turédami maksimaliai lokalizuoty Wannier buseny | R, s) rinkinj, ji galime panau-
doti kaip baze stipriojo rysio artinyje. Kadangi joje galime atmesti hamiltiniano
matricinius elementus tarp tolimesniy Wannier buseny, ji atvaizduojanti matrica
tampa reta. Konstruodami hamiltoniana, bendra busenos vektoriy isreiskiame per

Wannier buseny superpozicija

U) = crm|R,m), (2.18)

kur cgr,, yra skleidimo koeficientai. Naudodami tokig ieskomos tikrinés busenos

formg hamiltoniano tikriniy verciy lygtj uzrasome tokiu budu:

ZCRMH\R, s) = ZCR,mE’R; m) . (2.19)

R,m R.m

Projektuodami sia lygti i kiekvieng Wannier buiseng ir pasinaudodami juy ortonor-

muotumu sukonstruojame tiesiniy lygciy sistema skleidimo koeficientams cg ,, rasti:

Z CR’,m/<R, m’H’R/7 m,> = ECR,m . (220)
R/ m/
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Siuo atveju sistemos hamiltoniang yra patogu uzrasyti operatorine forma atski-

riant diagonalius ir nediagonalius elementus:

H=> IR s)epm(R.s|+ > |[Rm)Jrmpw (R, m|, (2.21)
Rm (R,m)#(R/,m/)
kur raide eg,, = (R,m|H|R,m) pazymejome diagonalius hamiltoniano elemen-

tus, o raide Jrmrw = (R, s|H|R',s') - nediagonalius. Diagonaluis elementai yra
Wannier buseny vidutinés energijos, kurios dél transliacinés simetrijos ir Wannier
buseny savybiy nepriklauso nuo vektoriaus R. Nediagonalus hamiltoniano elemen-
tai yra proporcingi tikimybés amplitudei, kad atomas, esantis busenoje |R’,m'},
pereis | buseng |R,m). Kadangi sie elementai nyksta nagrinéjant vis tolimesnes
Wannier busenas, patogu juos pernumeruoti atskirai nagrinéjant artimiausias buse-
nas, tolimesnes ir taip sluoksniais iki paciy tolimiausiy. Matriciniai elementai tarp
arciausiai esanc¢iy Wannier buseny paprastai zymimos —t arba —.J.

Kadangi optiniy gardeliy nagrinéjime stipriojo rysio artinys paprastai naudoja-
mas sprendziant daugiadalelinius uzdavinius, tai patogu sukonstruota hamiltoniang
perrasyti antriniame kvantavime. Tai atlieckame Wannier busenas pakeisdami ati-

tinkamais antrinio kvantavimo operatoriais:
|R,m)(R',m'| — a;{,maR@m: : (2.22)

Galiausiai, pasinaudojus visais Zymejimy supaprastinimais sistemos hamiltoniana

stipriojo rysio artinyje uzrasome tokiu budu:

H= Z emakmaR,m —J Z ahmaR/7m/ + ... (2.23)

Rm (R,m,R',m’)

kur skliaustai (-) zymi sumavima poromis tarp artimiausiy gardelés mazgu.

2.4 Chern’o skaic¢ius

Jeigu nagrinéjama n-toji energijos juosta nesiliecia su gretimomis
|En(k) — Ensq (k)| >0, (2.24)

galime apbrézti Chern’o skaiciy [29, 30] — topologinj tvarkos parametra, kuris pri-

klauso nuo tikriniy buseny vektoriy |ug,). Chern’o skai¢iy galime isreiksti per
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2.1 pav.: Energijos juosty pavyzdys. Raudona spalva pavaizduotos uzpildytos juos-
tos. Zalia - neuzpildytos. Er yra Fermi energijos verté, o A, — draustinis energijos
tarpas.

TKNN (Thouless-Kohmoto-Nightingale-Nijs) formule [31, 32]:

1
=5 [ CRER 229

F — ) ) _ ) )
n(k) 1( Ok, Ok, ok, Ok, )’

(2.26)

kur F,(k) yra n-tosios juostos Berry kreivumas. Cia integruojame per pirmaja
Brillouin’o zona, kuri yra toroidas T?. Berry kreivuma F),(k) dar kitaip galime

isreiksti per kalibruotinj potenciala A(k) Brillouin’o zonoje:

Fo(k)=e. Vi x A,(k), (2.27)
A, (k) = (uknliVi|ug,) (2.28)

kuris apibudina tikriniy buseny |ug,) lygiagrecius pernesimus (parallel transport)
visoje pirmojoje Brillouin’o zonoje [?].

Topologinis Chern’o skaicius ¢, pasizymi keleta svarbiy savybiy:
e ¢, yra sveikasis skaicius: ¢, € Z.

o Jeigu n-tasis dispesijos pavirsius lieCiasi su bent vienu gretimu (kai (2.24)

nelygybé tampa lygybe), Chern’o skaicius ¢, yra neapibréztas.

e ¢, yra atsparus optinés gardelés perturbacijoms, kurios neprivercia dispersijos
n-tojo pavirsiaus susiliesti su gretimais. Tai reiskia, kad Chern’o skaicius
¢, gali pasikeisti, tik jvykus sistemos faziniui virsmui, kurio metu dispersijos

pavirsius susiliecia su bent vienu gretimu ir po to atsiskiria.
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o Vykstant faziniam virsmui, kurios metu keic¢iasi Chern’o skaicius ¢,, jame

dalyvaujanciy energijos juosty bendra Chern’o skai¢iy suma islieka pastovi.

e ¢, yra glaudziai susijes su sistemos Hall’o laidumu. Sakykime turime n uz-
pildyty Zemiausiy energijos juostu (2.1 pav.), kurios yra atskirtos draustiniu
enerijos tarpu nuo aukstesniy. Tuomet tokios sistemos Hall’o laidumas pro-

porcingas uzpildyty juosty Chern’o skaic¢iy sumai:
o~y c (2.29)
i=1

Tai reiskia, kad aukscéiausios uzpildytos (n-tosios) energijos juostos Chern’o
skaiciaus verté parodo, kiek si juosta gali pasikeisti Hall’o laidumg oy. Jeigu
draustinio energijy tarpo néra, aukstesnés energijos juostos termodinaminéje
pusiausvyroje yra dalinai uzpildytos ir Hall’'o laidumas (2.29) néra tiksliai

apibréztas.

Pasinaudoje Stokso (Stokes) teorema, Cherno skaiiy ¢, galime isreiksti kaip kali-
bruotinio potencialio A, (k) kreivinj integrala aplink elementaryjj narvelj atvirksti-
néje gardeléje: .
Cn =5 ), A(k)-dk. (2.30)
Tai reiskia, kad jeigu kalibruotinis potencialas A(k) yra tolygus visoje pirmojoje
Brillouin’o zonoje T2, tai Chern’o skai¢ius lygus nuliui. Taip yra todeél, kad in-
tegruojame per periodinés Brillouin’o zonos krastus ir skirtingy krasty integralai
vienas kita panaikina. Tokia pacia iSvada pateikia ir kompleksiniy funkcijy analizé:
jeigu integruojame kompleksine funkcijg uzdaru konturu, kurio viduje néra poliy, tai
integralas yra lygus nuliui. Priesingai, jeigu kalibruotinis potencialinis laukas A (k)
néra tolygiai apibréztas visoje pirmojoje Brilllouin’o zonoje, konturinis integralas
nera lygus nuliui ir Chern’o skaic¢ius jgyja nenuline reiksme.
IS (2.29) priklausomybés matome, kad pagal Chern’o skai¢ius ¢; ir draustinj

energijy tarpa A, 41 optinés gardelés fazes galime suskirstyti j trys grupes:

» Topologiskai trivialaus izoliatoriaus fazé — Chern’o skaic¢iy suma iki n-tosios
energijos juostos lygi nuliui. Aukstesnés energijos juostos yra atskirtos nuo

n-tosios draustiniu energijos tarpu: A, ,+1 > 0.

o Chern’o izoliatorius (arba topologinis izoliatorius) — Chern’o skai¢y suma néra
lygi nuliui. Aukstesnés energijos juostos yra atskirtos draustiniu energijos

tarpu: A, 41 > 0.
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2.2 pav.: Diskretinis k tinklelis kvadratinéje Brillouin’o zonoje. Skai¢iuodami lauko
stiprumo £, (k) reikSme apeiname keturis gretimus tinklelio taskus iSeinant is tasko
k ir sudedame rysSio kinatmuyjy fazes: ¢ = ¢1 + ¢ + @3 + ¢4.

o Topologiskai trivialus metalas arba pusmetalis — Chern’o skai¢iy suma lygi
nuliui. n-toji energijos juosta liecia aukstesne arba persikloja su ja. Reikia
paminéti, kad siuo atveju juostos turéty liestis skirtinguose k taskuose, kitaip

Chern’o skaic¢ius buty neapibréztas.

e Chern’o metalas arba pusmetalis — Chern’o skaic¢iy suma néra lygi nuliui.
Aukséiausia uzpildyta (n-toji) energijos juosta liecia aukstesne arba persikloja

su ja.

Idomiausia nagrinéti tokias optiniy gardeliy parametry verciy sritis, kuriose galima
Chern’o izoliatoriaus faze. Tokiu atveju gali buti stebimas kvantinis Hall’o efektas.
Sakykime Siuo atveju pildome energijos juostas nuo zemiausios. Kai Fermi energijos
lygmuo yra draustiniame tarpe, Hall’o laidumas oy laidumas nesikeic¢ia. Kai Fermi
lygmuo kerta energijos juosta, Hall'o laidumas pasikeic¢ia nuo vienos kvantuotos
reikSmeés iki kitos. Chern’o metalo ir pusmetalio fazés taip pat jdomios nagrinéti,
tik tokiu atveju dél draustinio energijos tarpo nebuvimo Hall'o laidumas oy néra

tiksliai kvantuotas.

2.5 Skaitmeninis Chern’o skaiciaus apskaiciavimas

Siame skyrelyje pateiksime Chern’o skaic¢iaus apskai¢iavimo algoritma [?], kai sis-
temos juostiné sandara yra apibrézta diskretinéje Brillouin’o zonoje, t. y. tokioje,
kuri yra sudaryta is baigtinio skaic¢iaus Bloch’o vektoriaus k verciy. Paprastai tokia
diskretine juostine sandarg suskaiciuojame skaitmeniniais metodais, kai neturime
galimybiy rasti tikriniy buseny kiekviename Brillouin’o zonos taske k.

Tarkime, vektoriaus k reiksmeés Brillouin’o zonoje sudaro staciakampj diskretinj
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tinklelj (2.2 pav.):

2 2
ko= ——i,  ky=——j, i=1,...,N,, j=1,..

N,
a, N, ay Ny

Y

. (2.31)
kur a, ir a, yra staciakampio elementaraus narvelio dydis x ir y kryptimis, o N,
ir IV, yra vektoriaus tinklelio tasky skaiciai atitinkamomis kryptimis. Paprastai
N, ir N, pasirenkame tokius, kad elementarus staciakampis narvelis vektoriaus k
tinklelyje buty kuo artimesnis kvadratui: 27/a,N, ~ 27 /a,N,. Toliau apibréziame

normuotus rysio kintamuosius tarp buseny |ug ) k-tinklelyje:

U (k) = epp\enlUhsakn) 2.32
k) = ek e )] (2:32)

kur vektorius Ak nukreiptas j gretima k tinklelio taska priklausomai nuo U™ (k)
komponenteés: jeigu turime komponente Ugﬁ”)(k), tai Ak = (12—]\’}% ir analogiskai jeigu
turime komponente U;n)(k), tai Ak = %ey. Rysio kinamieji yra gerai apibreézti
jeigu (Ugn|Ugtakn) = 0.

Toliau apibréziame lauko stipruma diskretinio tinklelio mazguose:

~ . 27T —1 27T -1
Kadangi visi rysio kintamieji yra normuoti, tai logaritminé funkcija grazina juy san-
daugos faze arba jy faziy suma. Be to, logaritminés funkcijos reikSme imame pag-
rindiniame intervale tarp —ir ir im. Sis lauko stiprumo apibrézimas yra diskretinis
Berry kreivumo (2.26) analogas. Chern’o skaiciy suskai¢iuojame susumave lauko

stiprumo (2.33) vertes visame diskretiniame tinklelyje:

n = % E, (k). (2.34)

Matome, kad lauko stiprumas (2.33) ir Chern’o skai¢ius (2.34) nepriklauso nuo kali-
bruoteés pasirinkimo. Tuo galime jsitikinti kiekvieng vektoriy |ug ) formuléje (2.33)
padaugine is bet kokio fazinio daugiklio ir parode, kad tai neturi jtakos lauko stip-
rumui. Be to, jvede kalibruotinj lauka A(k) = In U (k) galime parodyti, kad diskre-
tiniame Brillouin’o zonos tinklelyje apibréztas Chern’o skaicius (2.34) yra sveikas
skai¢ius nepriklausomai nuo tinklelio dydzio [?].

Praktiniame skaiciavime kiekvieno rysio kintamojo normuoti nebutina. Kadan-
gi diskretinis lauko stiprumas priklauso tik nuo rysio kintamuyjy sandaugos fazés,
tai uztenka sudauginti reikalingas keturias vektoriy |uy,) skaliarines sandaugas ir

suskaiciuoti gauto kompleksinio skaiciaus faze pagrindiniame intervale. Labiau pa-
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nagrinéje formule (2.33) matome, kad daugindami rysio kintamuosius apeiname ratu
per keturis gretimus diskretinio tinklelio taskus. Tai atitinka vektorinés sandaugos
V x A(k) komponentés z kryptimi skai¢iavima diskretiniame tiklelyje. Todél riboje
M, N — oo turime ¢, — ¢,. Kadangi Chern’o skaicius ¢, tolygiai kisti negali (jis
yra sveikasis skaicius), tai smulkéjant tinkleliui (didéjant M ir N), jis Suoliskai kin-
ta tol kol pasiekamas reikalingas tikslumas. Jj pasieke galime teigti, kad Chern’o

skaicius suskaicCiuotas teisingai.
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3 Dice optiné gardelé

3.1 Gardelés geometrija

Dice optiné gardelé yra hexagoninés strukturos dvimaté gardelé, sudaryta is trijy
trikampiy subgardeliy, kuriy mazgus Zymime raidémis A, B ir C (7r. pav. 3.1). Sub-
gardelé B yra sukabinta su kitomis subgardelémis taip, kad kiekvienam B subgar-
delés mazgui artimiausi mazgai yra is subgardeliy A ir C. Vektoriai, kurie sujungia

artimiausius dice gardelés mazgus yra
a \/— a \/—
0 = 5(61 +V3e,), 0= E(ex —V3e,), 05=—ae,. (3.1)

Cia a yra atstumas tarp artimiausiy gardelés mazgy. Elementariis gardelés vektoriai
yra
a; = a(3e, +V3e,)/2, ay,=a(3e, —V3e,)/2. (3.2)

Jie sudaro rombo formos elementary gardelés narvelj. I$ Siy vektoriy sudarome
bendra gardelés vektoriy r, = nia; + nsaq, kur ny ir ny yra sveikieji skaiciai.
Vektoriy r,, rinkinys sudaro B subgardele. Visy triju subgardeliy (tai yra visos dice

gardelés) mazgu padétis aprasome vektoriais
Tps = Tn + 501. (3.3)

Cia s = 0,41 nurodo kiekviena subgardele: pasirinkimas s = 0 duoda subgardele
B, 0 s = +1 duoda atitinkamai subgardeles A ir B.

Patogu jvesti papildoma gardelés vektoriy as = a, — as. Sis vektorius, jam
priesingas vektorius —as kartu su vektoriais +a, ir £ay sujungia visas tolimesniy
gardelés mazgy poras.

Elementarus atvirkstinés gardelés vektoriai yra

2

"~ 3a

bl - (ear + \/gey)y b2

” (e — V3e,). (3.4)

Pirmoji Brillouin’o zona yra taisyklingas Sesiakampis dviejomis neekvivalenc¢iomis
virsunémis K = (2b; + b)/3 ir K' = (b + 2by)/3 (zr. pav. 3.1).

3.2 Stipriojo rysio modelis

Dice gardelés nagrinéjimui naudojame stipriojo rysio modelj, kuriame Hilberto erd-
vés baze sudaro viendalelinés busenos |r, ), kurios apraso vieno atomo Wannier
busenas, lokalizuotas ties kiekvienu gardelés mazgu r, ;. Antrinio kvantavimo for-

malizme $ios biisenos yra sukuriamos operatoriais ¢f(r,. ;) ir sunaikinamos atitinka-
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by

3.1 pav.: Kairysis pav.: dice gardelé. Meélyni, zali ir raudoni mazgai atitinka tris
skirtingas trikampes subgardeles A, B ir C. Desinysis pav.: pirmoji Brillouin’o zona.

mais operatoriais ¢(7. ).

Pilnas sistemos Hamiltonianas yra sudarytas is trijy daliy
H = H, + Hy + Hsj. (3.5)

Pirmasis narys apraso lazeriais indukuotus Suolius tarp artimiausiy gardelés mazgy:
3
Hl = Z Z J(S) Zelps‘(’I‘n+85i/2)cT(r’-n)c(rn + 362) + H.c. (36)
n s==+1 i=1

Cia J©) yra $uoliy amplitudziy moduliai. Sie indukuoti $uoliai papildomai prideda
ir faze, kuri tiesiskai priklauso nuo atatrankos parametro p,.

Antrasis narys H, jtraukia naturalius atomo Suolius tarp tolimesniy gardelés
nariy (Suolius, kurie néra indukuoti lazeriais ir vyksta kiekvienoje trikampéje sub-

gardeléje atskirai):
3
TN "t (rn)elrns +a;) + Hoc, (3.7)
i=1

Cia J2(5) yra suoliy amplitudes, kurios atitinkamai pasirinkus kalibruote, yra realios.

Treciasis narys Hjz apraso vidutine atomo energija kiekviename gardelés mazge:

Hy =) Y el (rns)c(rns). (3.8)

n s=0,£1

Tai yra diagonalus Hamiltoniano nariai.
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Kadangi pirmasis narys H; turi kompleksinius matricinius elementus, kuriy fa-
z¢ tiesiskai priklauso nuo gardelés mazgy padéciy, tai Hamiltonianas néra trans-
liaciskai invariantinis. Mes galime atlikti kalibruotés transformacija c(rns) —
c(rp,s) exp(—ips - Ty, kuri jveda Sig simetrijg.

Papildomai jvede pakeitima c(r,,,) — c(7,.,)eP=*91/2 ir atlike atsiradimo ir i$ny-
kimo operatoriy Fourier transformacija, sistema galime impulisiname atvaizdavime

aprasyti trijy lygmeny modeliu. Tokiu atveju Hamiltonianas yra aprasomas matrica

er + 21 f(k—py) JPglk—py/2) 0
Hk)=| JDg*(k—p./2) 275" f (k) JOg(k —p_/2)
0 JO g (k—p_/2) e +2J5 f(k—p-)

(3.9)
Cia, funkcijos f ir ¢ yra

3 3
fk)=> cos(k-a;), g(k)=ek> ek (3.10)

k yra Blocho banginis vektorius.
Toks modelis impulisiname atvaizdavime pasizymi transliacine simetrija atvirks-
tingje gardeléje, H(k) = H(k + G), ir yra patogus juostinés sandaros topologiniy

savybiy tyrinéjimui.

3.3 Nesaveikaujanciy fermiony topologinés fazés

Pries atlikdami juostinés sandaros analiz¢ mes pirmiausia sumaziname nepriklauso-
my gardelés parametry skai¢iy pasirinkdami e = —e_; = ¢, JHD = JED =
J2(+1) = JQ(O) = Jz(_l) ir pyg = —p-1 = p. Tokiu atveju Hamiltoniano matrica

supaprastéja i

e+2Lf(k—p) Jg(k—p/2) 0
H(k)=| Jg*(k—p/2) 2.J>f (k) Jg(k +p/2) : (3.11)
0 Jg*(k+p/2) —e+2Jof(k+p)

Tokios formos Hamiltonianas pasizymi keliomis simetrijomis (¢ — —e, H — H),
(J—= —JH—>H)ir (Jo = —Jo, H — —H).

Juostine sandara ir topologinj kiekvienos juostos Chern’o skaiciy skaiciuoja-
me skaitmeniskai. Rezultatams atvaizduoti naudojame panasia schema kaip ir [?].
Energijos vienetu pasirenkame Suoliy tarp artimiausiy gardelés mazgy amplitude,
J = 1. Atatrankos impulso p komponent¢ p, iSreiSkiame per K, komponente p,

iSreiskiame per K, kur K yra vienas iS Brillouin’o zonos kampy. Visose fazinése
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3.2 pav.: Chern’o skaiciy priklausomybé nuo atatrankos impulso p kai ¢ = J ir
Jo = 0. Kairysis pav.: zemiausios juostos Chern’o skaicius c¢;. Desinysis pav.:
Vidurinés juostos Chern’o skai¢ius. Zalia spalva atitinka nulinj Chern’o skai¢iy.
Geltona, raudona, zydra ir mélyna — Chern’o skaicius 1, 2, -1 ir -2 atitinkamai.

diagramose Chern’o skai¢iy isreiskiame kaip funkcija ¢, = ¢,(ps, py). Skirtingas ¢,
reiksmes iSreiskiame skirtingomis spalvomis: 0 — zalia, 1 — geltona, 2 — raudona, —1
— Sviesiai meélyna ir —2 — tamsiai meélyna.

Pirmiausia nagrineékime atvejj, kai néra suoliy tarp tolimesniy gardelés mazgy
(Jo = 0). Pav. 3.2 pateikiame Chern’o skaiciy fazines diagramas kai ¢ = J. Fazinése
diagramose yra sritys kur Chern’o skaiciai yra {cy, o, c3} = {0,0,0}, {—1,2,—1} ir
{1,—2,1}. Srityse kur Chern’o skaiciai yra nelygus nuliams, tarp energijos juosty
néra tarpy, Ao = Agz = 0. Juostinés sandaros analizé parodo, kad energijos juostos
Siose srityse nepersikloja ir nesiliecia (t. y. lieciasi skirtinguose k taskuose).

Toliau patyrinékime kas pasikeicia kai jtraukiame Suolius tarp tolimesniy gar-
delés mazgy. Kai ¢ = Jy = 0.5J gauname izoliatoriaus fazes su Chern’o skaiciais
{#1, 41, F2} ir metalo fazes su Chern’o skaiciais {£2,0, 2} (pav. 3.3). Sios fazés

pasizymi Chern’o skaiciais, kurie yra moduliu didesni uz vieneta.

Apibendrinimas

[styrinéjome labai saltus atomus esancius dvimatéje dice optinéje gardeléje naudo-
dami stipriojo rysio artinj. Gardeléje dirbtinis magnetinis laukas yra sukuriamas
naudojant laserius, kurie indukuoja suolius tarp skirtingy gardelés mazgy. Dice
optiné gardelé yra trijy lygmeny iSplétimas Haldane modelio, kuris yra aprasomas
naudojant dviejy lygmeny modelj.

Parodéme, kad toks Haldane modelio iSplétimas leidzia nesudétingai gauti topo-

logine pusmetalio faze. Tuo paciu Sis modelis turi ir kity topologiniy faziy, kurios
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3.3 pav.: Chern’o skaic¢iy priklausomybé nuo atatrankos impulso p kai ¢ = 0.5/ ir
Jo = 0.5J. Kairysis pav.: zemiausios juostos Chern’o skaicius c¢;. DesSinysis pav.:
vidurinés juostos Chern’o skaicius c,. Baltas taskas yra p = (2K, K)), kuriame
Cerno skaidiai yra ¢; = —2, ¢ = 0 ir ¢5. Cia naudojame ta patj spalvy kodg kaip ir

pav. 3.2.

pasizymi Chern’o skai¢iais moduliu didesniais uz vieneta.
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4 Daznio Suky gardelée

4.1 Gardelés modelis

Nagrinékime dviejy lygmeny (sukinio 1/2) atoma, veikama magnetinio lauko gra-
dientu = kryptimi. Dél Zeeman’o efekto atomo vidiniy buseny | 1) ir | |) energija
priklauso nuo atomo pozicijos erdvéje. Magnetinio lauko priklausomybe nuo x koor-
dinatés laikome tiesine. Tokiu atveju atomo vidiné sandara aprasoma nariu ~ zos,
kur o3 = [P){(T| — | 4){} | yra Pauli matrica (7r. pav. 4.1). Toks atomas, veikiamas
minéty magnetiniu lauku, aprasomas hamiltonianu

P’ Az)

ToM 2

HO 3. (4].)
Cia pirmas narys yra atomo kinetiné energija, kur p yra atomo judesio kiekis ir M
yra atomo mase. Antras narys apraso Zeeman’o poslinkj, kuris apibudinamas tiesine
fukcija A(z) = Ag + A'z.

Ivedame Raman’o sukabinima tarp abiejy atomo lygmeny:

V(:% t) =V, Z [eikzoye—iant + e—ikoye—i(2n+l)wt] H]> </]\| +H.c. (42)

n

Skliaustuose pirmasis narys apraso atomo lygmeny sukabinimg lyginiais daznio kar-
totiniais 2nw. Antras narys apraso lygmeny sukabinimg nelyginiais daznio kartoti-
niais (2n + 1)w.

Nagrinéjima galime supaprastinti atlike kalibruotés transformacija | 1) — exp(—ikoy/2)| 1
), |4y — exp(ikoy/2)| 1), kuri pakei¢ia hamiltoniang (4.1) j

Hy — Hy = ﬁ (p + hkoose,/2)* + A;x)ag. (4.3)
ir Raman’o sukabinimg j
V(y,t) = Viy,t) =V, Z [ei%oye*izm"t + 671(2”“)‘”} |4y (1| + H.c. (4.4)
Pilnas sistemos Hamiltonianas yra
H(t) = Hy+ V(y,t) (4.5)

Raman’o sukabinimas (4.4) gali buti atvazduotas per Dirac’o Suky funkcijas:

V(t,y) =Vily)T > _ 6t —71) +V_(y)T > _6(t — 7). (4.6)

evenl oddl
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4.1 pav.: Atomo vidiniy lygmeny | 1) ir | J) sukabinimo schema.
Cia

Vi(y) = Vo (%0 £ 1) [ 1) (1] + H.c. (4.7)

Tokiu budy galime atskirti sistemos laikine ir erdvine priklausomybes.

4.2 Magnetinis srautas

Nagrinékime musy modelinés kvantinés sistemos laikine evoliucija per viena laiko
perioda, nuo t = 0 — e ikit =T — ¢, kur ¢ — 0. Per §j perioda atomas patiria du
spinduliuotés smugius, kurie jvyksta laiko momentais t, = 0 ir £_ = 7. Tarp Siy
smugiy atomas juda pagal hamiltoniang (4.3).

Floquet daznj w laikome dideliu lyginant su atatrankos dazniu wyee = Frec/h =
hk2/2M. Tokiu atveju atomo judesio kiekis p pakinta neZymiai tarp smugiy. Nau-
dodami stroboskopine aproksimacija laikiné sistemos evoliucija aprasoma unitariu

operatoriumi

i1
Ueﬁ = exp {—ﬁ [W (p + hkoO’gey/Q)Q + ‘/eff:| T} s (48)

kur Veg yra efektyvus atomo lygmeny sukabinimas:

Ve = 59" Q, (4.9)

Cia o = (01, 09, 03) yra trimatis vektorius, kurio elementai yra Pauli matricos o7 =

|1 (T|+H.c., 02 = i) (1| +H.c.ir o3 = |1)(T]|—|]) (|| Sukabinimas apibudinamas
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trijomis realiomis koordinaciy funkcijomis 2 = (€, (s, Q3) = Q(7).
Efektyvy sukabinima (4.9) galime aprasyti iSskaide funkciju vektoriy €2 j sferines
komponentes Q(r), 6(r) ir ¢(r):

Q3 ¢
cosf = — = —, (4.10)
Q@ gl
Q@
tangp = — = —. 4.11
N (4.11)
Tikrinés efektyvaus sukabinimo vertes erdvés taske r yra
h
Vi(r) = 159(7'). (4.12)

Nagrinékime adiabatine sistemos evoliucijg viename is dviejy gauty energijos
juostu (4.12). Suprojektave Schrodinger’io lygti i vieng is siy lygmeny gauname

geometrinj vektorinj potencialg
h
Ai(r) = i§ (cos — 1) Vo, (4.13)

kuris apraso dirbtinj magnetinj lauka By(r) = V x A.(r). Esant pakankamai
silpnam Raman’o sukabinimui geometrinis vektorinis potencialas A4 (7) turi du sin-
guliarumo taskus, kurie duoda netrivialy magnetinj srauta per elementary gardelés
narvelj:
ap = —% Z ygingul dr - Ai(r). (4.14)
Singuliarumai atsiranda dviejuose erdvése taskuose ir jie vienas kito nekompensuoja.
Taip gauname nekintamo zenklo magnetinj srauta.
Geometrinio srauto tankis B(r) = B, (r) adiabatiniame rezime (hw = 10E,ccoi,
Vo = 0.25hw, 8 = 0.6kg) yra pavaizduotas pav. 4.2. Pilnas magnetinis srautas per
elementary narvelj yra lygus 27 ir nepriklauso nuo Floquet daznio w bei gradiento

B. Srautg 27 turime tada, kai sukabinimo stiprumas yra 0 < V < 0.5Aw.

4.3  Juostiné sandara

Optinés srauto gardelés juostiné sandara pasizymi Landau tipo lygmeny savybeémis
esant adiabatiniam rezimui, kai Aiw = 10Fiecon, 5 = 0.6ko ir Vy = 0.25/w. Siuo
atveju pirmy penkiy zZemiausiy energijy juosty topologiniai Chern’o skaiciai lygus
vienetui (zr. pav. 4.3). Taigi Hall’'o laidumas monotoniskai didéja kai Sias juostas
pildome fermiono tipo atomais. Toks gaunamas kvantinis Hall’o efektas panasus j
gaunama iS Laundau lygmenuy.

Sumazing Raman’o sukabinimo stiprumag zemiau Vy = 0.175hw gauname kitokio
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Total flux = 27
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4.2 pav.: Dirbtinio magnetinio laukas per viena elementary narvelj adiabatiniame
rezime, kai Vy = 0.25hw ir § = 0.6k.

Band structure hBangI.gap
ase diagram
0.3 P 9 JAND
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4.3 pav.: Kairysis pav.: srauto optinés gardelés juostine sandara kai Vy = 0.25hw.
Cia Floquet daznis yra hw = 10F i1, 0 pradinio magnetinio lauko gradientas g =
0.6kg. Desinysis pav.: draustinio juosty tarp tarp pirmyju dvieju juosty faziné
diagrama. Cia vy = Vp/hw.
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tipo topologine faze (pav. 4.3 sritis A), kurioje zemiausia juosta turi nulinj Chern’o
skai¢iy, ¢; = 0, antra juosta turi Chern’o skaiéiy co = 2, o kity likusiy juosty
Chern’o skaiciai lieka nepasikeite. Didinant Raman’o sukabinimg auksciau Vy =
0.3Aw gauname kita faze su Chern’o skaiciais, c; = 1, co = —1, ¢35 =3, ¢4 = 1, ...
(pav. 4.3 sritis B).

Apibendrinimas

Siame skyriuje apraséme naujoviska biidg sukurti dirbitinj magnetinj lauka labai
saltiems atomams naudojant dazniy Suky spinduliuote, kuri sukabina du atomo vi-
dinius lygmenis. Kartu su jprasto magnetinio lauko gradientu tokia sistema tampa
staciakampe optine srauto gardele, kuri pasizymi nekintamo zenklo dirbitniu mag-

netiniu srautu bei topologiskai turtinga juostine sandara.
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ISVADOS

. Darbe tyrinéta dice optiné gardelé yra sudaryta is trijy sukabinty trikampiy
Bravais subgardeliy. Todél stipriojo rysio artinyje gardelé turi tris energijos
juostas. Dice gardelé tuo paciu turi ir kintamo Zenklo dirbtinj magnetinj lauka.
Sis modelis igplecia dviejy lygmeny Haldane modelj i tris lygmenis. Haldane

modelis gaunamas pasalinus vieng is dice gardelés trikampiy subgardeliy.

. Dice gardelé kaip Haldane modelio iSplétimas pateikia (i) galimybe pasiekti
Chern’o puslaidininkio faze nejtraukiant atomy suoliy tarp tolimesniy gardelés
mazgu bei (ii) turtinga juostine sandara, kuri gali pateikti Chern’o skaicius

moduliu didenius uz vieneta.

. Antroje darbo dalyje aprasyta ir iStyrinéta optiné srauto gardelé yra suda-
roma naudojant dviejy lygmeny atomus, veikiamus jprasto magnetinio lauko
gradientu ir dazniy Suky spinduliuote. Stroboskopiniame artinyje gardelé yra

dviejy dimensijy gardelé, kuri turi nekintamo Zenklo dirbtinj magnetinj lauka.

. Optiné srauto gardelé pasizymi Landau tipo energijos juostomis — esant tin-
kamiems parametrams kelios zemiausios energijos juostos turi Chern’o skaiciy
lygy vienetui. Be to, kaip ir dice optiné gardelé, si gardelé gali turéti juostine

sandara, apibudinama Chern’o skaiciais moduliu didesniais uz vieneta.
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We introduce an explicit scheme to realize Chern insulating phases employing cold atoms trapped in a state-
dependent optical lattice and laser-induced tunneling processes. The scheme uses two internal states, a ground
state and a long-lived excited state, respectively trapped in separate triangular and honeycomb optical lattices.
A resonant laser coherently coupling the two internal states enables hopping between the two sublattices with a
Peierls-like phase factor. Although laser-induced hopping by itself does not lead to topological bands with nonzero
Chern numbers, we find that such bands emerge when adding an auxiliary lattice that perturbs the lattice structure,
effectively turning it at low energies into a realization of the Haldane model: a two-dimensional honeycomb
lattice breaking time-reversal symmetry. We investigate the parameters of the resulting tight-binding model using
first-principles band-structure calculations to estimate the relevant regime for experimental implementation.

DOI: 10.1103/PhysRevA.89.013632

I. INTRODUCTION

Lattice systems displaying topologically nontrivial band
structures are currently attracting the curiosity of a large
scientific community [1,2]. For systems breaking time-reversal
invariance, the band topology is characterized by a topological
invariant (the Chern number [3,4]) taking integer values. The
presence of topological order is signaled by a nonzero value of
the topological invariant and has experimental consequences,
such as the existence of chiral edge states enforced by the
bulk-edge correspondence [1,2] or the quantization of trans-
port coefficients in electronic systems [5]. The universality
of these topological properties suggests that they could be
engineered not only in solid-state systems [2] but also in a wide
range of physical systems characterized by spatially periodic
structures, such as photonic lattices [6] or ultracold atoms
trapped in optical lattices [7-9]. Progress towards realization
of topological phases in cold atomic gases has been recently
reported [10-12].

In two space dimensions, one of the simplest models
supporting topological bands was proposed by Haldane
[13]. This model features nearest-neighbor (NN) and next-
nearest-neighbor (NNN) hoppings on a honeycomb lattice
accompanied by complex (Peierls) phase factors such that the
net flux through a unit hexagonal cell is zero. The Haldane
model has never been realized in laboratories, but it has been
suggested that it could be engineered through lattice shaking
[14], rotation [15], or laser-induced methods [14,16-19]. In
the present contribution, we consider a concrete experimental
implementation of the Haldane-like optical lattice, initially
introduced by Alba et al. [20]. This scheme, illustrated in
Fig. 1(a), envisages trapping atoms with two internal states into
two state-dependent triangular optical lattices. The two lattices
are spatially distinct and intertwined to form a honeycomb
pattern. A laser-induced coupling of the two internal states
produces the NN hoppings within this “hybrid honeycomb”
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lattice, as shown by full red lines in Fig. 1(a). The properties
of this model were explored in detail in Ref. [21] in terms
of a simple two-band tight-binding model. However, the
relation between the tight-binding model parameters and the
realistic lattice potential was not explored in the previous
works [20,21].

In this article, we go beyond the studies [20,21] and
analyze an explicit experimental scheme that implements the
Haldane-like optical lattice. We build on the scheme proposed
in Ref. [22], and consider an atomic species with a long-lived
metastable excited state e. The method is valid both for bosonic
and fermionic species, and it does not suffer from spontaneous
emission. We show that the Haldane-like optical lattice can
be realized using a minimal set of ingredients: (a) a primary
state-dependent lattice V1, that traps the ground g and excited
e states in a honeycomb or triangular hybrid lattice, (b) a
laser that couples the two states g <> e, and (c) an auxiliary
lattice V@ periodic in one direction only. The main lattice
V;/ll, depicted in Fig. 1(b), traps the ground state g in the
triangular lattice represented by the C sites, while the excited
state e is trapped in the complementary honeycomb lattice
formed by the A and B sites. Additionally, the g and e states
are coupled by a resonant laser-inducing hopping between the
primary honeycomb and triangular lattices. Superimposing an
auxiliary lattice V;zl chosen to shift the B sites in energy,
one effectively removes these sites from the dynamics. The
resulting “laser-coupled honeycomb” lattice is illustrated in
Fig. 1(c). It is characterized by laser-induced NN hopping
between A and C sites, with complex tunneling matrix
elements Jce'P('a+re)/2 and natural NNN hopping between
sites of the same nature, with amplitudes J4 = Jc. This
laser-coupled honeycomb lattice is qualitatively equivalent to
the Haldane-like model of Refs. [20,21], which was shown
to host Chern insulating phases for specific values of the
transferred momentum p and ratio J4/J4c. Thus the present
scheme illustrated in Fig. 1(c) provides a realistic method
to realize topological bands in optical-lattice systems. In the
following, we investigate this strategy in detail and discuss its
validity in terms of actual lattice parameters.

©2014 American Physical Society
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(a) The Haldane-like optical lattice

(b) The laser-coupled hybrid lattice
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(c) The laser-coupled honeycomb lattice

FIG. 1. (Color online) (a) Haldane-like optical lattice: atoms in states |1) and |2) are trapped in two state-dependent triangular optical
lattices, with hopping amplitude J; and J,, respectively. Coupling the states 1 <> 2 induces hopping between the two triangular lattices,
generating a Haldane-like honeycomb lattice with complex NN hopping matrix element Ji,. (b) Sketch of the hybrid laser-coupled lattice
generated by the potentials in Eq. (2). Atoms in the ground g (excited e) state are attracted to the intensity maxima (minima) that span the red
triangular (blue honeycomb) sublattice. Full and dotted lines indicate the dominant NN and NNN tunnelings, which enter the tight-binding
models of Sec. II. The two sublattices are coupled by direct laser-induced transitions indicated with full red lines, as described in Eq. (4).
(c) Sketch of the final lattice geometry resulting from the addition of an auxiliary lattice (Sec. I1I), where B sites are blacked out to indicate that
they correspond to higher bands of the hybrid lattice. A and C sites form a honeycomb lattice connected by NN laser-induced tunneling (full
red lines) and natural NNN tunneling (dashed lines). Note that the NNN hopping amplitudes are slightly anisotropic: J4 # Jj and Jc # J/..
The laser-coupled honeycomb lattice in (c) is qualitatively equivalent to the Haldane-like optical lattice (a) of Refs. [20,21].

The present work is structured as follows. In Sec. II, we
discuss the atomic properties of two-electron atoms used in
our proposal, taking the specific example of ytterbium atoms,
introduce the main lattice V", and explore its band structure.
In Sec. IIC, we discuss the lattice structure emerging from
the coupling between the ground g and excited e states. Then
we add the auxiliary lattice V® in Sec. III, and we show how
it leads to a Haldane-like model exhibiting reachable Chern
insulating phases. We conclude with a summary and some final
remarks in Sec. IV.

II. HYBRID TRIANGULAR-HONEYCOMB LATTICE
A. Atomic structure and light-shift potentials

We consider a gas of atoms with two internal states, denoted
g and e, which are trapped in a potential landscape created
by a set of lasers. A key requirement is to choose a long-
lived excited state e to suppress heating due to spontaneous
emission. This is, for instance, fulfilled in alkaline-earth-metal
or ytterbium atoms [22], where g is chosen to be the electronic
spin singlet ground state ! Sy, and e is a long-lived spin triplet
excited state 3 Py. The transition between these two states has
already been exploited to build atomic clocks [23,24], and
proposed to be a good candidate for coherent operations in
quantum information processing [25] or quantum simulation
[22,26]. In the following we choose ytterbium atoms to be
specific while the proposed method should work as well
with other atoms featuring very long-lived excited states. For
ytterbium, the lifetime of the 3 Py excited state is estimated to
be ~20 s [27], and coupling to the ground state is achieved
using a laser at the resonant wavelength Ay, ~ 578 nm.

We consider here atoms confined to two dimensions by
a strong trap in the z direction acting identically on both
internal states. In general, the potentials V,,(r) felt by the
two states are different [28]. For the sake of simplicity, we
choose the so-called “antimagic” wavelength A, at which the

polarizabilities of the two relevant states are exactly opposite,
Qg(Aam) = —0te(Aam) = ofam > 0 [22,25]. Generalizing to an-
other wavelength is straightforward as long as the signs of the
polarizabilities remain opposite. For a monochromatic laser,
the optical lattice potential V;}Z(r) felt by atoms in each state
g/e can then be written in terms of the total electric field E(r)
as [28]

Ve/e(r) = Fhotam| E(r). (1

Ground-state atoms are trapped near the maxima of the
intensity oc | E(r)|?, while excited-state atoms are trapped near
the minima. Importantly, the antimagic wavelength should be
far detuned from any resonance so as to avoid spontaneous
emission in the experiment. In the following, we will consider
optical lattices at the Yb antimagic wavelength A,,, & 1120 nm
[22,29]. The energy will thus be measured in units of the
recoil energy Ex/h = (h/2m)2,) ~ 900 Hz, corresponding
to a temperature of about T = 40 nK.

B. Band-structure calculation for the primary lattices

The primary lattice is created by three coplanar laser
beams of equal wavelength X,, and intensity, and wave
vectors kj 3 that intersect at angles 27 /3 [see Fig. 2(a)].
We choose the polarizations of the beams to be normal
to the lattice plane, so that the complex amplitudes of the
corresponding electric fields take the form E; = Ege, e'*i.
The coherent superposition of the individual electric fields
results in the intensity distribution illustrated in Fig. 2(c). The
intensity maxima (minima) of this pattern lie on a triangular
(honeycomb) lattice that traps g (e) atoms according to Eq. (1)
[30,31], as illustrated in Fig. 1(b). In the following we label
A and B the two inequivalent sites of the honeycomb lattice
formed by intensity minima, and C the sites of the triangular
lattice formed by intensity maxima. We write the light-shift

013632-2
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(a) Primary lattice (PL) (c) PLonly
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(d) PL+AL

0.0 0.5 1.0

x/A

FIG. 2. (Color online) (a) Laser beams configuration for the primary lattice: the wave vectors k; , 3 of the three lasers and the elementary
reciprocal lattice vectors b, , 3 are shown. (b) Laser beams configuration for the auxiliary lattice. Note that primary and auxiliary fields add
incoherently due to the choice of polarizations. (c) The intensity distribution | E(r)|* for the primary lattice: red (blue) colors correspond to
high (low) intensity regions. The inequivalent lattice sites of the corresponding honeycomb (A, B) and triangular (C) lattices are indicated.
(d) The intensity distribution | E(r)|? for the total lattice potential obtained by adding the auxiliary lattice. The inequivalent lattice sites of the

corresponding honeycomb lattice (A, C) are indicated.

potentials acting on g/e as

3
Vour) =FVo | 342 cos(b; 1) | 2)
j=l

where we introduced the three vectors b, = %eaﬁy(kﬂ -k,
(&qpy is the fully antisymmetric tensor), also shown in Fig. 2(a).
We note that any phase shifts that appear in general in the
arguments of the three cosines in Eq. (2) can be eliminated by
a proper choice of the origin.

We have studied the band structure of each of the two
uncoupled lattices V;}z(r) from first principles using the
method and code published by Walters and co-workers [32].
The Bloch states were computed and used to construct a lo-
calized basis spanned by the maximally localized generalized
Wannier functions [33]. Knowledge of the Wannier functions

Honeycomb (a)

in turn enables one to compute the parameters of a faithful
tight-binding model describing dynamics in the lowest bands
for each lattice. The band-structure calculation also signals the
limits of validity of this tight-binding model; see also Ref. [34].
We will consider in the following the (arbitrary) criterion for
the validity of this model: the width W; of the lowest s band is
one order of magnitude lower than the gap Ag, separating this
band from the higher lying p band.

We start with the honeycomb lattice potential V. V(r) felt
by atoms in state e, and present the results of the full band-
structure calculations in Fig. 3(a). The tight-binding model
relevant to the two lowest-energy bands—analogous to the
well-known bands of graphene that touch at the Dirac points
[35]—is parametrized by a NN hopping matrix element J4p
connecting inequivalent sites [red line in Fig. 3(a)] and a NNN
hopping matrix element connecting equivalent sites, J4, = Jp

1 | Triangular | (b)

1.0 1.5 2.0
Vo

FIG. 3. (Color online) Band-structure parameters for the main optical lattice shown in Fig. 2(c), as a function of the potential strength Vj:
(a) the honeycomb lattice felt by the e states and (b) the triangular lattice felt by the g states. Both panels show the width of the lowest Bloch
band W, (W, = 6]J,p| for the honeycomb lattice and W, = 9|J¢| for the triangular lattice), the band gap A, separating it from the higher
band, and the hopping amplitudes. All quantities are energies, expressed in units of the recoil energy Ex.
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[blue line in Fig. 3(a)]. The NNN hopping amplitude is positive
and at least an order of magnitude smaller that the NN hopping.
For comparison, the amplitude of the third-order transition is
also included: |J3| is the absolute value of the matrix element
connecting a given site to the diametrically opposite site across
a honeycomb cell. This element is negative, and is the largest
of all neglected higher-order contributions. The lowest two
bands have an energy width W, (given by W, = 6|J45| in the
tight-binding approximation), which is plotted as a red dashed
line to compare it to the band gap Ay, separating the ground
s bands from the higher-lying p bands (black dashed line).
We see that a two-band approximation is well justified for
Vo 2 5Eg. This range also corresponds to |J3] < J4/10. We
conclude that for Vy > 5 Eg, the ground band is well isolated
from the higher-lying ones and that a faithful two-site tight-
binding model can be formulated including only NN and NNN
transitions.

The triangular lattice potential felt by the g state is given
by ViV(r) = —V(r), whereby the minima and maxima
exchange their positions. The corresponding C sites are
separated by higher barriers than in the honeycomb lattice,
and the distance between nearest-neighboring sites of the
triangular lattice is equal to the distance between next-nearest-
neighboring sites of the honeycomb lattice. As a consequence,
for a given depth V; the tunneling rates in the triangular
lattice are drastically smaller than in the honeycomb lattice.
Figure 3(b) summarizes the numerical results of the Wannier-
structure study for the case of the triangular lattice. The red
line shows the absolute value of the (negative) NN hopping
element J, which is compared to the band gap (black dashed
line) and NNN hopping (blue dashed line). We see that for
Vo > 0.5 Eg the tight-binding model is well justified. Overall,
the validity of single-band and tight-binding approximations
are determined by the honeycomb lattice parameters. In the
range Vy > SEp, tunneling between C sites in the triangular
lattice is weaker by orders of magnitude than for A or B sites.
Although this seems like a serious concern for an experimental
implementation, we will see later that introducing the auxiliary
lattice cures this imbalance.

C. Coupling the two sublattices

We now connect the two sublattices by a laser resonantly
coupling the two internal states g and e and thereby induce
hopping between the otherwise unconnected sublattices. We
call this configuration the “hybrid lattice” in the following.
Following Ref. [36], we express the laser-assisted hopping
matrix element between A and C sites, respectively hosting
states e and g, as

h<2 2 ipr
J(ra,re) = > drwa(r —rae'? we(r —re),  (3)

where the real-valued Wannier functions w, and wc are
centered at their respective lattice sites r4 and r¢. Here, 2
is the Rabi frequency characterizing the strength of the light-
atom coupling, and p is the recoil momentum transferred to
the hopping atom. Since the product of the Wannier functions
is well localized near the midpoint of the line connecting
the two sites, laser-induced hopping matrix elements are well

PHYSICAL REVIEW A 89, 013632 (2014)

approximated by
J(ra,re) = Jace PUAtror, 4)

where J4 ¢ is independent of p [36]. By symmetry, one obtains
J(ra,rc) = J(rc,ra)*, and equivalent expressions for the
hopping between B and C sites.

Importantly, the hopping matrix elements in Eq. (4) con-
tain space-dependent phases determined by the laser’s wave
vector p. The sum of the phase factors along the boundary of
aregion A can be identified with the circulation of a synthetic
vector potential penetrating the region A. In the following, we
use the term “flux” through a region A to refer to the synthetic
flux given by the circulation of these phases along the boundary
dA. In the present work, we seek a lattice configuration that
gives rise to topological band structures with nonzero Chern
numbers [3,4]. As realized by Haldane [13], a necessary
condition to generate such topological band structures is to
build a model that explicitly breaks time-reversal symmetry.
Thus a simple way to identify whether our hybrid honeycomb-
triangular lattice indeed supports potentially nonzero Chern
numbers is to examine its behavior under time reversal.

We will now demonstrate that the hybrid lattice is actually
invariant under this transformation. We show the flux patterns
obtained from Eq. (4) in Fig. 4(a) for two chosen subplaquettes
patterns: the first one is spanned by A-C and A-A links, and the
other by B-C and B-B links. Time reversal affects the lattice
by reversing the sign of the fluxes. From the flux patterns
shown in Fig. 4(a), it is clear that this transformation leaves
the honeycomb sublattice unchanged up to a discrete rotation.
A similar analysis applies to other subplaquette configurations,
such as those spanned by C-C links. From this analysis, we
conclude that the laser-coupled hybrid lattice remains time-
reversal invariant even with laser-assisted tunneling, due to
the high degree of symmetry between the A and B sites of the
honeycomb sublattice. This also suggests that breaking this
symmetry (e.g., by adding an on-site perturbation acting on
the B sites only) will naturally generate a configuration that
will change under time reversal. This is the situation that we
are going to analyze in the following section.

III. ADDING THE AUXILIARY LATTICE:
BUILDING THE HALDANE MODEL

A. Auxiliary lattice

In order to remove the A/B symmetry of the honeycomb
lattice, we introduce an auxiliary lattice Vg% produced by
two additional beams with wave vectors k; and k, and
in-plane polarizations [see Fig. 2(b)]. The additional lasers
are described by electric fields E(lz) = Ezeik“’(%,g) and

E(Zz) = Ezeikz"+i9(%, —*/75), where @ is the relative phase
shift between the two fields. Their coherent superposition
produces a standing wave that adds incoherently to the existing

. . ) . L
main lattice V,,, due to the orthogonality of polarizations,

ie., |[Ew(r)?> = |[EV(r))? + |E®(r)|*. The potentials corre-
sponding to this auxiliary lattice read

VO r)? = FVal2 — cos(bs - r — 0)]. 5)
The relative phase 6 cannot be eliminated by a change of
origin, and—together with the beam amplitudes—allows one
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(a) The trivial flux configuration

A

FIG. 4. (Color online) (a) Flux pattern for the hybrid honeycomb-
triangular lattice with laser coupling. The phases accompanying the
laser-assisted hopping (4) lead to nonzero fluxes =&, , 3 within the
triangular subplaquettes shown on the figure. The fluxes are given
by &, = p-a3/4n, P, = —p-a,/4n, 3 = p-a,/4m, where p is
the recoil momentum and a, , 3 are defined in Fig. 6. Time reversal
changes ®; — —®;, and therefore merely transforms A sites to
B sites (and vice versa). Since A and B are related by a discrete
symmetry (IT rotation around the axis perpendicular to the lattice
plane), we conclude that the laser-coupled hybrid lattice does not
break time-reversal symmetry. (b) Flux pattern for the main lattice
perturbed by the auxiliary lattice introduced in Sec. III. The B sites
are eliminated from the lowest energy band by a strong on-site
perturbation. The resulting low-energy tight-binding model is no
longer invariant under time reversal.

to move the position of the auxiliary lattice relative to the lattice
V;}Z and tune its depth. This way, the overall lattice geometry

Vg(}z + ng),» can be tuned. For a strong enough potential, the B
sites of the primary honeycomb lattice V! are effectively
eliminated from the dynamics [see Fig. 2(d)] leading to
the desired laser-coupled honeycomb lattice illustrated in

Fig. 1(c).

B. Perturbative analysis

To gain insight into the influence of the auxiliary lattice, let
us first discuss the behavior of the band structure of the main
hybrid lattice for a weak on-site perturbation. We simplify the
analysis by assuming that the system is well represented by
a tight-binding model for the ground bands and by reducing
the number of parameters. We take the absolute value of the
(negative) NN hopping amplitude as the unit of energy so that
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Jap = —1, and set the laser-induced hopping J4c = Jpc =
1. The intrasublattice NNN hoppings are considered to be
uniform over the lattice J, = J4 = Jp, and Jo < J,. We then
add a perturbation €z that modifies the on-site energy of all
the B sites, modeling the effect of a weak external potential
that aims to lift the spectrum degeneracy and open gaps, but
still remains weak enough not to perturb significantly the band
structure of the uncoupled lattices.

The tight-binding model is then defined by the momentum
space Hamiltonian

H(k)
Lf(k+3p) g(k) h(k)
= gk hf(k+5p)+es (k) :
h* (k) h(k) Jof(k—3p)
(6)
where

3
flo) =2 cos(a; k),
j=1

3 3
g(k) — _ Zei3l<(k+p/2)’ l’l(k) — Zefisj»k’
j=1 j=1

where the vectors a; and &; are defined in the caption of
Fig. 6. We have analyzed the band structure through a direct
diagonalization, varying the parameters in a wide range. In
general, one finds three bands, whose topological character
can be established by computing the Chern number through
the numerical method of Ref. [37]. For €5 = 0, the two lowest
bands touch at the Dirac points for any value of p. A finite
ep > 0 opens a gap A separating these two bands.

Figure 5(a) shows the magnitude of A for J¢ < J,, and
indicates the opening of gaps of a different nature as the
perturbation € is increased. The figure also indicates the
Chern number v associated with the lowest isolated band.
The Chern number has been computed using the method
of Ref. [37], which is based on an efficient discretization
of Berry’s curvature inspired by lattice gauge theory. A
large trivial gap (v = 0) is first opened for small €z around
the time-reversal-invariant configuration (p = 0). For large
€p, nontrivial gaps with Chern numbers v = +1 open at
finite p # 0. Nonzero Chern numbers v = %1 imply that the
lowest-energy band is associated with a nontrivial topological
order [21]: setting the Fermi energy within the gap leads to
a Chern insulating phase, characterized by chiral edge modes
[17,18,42—-44]. We identify these nontrivial Chern insulating
phases with those that were previously reported in Ref. [21],
namely, the phases resulting from the Haldane-like model
obtained by only considering the presence of A and C sites
(i.e., removing the B sites of the hybrid lattice). The opening
of this topological gap is further analyzed in Figs. 5(b) and
5(c), by varying the hopping Jc. These plots show that even
for unrealistically large hopping between the C sites of the
primitive triangular lattice (Jc ~ J»), a very large on-site
perturbation €p is required to generate a topological phase.
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(b) ()
Dy = 4K, py = 4K,
Jo = Jo € =5
Jo = J2/2 €p=3
EB:2
Jo = Jy)1 ¢ =15
6 4 2 0 2 4 6 0 1 2 3 4 50 02 04 06 08 1

py/ Ky €B Jo/J2

FIG. 5. (Color online) Band structure of the simplified tight-binding model (6) for the laser-coupled hybrid lattice. (a) Size of the main gap
A as a function of the on-site perturbation €z and the recoil momentum p, for J, = 0.3 J, p, =0, and J¢o = J,/10. The large gap centered
around p = 0 is associated with a zero Chern number, v = 0, whereas the small gaps at p, ~ +4K, are associated with the nontrivial Chern
numbers v = £1. Here, the gap A and the perturbation €5 are expressed in units of the NN hopping J. (b) Cut through the diagram (a) for
py = 4K, and increasing values of the ratio J¢/J,. (c) Size of the main gap as a function of J¢/J, for increasing values of the perturbation €.
Here K, = 2r /a3+/3 and a = 2),m/3~/3 is the lattice spacing of the primitive honeycomb lattice.

C. Band-structure calculations and tunneling parameters

For very large ep > Jap, the perturbative analysis pre-
sented above breaks down as the lattice geometry becomes
strongly distorted. We have performed a full band-structure
calculation based on the full potential to reevaluate the proper
parameters for the tight-binding model of the hybrid lattice
in the lowest band. Although the auxiliary lattice leads to
on-site energies that are the same for all equivalent sites (A4,
B, or C), it does not respect the original triangular point
symmetry of the primary potential landscape and affects
the potential landscapes away from the maxima or minima.
As a consequence, for arbitrary 6, the hopping amplitudes
between neighboring potential minima are generally direction
dependent. Numerical work reveals that choosing the values
0 =mn/6 and V, =3V;, as shown in Fig. 2(d), is opti-
mal to preserve—albeit approximately—the triangular point

symmetry of the potential landscape. The calculations pre-
sented in the following are performed using these values.

Figure 6 summarizes the results. Panel (a) shows a fragment
of the lattice. The blue (red) contour lines depict the shapes
of the calculated real-valued maximally localized Wannier
functions on a single site A (three surrounding sites C). We
see that the Wannier orbitals have rounded triangular shape
that follows the shape of the potential well in the vicinity of
the potential minima. Although not immediately conspicuous
in the contour plots, the Wannier orbitals do not have the
full D3 symmetry of the equilateral triangle; instead, they are
only symmetric with respect to reflection in the x axis. This
is a consequence of the striped auxiliary interference pattern
and is reflected in a slight directional dependence of hopping
amplitudes; see Fig. 1(c).

The calculated hopping matrix elements and characteristics
of the energy bands are shown in panels (b) and (c) of Fig. 6.

(b)

-2

-2

0.2 013 014 015 0:6 017 018 019 1.0 0.2 013 014 015 0:6 O‘.7 018 019 1.0

Yo

o

FIG. 6. (Color online) (a) Fragment of the honeycomb lattice AC, corresponding to the total potential combining the main and auxiliary
lattices, simultaneously showing the elementary translation vectors and the shape of the Wannier orbitals. The contour levels are drawn
at 0.2,0.4,0.6, and 0.8 times each orbital’s maximum value. The vectors are given by §; = a/2(1,\/§), 8, =a/2(1, —«/5), 83 = a(—1,0),
a, =68 —683,a,=38,—83,and a3 = a, — a; = 8, — §;, where a = 2Aam/3\/§ is the primitive lattice spacing. Panels (b) and (c) show the
width of the lowest Bloch band W, the band gap separating from the higher band A, and the Hubbard parameters for the respective sublattices
C and A. All quantities in (b) and (c) are energies, expressed in units of the recoil energy Eg.

013632-6



DESIGN OF LASER-COUPLED HONEYCOMB OPTICAL ...

All the plotted parameters have the dimensions of the energy
and are expressed in terms of the recoil energy Ex. The two
panels correspond to the different triangular sublattices, and
are completely analogous. Thus we restrict the discussion
to the behavior of g atoms shown in panel (b). The full
and dashed red lines show the dependence of the hopping
amplitudes between NNN sites of type C. As expected, these
hopping elements display a weak directional dependence. Thus
transitions connecting two sites in the +a3 direction (Ji)
are slightly weaker than transitions connecting neighboring
C sites in the %a(y) directions (J¢). The full black and purple
lines indicate, respectively, the dependence of the width of the
lowest s band A, and the band gap Ay, to the higher p band.
We have also verified that higher-order hopping transitions are
negligible. Using the same criterion as before (Ag, 2 10Wy),
we conclude that a single-band tight-binding approximation
becomes justified as soon as the modulation strength exceeds
Vo~ 1Eg.

We stress that the obtained tunneling parameters are now
all similar in magnitude, unlike the situation without auxiliary
lattice, and that they only weakly depend on the direction
despite the absence of triangular point symmetry in the strict
sense. For example, the choice V) = 1 Eg leads to values

Ja=—0.011Eg, Jj =—0.009Eg,
N

Jc = —0.020Eg, J. = —0.015E.

We also verified that the same conclusion applies to the
intersublattice NN transitions, that is, the hopping amplitudes
show only a weak dependence on the direction of the AC link
given by 8 23

D. Tight-binding model

In the tight-binding approximation, the model is repre-
sented by the k-space Hamiltonian

F(Jg, 0, k+ 4 Jach(k
H(k):((A A +2P) AC()

. ®
Jach*(k) F(Jo,Jbk — %p))

where
2
F(J.J'k) =27 cos(k - a;)+2J cos(k - a3),
j=I
and the recoil momentum p enters the arguments of these
functions as a shift in the reciprocal space.

We calculate the band and topological structure numerically
using the realistic parameter values obtained from the band-
structure modeling at the potential modulation strength V, =
1 Ex. NNN hopping amplitudes are listed in Eq. (7) and take
values in the vicinity of J4,Jc = —0.015E%. Guided by our
previous work [21], we set the strength of the laser-assisted NN
transitions to Ja¢ =& 3|J4| = 0.050Eg, which corresponds to
using the Rabi frequency hQ2 ~ Er in Eq. (3). Figure 7
shows the Chern number of the lowest band, which has
been numerically computed using the method of Ref. [37].
This confirms that the topological phases are indeed readily
accessible in this regime. The Chern number patterns are
periodic in p with a hexagonal unit cell twice the size of
the ordinary Brillouin zone. This is the consequence of the
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Chern number (a) Band gap (b)
Py 6 : ‘ : 0.10
Ky 4 » 1
» _
0.05
. »
_a » i
_ ; 1 . 0.00
6 -2 0 2 4
P, /K,

FIG. 7. (Color online) Topological band structure in the tight-
binding regime. The left panel shows the dependence of the lower-
band Chern number on the Cartesian components of the recoil
momentum. The latter are expressed in terms of the vector K =
@2by + by)/3 = («/grr/)\am,n/kum) pointing to a Dirac point of the
reciprocal lattice. Red and blue areas denote Chern numbers +1;
green areas are topologically trivial. The right panel shows the gap
separating the two bands with opposite Chern numbers. The band gap
is expressed in units of the recoil energy Eg.

fractional argument p/2 entering the matrix elements of the
Hamiltonian matrix (8).

The obtained phase diagram in Fig. 7(a) is dominated by
areas corresponding to topologically nontrivial regimes. A
possible experimental detection of topological phases requires
that the two bands characterized by Chern numbers £1 are
separated by substantial band gaps. Panel (b) shows that
the band gap can exceed the coupling strength J4¢ or, in the
best cases, even approach A = 2J4¢ = 0.10E k. We also note
that the gap attains the maximum values on a lattice spanned
by the vectors 2K = (2K,,2K,) and 2K’ = 2K, — 2K,) in
the p plane. Thus the six maximum-band-gap points closest
to the origin correspond to the recoil momenta p = 47 /Ay
and are nearly reachable employing the largest possible recoil
momenta Pp,x = 27 /Ag. With the resonant wavelength A, =
578 nm.

E. Detection of the Chern insulating phase

Different methods to detect topological order in cold-atom
setups have been recently proposed. Two routes are generally
envisaged: (a) measure the Chern number [20,38—41] or (b)
detect the presence of chiral edge modes [17,18,42-44].

In two-band models, described by the general Hamiltonian

H(k) = e(k) 1y +d(k) - 6, ©)

such as the Haldane-like system considered here, the Chern
number is directly related to the vector field d(k), through the
winding-number expression

1 d
=— | — (8.dx d.d)|d%, 10
’ MAMP(hXh) o

which counts the number of times the vector d(k)/|d| covers
the unit sphere as k is varied over the Brillouin zone. Following
Ref. [20], the vector d(k) could be reconstructed through
spin-resolved time-of-flight measurements, allowing for a
“pixelated” measure of the Chern number.

More generally, it has been shown that releasing a Fermi
gas initially prepared in a Chern insulating phase and acting
on the cloud with an external linear potential (i.e., a synthetic

013632-7



ANISIMOVAS, GERBIER, ANDRIJAUSKAS, AND GOLDMAN

“electric” field E) leads to a clear transverse (Hall) drift of
the cloud: measuring the center-of-mass displacement in the
direction transverse to the field E provides a direct measure
of the Chern number v [40]. Alternatively, signatures of
the Berry’s curvature F (k) could be detected through Bloch
oscillations [38,39], offering an alternative way to reconstruct
the Chern number v ~ (1/2mi) )", F(k).

Edge modes could be directly visualized through the
methods of Ref. [42], which allows one to detect the prop-
agation of edge states on a dark background (i.e., in a region
unoccupied by the many bulk states). Alternatively, the linear
dispersion proper to chiral modes could be identified through
spectroscopy measurements [17,18,43].

IV. CONCLUSIONS

In summary, we have introduced and analyzed a realistic
scheme to realize a Chern insulator using cold atoms. In
this scheme, one exploits (i) the presence of a long-lived
excited state in addition to the actual ground state, which is
characteristic to alkaline-earth-metal or ytterbium atoms, and
(ii) the existence of a frequency range where the polarizabilities
of the two relevant states differ in sign. This allows one
to exploit both intensity maxima and minima of an optical
lattice to trap the two internal states, simultaneously avoiding
heating from spontaneous emission. Based on first-principle
calculations, we validate the applicability of the tight-binding
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approach in certain parameter regimes, and demonstrate the
emergence of a generalized Haldane model, with laser-induced
complex nearest-neighbor transitions and natural real-valued
next-nearest-neighbor transitions. We show that topological
phases are indeed readily accessible, with the topological
band gaps on the order of 0.1 Ex ~ 100 Hz, indicating that
the topological properties could be detected at sufficiently
low temperatures ~nK using currently existing proposals
based on Chern-number measurement [20,38—40] or edge-
state detection [17,18,42—44]. Finally, we emphasize that our
proposal to implement the Haldane model using long-lived
excited states follows an earlier proposal [22,36] to realize
the paradigmatic Hofstadter model [45], suggesting that the
versatility of this scheme could be further exploited to realize
other lattice systems of interest.
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We consider ultracold atoms in a two-dimensional optical lattice of the dice geometry in a tight-binding
regime. The atoms experience a laser-assisted tunneling between the nearest neighbor sites of the dice lattice
accompanied by the momentum recoil. This allows one to engineer staggered synthetic magnetic fluxes over
plaquettes, and thus pave a way towards the realization of topologically nontrivial band structures. In such a
lattice the real-valued next-nearest neighbor transitions are not needed to reach a topological regime. Yet, such
transitions can increase a variety of the obtained topological phases. The dice lattice represents a triangular
Bravais lattice with a three-site basis consisting of a hub site connected to two rim sites. As a consequence, the
dice lattice supports three energy bands. From this point of view, our model can be interpreted as a generalization
of the paradigmatic Haldane model which is reproduced if one of the two rim sublattices is eliminated. We
demonstrate that the proposed upgrade of the Haldane model creates a significant added value, including an
easy access to topological semimetal phases relying only on the nearest neighbor coupling, as well as enhanced
topological band structures featuring Chern numbers higher than one leading to physics beyond the usual quantum
Hall effect. The numerical investigation is supported and complemented by an analytical scheme based on the

study of singularities in the Berry connection.

DOI: 10.1103/PhysRevA.92.033617

I. INTRODUCTION

Optical lattices have firmly established themselves as a
modern and versatile tool to study fundamental physics
in a clean environment with various physical parameters
being under experimentalist’s control and often extensively
tunable [1-3]. One is typically interested in implementing
a paradigmatic Hamiltonian that clearly demonstrates a par-
ticular phenomenon or an effect. A list of recent successes
features, to mention just a few examples, realization of
the Harper-Hofstadter [4-6] and Haldane models [7], direct
observation and control of the Dirac points [8], creation
of artificial magnetic fluxes via lattice shaking [9] and
reproduction of models of magnetism [10], and engineering of
a spin-dependent optical lattice resulting from a combination
of Raman coupling and radio-frequency magnetic fields [11].

In particular, access to topological band structures is of
enormous interest [12—14]. The presence of the topological
order is signaled by a nonzero Chern index reflecting a
nonvanishing integral of the Berry curvature over the entire
two-dimensional Brillouin zone. A topological band supported
by a spatially periodic optical lattice acts as a model of a
Landau level. The unique band structure consisting of a ladder
of Landau levels defines an apparent insulator with current-
carrying edge states and has traditionally been associated
with the presence of an external magnetic field. In cold-atom
setups, however, the topological character becomes an intrinsic
property of the band and is not necessarily associated with the
presence of a physical magnetic field [14,15]. Synthetic fluxes
piercing the lattice plaquettes may be imparted by the lattice
shaking [9,14,16—-18], laser-assisted tunneling [14,19-21] or
using synthetic dimensions [22].

Many of the breakthroughs mentioned in the introductory
paragraph can be classified as mimicking or reproduction
of phenomena known from the condensed matter physics.
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However, significant contributions from cold-atom systems
to extending the known physics should also be recog-
nized [1,2,14,21,23]. Perhaps the most obvious examples
relate to the construction of topological bands with the values
of the Chern index greater than one [24-30], which is a central
topic of the present paper. The properties of such a band is not
a direct sum of the properties of several Landau levels, and
reach beyond the traditional (integer or fractional) quantum
Hall physics [31,32].

Indeed, the study of bands with higher Chern numbers
has been particularly relevant in connection to the so-called
fractional Chern insulators [33-35]. Although many-body
interactions, which play the central role in these studies, are
beyond the scope of the present contribution, we stress that
many insights into the nature of the fractional topological
states were obtained from somewhat artificial lattice constructs
often involving many layers [25] or distant-neighbor hop-
pings [26,27,36]. Ongoing efforts [37—40] are also based on the
Harper-Hofstadter model that in principle supports subbands
of arbitrarily high Chern numbers. Here, one also has to defy
rather stringent requirements posed by large magnetic unit
cells, low particle densities, and a large number of subbands
implying small topological band gaps [40]. In the present
paper we focus on exploring the potential offered by relatively
simple and thus more realistic lattice models. We construct
a generalization of the Haldane model [41-45] by coupling
three rather than two triangular sublattices. In this way, the
honeycomb lattice featured in the Haldane model is upgraded
to the dice lattice [46—51] which supports a three-band model
with a clean access to interesting topological configurations,
such as bands characterized by the Chern number equal
to 2. In the dice-lattice model it is just a complex valued
nearest-neighbor (NN) coupling that is sufficient to generate a
staggered synthetic magnetic flux and reach nontrivial setups
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including a topological semimetal phase. On the other hand,
for spatially periodic hexagonal lattices, nontrivial phases
cannot be reached just by having the complex-valued nearest-
neighbor coupling, one should add a real-valued next-neighbor
coupling [42—44]. Note that the dice lattice affected by a
uniform magnetic flux was used to demonstrate a novel
and intriguing mechanism of localization of wave packets in
Aharonov-Bohm cages [52-54].

The paper is structured as follows. In Sec. II, we introduce
the lattice geometry and derive the 3x3 momentum-space
Hamiltonian encapsulating the physics. Then, Sec. III de-
scribes the obtained results starting from phases obtained in the
presence of NN couplings alone and proceeding to more com-
plex configurations requiring next-nearest neighbor (NNN)
transitions. We conclude with a brief summarizing Sec. V.

II. THE MODEL
A. Lattice geometry

We consider a dice lattice, which consists of three triangular
sublattices. One of them is called a hub sublattice. It is coupled
to other two rim sublattices, that in turn are not coupled with
each other. Let us denote the hub sublattice by B and the rim
sublattice by A and C. The vectors that connect the nearest
lattice sites are (Fig. 1)

a a
81 = E(ex +\/§ey)v 62 = E(ex - \/gey)v 83 = —aey,
1
where a is the distance between two such sites. The elementary
lattice vectors,

a) =a(e, ++3e,)/2, a,=aBe, —/3e,)/2, (2)

define a rhombic elementary cell. The set of lattice vectors
r, = nia; + npa, (with integers n; and n;) span the hub
sublattice B (Bravais lattice). The two rim sublattices are
defined in the following way. The first rim sublattice A is
shifted from the hub sublattice B by the vector §; in such a
way that sublattices A and B alone make a honeycomb lattice.

k’!l b 1
K
kg
K/
by
(@) (b)

FIG. 1. (Color online) (a) Dice lattice. The blue, green, and red
sites correspond to three different triangular sublattices A, B, and
C. Solid lines show couplings between the sites A and B. Dashed
lines show couplings between the sites B and C. The primitive lattice
vectors are a; and a,. Nearest sites are connected with the vectors
81, 85, and &3. (b) Hexagonal first Brillouin zone of the reciprocal
lattice defined by the primitive reciprocal lattice vectors b, and b,.
Two inequivalent corners are at the points K (red) and K’ (blue).
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The second rim sublattice C is shifted to the opposite direction
by —4&; (see Fig. 1). Let us introduce a set of vectors, that span
all the lattice sites:

rn,.\‘=rn+ssl~ (3)

Here the index s = 0,+1 labels the three sublattices. The sites
of the hub sublattice (s = 0) coincide with the lattice vectors:
rn0 = ry. The sites of the rim sublattices A and C shifted by
+d8,,ie,rpy=rp+d8andr, | =r, — 4.

It is convenient to introduce an additional lattice vector
as = a; — a,. The set of the three lattice vectorsa; (i = 1,2,3)
together with the opposite vectors —a; connect all next-nearest
lattice sites, and can be related to §; as a; = 8| — 83, a, =
62 — 83, and az = 81 — 82.

The basic reciprocal lattice vectors,

2 2
b= (e +3e,), by= (e, —3e), @&
3a 3a

are orthogonal to the lattice vectors, a; - a;=2md;;, i, j=1,2.
The first Brillouin zone is hexagonal with two inequivalent
corners K and K’ positioned at K = (2b; + b,)/3 and K’ =
(b1 + 2by)/3. In terms of the Cartesian coordinates these
points are given by

2 2
K= "(e,++3e,)., K =-—@Ge,—3ey), (5
9a 9a

as one can see in Fig. 1.

B. Tight-binding model

We shall make use of the tight-binding model in which the
single-particle states |r, ;) represent the Wannier-type wave
functions localized at each lattice site r,  , with s = 0,%1
being the sublattice index. In the language of the second quan-
tization these single-particle states read |r, ;) = CT(I',,!S)|V21C>,
where |vac) is the Fock vacuum state, cT(r,,,s) and c(rp )
being the creation and annihilation operators of an atom in the
corresponding localized state.

The full Hamiltonian of the system consist of three terms,

H=H,+ H, + H;. (6)

The first term H; describes the laser-assisted tunneling
[14,18-21,42,44,55] of atoms between the sites of the hub
sublattice B (s = 0) and its nearest neighboring sites that
belong to the rim sublattices A and C with s = £1:

3
Hy =Y "% JOY et el )e(ry + s8;) + Hee.,

n o s=+l i=1

@)
where J© are the coupling amplitudes. Such generalization of
dice optical lattice with two different hopping parameters J )
and J is already discussed in Ref. [56]. The laser-assisted
tunneling is accompanied by the transfer of the recoil mo-
mentum p; with s = =£1, to be labeled simply by p+ = p4;.
In the present situation p; can generally differ from p_
because the transitions between the different sublattices can
be induced by different lasers. Note that the nearest neighbor
hopping alone is sufficient to generate fluxes through rhombic
plaquettes,

@, =+(py —p-)-a;/2, ®)
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with a; representing a diagonal vector of the plaquette in
question. Yet the magnetic flux over the whole hexagonal
plaquette remains zero.

The second term H, takes into account the tunneling
between the next-nearest neighboring sites belonging to the
same sublattice with s = 0,=%1:

3
H, = Z Z sz Z ' (Pps)c(rns +a)+He.  (9)

n s=0,%1 i=1

This term describes the usual (not laser-assisted) hopping
transitions between nearest sites in each of the three triangular
sublattices, and JZ(‘Y) with s = 0,%1 are the corresponding
matrix elements for the tunneling between the atoms belonging
to the sth sublattice.

The third term H; describes the energy mismatch for the
particles populating the different sublattices:

Hy=Y " Y eci(rusetrn,). (10)
n s=0,£1

The on-site energies ¢; are the diagonal matrix elements of
the Hamiltonian in the basis of the Wannier states. Without a
loss of generality we can take the on-site energy of the hub

J
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sublattice B to be zero: ¢y = 0. The on-site energies of other
rim sublattices are to be labeled as 4| = ¢4.

Since the first term H; involves complex phase factors that
depend on the elementary cell number n, the full Hamiltonian
H is not translationally invariant. Yet, we will transform
the annihilation operators according to c(r, 0) — c(ry o) and
c(rys) = c(rys)exp(—ips - rp) with s = %1, and perform
the corresponding transformation for the creation operators.
This gauge transformation makes the full Hamiltonian (6)
translationally invariant.

Transition to the reciprocal space is carried out by intro-
ducing new operators,

cs(k) = ﬁ Xk: (e
(11)
c(Fpys) = ﬁ Z C_y(k)eik'r" .
k

together with the Hermitian conjugated creation operators
ci(k). Here N is a number of elementary cells in the quan-
tization area, and the vectors r, = r, o (defined in Sec. I A)
are located at the sites of the hub lattice. In terms of the new
operators the Hamiltonian (6) splits into its k components:

c+(k)
H=Y H@), HU)=Icl(k) cjtk) c dIHK)| coth) |, (12)
k c_(k)
where H(k) is a 3 x 3 matrix:
er + 2050 fk— py) T Pgk — pi/2) 0
H) = | JDg*k — p./2) 21" f (k) JOgk —p_/2) | (13)
0 JOg k= p_/2) e +217 flk—p_)

Here we also added an extra phase factor to the transformed
operators c,(k) — c;(k)e'Ps*%1/2_ The functions,

3 3
Fky =" costk-a). glh)=e*3 e kb (14)

i=1 i=1

entering Eq. (13) are translationally symmetric in the recipro-
cal space,

fk+G)=fk), gk+G)=gk), (15)
where G = n;b; + nyb, is a reciprocal lattice vector, n;
and n; being integers. Consequently the matrix Hamiltonian
H(k) is also fully translationally invariant in the reciprocal
space H(k) = H(k + G). Note that Berry curvature in general
depends on the choice of Fourier transformation (11), while the
corresponding Chern number does not [57,58]. Furthermore,
the functions f(k) and g(k) obey the following reflection
properties,

fk) = f(=k), gk)=g"(—k). 16)

(

All this helps to consider various symmetries of the matrix
Hamiltonian (13).

III. PHASES OF NONINTERACTING FERMIONS

A. Chern numbers and symmetries of the system

Since the momentum-space Hamiltonian (13) represents a
three-level system, there are three energy bands characterized
by energies E,(k), with n = 1,2,3. Each energy band has a
Chern number c¢, to be defined in Eq. (17). We also identify
two possible band gaps. The first band gap A, measures the
energy between the first (n = 1) and second (n = 2) bands,
the second band gap Aj3 corresponding to the energy between
the second (n = 2) and the third (n = 3) bands.

The Chern number ¢, for the nth band is defined in terms of
a surface integral of a Berry curvature over the first Brillouin
zone (FBZ) [14,59]:

1

Cp=——

T JFBZ

d*k F, (k). a7

The Berry curvature F),(k) can be expressed in terms of the
eigenvectors |u, k) of the reciprocal space Hamiltonian (13)
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d d
F,(k) = i(%(un,kl) <8_ky|un,k>>
(2 ) (2 s
_l<aky<un,k|>(akx|’/‘n,k>>- (18)

It is well defined as long the eigenenergies E, (k) are not
degenerate for any fixed value of k. Therefore the Chern
number ¢, can be ascribed to the nth band if the latter does not
touch any other bands. If the Fermi energy is situated in a band
gap, the Chern number is directly related to Hall conductivity
due to chiral edge states of the occupied bands [60] via

as

|
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Oxy = —e?c, /h [61-63]. For numerical calculation we make
use of the discretized version of the Berry curvature (18)
described in Ref. [64].

For both rim sublattices A and C, we set on-site energies
of to be symmetrically shifted away from the zero point

&+ = —e_ = ¢. We also take the tunneling amplitudes to be
equal J& = JO = g JB — JO _ 7 _ 1 and

qua = =J,J,7 =J," =J,  =J,and assume
the recoil momenta to be opposite py = —p_ = p for both

rim sublattices A and C. The choice of opposite recoil momenta
ensures the maximum flux, because the magnetic flux through
a rhombic plaquette ®; given by Eq. (8) is proportional to the
difference of these vectors. Under these conditions, the matrix
representation of the k-space Hamiltonian becomes

e+2Nnfk—p) Jglk—p/2) 0
Hk)=| Jg"k—p/2) 202 f (k) Jgtk+p/2) | (19)
0 Jg*k+p/2) —e+2),f(k+ p)

This form of the Hamiltonian exhibits some symmetries.
The first symmetry involves inversion of the on-site energies
& — —¢ followed by the unitary transformation that changes
the first row with the third one (i.e., interchanges the rim
sublattices A and C), as well as the momentum inversion
k — —k. Using the reflection properties of the functions f and
g given by Eq. (16), one arrives at the same Hamiltonian (19).
The second symmetry is J — —J, which is a simple gauge
transformation. Using these two symmetries we see that
the change J, — —J, gives H(k) —> —H(k). To sum up,
all the three mentioned symmetries are (¢ - —&,H — H),
(J— —-J,H— H),and (J, > —Jr,H > —H).

B. Numerical analysis

In this subsection, we numerically study the Chern phases
of noninteracting fermions. In order to present dependence
of the Chern number on the parameters ¢, J, J,, and p we
adopt a similar presentation of the phase diagram scheme as
in Ref. [44]. We choose the energy unit to be the nearest-
neighbor tunneling amplitude J. For the recoil momentum
p, we express the p, component in the units of K, and the
component p, in the units of K, where K is one of the FBZ
corners, defined in Eq. (5). In all the phase diagrams we present
the dependence of the Chern number ¢, = ¢,(px,p,) on the
components of the recoil momentum p using different colors
for each possible values of ¢,. The areas corresponding to a
topologically trivial phase with a zero Chern number are shown
in green (¢, = 0). On the other hand, the areas corresponding
to nontrivial Chern phases are shown in yellow (¢, = 1), red
(¢, =2), cyan (¢, = —1), and blue (¢, = —2). Additionally
we display Chern number labels in all the presented phase
diagrams.

First we characterize topological properties of the band
structure if there is no next-nearest neighbor coupling (J,=0).
In Fig. 2 we show the Chern number phase diagrams for
& = J. One can identify regions where the Chern numbers are
{c1,c2,c3} = {0,0,0}, {—1,2,—1}, and {1,—2,1}. In the first
type of the regions (green color) we have topologically trivial

(

regions. In other regions there are nonzero Chern numbers with
band gaps A, = Ayz = 0. Analysis of the band structure in
these regions shows that the bands do not overlap and touch
indirectly. Thus by filling the first one or the first two bands we
arrive at semimetallic phase with nonzero Hall conductivity.
The typical spectrum of such a nontrivial semimetallic case is
presented in Fig. 6. The size of the nontrivial regions in the
p plane depends on the mismatch ¢ of the on-site energies of
A and C sublattices. By increasing ¢ from zero these regions
immediately appear around the points p = K and become
larger in size. For about ¢ & J these regions have the largest
area as presented in Fig. 2 for ¢ = J. For even larger values of
¢ the nontrivial regions shrink back to the points K and finally
we are left only with the trivial phase {0,0,0} everywhere. The
analytical treatment, presented in Sec. IV gives the value of

Pa/ Ka
(@) (b)

FIG. 2. (Color online) Chern number dependence on the recoil
momentum p in the case ¢ = J and J, = 0. (a) The phase diagram
of the lowest band Chern number ¢;. (b) The corresponding phase
diagram for the middle band. Since the sum of Chern numbers over
all three bands is zero, the third band gives the same phase diagram
as the first one (¢; = ¢3). The green regions correspond to the Chern
number zero. The yellow, red, cyan, and blue regions correspond to
the Chern numbers 1, 2, —1, and —2, respectively. Nonzero Chern
numbers are also displayed as labels. The hexagon represents the FBZ
in the p plane.

033617-4



THREE-LEVEL HALDANE-LIKE MODEL ON A DICE ...

PHYSICAL REVIEW A 92, 033617 (2015)

FIG. 3. (Color online) Chern number dependence on the recoil
momentum p in the case ¢ =2J and J, = 0.3J. (a) The Chern
number c¢; of the lowest band; (b) the Chern number ¢, of the middle
band. For the third band (not shown here) we have c¢; = —(c; + ¢3).
The green, yellow, red, cyan, and blue regions correspond to the
Chern numbers 0, 1, 2, —1, and —2, respectively. Nonzero Chern
numbers are also displayed as labels. A smaller hexagon shows the
FBZ corresponding to the case J, = 0. Since the introduction of
nonzero J, changes the periodicity of the p dependence, we also
show a bigger hexagon, which is now the FBZ in the p plane.

&= %EJ for which the semimetal regions completely disap-
pear. For J, = 0 there are no other types of phases than the
trivial and semimetallic discussed above. Nonzero band gaps
appear only in the regions of trivial phase.

For the case J, = 0, the change p — p + G, where G is
the reciprocal lattice vector, corresponds to a gauge transfor-
mation. Thus there is a symmetry (p — p + G,H — H). In
the phase diagram (Fig. 2) we also show the FBZ in the p plane,
which is a hexagon with two inequivalent corners positioned
at points K and K'.

Now let us analyze effects of the nonzero next-nearest
neighbor coupling. For this we set J, =0.3J and ¢ =2J.
The phase diagrams of the Chern numbers are presented
in Fig. 3. We can see regions with the Chern numbers
corresponding to trivial phases {0,0,0} and phases {0,+1,F1}
and {£1,0,F1}. In the latter two types of regions we can find
points corresponding to nonzero band gaps Ay, > 0 and/or
Ay > 0 (Fig. 4). This shows that there exist topological
Chern insulating phases. For example, at the point p = K, we

JANEYR) Aoy /J
6 2 6 T 2
4 4k
1.5 . . 1.5
2 2k
= - .
E 0 1 E 0+ 1
s s
< B - -
-2 -2 L
0.5 ' ‘ 0.5
4 4k
6 0 -6 0
-4 2 0 2 4 -4 -2 0 2 4
Do/ Ka jee

(2) (b)

FIG. 4. Dependence of the band gap on the recoil momentum
p in the case where ¢ = 2J and J, = 0.3J. (a) The band gap A,
between the first and second bands. (b) The band gap A,; between
the second and third bands.

FIG. 5. (Color online) Chern number dependence on the recoil
momentum in the case ¢ = 0.5J and J, = 0.5J/. (a) Chern number
¢ of the lowest band. (b) Chern number ¢, of the middle band. The
color scheme and labeling are the same as in Figs. 2 and 3. The
white pointis p = (2K, K,) where the Chern numbers are ¢; = -2,
¢, = 0, and ¢;3 (see the spectrum in Fig. 6).

have the Chern numbers {0,—1,1}, the band gap between the
middle and highest bands being A,3; ~ 0.26J. Band widths
in this case are about 3J. By positioning the Fermi energy
in the gap between the second and third bands one arrives
at the Chern insulating phase. Another interesting point is
p = 2K, which gives the Chern numbers {—1,0,1}, the band
gaps App ~ 1.55J and Ay; =~ 0.54J, and the band widths of
about 2J. The bottom and top bands have nonzero Chern
numbers, while it is zero for the middle band. Depending on the
filling there are two types of topologically nontrivial phases.
If the Fermi energy is positioned in one of the band gaps,
we get a topological insulating phase. If the Fermi energy is
situated within a band, the band is partially filled and supports
the Chern metal phase. The discussed types of Chern number
distributions over the bands are typical when J; is nonzero and
smaller than J and €.

In the case of nonzero NNN coupling J, the translation
symmetry in the recoil momentum p is smaller than in the
case of zero NNN couplings: One has to shift the momentum
by 2G rather than G. In the phase diagram presented in Fig. 3
we show this by extending the FBZ, which is now a bigger
hexagon.

There are more types of Chern phases when the coupling
J, is larger than in the previous discussion and comparable
to the on-site energy ¢. For ¢ = J, = 0.5J we find insulating
phases with Chern numbers {+1,£1,F2} and metallic phases
with Chern numbers {£2,0,F2} (Fig. 5). For example, in the
point p = 2K we get Chern numbers ¢; = ¢; = —l and ¢3 =
2 with band gaps Ay &~ 0.61J and A3 = 0.54J. The width
of the lower two bands are around 3.J, while the band width
of the highest band is about 1.5J/. Another interesting point is
p = (2K,,K ) where the Chern numbers are ¢c; = —2, ¢, =0,
and c3 = 2 (white point in Fig. 5). The bulk spectrum in this
point is given in Fig. 6. Note that there is a gap A3 ~ 1.35J
between the lowest and highest bands. In this gap there is a
middle band with a zero Chern number. By setting the Fermi
energy in this gap one gets the Chern metallic phase with the
Chern number ¢; = —2.

To summarize the numeric analysis for J, # 0, the
typical nontrivial Chern number distributions over the
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FIG. 6. (Color online) Bulk lattice spectrum projected along k,
for a number of different k, values in the range — K, < k, < K.
(a) The spectrum for the recoil momentum p = K in the absence
of the NNN coupling (J, = 0) and for ¢ = J corresponding to the
parameters used in Fig. 2. In that case there is no energy gap in the
spectrum, but different energy bands do not directly touch each other.
A topological semimetal phase is formed if the atoms fill the first
energy band or the first two bands. (b) The spectrum for the recoil
momentum p = (2K,,K,)inthe case wheree = 0.5J and J, = 0.5/
corresponding to the phase diagram shown in Fig. 5. Now there are
two bands with nonzero Chern numbers %2 separated by a quasigap
A3 =~ 1.35J containing a middle band with a zero Chern number.

bands are {0,£1,F1}, {£1,F1,0}, {£1,0,F1}, {£1,£1,F2},
{£2,F1,F1}, and {£2,0,F2}. One can also find the case
{£1,F2,£1}, which is typical for J, = 0. For smaller J,
compared to J and &, one usually gets Chern numbers up to 1
in modulus. For larger Chern numbers (up to 2 in modulus),
one needs to make the NNN-hopping J, be comparable to the
on-site energy mismatch ¢.

IV. ANALYTICAL CHERN NUMBER CALCULATION

Analytic Chern number calculation is based on integration
of a Berry connection around each singularity point. The Berry
connection of the nth band is defined as [14,59]

Ay (k) = i (ke n | Vicltkn)s (20)

where |uy ,) denotes the nth eigenvector of the matrix (13).
One can express the Berry curvature (18) as the z component
of the curl B, =V x A,, namely F,(k) = e, - B,. Using the
Stoke’s theorem we change the integral featured in Eq. (17)
over the FBZ to a contour integral around the FBZ,

1
— d’k F,(k)
27 Jrpz
! dk - A ! Zf dk - A
- ° n - N : no
2z FBZ 2 singul

where the last term excludes any contribution due to unphys-
ical gauge-dependent singular points of the Berry connec-
tion [44,65,66]. Since the k-space Hamiltonian H (k), given
by Egs. (13) or (19), and its eigenstates are periodic in the
FBZ, A, is also periodic. Thus the contour integral around
the FBZ (the first term on the right-hand side of the above
equation) is zero. Consequently the Chern number (17) can
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be calculated by integrating A,, around each excluded singular
point [44]:

1
R dk - A,, 21
‘ 27 »fiingul ( )

where the sum is over all singular points in the FBZ.

Let us summarize our analytical results, details being
presented in the Appendix. For the case where the recoil
momentum coincides with the inverse lattice vector (p = G)
we always have trivial phase with all three Chern numbers
equal to zero. For the semimetal case (Fig. 2) with no NNN
hopping and p = K we find two phases, depending on the
mismatch e of the on-site energies. If ¢ < g9 = %J , We
get Chern semimetal phase with Chern numbers {1,—2,1}.
If ¢ > ¢y, we get a trivial phase {0,0,0}. In this way at
larger mismatch between the on-site energies the topological
phenomena disappear. This is in agreement with the numerical
calculation presented in the previous section.

It is possible to apply this method for other values of
the recoil momenta p and for a general nonsymmetric case
with the NNN hoppings. In such calculations one needs to
diagonalize the matrices of the size at most 2x 2. Yet generally
ordering of the eigenvalues might be a quite involved task,
especially if they depend on more than one parameter.

V. CONCLUDING REMARKS

In conclusion, we have considered a two-dimensional dice
lattice operating in a tight-binding regime. The laser-assisted
nearest neighbor transitions are accompanied by the momen-
tum recoils. This allows one to engineer staggered synthetic
magnetic fluxes and thus facilitates realization of topologically
nontrivial band structures. Real valued next-nearest neighbor
transitions—although not necessary in principle to reach the
topological regime—may also be present and contribute to the
richness of the obtained topological phases. The considered
dice lattice represents a triangular Bravais lattice with a
three-site basis consisting of a hub site connected to two rim
sites, providing three energy bands. Thus our model can be
interpreted as a generalization of the paradigmatic Haldane
model which is reproduced if one of the two rim sublattices is
eliminated. We have demonstrated that the proposed upgrade
of the Haldane model creates a significant added value such as
(i) an easy access to topological semimetal phases relying
on only the nearest neighbor coupling and (ii) enhanced
topological band structures featuring Chern numbers higher
than one and thus providing access to physics beyond the
usual quantum Hall effect. The numerical analysis has been
supported by an analytical scheme based on the study of
singularities in the Berry connection.
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APPENDIX: DETAILS ON ANALYTICAL CHERN
NUMBER CALCULATION

1. Momentum space Hamiltonian and its eigenstates

Let us establish a general structure of the eigenstates for the
matrix Hamiltonian H(k), Eq. (19). For this we introduce a
basis of our three-level system |s), with s = 0,41, and rewrite
the matrix Hamiltonian in the state-vector notation as

Hi) = > I9)d(k)isl+ Y (15)g:(k)e"**® (0] + H.e.),

5=0,£1 s=%£1
(A1)
where d, (k) stands for the diagonal matrix elements:
dy(k) =se +2J,f(k —sp). (A2)
The off-diagonal matrix elements,
Jg(k F p/2) = ga(k)e' ™, (A3)

have been represented in terms of their amplitudes g4(k) =
g+ (k) and phases a4 (k) = o, (k).

Since there is no coupling between the A and C sublat-
tices, one can perform a k-dependent unitary transformation
eliminating the phase factors,

s) — |s,k) = [s)e"*® 5 = £1,

and leave the basis vector |0) unchanged (|0) = |0,k)). In the
new basis the Hamiltonian (A1) is characterized by real and
symmetric matrix elements. Its eigenvectors can be cast in
terms of these vectors with real coefficients C, ;(k):

) = Y Cos)sky = D 15)Cos()e™ ™. (A4)

5s=0,%1 5s=0,%1

Combining Egs. (20) and (A4), one arrives at the following
expression for the Berry connection:

Ayk) == sC (k) Vi, (k).

s==1

(AS)

This result together with Eq. (21) will be subsequently used in
finding the Chern numbers.

2. Determination of the Chern numbers: General

To determine the Chern number given by (21), one needs to
study a behavior of the vector potential at its singular points.
Singularities of the vector potential can emerge at the points
where the phase of the coupling matrix element g (k)e'®+®
given by Eq. (A3) is undefined. This happens if the function
g(k — p+/2) goes to zero. The function g(k) given by Eq. (14)
is zero at the corners of the FBZ, namely at two inequivalent
points K and K’. Thus there are two pairs of points,

K, =+p/2+K, K, ==xp/2+K, (A6)
at which the function g(k F p/2) goes to zero and its phase
a4 (k) is undefined. Let us determine the coupling matrix
element g (k)e’®=™® in a vicinity of these points. Combining
Egs. (14) and (A3), the amplitude and phase of the coupling
element reads up to the first order in the displacement vector

PHYSICAL REVIEW A 92, 033617 (2015)
q,i.e., forga < 1 withg = |q|:

3 T
g+(K4++q) ~ zqaf, ar(Ky +q)~ 3¢ (A7)

/ 3 / jT
g+(KL +q)~ zqal, ar(Ky +q)~ 3 +¢, (A8

where ¢ is a phase of the complex number g, +ig, = ge'®.
Integrating over a small circle centered at q = 0 surrounding
each singular point of the phase, one finds

‘(f dq - Vyai(Kyi +q) = —2m,
Iq|—0

f dg - Vyou(K) +q) =27,
lql—0

where the signs are different due to the opposite phases in
Egs. (A7) and (A8). These equations together with Egs. (21)
and (AS) provide the following result for the Chern number:

o=y s[Ch(K) = Cr (KD,
s=%1

with K4+ = K4 and K’ | = K/,. Therefore to find the Chern
number one needs to determine the coefficients C, ; entering
the state vector at the points K+ and K. If C} , =1, the
corresponding singular point contributes to the Chern number
of the nth band. In the following we shall analyze two different
situations.

(A9)

3. Determination of the Chern numbers: Specific cases

Since the Hamiltonian H (k) given by Egs. (19) or (A1) has
a symmetry (¢ — —e, H — H), we consider only the case
where ¢ > 0.

a. The case where p = G

Suppose first that the difference in the recoil momenta
coincides with the inverse lattice vector p = G. In that case
the coupling completely vanishes both for k = K4 and also
for k = K',. At these points g(k — p/2) = gtk + p/2) =0,
so all the states |s) (s =0,£1) are decoupled, and thus
the eigenstates are the bare states |s). The corresponding
eigenenergies of the matrix Hamiltonian H(k), Eq. (Al),
coincide with its diagonal elements d (k) fork = K, and k =
K'.. Since p =G, one has f(k — p)= f(k)= f(k+ p),
giving ds(k) = se 4+ 2J, f (k). Therefore the eigenstates are
ordered in the same manner dy(k) > do(k) > d_;(k) both
for k = K and also k = K/, giving C; (K;) = C2 (K})
with s = 41. As aresult, the Chern number given by Eq. (A9)
is identically equal to zero, and the system does not exhibit any
topologically nontrivial phases. This is because for p = G the
flux over the rhombic plaquettes ®; = £p - a; is zero (modulo
27), and there is no breaking of the time-reversal symmetry.

b. The case where p = K

As another illustration we pick the recoil momentum
p = K and take J, = 0. In that case the Chern numbers
have been numerically found to be ¢; =1, ¢, = —2, and
c3 = 1 (see Fig. 2). By taking p = K the phase singularities
of the coupling elements g(k F p/2) emerge at the points

033617-7
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ky

FIG. 7. (Color online) The phase singularity points K and K',
of the coupling matrix elements g(k = p/2) for p = K. The points
K, and K’ are equivalent. They are shown by red dots connected
with a double arrow.

K, =+K/2+ K and K/, =+K/2+ K’, as one can see
in Fig. 7. Furthermore, the point k = K . is equivalent to the
pointk = K’ . For the latter two points we have g(k — p/2) =
gk + p/2) =0, so there are no coupling matrix elements.
Since J, = 0, the Hamiltonian (A1) at these points is, simply,

H(Ky)=HK)=¢ Z sls)(sl, (A10)

s==%1

so the diagonal energies entering the Hamiltonian (A1) are
d,(k) = se.

Eigenvalues, ordered from the lowest to the highest,
are E{(K)=E|(K" )= —¢, Ex(K,)=ExK")=0, and
E3(K,) = E3(K’ ) = ¢. There is no degeneracy for ¢ > 0
and the coefficients C, +(K ) and C,,,_(K’ ) do not change if
one increases ¢. The only nonzero coefficients contributing to
the Chern numbers read

C4(Kp) = Ci (K ) =1. (AL1)

For the point k = K_ the nondiagonal matrix elements
of (Al) are Jg(k+ p/2) =0 and Jg(k — p/2) = 3J. Simi-
larly for the point k = K’, these elements are Jg(k — p/2) =
Oand Jg(k + p/2) = 3J. Thus the Hamiltonian (A1) at these
points is

HK_)=¢e Y sls)s| +3J(0)(+] + [+)(0).  (Al2)
s==%1

HK')=¢ ZS|S>(S|+3J(|0)(—|+|—>(0|)~ (A13)
s==1

Eigenvalues of the H(K_) are EO(K_)= —¢ and

E®(K_) = 1(e £ /62 4+36J7), and those of H(K',) are
EO(K'")=¢ and E®(K,) = J(—& = v/ + 36J2). They

PHYSICAL REVIEW A 92, 033617 (2015)

6 6
P E(o)u( ) o
4 — K 4 P
9 / Sl \
. > oL EH(K)
~ 0k E
S . ECN(K ) )
-2 i B -2
4 / e . 4 — B (K,
EO(K ) —~
-6 -6
o 1 2 3 4 5 ot 2 3 4 5
e/J e/J

(@) (b)

FIG. 8. (Color online) Dependence of eigenvalues of the Hamil-
tonian H (k) on the on-site energy ¢ for p = K in the absence of
the next-nearest neighbor coupling. The eigenvalue E® is plotted in
red dashed lines to distinguish it from the other eigenvalues E®.
(a) Eigenvalues at the point k = K_. (b) Eigenvalues at the point
k = K',. The eigenvalue crossing point & = %J = g( corresponds
to a transition from a topological semimetal phase on the left to a

trivial phase on the right.

are plotted in Fig. 8. Fore = %ﬁ J = g there are degeneracies
EO(K_)=E“(K_)=—¢g and EO(K')=E™(K) =
go. The eigenvalues change their order at the crossing point
& = &, as one can see in Fig. 8.

Let us first consider the case 0 < ¢ < gy. The eigenvalues
of H(K_) are in the increasing order: E{(K_) = E(K_),
Ey(K_)=EO(K_),and E3(K_) = E®(K_). On the other
hand, coefficients required for the Chern number calcula-
tion are C; _(K_)=0, C; _(K_)=1, and C3 _(K_) =0.
Similarly H(K' ) gives the eigenvalues E (K’ ) = E(_)(K’Jr),
Ex(K',) = EO(K'), and E3(K,) = E®P(K’,) and the co-
efficients Cy (K’ ) =0, C24(K',) =1 and C; . (K’,) = 0.
Combining this result together with (A11) we collect four
nonzero coefficients: Cz (K;), C1.—(K"), C_(K_), and
C,+(K')). Substituting them into Eq. (A9), we get the Chern
numbers for each energy band:

a=Ci_(K)=1, (A14)
c=-C; (K\,)—C; _(K_)=-2, (A15)
3=C3 (K =1 (A16)

This result agrees with the numerical analysis presented in
Fig. 2.

Now let us consider the case ¢ > g;. From Fig. 8§ we see
that the eigenvalues are reordered as E;(K_) — E(K_),
E>(K',) — E3(K',), so nonzero coefficients are C3 (K ),
C,—(K"),C; _(K_),and C3 . (K',). Using Eq. (A9), one can
see that the Chern numbers of all bands are now zero:

cg=—Ci{_(K_)+C}_(K_)=0, (A17)
¢ =0, (A18)
c3=C3 ,(Ky)—C3 (K)=0. (A19)
. . .- _ 342
Thus there is a topological phase transition at ¢ = =3=J

corresponding to the eigenvalue crossing in Fig. 8.
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Abstract

We describe a novel technique for creating an artificial magnetic field for ultracold atoms using a
periodically pulsed pair of counter propagating Raman lasers that drive transitions between a pair of
internal atomic spin states: a multi-frequency coupling term. In conjunction with a magnetic field
gradient, this dynamically generates a rectangular lattice with a non-staggered magnetic flux. For a
wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau
levels, as quantified by their Chern numbers.

1. Introduction

Ultracold atoms find wide applications in realizing condensed matter phenomena [ 1-4]. Since ultracold atom
systems are ensembles of electrically neutral atoms, various methods have been used to simulate Lorentz-type
forces, with an eye for realizing physics such as the quantum Hall effect (QHE). Lorentz forces are present in
spatially rotating systems [5—11] and appear in light-induced geometric potentials [12, 13]. The magnetic fluxes
achieved with these methods are not sufficiently large for realizing the integer or fractional QHE. In optical
lattices, larger magnetic fluxes can be created by shaking the lattice potential [ 14—17], combining static optical
lattices along with laser-assisted spin or pseudo spin coupling [12, 13, 18-24]; current realizations of these
techniques are beset with micro motion and interaction induced heating effects. Here we propose a new method
that simultaneously creates large artificial magnetic fields and a lattice that may overcome these limitations.

Our technique relies on a pulsed atom-light coupling between internal atomic states along with a state-
dependent gradient potential that together create a two-dimensional periodic potential with an intrinsic
artificial magnetic field. With no pre-existing lattice potential, there are no a priori resonant conditions that
would otherwise constrain the modulation frequency to avoid transitions between original Bloch bands [25].
For a wide range of parameters, the ground and excited bands of our lattice are topological, with nonzero Chern
number. Moreover, like Landau levels the lowest several bands can all have unit Chern number.

The manuscript is organized as follows. Firstly, we describe a representative experimental implementation of
our technique directly suitable for alkali atoms. Secondly, because the pulsed atom-light coupling is time-
periodic, we use Floquet methods to solve this problem. Specifically, we employ a stroboscopic technique to
obtain an effective Hamiltonian. Thirdly, using the resulting band structure we obtain a phase diagram which
includes a region of Landau level-like bands each with unit Chern number.

2. Pulsed lattice

Figure 1 depicts a representative experimental realization of the proposed method. A system of ultracold atoms
is subjected to a magnetic field with a strength B(X) = By + B’X. This induces a position-dependent splitting
gritpB between the spin up and down states; gris the Land g-factor and pp is the Bohr magneton. Additionally,
the atoms are illuminated by a pair of Raman lasers counter propagating along e, i.e., perpendicular to the
detuning gradient. The first beam [up-going in figure 1(a)] is at frequency w" = wy, while the second [down-
going in figure 1(a)] contains frequency components w,, = wy + (—1)"(dw + nw); the difference frequency

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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a. Schematic b. X = 0 level diagram c. Coupling geometry
k™ = —kpe, ky
w, =wo+ (=1)" (bw + nw)

2ky,
2ky,
2k

2ky,
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F—ow + 20— e
|_6w + 3w_|

X

Figure 1. Floquet flux lattice. (a) Experimental schematic depicting a cold cloud of atoms in a gradient magnetic field, illuminated by a
pair of counter-propagating laser beams tuned near two-photon Raman resonance. The down-going beam includes sidebands both to
the red and blue of the carrier (wy) in resonance at different spatial positions along e,. (b) Level diagram showing even and odd
sidebands linking the | ) and | | ) states with differing detuning from resonance at X = 0. (c) Spatially dependent coupling. Bottom:
different frequency components are in two-photon resonance in different X positions. Top: the recoil kick associated with the Raman
transition is along +e, and thus alternates spatially depending on whether the Raman transition is driven from the red or blue
sideband of the down-going laser beam.

between these beams contains frequency combs centered at & 6w with comb teeth spaced by 2w, as shown in
figure 1(b). In our proposal, the Raman lasers are tuned to be in nominal two-photon resonance with the
Zeeman splitting from the large offset field By such that grupBy = hdwy, making the frequency difference

w,_o — w'" resonant at X = 0, where B = B,,. Intuitively, each additional frequency component w, addsa
resonance condition at the regularly spaced points X,, = n/uv/g, j1 B', however, transitions using even-#
sidebands give a recoil kick opposite from those using odd-# sidebands (see figure 1(c)). Each of these coupling-
locations locally realizes synthetic magnetic field experiment performed at the National Institute of Standards
and Technology [26], arrayed in a manner to give a rectified artificial magnetic field with a nonzero average that
we will show is a novel flux lattice.

In practice only a finite number of lattice teeth are needed, owing to the finite spatial extent of a trapped
atomic gas. In rough numbers the spatial extent of a quantum degenerate gas is 20 ym, and if we select a very
large gradient corresponding to a lattice spacing of 0.5 p4m, this gives just 40 comb teeth. Generating the
frequency comb is straightforward. In the laboratory, acoustic-optical modulators (AOMs) frequency-shift laser
beams by an amount defined by a laboratory radiofrequency (rf) source. Therefore creating a comb is a matter of
first creating a frequency comb—simple with rf—and then feeding that signal into the AOM. This sort of
frequency synthesis is routine in the ultracold atom labs.

We formally describe our system by first making the rotating wave approximation (RWA) with respect to the
large offset frequency wy. This situation is modeled in terms of a spin-1/2 atom of mass M and wave-vector
K = —iV with aHamiltonian

H(t) = Hy+ V(¢). 1

The first term is
K2 AX)
Hy = + 03, 2

0= i 50 (@)
where A(X) = A'Xdescribes the detuning gradientalonge,,and os = | T )( T | — | | ){ | |isaPaulispin
operator. In the RWA only near-resonant terms are retained, giving the Raman coupling described by

V(t) — VOZ [ei(K(,Y—ant) + ei(—KOY—(2n+1)wt)] | l )( T | + Hc. (3)

The first term describes coupling from the sidebands with even frequencies 21w, whereas the second term
describes coupling from the sidebands with odd frequencies (2 + 1)w. The recoil kick is aligned along +e,
with opposite sign for the even and odd frequency components. In writing equation (3) we assumed that the
coupling amplitude V; and the associated recoil wavenumber K are the same for all frequency components. The

2
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coupling Hamiltonian V(¢) and therefore the full Hamiltonian H(#) are time-periodic with period 27 /w, and we
accordingly apply Floquet techniques.

3. Theoretical analysis

The outline of this section is as follows. (1) We begin the analysis of the Hamiltonian given by equation (1) by
moving to dimensionless units; (2) subsequently derive an approximate effective Hamiltonian from the single-
period time evolution operator; (3) provide an intuitive description in terms of adiabatic potentials; and (4)
finally solve the band structure, evaluate its topology and discuss possibilities of the experimental
implementation.

3.1. Dimensionless units

For the remainder of the manuscript we will use dimensionless units. All energies will be expressed in units of
/iw, derived from the Floquet frequency w; time will be expressed in units of inverse driving frequency w™ ',
denoted by 7 = wt; spatial coordinates will be expressed in units of inverse recoil momentum Ky *, denoted by
lowercase letters (x, y) = Ky(X, Y). In these units, the Hamiltonian (1) takes the form

H(1/w)
Jaw

h(t) = = E k> + %Q(T) .o, 4)

where E, = /2K{ /(2M/iw) is the dimensionless recoil energy associated with the recoil wavenumber Ky;
k = K /K is the dimensionless wavenumber. The dimensionless coupling

Qx, y, 7) = QRe u(y, 7), 2Im u(y, 1), Bx) 5)

includes a combination of position-dependent detuning and Raman coupling. Here § = A/ (/awk,) describes
the linearly varying detuning in dimensionless units; the function u(y, 7) = w>_, {exp[i(y — 2n7)]
+ expli(—y — (2n + 1)7)]} isa dimensionless version of the sum in equation (3) with vy = V; /(/w).

In the time domain the coupling given by equation (5) is

%Q(T) SO = %ﬁxc‘g + Z vi(y)o(r — 7, (6)
1

with
v(y) = mole?” + (=D ] 1) (1] + H.c. (7)

In this way we have separated the spatial and temporal dependencies in the coupling (6).

3.2. Effective Hamiltonian
We continue our analysis by deriving an approximate Hamiltonian that describes the complete time evolution
over asingle period from7 = 0 — eto 7 = 2w — ¢ with ¢ — 0. This evolution includes a kick v, at the
beginning of the period 7, = 0 and a second kick v; in the middle of the period 7 = ; between the kicks the
evolution includes the kinetic and gradient energies. In the full time period, the complete evolution operator is a
product of four terms:

U@r, 0 =limUQr — €, 0 — €) = UyUGLU U (8)

e—0

Here
UO = exp{—iW[Erkz + %Ug,ﬂ){l} (9)
is the evolution operator over a half period, generated by kinetic energy and gradient. The operator

Uy = exp[—iv(»)] (10)

describes akickat 7 = Ir.

We obtain an effective Hamiltonian by assuming that the Floquet frequency w greatly exceeds the recoil
frequency, 1 > E,, allowing us to ignore the commutators between the kinetic energy and functions of
coordinates in equation (8). We then rearrange terms in the full time evolution operator (8) and obtain (see
appendix)

Uetr = exp [{ —12m ([E;k? + ver)]1}, (11)
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where vgis an effective coupling defined by
exp ( _ izTrVeff) —_ e—iﬁ(rgﬂx/Z Ulgilc)ke—imrgﬂx/Z Ulg?c)k ( 12)

The function v,(y) entering the kick operators U, is spatially periodic along the y direction with a period
27. This period can be halved to 7 by virtue of a gauge transformation U = exp(—iyos /2). Subsequently, when
exploring energy bands and their topological properties, this prevents problems arising from using a twice larger
elementary cell. Following this transformation the evolution operator becomes

Uet = exp {—i2m[Ec(k + 03€,/2)* + Verr]}, (13)

where v(y) featured in the kick operators U, has now the spatial periodicity 7 along the y direction, i.e. it
should be replace to

vi(y) = mvele + (=11 | }( 1| + Hec. (14)

The algebra of Pauli matrices allows us to write the effective coupling v.¢ (r) featured in the evolution
equations (12) and (13) as:

Vet () = %nefm .o, (15)

where Qe = (Qer 1, Qeft2, $2efr 3) 1S a position-dependent effective Zeeman field which takes the analytic form
exp (—127vefr) = g, — iq,01 — iq,07 — ig,03. (16)
Here qo, 41, 9> and g5 are real functions of the coordinates (x, ), allowing to express the effective Zeeman field as

Qe = 12 _arccos o> (17)

llqll
where q is a shorthand of a three dimensional vector (41, 42, 43). In general the equation (16) gives multiple
solutions that correspond for different Floquet bands. Our choice (17) picks only to the two bands that lie in the
energy window from —1/2 to 1/2 covering a single Floquet period.
Comparing (12) and (16) and multiplying four matrix exponents give explicit expressions

q, = cosf, cosf, cos(m3x), (18)
q, = sinf cosf, cos(y + m0x) — cosf sinf, sin(y), (19)
q, = sinf cosf, sin(y + 70x) + cosf, sinf, cos(y), (20)
q; = cosf; cos f, sin(mfx) — sinf, sinf, (21)
with
fi(y) = 2w cos(y), (22)
L) = 2wy sin(y). (23)

These explicit expressions show that the resulting effective Zeeman field (17) and the associated effective
coupling (15) are periodic along both e, and e,, with spatial periods a, = 2/3 and a, =  respectively.
Therefore, although the original Hamiltonian containing the spin-dependent potential slope oxxos is not
periodic along the x direction, the effective Floquet Hamiltonian is. The spatial dependence of the Zeeman field
components e 1, efr 2 and e 3 is presented in the figure 2 for 5 = 0.6 giving an approximately square unit
cell. In figure 2 we select vy = 0.25 where the absolute value of the Zeeman field €2 is almost uniform, as is
apparent from the nearly flat adiabatic bands shown in figure 3 below.

3.3. Adiabatic evolution and magnetic flux
Before moving further to an explicit numerical analysis of the band structure, we develop an intuitive
understanding by performing an adiabatic analysis of motion governed by effective Hamiltonian

1
hege (r) = Er(k + U3ey/2)2 + Eﬂeff - o (24)

featured in the evolution operator U,g, equation (13). The coupling field €24 (r) is parametrized by the spherical
angles 6 (r) and ¢ (r) defined by

cosf = Lo , (25)
eff
Q
tan ¢ = —ar2 (26)
eff, 1
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(a)

3

Figure 2. Coupling components (a) s, 1 (1), (b) Qef2(r) and () Qegr3(r) for vo = 0.25and § = 0.6 calculated using equations (17)—
(23). The corresponding eigenvalues of the coupling v4.(r) = £ /2 are presented by the thick red solid lines in the figure 3.

vt
(a) (b)
! I~ P =
1ol \/ \/ ()
N @ PN
_1/2k S~ S~
e N

Figure 3. Adiabatic Floquet potentials given by equation (29) for 3 = 0.6 ys. (a) Thin black dotted lines denote the spin-dependent
gradient slopes without including the Raman coupling (vo = 0); (b) thin blue solid lines denote effective adiabatic potentials for weak
Raman coupling (vy = 0.05) (c) red solid lines denote nearly flat adiabatic potentials that are achieved for stronger Raman coupling
(vo = 0.25). All the curves are projected into x plane for various y values. A weak y dependence of the adiabatic potentials is seen to
appear in the strong coupling case (c) making the superimposed red lines thicker.

This gives the effective coupling [12]
1 1 —i¢ gj
Eﬂeff co = EQeff[ cosf e Sme], (27)

characterized by the position-dependent eigenstates

| cos(0/2) \_[—esin(8/2)
)= (ei¢sin (0/2)]’ =)= ( cos (6/2) ] 28)
The corresponding eigenvalues
() = £, (29)

are shown in figure 3 for various value of the Raman coupling v,. As one can see in figure 3, for vy = 0.25 the
resulting bands v.(r) (adiabatic potentials) are flat and have a considerable gap ~w/2, a regime suitable for a
description in terms of an adiabatic motion in selected bands [27].

As in [28], we consider the adiabatic motion of the atom in one of these flat adiabatic bands with the
projection Schrodinger equation that includes a geometric vector potential

AL(r) = :I:%(cos@ — 1)V (30)

This provides a synthetic magnetic flux density B.(r) = V x A.(r). The geometric vector potential A, (r)
may contain Aharonov—Bohm type singularities, that give rise to a synthetic magnetic flux over an elementary
cell
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Total flux = 27
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Figure 4. Geometric flux density B.(r) = V x A, (r) computed for vy = 0.25 and § = 0.6 using equation (30). The overall spatial
structure of this flux density does not depend on the gradient g; rather it scales with the corresponding lattice constant a, = 2/3.

ap=-3% ygngul dr - AL(r). (1)

The singularities appear at points where § = 7, where the angle ¢ and its gradient V¢ are undefined and

cos) = —1.Theterm cos @ — 1in(30)is nonzero and does not remove the undefined phase V¢. Our unit cell
contains two such singularities located at r = (a,, 3a,) /4and r = (3a,, a,) /4, containing the same flux;, so that
they do not compensate each other, giving the synthetic magnetic flux +27 in each unit cell. Note that usually
the optical lattices are sufficiently deep, and the +27 flux per elementary is topologically trivial. In that case the
tight binding model can be applied, with the tunneling taking place only between the nearest-neighboring sites
of the square plaquette. The 427 flux over the square plaquette can then be eliminated by a gauge
transformation. Yet if the lattice is shallow enough, the tight binding model is not applicable and the above
arguments do not work. In the present situation, the most interesting topological lattice appears for a flat
adiabatic trapping potential shown by a solid red curve in figure 3. In such a situation there are no well defined
lattice sites, and the +27 flux per elementary cell results in topologically non-trivial bands explored in the next
subsection.

For aweak coupling (such as v = 0.05) the geometric flux density B(r) = B.(r) is concentrated around the
intersection points of the gradient slopes shown in in figure 3 and has a very weak y dependence. With increasing
the coupling v, the flux extends beyond the intersection areas and acquires a y dependence. Figure 4 shows the
geometric flux density B(r) = B (r) for the strong coupling (vo = 0.25) corresponding to the most flat
adiabatic bands. In this regime the flux develops stripes in the x direction and has a strong y dependence. For the
whole range of coupling strengths 0 < vy < 1/2 the total synthetic magnetic flux per unit cell is 27 and is
independent of the Floquet frequency wand the gradient .

Now let us discuss the effect of an extra spin-independent trapping potential. The present scheme requires a
large spin-dependent energy gradient which would have a huge influence on the relative trapping for the two
spin states without the Raman coupling or for a weak Raman coupling. In that case one would expect that the
stable positions for any trapped sample of the two spin states would live at entirely distinct locations, possibly
with no overlap. Yet we are interested mostly in a sufficiently strong Raman coupling where the two spin states
get mixed, and the atomic motion takes place in almost flat adiabatic potentials shown in red in figure 3.
Therefore the atoms are no longer affected by the steep spin-dependent potential slopes, and the spin-
independent trapping potential would not cause separation of different spin states. Instead, the extra spin-
independent parabolic trapping potential would simply make the flat adiabatic trapping potentials parabolic. Of
course, one needs to be all the time in the regime where the Raman coupling is strong compared to the
characteristic energy of the spin-dependent potential slope. That is why we propose to introduce the spin-
dependent potential gradient only at the final stage of the adiabatic protocol discussed in section 3.5.

3.4.Band structure and Chern numbers

We analyze the topological properties of this Floquet flux lattice by explicitly numerically computing the band
structure and associated Chern number using the effective Hamiltonian (24) without making the adiabatic
approximation introduced in section 3.3. Again the gradient of the original magnetic field is such that we
approximately get a square lattice, 3 = 0.6. Furthermore, we choose the Floquet frequency to be ten times larger
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Figure 5. Left: band structure calculated using the effective Hamiltonian (24) for vy = 0.25, § = 0.6 and E, = 0.1. Right: the band gap
A, between the first and second bands for E, = 0.1 and various values of vy and (3. The letters A, B and C indicate the regions where
the Chern numbers of the first three bands correspond to the right, middle and left parts of the figure 6.
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Figure 6. Dependence of Chern number for the bands calculated using the effective Hamiltonian (24) on the coupling strength v, for
(8 = 0.6 and E; = 0.1. Here we present the Chern numbers c;, ¢, and c; of the three lowest bands.

than the recoil energy, E; = 0.1. Note that one can alter the length of the plaquette along the x direction (and
thus the flux density) by changing 3 representing the potential gradient along the x axis.

First, let us consider the case where v, = 0.25 corresponding to the most flat adiabatic potential. In this
situation the Chern numbers of the first five bands appear to be equal to the unity, as one can see in the left part of
figure 5. Thus the Hall current should monotonically increase when filling these bands. This resembles the QHE
involving the Landau levels. Second, we check what happens when we leave the regime v, = 0.25 where the
adiabatic potential is flat, and consider lower and higher values of the coupling strength v,. Near vy = 0.175 we
find a topological phase transition where the lowest two energy bands touch and their Chern numbers change to
c; = 0and ¢, = 2, while the Chern numbers of the higher bands remain unchanged, illustrated in figure 6. Ina
vicinity of vy = 0.3 there is another phase transition, where the second and third bands touch, leading to a new
distribution of Chern numbers: ¢; = 1,¢; = — 1,¢3 = 3,¢4 = 1. Interestingly the Chern numbers of the
second and the third bands jump by two units during such a transition.

Finally, we explore the robustness of the topological bands. The right part of figure 5 shows the dependence
of the band gap A, between the first and second bands on the coupling strength v, and the potential gradient 3.

7
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One can see that the band gap is maximum for v, = 0.25 when the adiabatic potential is the most flat. The gap
increases by increasing the gradient 3, simultaneously extending the range of the v, values where the band gap is
nonzero. Therefore to observe the topological bands, one needs to take a proper value of the Raman coupling

vo & 0.25 and a sufficiently large gradient 3, suchas § = 0.6.

We now make some numerical estimates to confirm that this scheme is reasonable. We consider an
ensemble of ¥Rb atoms, with[1) = |f = 2, mp = 2)and|]) = |f = 1, mr = 1); the relative magnetic
moment of these hyperfine states is ~2.1 MHz G !, where 1 G = 10~ *T. For a reasonable magnetic field
gradient of 300 G/cm, thisleads to the &'/ /7 = 27 x 600 MHz cm~! = 27 x 60 kHz pm~!detuning
gradient. For 8’Rb with A = 790 nm laser fields the recoil frequency is w, /27 = 3.5 kHz. Along with the driving
frequency w = 10w,, this provides the dimensionless energy gradient § = A/ (/awkq) ~ 1.3, allowing easy
access to the topological bands displayed in figure 5.

3.5. Loading into dressed states

Adiabatic loading into this lattice can be achieved by extending the techniques already applied to loading into
Raman dressed states [29]. The loading technique begins with a Bose—Einstein condensate (BEC) in the lower
energy| | ) state in a uniform magnetic field By. Subsequently one slowly ramps on a single off resonance RF
coupling field and the adiabatically ramp the RF field to resonance (at frequency éw). This RF dressed state can be
transformed into a resonant Raman dressed by ramping on the Raman lasers (with only the wy + 6w frequency
onthe k™ laser beam) while ramping off the RF field. The loading procedure then continues by slowly ramping
on the remaining frequency components on the k~ beam, and finally by ramping on the magnetic field gradient
(essentially according in the lattice sites from infinity). This procedure leaves the BEC in the g = 0 crystal
momentum state in a single Floquet band.

4. Conclusions

Initial proposals [30-32] and experiments [26] with geometric gauge potentials were limited by the small spatial
regions over which these existed. Here we described a proposal that overcomes these limitations using laser
coupling reminiscent of a frequency comb: temporally pulsed Raman coupling. Typically, techniques relying on
temporal modulation of Hamiltonian parameters to engineer lattice parameters suffer from micro-motion
driven heating. Because our method is applied to atoms initially in free space, with no optical lattice present,
there are no a priori resonant conditions that would otherwise constrains the modulation frequency to avoid
transitions between original Bloch bands [25].

Still, no technique is without its limitations, and this proposal does not resolve the second standing problem
of Raman coupling techniques: spontaneous emission process from the Raman lasers. Our new scheme extends
the spatial zone where gauge fields are present by adding sidebands to Raman lasers, ultimately leading to a
oc/N increase in the required laser power (where N is the number of frequency tones), and therefore the
spontaneous emission rate. As a practical consequence it is likely that this technique would not be able reach the
low entropies required for many-body topological matter in alkali systems [ 13], but straightforward
implementations with single-lasers on alkaline-earth clock transitions [33, 34] are expected to be practical.
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Appendix. Stroboscopic evolution operator

The stroboscopic evolution operator (8) reads explicitly
—i 21 - = 21, .
UQ@n, 0) = U UL U UYL, = e i Bk Jon | i) | Bk e[t (32)

In the main we have approximated the evolution operator by equation (11). To estimate the validity of the latter
equation, let us make use of the Baker—Campbell-Hausdorff formula

eXe¥ =eZ with Z=X+ Y—|—%[X, Y]+ ... (33)
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and consider this expansion up to the leading term %[X , Y], essentially the second term in the Magnus
expansion.
Neglecting the commutation between E, k? and 030x, one can write

: 1 . [
Uy = eflﬂ'[Erszrstﬁx] ~ e—urErkzefl%@dx. (34)

The error in doing so is approximately —i%Er Boslx, k*] = gEr Bk, 03.Since E; 3 < 1, this provides a small
momentum shift along the x direction. Furthermore, we shall neglect the commutation between E, k? and v/(y).
The error in doing so is approximately figEr 0xy[y» k*] = mE,k, 03. Since the Floquet frequency w greatly
exceeds the recoil frequency E; < land 8 < 1, this also provides a small momentum shift along the y direction.
With these assumptions, one has

U@, 0) = UyUSL Uy Uy ~ e 2mEkei2mua,

where

e*izﬂveff — efiﬂa;@x/Zefivl ) e7i7r03 ﬁx/Zefivo(y)_

Finally under the above assumptions one can merge the exponents in U (27, 0), giving equation (11).
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