Vilniaus universitetas

 ${\rm Alexey}\;{\rm Smirnov}$

ŽMOGAUS KARBOANHIDRAZIŲ IZOFORMŲ IR JŲ SĄVEIKŲ SU SLOPIKLIAIS KRISTALOGRAFINIAI TYRIMAI

DAKTARO DISERTACIJA

Technologijos mokslai, chemijos inžinerija ($05~{\rm T})$

Vilnius, 2018

Disertacija rengta Vilniaus universiteto Biotechnologijos institute 2013-2017 metais.

Mokslinis vadovas:

Prof. dr. Daumantas Matulis (Vilniaus universitetas, technologijos mokslai, chemijos inžinerija

- 05 T)

Mokslinis konsultantas:

Dr. Elena Manakova (Vilniaus universitetas, fiziniai mokslai, chemija - 03 P)

Padėka

Norėčiau nuoširdžiai padėkoti savo darbo vadovui prof. D. Matuliui už galimybę jo laboratorijoje atlikti doktorantūros tyrimus. Taip pat dėkoju prof. V. Šikšniui už tai, kad leido dirbti jo vadovaujamos laboratorijos kristalografų grupėje.

Dėkoju savo darbo konsultantei dr. E. Manakovai ir dr. S. Gražuliui už suteiktas žinias baltymų kristalografijos srityje. Didelis ačiū dr. V. Dudutienei ir dr. E. Čapkauskaitei už susintetintus naujus karboanhidrazių ligandus. Esu dėkingas V. Michailovienei, A. Mickevičiūtei, dr. J. Matulienei, dokt. J. Kazokaitei, A. Kasiliauskaitei, J. Jachno ir dr. V. Juozapaitienei už CA baltymų klonavimo ir išgryninimo darbus. Dėkoju dr. A. Zubrienei, dr. V. Morkūnaitei, M. Kišonaitei už atliktus baltymo-ligando jungimosi matavimus.

Dėkoju Biotermodinamikos ir vaistų tyrimų bei Baltymų–nukleorūgščių sąveikos tyrimo skyrių darbuotojams ir studentams už draugišką atmosferą.

Esu dėkingas savo šeimai už palaikymą ir visokeriopą pagalbą. Labai ačiū mylimai žmonai Evelinai už tikėjimą manimi, disertacijos skaitymą ir pastabas.

Alexey

Turinys

	SANTRUMPOS					
	ĮVA	VADAS				
1	\mathbf{LIT}	FERATŪROS APŽVALGA				
	1.1	Žmoga	aus karboanhidrazės (CA) ir jų izoformos	11		
	1.2	CA ve	ikimo mechanizmas	14		
	1.3	3 Žmogaus CA kristalinės struktūros		15		
		1.3.1	CA I	15		
		1.3.2	CA II	16		
		1.3.3	CA IV	18		
		1.3.4	CA VI	18		
		1.3.5	CA IX	18		
		1.3.6	CA XII	19		
		1.3.7	CA XIII	19		
	1.4	Žmoga	aus CA slopikliai	19		
		1.4.1	CA slopiklių klasės	20		
	1.5	Sulfon	amidiniai slopikliai ir jų savybės	23		
	1.6	Molek	ulinis atpažinimas, tarpmolekulinių sąveikų tipai	24		
		1.6.1	Elektrostatinės sąveikos	24		
		1.6.2	Van der Valso sąveikos (VdV)	25		
		1.6.3	Vandeniliniai ryšiai	25		
		1.6.4	Halogeninis ryšys ir daugiapoliarinė sąveika	26		
		1.6.5	Hidrofobinė sąveika	26		
		1.6.6	Aromatinių sistemų specifinės sąveikos	26		
		1.6.7	Tirpiklio įtaka jungimuisi, struktūrinės (kristalinės) ir tirpiklio fazės van-			
			dens molekulės	27		
	1.7	Jungimosi termodinamika ir jos analizė				
 1.8 Kristalinės vandens molekulės 1.9 Sulfonamidinių slopiklių tikrin 1.10 Baltymo-ligando sąveikos tyrin 		Krista	linės vandens molekulės CA izoformų aktyviajame centre	32		
		Sulfon	amidinių slopiklių tikriniai jungimosi parametrai	34		
		Baltyr	no-ligando sąveikos tyrimų rezultatų lūkesčiai ir realijos	34		
	1.11	Baltyr	nų kristalografijos metodo taikymas vaistų kūrime \hdots	35		
2	ME	DŽIA	GOS IR METODAI	36		
2.1 Naudoti prietaisai, medžiagos		Naudo	ti prietaisai, medžiagos	36		
		2.1.1	Naudoti prietaisai	36		
		2.1.2	Naudoti reagentai	36		
		2.1.3	Baltymai	38		

	2.2	Metod	ai	39
		2.2.1	Žmogaus CA I, II, IV, VA, VB, VI, VII, IX, XII ir XIII izoformų	
			kristalinimas	39
		2.2.2	Slopiklio molekulės įvedimas į CA kristalus	41
		2.2.3	Difrakcijos duomenų rinkimas	42
		2.2.4	Difrakcijos vaizdų apdorojimas, fazių problemos sprendimas	42
		2.2.5	BSA ir ASA paviršių plotų apskaičiavimas	45
3	3 Eksperimentų rezultatai ir jų aptarimas			
		3.0.1	Doktorantūros metu iš spręstos CA-ligando komplekso kristalinės struktūros	46
3.1 Baltymo-ligando kompleksų kristalinių struktūrų ir tikrinių jungimosi				
koreliacija		acija	52	
		3.1.1	Jungimosi palyginimas naudojant užklotas molekulines poras	56
		3.1.2	Hidrofobinių grupių įtaka ligando jungimosi termodinamikai: struktūriškai	
			panašiai besijungiantys ligandai	59
		3.1.3	Hidrofobinių grupių įtaka ligando jungimosi termodinamikai: struktūriškai	
			skirtingai besijungiantys ligandai	67
		3.1.4	Aromatinis-alifatinis ryšys ir jo įtaka jungimosi stiprumui	73
		3.1.5	CA IX atrankūs slopikliai	76
	IŠV	ADOS		85
	Mol	kslinių	darbų sąrašas	86

SANTRUMPOS

BVTS Biotermodinamikos ir vaistų tyrimų skyrius CA žmogaus karboanhidrazė CARP į karboanhidrazę panašus baltymas (angl. carbonic anhydrase-related protein) PDB ID baltyminių struktūrų duomenų bazės baltymo struktūrą žymintis kodas (angl. Protein Data Bank) FTSA fluorescencinis terminio poslinkio metodas (angl. Fluorescence thermal shift assay) HEPES 2-[4-(2-hidroksietil)piperazin-1-il]etansulfoninė rūgštis ITC izoterminė titravimo kalorimetrija (angl. Isothermal titration calorimetry) K_i slopinimo pusiausvyros konstanta MES 2-(N-morfolino)etansulfoninė rūgštis PEG polietilenglikolis PEG2000mme polietilenglikolio metilo eteris (vidutinė molekulinė masė 2.000) SPR paviršiaus plazmono rezonansas (angl. Surface plasmon resonanse)

 \boldsymbol{T}_m lydymosi temperatūra

VdV van der Valso jėgos (sąveikos)

ĮVADAS

Šiuo metu farmacijos bendrovėse, o taip pat ir mokslo tyrimų institucijose nauji vaistai dažniausiai iš pradžių yra kuriami pasirenkant molekulinį taikinį, kurį turėtų veikti vaisto molekulė, kad padėtų gydyti norimą ligą. Molekulinis taikinys dažniausiai būna baltymas, kurio raiška dėl ligos gali būti padidėjusi. Tokiu atveju vaistinė medžiaga (ligandas) turėtų dideliu giminingumu jungtis prie baltymo-taikinio ir grįžtamuoju būdu slopinti (inhibuoti) baltymo funkciją. Jei baltymas yra fermentas, reikėtų slopinti jo katalizinį aktyvumą. Šiuolaikiniai bioinformatiniai metodai vis dar nėra išsivystę iki tokio lygio, kad remiantis taikinio struktūra, būtų galima surasti ligandą, kuris atrankiai slopintų reikiamą taikinį. Molekulinis atpažinimas lieka nepilnai suprastu reiškiniu. Vaistų kūrimas negali apsieiti be šiuolaikinių biofizikinių metodų, kurie padeda detaliai analizuoti sąveikas tarp baltymų ir ligandų. Baltymų kristalografija yra vienas iš plačiausiai naudojamų struktūrinių metodų, kurių pagalba galima nustatyti atominę baltymo makromolekulės struktūros yra įrodymas, kad tiriamas ligandas jungiasi baltymo aktyviajame centre. Be to, ligando ir baltymo sąveikos struktūrinė informacija yra labai svarbi atrankaus jungimosi mechanizmo nustatymui.

Kaip taikinys vaistų kūrimui buvo pasirinktos žmogaus karboanhidrazės (CA, 4.2.1.1), kurios priklauso didelei metalo fermentų šeimai, kuri randama visose gyvose ląstelėse. Jos katalizuoja anglies dioksido hidratacijos reakciją, kai CO₂ molekulė yra verčiama į du vandenyje tirpius jonus (HCO₃⁻ ir protoną). Žmogaus karboanhidrazės priklauso α -šeimai ir yra svarbios įvairiems fiziologiniams ir patologiniams procesams. Žmogaus genomas turi 15 CA izoformų, iš kurių 12 pasižymi kataliziniu aktyvumu. Yra išskiriama keletas CA izoformų, kurių veikla esant tam tikroms sąlygoms, siejama su sunkiais susirgimais (pvz., su vėžio progresavimu susijusios CA IX ir CA XII [Frost and McKenna, 2014, Lou et al., 2011, Pettersen et al., 2014]) ir kurios yra farmakologiškai tyrinėjamos. CA XII yra žinoma kaip antiglaukominis taikinys.

Šiame darbe buvo tiriami naujai susintetinti pirminiai sulfonamidiniai slopikliai. Sulfonamidai ir jų dariniai priklauso gana senai CA slopiklių klasei, kurios junginiai yra gana sėkmingai naudojami įvairių negalavimų, susijusių su CA izoformų veikla, gydymui. Nepaisant to, atrankių CA slopiklių kūrimas vis dar yra aktualus dalykas, ypač kalbant apie CA IX ir CA XII, kurios yra susijusios su vėžio progresavimu. Atrankūs junginiai turi mažesnę vaisto šalutinių poveikių pasireiškimo tikimybę ir leidžia kombinuoti juos su kitais preparatais.

CA izoformų aktyvieji centrai tarpusavyje yra struktūriškai panašūs [Pinard et al., 2015b]. CA aktyvusis centras yra lokalizuotas baltymo paviršiaus kūginės formos įduboje, kurios gylis ir plotis yra apie 15 Å. Įdubos dugne yra lokalizuotas tetraedrinis trijų histidinų ir Zn(II) kompleksas. Izoformų aktyviųjų centrų panašumai apsunkina itin mažų koncentracijų diapazone veikiančio slopiklio kūrimą (K_d yra nM ar net pM eilės), kuris būtų atrankus tik tam tikrai vienai CA izoformai.

Detalesnei baltymo ir ligando tarpmolekulinių sąveikų analizei buvo panaudotas baltymų kristalografijos metodas, kurio pagalba buvo nustatytos atominės skiriamosios gebos baltymoligando komplekso kristalinės struktūros. Kompleksai buvo kristalinami su penkiomis CA izoformomis (CA I, CA II, CA IV, CA XII ir CA XIII) ir dviem CA II mutantiniais baltymais. BVTS buvo sukurti CA II mutantiniai baltymai (chimeriniai baltymai), kai taškinių mutacijų pagalba buvo bandoma imituoti CA IX ir CA XII aktyviuosius centrus. CA II mutantinių baltymų kūrimas remiasi CA izoformų aktyviojo centro aukšto laipsnio struktūriniais panašumais [Pinard et al., 2015b]. Kaip tyrinėjimo modelis, CA II mutantiniai baltymai galėtų būti ypač aktualūs, kai tikslinės CA izoformos gryninimo išeiga yra labai maža arba gryninimo kaštai yra dideli. Be to, CA II mutantinių baltymų kristalų savybės turėtų būti panašios į CA II kristalų savybes.

Tiriami ligandai buvo susintetinti BVTS dr. V. Dudutienės ir dr. E. Čapkauskaitės. Ligandų ir CA izoformų aktyviųjų centrų sąveikos struktūrinius parametrus buvo siekiama susieti su *tikriniais* jungimosi termodinaminiais parametrais. Kaip žinoma, sulfonamidinių slopiklių stebimieji jungimosi termodinaminiai parametrai priklauso nuo eksperimento sąlygų (pH ir buferinės medžiagos) bei baltymo ir ligando fizikinių savybių (pK_a ir protonizacijos entalpijos). Buvo analizuojami *tikriniai* ligando jungimosi prie taikinio termodinaminiai parametrai, kurie aprašo tik tiriamo ligando sąveiką su CA.

Darbo tikslas: Nustatyti keleto CA izoformų kompleksų su eile sulfonamidinių slopiklių kristalines struktūras, naudojant Rentgeno struktūrinės kristalografijos metodą. Išspręstose kompleksų struktūrose išnagrinėti ligandų sąveikas su CA baltymu ir nustatyti sąveikos mechanizmus, kurie lemia atrankų bei stiprų jungimąsi prie CA izoformų bei ieškoti jungimosi struktūros-termodinaminių parametrų koreliacijų.

Darbo uždaviniai:

- (1) nustatyti CA IV, CA VA, CA VB, CA VI, CA VII ir CA IX kristalinimo sąlygas;
- (2) spręsti CA izoformų ir CA II mutantinių baltymų kompleksų su naujai susintetintais aromatiniais sulfonamidais kristalines struktūras;
- (3) nustatyti struktūrinius jungimosi faktorius, kurie sąlygoja junginio VD11-4-2 atrankumą CA IX, lyginant su kitomis CA izoformomis – CA I, CA II, CA XII ir CA XIII;
- (4) išnagrinėti slopiklių išsidėstymą CA izoformų aktyviajame centre, nustatyti kontaktus bei sąveikos rūšis su baltymo aminorūgštimis. Ieškoti koreliacijų tarp ligando sąveikos su taikiniu struktūrinių parametrų ir jungimosi *tikrinių* termodinaminių parametrų kristalinėse struktūrose.

Darbo mokslinis naujumas ir praktinė vertė:

- (1) Šiame darbe buvo publikuota 61 kristalinė struktūra PDB duomenų bazėje. Tai buvo naujai susintetintų sulfonamidinių slopiklių kompleksai su penkiomis CA izoformomis (CA I, CA II, CA IV, CA XII, CA XIII) ir dviem CA II mutantiniais baltymais. Didžiausią CA izoformų dalį PDB duomenų bazėje sudaro ligandų kompleksai su CA II (apie 500, iš kurių 25 mano spręsti). Mano spręsti ligandų kompleksai su CA XII ir CA XIII sudaro pagrindinę dalį iš visų kompleksų su CA XII (14 iš 17) ir CA XIII (12 iš 14) PDB duomenų bazėje. Daugeliui ligandų yra išspręsta daugiau nei viena struktūra su skirtingomis CA izoformomis, tai yra svarbu atrankaus jungimosi prie taikinio mechanizmų tyrimams. Buvo papildyta CA I (4 iš 25) ir CA IV (1 iš 10) kompleksų su ligandais įvairovė.
- (2) Gautos kompleksų kristalinės struktūros buvo detaliai ištirtos. Nustatyti sąveikų tipai ir tiriamų ligandų jungimosi CA aktyviajame centre būdai. Pasiūlyti ligandų sąveikos su taikiniu mechanizmai, kurie paaiškina jungimosi giminingumą. Tiriant jų kompleksų kristalines struktūras, buvo paaiškintas atrankių CA IX ligandų jungimasis.
- (3) Buvo nustatytos ir aprašytos jungimosi termodinaminių parametrų pokyčių tendencijos struktūriškai panašiems junginiams. Tai yra svarbu naujų junginių su norimomis savybėmis kūrimui.
- (4) Šiuolaikiniai bioinformatiniai ligando-baltymo jungimosi tyrimo metodai negali apsieiti be eksperimentinių duomenų. Kristalinėse struktūrose yra nustatoma, kaip ligandas sąveikauja su taikinio molekuliniu paviršiumi. Literatūroje kiekvienam ligando-CA izoformos kompleksui yra pateikti jungimosi termodinaminiai parametrai, kai kuriems iš jų yra įvertinti jungimosi kinetikos parametrai. Kristalografiniai, termodinaminiai ir kinetiniai jungimosi parametrai sudaro kokybišką duomenų rinkinį bioinformatiniams ligando-baltymo jungimosi tyrimams.

Ginamieji disertacijos teiginiai:

- (1) Atrankus CA IX ligandas VD11-4-2 prie CA IX aktyviojo centro jungiasi kitaip nei prie CA I, CA II ir CA XIII aktyviųjų centrų. Ligando VD11-4-2 meta-padėties ciklooktilo žiedas sudaro sąveiką su CA IX aktyviojo centro hidrofobine dalimi, kas CA I, CA II ir CA XIII aktyviuosiuose centruose nėra įmanoma dėl struktūrinių skirtumų tarp aktyviųjų centrų.
- (2) chCA IX (CA II daugybinis mutantas, kurio aktyvusis centras panašus į CA IX aktyvųjį centrą) aktyvusis centras nepilnai atkartoja CA IX aktyviojo centro molekulinį paviršių jo hidrofobinėje dalyje.
- (3) Jei para-pakeistas junginys ir papildomu pakaitu modifikuotas junginys prie taikinio aktyviojo centro jungiasi kristalografiškai panašiai, tai to papildomo hidrofobinio paviršiaus

pridėjimas dažniausiai nepakeičia junginio jungimosi stiprumo, bet entalpija ir entropija keičiasi stipriai bei dažniausiai yra nustatomas entalpijos-entropijos kompensavimo reiškinys, kai nepalankų jungimuisi entalpijos indėlio pokytį kompensuoja entropijos indėlio pokytis. Skirtingai prie taikinio besijungiančiam modifikuotam ir pradiniam ligandui jungimosi termodinamikos pokyčiai gali būti įvairūs.

1 LITERATŪROS APŽVALGA

Karboanhidrazės yra didelė šeima metalo fermentų, kurie katalizuoja anglies dioksido hidratacijos reakciją (EC 4.2.1.1). Savaiminė anglies dioksido hidratacijos reakcija, kurios metu mažiau tirpi neutrali CO₂ molekulė yra verčiama į du vandenyje gerai tirpius jonus (bikarbonatą ir protoną), yra lėtas procesas. Karboanhidrazės pagreitina CO₂ dujų apykaitos procesą, versdamos CO₂ molekules į jonus. Karboanhidrazės dalyvauja pH homeostazės procese dėl katalizuojamos reakcijos metu atsirandančių protonų (H⁺).

2017 metais buvo išskiriamos septynios karboanhidrazių šeimos – α , β , γ , δ , ζ , η ir θ [Supuran, 2017a], tai trimis šeimomis daugiau nei 2008 metais [Supuran, 2008]. α -šeimos karboanhidrazės randamos stuburiniuose, pirmuonyse, daugumoje Gram-neigiamų bakterijų, jūržolėse, žaliųjų augalų citoplazmoje. β -šeimos karboanhidrazės yra plačiai paplitusios bakterijose, archėjose, grybuose ir augaluose (vienaskilčiuose ir dviskilčiuose). Archėjose, bakterijose ir kai kuriose cianobakterijose yra paplitusios γ -šeimos karboanhidrazės. δ -, ζ - ir θ -šeimų karboanhidrazės yra randamos titnagdumbliuose, η -šeimos karboanhidrazės yra aptinkamos pirmuonyse, kurie priklauso *Plasmodium* spp.

Titnagdumbliuose δ - ir ζ -šeimų karboanhidrazės yra svarbios CO₂ dujų fiksacijos iš aplinkos procesams. Panašu, kad θ -šeimos karboanhidrazės titnagdumbliuose yra svarbios fotosintezės procesui, vykstančiam titnagdumblio *Phaeodactylum tricornutum* tilakoiduose (chloroplasto dalis). η -šeimos karboanhidrazės veikla pirmuonyse yra mažai tyrinėta, gali būti, kad jos dalyvauja de novo purino/pirimidino biosintezės keliuose.

1.1 Žmogaus karboanhidrazės (CA) ir jų izoformos

Žmogaus CA izoformos priklauso α -šeimai, kurioje aptikta 15 izoformų. CA izoformos turi skirtingus katalizinius aktyvumus, pasiskirstymą ląstelėje (citoplazmoje, membranose ir mitochondrijose, yra sekretuojamos CA) ir audiniuose, raiškos lygius ir oligomerinę būseną (monomeras, dimeras) [Alterio et al., 2012, Supuran, 2008] (**Lentelė 1.1**). CA dalyvauja įvairiuose fiziologiniuose ir patologiniuose procesuose:

- (1) kvėpavimo procese CO_2/HCO_3 molekulių pernaša;
- (2) pH ir CO_2 homeostazėje;
- (3) biosintezės keliuose (gliukoneogenezėje, lipogenezėje, ureagenezėje);
- (4) kaulų rezorbcijoje, kalcifikacijoje;
- (5) elektrolito sekrecijoje į audinius ir organus;

(6) naviko formavime.

Trys iš 15 žmogaus CA izoformų yra lokalizuotos citoplazmoje ir neatlieka anglies dioksido hidratacijos reakcijos, nes nėra kataliziškai aktyvios. Neaktyvios CA izoformos (CARP: CA VIII, CA X ir CA XI) antrine, tretine baltymo struktūra yra analogiškos aktyvioms CA izoformoms, bet jų aktyviajame centre nėra konservatyvios Zn(II) joną surišančios struktūros – histidinų triados [Aspatwar et al., 2014]. Viena ar kelios histidinų triados aminorūgščių liekanos yra pakeistos kitomis aminorūgščių liekanomis. CARP katalizinis aktyvumas gali būti atkurtas, sugrąžinus histidinų triados struktūrą. CARP funkcijos iš dalies yra žinomos, jų molekuliniai paviršiai yra svarbūs kitų baltymų molekuliniam atpažinimui. Pavyzdžiui, yra žinoma, kad CARP VIII sąveikauja su inozitolio 1,4,5-trifosfato pirmo tipo receptoriumi (*angl.* inositol 1,4,5trisphosphate receptor type 1 (ITPR1)) ir reguliuoja jo funkciją [Aspatwar et al., 2014].

Kalbant apie aktyvias CA izoformas, penkios iš jų yra aptinkamos citoplazmoje – CA I, CA II, CA III, CA VII ir CA XIII. Keturios izoformos yra membraninės, iš kurių CA IV – paviršinė, CA IX ir CA XII – integraliosios ir CA XIV – inkarinė. Dvi izoformos yra lokalizuotos ląstelės organoiduose – mitochondrijose (CA VA ir CA VB). CA VI izoforma yra sekretuojama, pavyzdžiui, randama žmogaus burnos seilių sekrete [Patrikainen et al., 2014]. Membraninė CA IX izoforma dėl alternatyvaus splaisingo gali būti sutinkama dimerinėje ir monomerinėje būsenoje [Barathova et al., 2008].

CA	Pasiskirstymas	Ląstelinė	Katalizinis	Siejami susirgimai	Oligome-
	audiniuose/organuose	lokalizacija	aktyvu-		rinė
			${ m mas}$		būsena
Ι	eritrocituose, akyse,	citozolis	žemas	${ m makulos/smegenu}$	monomeras
	virškinamajame trakte			edema	
II	eritrocituose, akyse,	citozolis	aukštas	glaukoma,	monomeras
	${ m vir}$ škinamajame			edema, epilep-	
	trakte, inkstuose,			sija, aukštumų	
	smegenyse, plaučiuose,			ligos	
	kaulų osteoklastuose,				
	sėklidėse				
III	adipocituose, skeleto	citozolis	labai	oksidacinis stresas	monomeras
	raumenyse		žemas		

Lentelė 1.1: CA ir jų savybės. Lentelė sudaryta pagal duomenis iš [Alterio et al., 2012] apžvalgos.

IV	inkstuose, plaučiuose,	membrana	aukštas	glaukoma, pig-	monomeras
	smegenų kapil-			mentinis retinitas,	
	iaruose, akyse,			insultas	
	širdies raumenyje,				
	virškinamajame				
	trakte, gaubtinėje				
	žarnoje, kasoje				
VA	kepenyse	mitochon-	vidutinis	nutukimas	monomeras
		drijos			
VB	širdies ir skeleto	mitochon-	aukštas	nutukimas	monomeras
	raumenyse, ka-	drijos			
	soje, inkstuose,				
	virškinamajame				
	trakte, stuburo				
	${ m smegenyse}$				
VI	Seilių ir pieno liaukose	sekretas	vidutinis	ėduonis	monomeras
VII	centrinėje nervų siste-	citozolis	aukštas	epilepsija	monomeras
	moje				
VIII	centrinėje nervų siste-	citozolis	nėra	neurodegeneracinės	monomeras
	moje			ligos, vėžys	
IX	virškinamojo trakto	membrana	aukštas	vėžys	$\operatorname{dimeras}$
	gleivinėje, navikuose				
X	centrinėje nervų siste-	citozolis	$n\dot{e}ra$	nėra duomenų	monomeras
	moje				
XI	centrinėje nervų siste-	citozolis	$n\dot{e}ra$	nėra duomenų	monomeras
	moje				
XII	akyse, navikuose,	membrana	aukštas	vėžys	$\operatorname{dimeras}$
	inkstuose, žarnyno				
	epitelyje, smegenyse,				
	dauginimosi organų				
	epitelyje				
XIII	dauginimosi	citozolis	žemas	nevaisingumas	monomeras
	organuose, smegenyse,				
	plaučiuose, inkstuose,				
	žarnyne				
XIV	kepenyse, smegenyse,	membrana	vidutinis	epilepsija,	monomeras
	akyse, inkstuose			retinopatija	

1.2 CA veikimo mechanizmas

CA katalizuojamos reakcijos mechanizmas yra gerai žinomas. Pirmoji charakterizuota ir labiausiai tyrinėjama buvo CA II, todėl mechanizmo aprašyme bus naudojamos CA II aminorūgščių liekanos ir jų numeravimas (kaip kristalinėje struktūroje PDB ID: 1CA2). Pirmame paveiksle (**Pav. 1.1**) yra parodytas anglies dioksido hidratacijos reakcijos katalizės mechanizmas, kuris gali būti suskirstytas į keturias stadijas:

- CA aktyviajame centre esančio tetraedrinio komplekso "Histidinų triada–Zn(II)–OH⁻" hidroksido jonas OH⁻ yra paruoštas nukleofilinei atakai (Pav. 1.1 (1)).
- (2) Hidroksido jonas OH⁻, prisijungęs prie Zn(II), atakuoja CO₂ molekulę (**Pav. 1.1 (2**)). CO₂ molekulės surišimui yra svarbi hidrofobinė aplinka, kurią CA II aktyviajame centre formuoja Val121, Val143, Leu198 ir Trp209 šoninės grandinės. CA II-CO₂ kompleksas yra parodytas kristalinėje struktūroje 2VVB. CO₂ molekulės orientavimui prieš nukleofilinę ataką taip pat yra svarbios sąveikos su Zn(II) ir hidroksido jonu, esančiu komplekse su Zn(II).
- (3) Po nukleofilinės atakos susidaro bikarbonato jonas, kuris lieka prie Zn(II) jono (Pav. 1.1
 (3)). CA II-HCO₃⁻ kompleksas yra parodytas kristalinėje struktūroje 2VVB.
- (4) Aktyviojo centro vandens molekulė pakeičia bikarbonato joną prie Zn(II) jono (Pav. 1.1 (4)). Bikarbonato jonas palieka CA aktyvųjį centrą. Susidaręs kompleksas "Histidinų triada–Zn(II)–OH₂" nėra aktyvus, nes negali atlikti kitos CO₂ molekulės nukleofilinės atakos. Kita vandens molekulė ar Thr199 veikdami kaip bazė (kitaip tariant, protonų akceptorius) deprotonizuoja vandens molekulę, esančią komplekse su Zn(II). Deprotonizavimas ir protono išnešimas į buferį yra CA katalizuojamą reakciją limituojantys veiksniai [Ulmasov et al., 2000]. Protono išnešimui iš aktyviojo centro yra svarbi aminorūgštis His64, kuri yra konservatyvi tarp CA izoformų. Jos (His64) šoninė grandinė yra sutinkama CA izoformų kristalinėse struktūrose dviejose pozicijose. His64 aminorūgšties šoninė grandinė gali būti nukreipta į aktyviojo centro vidų arba sudaryti π-π sąveiką su triptofano šonine grandine (Trp5). Aminorūgščių His10, His15, His17, His3 ir His4 (CA II) šoninės grandinės dalyvauja tolimesniame protono pernešime iš aktyviojo centro į buferį.

Pav. 1.1: Žmogaus CA anglies dioksido hidratacijos reakcijos mechanizmas. 1) Komplekse su Zn(II) jonu esantis hidroksido jonas (OH⁻) yra paruoštas nukleofilinei atakai. 2) Į aktyvųjį centrą patenka anglies dioksido molekulė (CO₂), kurią atakuoja hidroksido jonas.
Bikarbonato jonas (HCO₃⁻) vis dar prisijungęs prie Zn(II). 4) Bikarbonato joną prie Zn(II) pakeičia vandens molekulė, kuri bus deprotonizuojama. Deprotonizavimas ir protono išnešimas iš aktyviojo centro yra CA katalizuojamą reakciją limituojantys veiksniai.

1.3 Žmogaus CA kristalinės struktūros

1.3.1 CA I

Pirmoji CA I kristalinė struktūra buvo aprašyta publikacijoje [Kannan et al., 1975], kurioje CA I izofermentas yra vadinamas žmogaus eritrocitų karboanhidraze B (pagal CA I baltymo buvimo vietą). CA I kristalinimo sąlygos buvo aprašytos publikacijoje [Kannan et al., 1972a]. Po tam tikro laiko CA I kristalinė struktūra buvo peržiūrėta ir patikslinta ([Kannan et al., 1984], PDB ID: 2CAB). Straipsnyje [Kumar and Kannan, 1994] buvo aprašyta CA I komplekso su bikarbonato jonu struktūra, kai bikarbonato jonas yra prisijungęs prie Zn(II) kaip monodentatinis ligandas, t.y. sudaromas vienas koordinacinis ryšys (PDB ID: 1HCB). Kitos kristalinės CA I kompleksų struktūros buvo nustatytos su anijoniniais ligandais: I⁻, CN⁻ ([Kumar et al., 1994], PDB ID: 1HUH, 1HUG). Įdomus struktūrinis artefaktas buvo aprašytas straipsnyje [Ferraroni et al., 2002], kai CA I mutantinio baltymo aktyviajame centre po His67 pakeitimo į Arg67 susiformavo antra Zn(II) joną surišanti struktūra, sudaryta iš His64, His200 ir Arg67 šoninių grandinių (PDB ID: 1JV0).

Šiuo metu PDB duomenų bazėje yra paskelbta apie 25 CA I kristalinės struktūros, iš kurių

1.3.2 CA II

CA II izoformos kristalinės struktūros sudaro didžiausią visų CA kompleksų kristalinių struktūrų dalį PDB duomenų bazėje (virš 400). Pirmoji CA II struktūra buvo aprašyta publikacijose [Kannan et al., 1972b, Liljas et al., 1972] ir CA II baltymas yra įvardijamas kaip žmogaus eritrocitų karboanhidrazė C (pagal baltymo buvimo vietą). Pirmosios CA II kristalinės struktūros turėjo apie 2 Å skiriamąją gebą, kuri buvo patikslinta, t.y. nustatyti vandens ir kitų molekulių pikai [Eriksson et al., 1988]. Aukštesnės skiriamosios gebos struktūros buvo išspręstos gerokai vėliau (nuo 2007m.) ir leido apžvelgti vandens molekulių tinklus CA II aktyviajame centre [Avvaru et al., 2010, Fisher et al., 2007a].

Zn(II) joną surišančios struktūros tyrimai. CA II katalizinio aktyvumo bei jos atrankumo Zn(II) jonui pokyčiai buvo tiriami pakeičiant histidinų triados aminorūgščių liekanas. Nustatyta, kad His94 pakeitimas į Asp94 sumažina CA II atrankumą Zn(II) jonui bei jos katalizinį aktyvumą [Kiefer et al., 1993]. His94 pakeitimas į Cys94 neleidžia CA II baltymui surišti Zn(II) jono aktyviajame centre [Alexander et al., 1993]. Keičiant histidinų triados His94 arba His119 aminorūgštį į asparagino arba glutamino aminorūgštį, CA katalizinė funkcija išlieka ([Lesburg et al., 1997], PDB ID: 1H4N (mut. N94H), 1H9N (mut. N119H), 1H9Q (mut. Q119H) ir 2H4N (N94H)). Zn(II) jono surišimo pokyčiai po dviejų histidinų triados histidinų pakeitimo į cisteino ir asparto aminorūgštis yra aprašyti straipsnyje ([Ippolito and Christianson, 1994], PDB ID: 1CNB, 1CNC, 1CVD, 1CVE, 1CVF ir 1CVH; žema skiriamoji geba – (2.2-2.4) Å). His96 pakeitimas į Cys96 neleidžia CA baltymui surišti Zn(II) jono aktyviajame centre.

CA II, neturinčios Zn(II) jono, tyrimai. Pirmosios CA II kristalinės struktūros, neturinčios Zn(II) jono aktyviajame centre, buvo paskelbtos publikacijoje ([Haakansson et al., 1992], kristalinės struktūros PDB ID: 2CBA, 2CBB, 2CBC, 2CBD ir 2CBE), kur palygintas vandens molekulių išsidėstymas aktyviajame centre esant Zn(II) jonui ir be jo. Nustatyta, kad katalizinio Zn(II) jono pašalinimas turi įtaką CA II baltymo stabilumui – baltymas išsivynioja 8 °C laipsniais žemesnėje temperatūroje, lyginant su CA II izofermento, aktyviajame centre turinčio Zn(II) joną, lydymosi temperatūra. Zn(II) jono praradimas neturi įtakos CA II tretinei struktūrai bei vandens molekulių tinklui CA II aktyviajame centre [Avvaru et al., 2009]. Publikacijoje [Domsic et al., 2008] parodyta, kad CO₂ surišimui CA aktyviajame centre yra svarbi hidrofobinė kišenė, kurią CA II atveju suformuoja aminorūgščių Val121, Val143, Leu198 ir Trp209 šoninės grandinės, nes CO₂ molekulė randama kristalinės struktūros aktyviajame centre tokioje pačioje padėtyje, esant pašalintam Zn(II) jonui.

CA II aktyviojo centro Zn(II) jono pakeitimas į kitų metalų jonus buvo tyrinėtas gana detaliai ([Haakansson et al., 1994], PDB ID: 1RZA, 1RZB, 1RZC, 1RZD, 1RZE, [Haakansson

and Wehnert, 1992], PDB ID: 1CAH). Parodyta, kad Mn(II), Cu(II) ir Ni(II) jonai CA II aktyviajame centre turi didesnį ligandų skaičių, lyginant su Zn(II) jonu, kurio kompleksas yra tetraedrinis – "Histidinų triada–Zn(II)–H₂O". CA II baltymas, kurio aktyviajame centre vietoj Zn(II) jono yra Mn(II), Cu(II) arba Ni(II), yra neaktyvus.

Kitų aminorūgščių liekanų, esančių šalia Zn(II), tyrimai. Ippolito ir jo kolegų straipsnyje [Ippolito and Christianson, 1993] yra aprašytas Thr199 pakeitimas į Cys199 ir jo įtaka CA II funkcijai. Nustatyta, kad Thr199 yra svarbus vandens molekulės/OH⁻ jono, atliekančio CO₂ molekulės nukleofilinę ataką hidratacijos reakcijos metu, koordinacijoje. Po minėtos mutacijos buvo nustatyta, kad atrankumas Zn(II) jonui padidėja, o CA II katalizinis aktyvumas sumažėja. Straipsnyje ([Krebs et al., 1993], PDB ID: 1CVA ir 1CVB) yra aprašyta eilė taškinių mutacijų Thr199Val, Thr199Ala, Thr199Ser ir Thr199Pro bei teigiama, kad Thr199 yra taip pat svarbus katalizės produkto pereinamosios būsenos stabilizavimui reakcijos metu. Pakeitus Thr199 į Asp199, 200 kartų (iki $K_d = 20$ fM) padidėja atrankumas Zn(II) jonui ([Ippolito et al., 1995], PDB ID: 1CCS, 1CCT ir 1CCU). Straipsnyje ([Xue et al., 1993], PDB ID: 1CAI, 1CAJ, 1CAK, 1CAL ir 1CAM) parodyta, kad Thr199 ir Glu106 bei jų sąveika yra svarbios optimaliai OH⁻ jono, esančio komplekse su Zn(II) jonu, orientacijai.

Buvo tiriamos Zn(II) jono "antrosios koordinacijos sferos" aminorūgštys, kurios stabilizuoja histidinų triados šoninių grandinių erdvines padėtis, siekiant nustatyti jų įtaką Zn(II) surišimui ir CA II kataliziniam aktyvumui. Parodyta, kad Gln92, kuris sudaro vandenilinį ryšį su His94 šonine grandine, ir Glu117 (vandenilinis ryšys yra sudaromas su His119) taškinės mutacijos keičia CA II atrankumą Zn(II) jonui bei CA II katalizinį aktyvumą. CA II katalizinis aktyvumas galimai pasikeičia dėl vandens molekulės, esančios komplekse su Zn(II), pK_a pokyčių ([Lesburg and Christianson, 1995], PDB ID: 1CNK, 1CNI, 1CNJ, 1CNH ir 1CNG, [Huang et al., 1996], PDB ID: 1ZSA, 1ZSB ir 1ZSC).

Buvo tyrinėjamos hidrofobinės aminorūgštys (Phe93, Phe95 ir Trp97), kurios dalyvauja His94 ir His96, priklausančių histidinų triadai, erdviniame orientavime. Jų hidrofobinės šoninės grandinės yra išsidėsčiusios baltymo hidrofobiniuose branduoliuose ([Cox et al., 2000], PDB ID: 1FQL, 1FQM, 1FQN, 1FQR, 1FR4, 1FR7, 1FSN, 1FSQ ir 1FSR). Nustatyta, kad minėtos hidrofobinės aminorūgštys yra svarbios Zn(II) joną atpažįstančių šoninių grandinių erdviniam išsidėstymui.

CA protonų pompos tyrimai. Kaip yra žinoma, His64 aminorūgšties liekanos šoninė grandinė gali būti aptinkama dviejose alternatyviose pozicijose CA II kristalinių struktūrų aktyviajame centre, priklausomai nuo pH vertės ([Nair and Christianson, 1991] (PDB ID: 1CA3 ir 1HCA), [Krebs et al., 1991] (PDB ID: 5CA2)). Buvo iškelta prielaida, kad His64 šoninė liekana gali dalyvauti katalizės reakcijos metu susidarančių protonų išnešime iš CA aktyviojo centro. Protonų išnešimas yra svarbus naujam katalizės ciklui, nes anglies dioksido molekulė yra atakuojama hidroksido jonu (OH⁻), esančiu komplekse su Zn(II) jonu. Eile taškinių mutacijų buvo patvirtinta, kad protonai iš aktyviojo centro yra kryptingai išnešami (McKenn'os ir Christianson'o grupės: [Nair and Christianson, 1991], [Scolnick and Christianson, 1996], PDB ID: 1UGA, 1UGB, 1UGC, 1UGD, 1UGE, 1UGF ir 1UGG, [Tu et al., 2002], PDB ID: 1LZV, [Fisher et al., 2005], PDB ID: 1T9N, 1TBO, 1TBT, 1TE3, 1TEQ, 1TEU, 1TG3, 1TG9, 1TH9 ir 1THK, [Bhatt et al., 2005], PDB ID: 1YO0, 1YO1 ir 1YO2, [Fisher et al., 2007b], PDB ID: 2NWO, 2NWP, 2NWY, 2NWZ, 2NXR, 2NXS ir 2NXT, [Zheng et al., 2008], PDB ID: 3DV7, 3DVB, 3DVC ir 3DVD, [Domsic et al., 2010], PDB ID: 3MNH, 3MNI, 3MNJ ir 3MNK, [Mikulski et al., 2011a], PDB ID: 3RLD, [Mikulski et al., 2013], PDB ID: 3TVO, 3TVN ir 4IDR, [Mikulski et al., 2011b], PDB ID: 3RG3, 3RG4 ir 3RGE). Protonų išnešimo iš CA aktyviojo centro tyrimai buvo atliekami naudojant neutronų difrakcijos metodą, kai yra nustatomas aminorūgščių šoninių grandinių protonizavimas deuteriu (D arba 2 H) bei D₂O molekulių erdvinės orientacijos. Neutronų difrakcijos eksperimente gali būti naudojami tiktai dideli ir stabilūs baltymo kristalai. CA II kristalai tinka neutronų difrakcijos eksperimentams, buvo gauta pirmoji struktūra ([Budayova-Spano et al., 2006], PDB ID: 2AX2). CA II neutronų difrakcijos tyrimus taip pat atliko McKenn'os grupė: ([Fisher et al., 2010], PDB ID: 3KKX, [Fisher et al., 2011], PDB ID: 3TMJ, [Fisher et al., 2012], PDB ID: 4G0C, [Michalczyk et al., 2015], PDB ID: 4Q49 ir 4Y0J).

1.3.3 CA IV

Pirmoji CA IV kristalinė struktūra buvo aprašyta straipsnyje [Stams et al., 1996]. Jos skiriamoji geba yra 2,8 Å (PDB ID: 1ZNC). PDB duomenų bazėje yra paskelbta 10 CA IV kristalinių struktūrų, iš kurių viena yra mano išspręsta ([Mickevičiūtė et al., 2017], PDB ID: 5IPZ).

1.3.4 CA VI

Pirmoji CA VI izoformos kristalinė struktūra buvo aprašyta straipsnyje ([Pilka et al., 2012], PDB ID: 3FE4). Ši izoforma kristalizuojasi kaip dimeras. Šiuo momentu PDB duomenų bazėje nėra CA VI kristalinių struktūrų su slopikliais.

1.3.5 CA IX

Pirmoji CA IX katalizinio subvieneto kristalinė struktūra buvo aprašyta straipsnyje ([Alterio et al., 2009], PDB ID: 3IAI). Kristalinimui naudotas CA IX baltymas buvo gautas naudojant *Baculoviridae* šeimos viruso ekspresijos sistemą. Pakeitus Cys41 į Ser41 buvo gautas monomeras, reikalingas kristalinės struktūros gavimui. CA IX kristalinės struktūros aktyviajame centre yra slopiklio molekulė – acetazolamidas (AZM). Naujos CA IX kompleksų su slopikliais kristalinės struktūros yra aprašytos straipsnyje ([Leitans et al., 2015], PDB ID: 5FL6, 5FL5 ir 5FL4), kai CA IX neglikozilintas katalizinis domenas buvo ekspresuotas mielėse. Tai yra CA IX kompleksai su tiofeno dariniais. Neseniai buvo paskelbta iki šiol aukščiausios skiriamosios gebos CA IX struktūra ([Mahon et al., 2016], PDB ID: 5DVX (1.6 Å)).

1.3.6 CA XII

Pirmoji CA XII kristalinė struktūra buvo aprašyta publikacijoje ([Whittington et al., 2001], PDB ID: 1JCZ, 1JD0). Šiuo momentu PDB duomenų bazėje yra 14 kristalinių struktūrų, iš kurių 12 yra mano spręstos. Šios struktūros – CA XII kompleksai su fluorintais ar chlorintais *di*-/mono-pakeistais benzensulfonamidais [Čapkauskaitė et al., 2013, Dudutienė et al., 2013, 2014, 2015, Zubrienė et al., 2015].

1.3.7 CA XIII

Pirmosios CA XIII kristalinės struktūros buvo aprašytos straipsnyje ([Fiore et al., 2009], PDB ID 3D0N ir 3CZV), kur 3D0N – CA XIII kompleksas su acetato molekule, o 3CZV – kompleksas su AZM. Šiuo momentu PDB duomenų bazėje yra 13 CA XIII kristalinių struktūrų, iš kurių 10 yra mano spręstos.

1.4 Žmogaus CA slopikliai

Gana ilgą laiką prie CA slopiklių buvo priskiriami tik pirminiai sulfonamidai bei neorganinės kilmės su metalais kompleksus sudarantys anijonai, kurie tiesiogiai jungiasi prie aktyviajame centre esančio Zn(II). Ligandai pagal slopinimo mechanizmus yra skirstomi į penkis tipus (pagal [Supuran, 2017a]):

- (a) Ligandai, kurie tiesiogiai jungiasi prie aktyviajame centre esančio katalizinio Zn(II) jono. Šiai klasei yra priskiriami sulfonamidai, sulfamatai, sulfamidai, neorganiniai anijonai, mono- ir ditiokarbamatai, karboksilatai, hidroksamatai (angl. hydroxamates), ksantatai, boro rūgšties dariniai, borolai (angl. borols), dioliai (angl. diols) ir kiti.
- (b) Ligandai, kurie netiesiogiai sąveikauja su aktyviajame centre esančiu kataliziniu Zn(II): pavyzdžiui, per tarpininką – vandens molekulę, kuri sudaro kompleksą su kataliziniu Zn(II). Šiai klasei priskiriami fenoliai, poliaminai, hidrolizuoti sulfokumarinai (angl. sulfocoumarins, sulfonic acids), kai kurie karboksilatai, 2-tioksokumarinai ir kiti.
- (c) CA aktyviojo centro įėjimą blokuojantys ligandai. Šiai klasei yra priskiriami kumarinai.

- (d) Ligandai, kurie nesąveikauja su aktyviojo centro molekuliniu paviršiumi, bet jų sąveikos su kitomis CA molekulinio paviršiaus sritimis sukelia CA katalizinio aktyvumo slopinimą. Yra išskiriamas tik vienas šios klasės atstovas – karboksirūgšties aromatiniai dariniai. Šiai klasei priklausantys ligandai prie CA prisijungia už aktyviojo centro ribų, šalia His64 (CA II, protonų pompos elementas), ir tokiu būdu sutrikdo His64 šoninės grandinės judrumą, kuris reikalingas protonų pernašai iš aktyviojo centro į buferį [D'Ambrosio et al., 2015].
- (e) Ligandai, kurių CA slopinimo mechanizmas nėra tiksliai žinomas. Šiems junginiams priskiriami antriniai/tretiniai sulfonamidai, baltymo tirozino kinazės slopikliai (imatini-bas/nilotinibas, naudojami chemoterapijoje vėžio gydymui) [Parkkila et al., 2009], fulerenai [Innocenti et al., 2010], baltymas priklausantis transferino šeimai [Durdagi et al., 2012] bei kiti įvairūs dariniai, kurie slopina CA aktyvumą, bet kurių slopinimo mechanizmas nėra patvirtintas rentgenostruktūrine analize ar kitais metodais.

1.4.1 CA slopiklių klasės

Kaip buvo minėta, pirmoji charakterizuota ir labiausiai tyrinėjama buvo CA II, kurios kompleksų kristalinės struktūros sudaro visų CA izoformų kompleksų pagrindinę dalį PDB duomenų bazėje. CA slopiklių klasių aprašyme bus naudojamos CA II aktyviojo centro aminorūgščių liekanos ir jų numeracija kaip kristalinėje struktūroje PDB ID: 1CA2.

Sulfonamidai ir jų dariniai. Pirminiai sulfonamidai (R-SO₂-NH₂) ir jų izoesteriai (sulfamatai (R-O-SO₂-NH₂) ir sulfamidai (R-NH-SO₂NH₂), kur R – bet kokia cheminė grupė) yra labiausiai ištirta CA slopiklių klasė. Prie Zn(II) jono jungiasi ir CA katalizinį aktyvumą slopina tik deprotonizuota sulfonamido grupė (R-SO₂-NH⁻). Sulfonamidinės grupės neigiamai įkrautas azoto atomas elektrostatiškai sąveikauja su Zn(II) jonu ir sudaro su juo koordinacinį ryšį. Papildomai sulfonamidinė grupė (-SO₂-NH⁻) sudaro du vandenilinius ryšius su Thr199. Tokiu būdu slopiklis užima OH⁻/H₂O poziciją prie Zn(II) jono. Ne mažiau nei 30 šios klasės junginių, pradedant nuo 1954 m., yra naudojami medicinoje kaip diuretikai, taip pat jais gydoma glaukoma, epilepsijos priepuoliai, viršsvoris (vaistiniai preparatai: acetazolamidas, metazolamidas, etokszolamidas, dichlorofenamidas, dorzolamidas, brinzolamidas, sulpiridas, zonizamidas, topiramatas, celekok-sibas, indapamidas, chlortalidonas, furozemidas ir kiti) [Supuran, 2017a].

Fosfatas/fosfonatai bei jų dariniai. Fosfato grupės liekana (-PO(OH)₂) yra panaši į sulfonamido erdvinę struktūrą ir sudaro analogiškus ryšius su aktyviuoju centru: **1**) koordinacinį ryšį su Zn(II) jonu; **2**) vandenilinį ryšį su Thr199 azoto atomu. Pirmoji publikacija, kurioje buvo įvertintas šios klasės tam tikrų darinių jungimasis prie žmogaus CA, yra [Rusconi et al., 2004]. Viena iš kristalinių struktūrų su šios klasės atstovu – PDB ID: 2IT4 [Temperini et al., 2007].

Fosforilinti sulfonamidai ir arseną(III) turintys junginiai. Fosforilinti sulfonamidai,

kai prie sulfonamido azoto atomo prikabinama fosfato grupė, turėtų slopinti CA funkciją pagal (a) mechanizmą, t.y. tiesiogiai jungtis prie aktyviajame centre esančio Zn(II) jono. Tokių pavyzdžių nėra daug, jie aprašyti Fenesan ir kolegų darbe [Fenesan et al., 2000].

Savo struktūroje arseną(III) turintys junginiai yra mažai tyrinėti, pavyzdžiui, fenilarseno rūgštis (C₆H₅AsO(OH)₂) silpnai slopina visų CA aktyvumą ($K_i > 1 \mu$ M) [Innocenti et al., 2004, Pinard et al., 2015a, Vullo et al., 2016].

Seleną turintys slopikliai. Selenosulfonamidai (R-SeO₂NH₂) ir selenotiolai (RSeH) iki šiol nėra tyrinėti kaip CA slopikliai, nors ir turi struktūrinį potencialą CA slopinimui dėl -SeO₂NH₂ ir -SeH grupių struktūrinio panašumo į -SO₂NH₂ ir -SH grupes. Žinoma, kad selenatas (SeO₄²⁻, kaip neorganinis jonas) silpnai slopina daugelį α - ir β -šeimų CA.

Fenolis ir jo dariniai. Tai, kad fenolio molekulė CA II aktyviajame centre sudaro vandenilinį ryšį su vandens ar HO⁻ molekule, esančia komplekse su Zn(II), yra žinoma gana seniai [Nair et al., 1994]. Papildomai sudaromas vandenilinis ryšys su Thr199 azoto atomu, o fenolio benzeno žiedas išsidėsto CA aktyviojo centro hidrofobinėje dalyje. Fenolio dariniai silpnai jungiasi prie žmogaus CA izoformų. Gamtinės kilmės fenolio dariniai ir polifenoliai taip pat buvo tyrinėjami kaip α - ir β -CA šeimų slopikliai. Iki šiol nėra sukurti efektyvūs CA slopikliai fenolio pagrindu.

Karboksilatai. Karboksilatų dariniai gali slopinti CA izofermentus pagal visus minėtus mechanizmus (**a-d**). Karboksilatai – tai karboksirūgšties druskos ar esteriai. Karboksilato jono cheminė formulė yra RCOO⁻, o karboksilatų esterio – RCOOR['], kur R ir R['] yra organinės grupės. Paskutinį dešimtmetį buvo tyrinėjami įvairiausi alifatiniai, aromatiniai ir heterocikliniai karboksilatų dariniai [Supuran, 2017a].

Kaip žinoma, α -šeimos CA turi esterazinį aktyvumą ir gali hidrolizuoti eterius, pavyzdžiui, po kumarinų slopiklių klasės junginio hidrolizės junginio struktūroje atsiranda karboksirūgšties liekana. Hidrolizuojamas yra kumarinų laktono žiedas [Maresca et al., 2009]. Karboksilato darinio jungimasis už aktyviojo centro ribų yra aprašytas publikacijoje [D'Ambrosio et al., 2015]. Yra manoma, kad junginys sutrikdo CA aktyviojo centro "protonų pompos" veiklą, yra paveikiamas His64 šoninės grandinės lankstumas ir protonų išnešimas iš aktyviojo centro. Tokiu būdu hidroksido jonas, kuris yra komplekse su aktyviajame centre esančiu Zn(II) jonu ir atlieka CO₂ molekulės nukleofilinę ataką, yra lėčiau regeneruojamas iš vandens molekulės deprotonizacijos proceso metu.

Poliaminai. Poliaminai, pavyzdžiui, sperminas (NH₂-(CH₂)₃-NH-(CH₂)₄-NH-(CH₂)₃-NH₂), panašiai kaip fenolio dariniai, sąveikauja su Zn(II) jonu per tarpininką (vandens molekulę ar hidroksido joną) ir sudaro vandenilinių jungčių tinklą su aktyviojo centro aplinka ([Carta et al., 2010], PDB ID: 3KWA). Yra aptinkami gamtinės kilmės poliaminai, gauti iš jūrinių pinčių (angl. marine sponge) bei grybų, kurie buvo tyrinėjami kaip α -šeimos CA slopikliai. Šios klasės slopiklių, panašiai kaip ir slopiklių, priklausančių fenolio ir jo darinių klasei, tyrimai toliau nėra vystomi.

Cianamidai, karbamidas, N-hidroksikarbamidas, hidroksamatai ir jų dariniai. Cianamidas (H₂N-C \equiv N) yra linijinės formos molekulė, geometriškai panaši į CO₂ (O=C=O). Prie CA aktyviojo centro jungiasi silpnai, bet yra hidratuojamas (CA katalizė) iki karbamido (H₂N-C(=O)-NH₂), kuris stipriau sąveikauja su α -šeimos CA izoformų aktyviuoju centru. Nhidroksikarbamidas ir hidroksamatai bei jų dariniai savo struktūroje turi karbamido (-CO-NH-OH) liekaną, per kurią sudaro kompleksą su CA aktyviojo centro Zn(II) jonu. N-hidroksikarbamidas sudaro du koordinacinius ryšius su Zn(II), yra bidentatinis slopiklis. N-hidroksikarbamido dariniai vidutiniškai slopina žmogaus CA izoformas bei kitus metalo fermentus (1 μ M > K_i > 1 nM). [Bugg, 2014].

Heterociklai, turintys azoto atomus. Parodyta, kad imidazolas ir jo dariniai jungiasi prie CA izoformų aktyviojo centro. Teigiama, kad slopinimo mechanizmas gali būti įvairus: a), b) ir c). Galimos CA kompleksų kristalinės struktūros su 1,2,4-triazolu – PDB ID: 1CRA [Mangani and Liljas, 1993], su 4-metilimidazolu – PDB ID: 1G0E [Duda et al., 2001].

Hidroperoksidai. Hidroperoksidai, kurių formulė yra ROOH, vidutiniškai slopina žmogaus CA izoformas I ir II. Tikslus slopinimo mechanizmas nėra žinomas [Kose et al., 2015].

Tioliai ir jų dariniai. Pirmieji duomenys, kad tiolio dariniai gali slopinti CA, pasirodė 20 a. aštuntajame dešimtmetyje: tai buvo tiofenolio dariniai (ArSH, kur Ar - aromatinė sistema). Bendru atveju yra parodyta, kad dariniai, turintys -SH funkcinę grupę, gali jungtis vidutiniu stiprumu prie žmogaus CA izoformų, bet nėra pasiekiamas CA izoformų atrankumas [Innocenti et al., 2008]. Tokie slopikliai jungiasi tiesiogiai prie cinko. Įdomus tioksolono (*angl.* thioxolone) junginys, kuris turi CA slopinimo aktyvumus. Žinoma, kad karboanhidrazė gali hidrolizuoti tioksoloną iki tiofenolio (*angl.* thiophenol) ([Barrese et al., 2008], PDB ID: 20SF, 20SM). Tai parodo, kad kartais sunku prognozuoti, kokia junginio forma yra aktyvi.

Mono-, ditiokarbamatai, ksantatai ir tritiokarbonatai. Tritiokarbonato anijonas (CS_3^{2-}) prie daugumos CA jungiasi silpnai. Prie CA aktyviojo centro Zn(II) jono tritiokarbonatas jungiasi pagal (a) mechanizmą, sudarant viengubą koordinacinį ryšį su Zn(II) jonu bei vandenilinius ryšius su aktyviojo centro aplinka (su Thr199, [Temperini et al., 2010], PDB ID: 3K7K). Yra susintetinti junginiai, kurie stipriai (K_i < 1 nM) slopina tam tikras α - ir β -CA izoformas. Ditiokarbonatų formulė yra R-CS-S⁻, tritiokarbonatų – R-S-CS-S⁻ ir ksantatų – R-O–CS-S⁻.

Sieros rūgšties liekaną turintys junginiai. Tokie junginiai savo struktūroje turi -SO₃H grupę, kuri geometriškai yra panaši į fosfato rūgšties liekaną (minėta fosfatų/fosfonatų CA slopiklių klasė). Dėl savo provaisto savybių įdomūs yra sulfokumarinai, nes po junginio hidrolizės, kurią atlieka CA, junginio struktūroje atsiranda -SO₃H funkcinė grupė ([Tars et al., 2013], PDB ID: 4BCW). Prie aktyviojo centro sulfokumarinų hidrolizės produktai jungiasi pagal (b) mechanizmą (per tarpininką). Dauguma sulfokumarinų prie membraninių CA IX ir XII izoformų, kurios yra priešvėžinių taikinių sąraše, jungiasi vidutiniu stiprumu bei pasižymi atrankumu [Grandane et al., 2014].

Boro atomą turintys dariniai. Tokie junginiai yra silpni α (žinduolių)- ir β (patogeninių organizmų)-CA šeimų baltymų slopikliai. Manoma, kad šie junginiai slopina CA katalizinį aktyvumą tiesiogiai jungdamiesi prie Zn(II) jono. Bendru atveju reikalinga papildoma informacija iš rentgenostruktūrinės analizės ar kitų metodų, siekiant patvirtinti slopinimo mechanizmo tipą atskiriems boro rūgšties dariniams. Įdomus junginys yra bortezomibas, kuris yra pirmasis žmogaus proteosomos vaistinis slopiklis, turintis CA slopinimo aktyvumus [Supuran, 2017b].

Aliuminį (Al, III), Galį (Ga, III) ir Indį (In, III) turintys dariniai. Zn(II), Mg(II), Al(III) ir Co(II) metalų kompleksai su tam tikrais pirminiais sulfonamidais buvo išbandyti skrandžio rūgštingumui mažinti gyvūnuose (šunyse) [Ilies et al., 2000]. Pirminiai, tam tikroms izoformoms (CA XII, CA IX) atrankūs sulfonamidai, komplekse su galiu (Ga, III) ar indžiu (In, III) gali būti naudojami vėžinių audinių vizualizavimui [Dilworth et al., 2015].

1.5 Sulfonamidiniai slopikliai ir jų savybės

CA slopiklių klasių įvairovė buvo apžvelgta ankščiau. Šiame skyriuje bus išsamiau apžvelgtas didžiausios ir labiausiai tyrinėtos CA slopiklių klasės slopinimo mechanizmas. CA slopikliai sulfonamido pagrindu yra seniausia junginių klasė. Kaip buvo minėta, ne mažiau nei 30 šios klasės junginių jau nuo 1954 m. yra naudojami kaip diuretikai, taip pat jais gydoma glaukoma, epilepsijos priepuoliai bei viršsvoris. Sulfonamidiniai slopikliai turi savo slopinimo ypatumus, t.y. slopiklio efektyvumas priklauso nuo aplinkos pH, nes slopiklio aktyvi forma yra tada, kai sulfonamidinės grupės azoto atomas yra deprotonizuotas [Pilipuitytė and Matulis, 2015, Taylor et al., 1970]. Manoma, kad pagrindinis sulfonamidinių junginių CA slopinimo mechanizmas yra deprotonizuotos slopiklio formos patekimas į CA aktyvųjį centrą ir prisijungimas prie Zn(II) jono (1).

 $Ar-SO_2NH^- + H_2O-Zn(II) \Rightarrow Ar-SO_2NH^--Zn(II) + H_2O(1)$

Yra išskiriamas kitoks CA slopinimo mechanizmas ([Gaspari et al., 2016]), kai į CA aktyvųjį centrą patenka protonizuota slopiklio forma, kurios sulfonamido grupės amino liekana sąveikauja su OH⁻ jonu, esančiu komplekse su Zn(II). Slopiklis yra deprotonizuojamas ir susidariusi vandens molekulė, esanti prie Zn(II) jono, yra išstumiama (2):

$$Ar-SO_2NH_2 + OH^- - Zn(II) \Rightarrow Ar-SO_2NH^- + H_2O - Zn(II) \Rightarrow Ar-SO_2NH^- - Zn(II) + H_2O (2)$$

pH ir sulfonamidinės grupės p K_a indėliai į jungimosi termodinamikos parametrų vertes gali būti įvertinti [Baranauskienė and Matulis, 2012, Jogaitė et al., 2013, Krishnamurthy et al., 2008, Morkūnaitė et al., 2015].

1.6 Molekulinis atpažinimas, tarpmolekulinių sąveikų tipai

Molekulinis atpažinimas yra ląstelinės ir neląstelinės (virusai) sandaros biologinių objektų funkcionavimo pagrindas. Biomolekulių sąveikos mechanizmo supratimas yra kertinis akmuo tiek molekulinėje biologijoje, tiek atrankių vaistų kūrime. Tarpmolekulinių nekovalentinių sąveikų tipai:

- (1) Įvairios elektrostatinės sąveikos (joninės, polinės).
- (2) Van der Valso sąveikos.
- (3) Vandeniliniai ryšiai.
- (4) Hidrofobinės sąveikos ir kiti.

Atpažinimo procese svarbus vaidmuo atitenka vandens (tirpiklio) molekulėms solvatacijos, desolvatacijos procesų metu.

1.6.1 Elektrostatinės sąveikos

Elektrostatinės sąveikos gali būti suskirstytos į3tipus:

- (1) "Krūvis-krūvis" sąveika tarp įkrautų atomų, jų grupių. Tipinis "krūvis-krūvis" sąveikos pavyzdys yra paplitusios sąveikos baltymų struktūrose tarp teigiamai įkrautų aminorūgščių (Lys, Arg, His) ir neigiamai įkrautų aminorūgščių (Glu, Asp) šoninių liekanų.
- (2) "Krūvis-dipolis" sąveika tarp krūvį turinčio atomo ar grupės ir elektrostatinį polį turinčio atomo. Tipinis pavyzdys – sąveika tarp baltymo įkrautų aminorūgščių šoninių liekanų ir vandens molekulių dipolių.
- (3) "Dipolis-dipolis" sąveika tarp elektrostatinius polius turinčių atomų. Tipinis pavyzdys vandens molekulių dipolių sąveikos.

1.6.2 Van der Valso sąveikos (VdV)

VdV sąveikos yra svarbios biologinių molekulių erdvinei struktūrai palaikyti. VdV sąveikos metu gali pasireikšti traukos arba stūmos jėgos, priklausomai nuo atstumo tarp sąveikaujančių atomų. VdV sąveikos trauka atsiranda dėl laikino elektronų tankio nesimetriškumo, t.y. laikinai atsirandančių dipolių atomuose. VdV sąveikos stūma atsiranda dėl atomų elektronų tankio persiklojimo, kai pažeidžiamas tam tikras mažiausias VdV atstumas (VdV spindulys) tarp neutralių atomų. VdV spindulys yra apibrėžiamas kaip mažiausias atstumas, kuriuo gali suartėti kovalentiniu ryšiu nesujungti molekulės atomai. Esant kovalentiniam ryšiui, atstumas tarp jų yra mažesnis už VdV spindulį. VdV (traukos) sąveikos yra silpnos (nuo 0.1 iki 4 kJ mol⁻¹), lyginant su vandenilinio ryšio ar elektrostatinės sąveikos stiprumu, bet VdV sąveikų skaičius kompensuoja jų silpnumą [Bronowska, 2011, Finkelstein, 2007].

1.6.3 Vandeniliniai ryšiai

Vandeniliniai ryšiai yra labai svarbūs molekuliniam atpažinimui. Vandenilinis ryšys yra nekovalentinis, traukos jėgos ryšys, kuris gali būti įvardijamas kaip "dipolis-dipolis" elektrostatinė sąveika. Elektroneigiamesnis už vandenilį atomas (kitaip vadinamas "donoru") per kovalentiškai prie jo prijungtą vandenilio (H) atomą, turintį teigiamą krūvį, sąveikauja su kitu elektroneigiamu atomu, vadinamu "akceptoriumi", kuris turi laisvą elektronų porą. Vandenilinio ryšio savybės:

- Vandenilinio ryšio stiprumas priklauso nuo ryšio geometrijos, t.y. nuo kampo tarp "donoro" ir "akceptoriaus" bei nuo atstumo tarp vandenilio atomo ir "akceptoriaus".
- (2) Atstumas tarp "akceptoriaus" ir "donoro" yra mažesnis nei šių atomų VdV spindulių suma.

Vandenilinio ryšio stiprumas biologinėse sistemose gali būti (5 - 30) kJ mol⁻¹ energijų intervale, tuo tarpu nebiologinėse sistemose (pavyzdžiui, fluoro atomą turinčios molekulės) gali apimti (2 - 155) kJ mol⁻¹ energijų intervalą. Biologinėse sistemose vandenilinio ryšio susidarymui ir nutraukimui reikalinga energija patenka į šiluminių fliuktuacijų energijų intervalą, todėl vandeniliniai ryšiai yra dinamiški – greitai susidaro, greitai ir nutrūksta. Dėl vandenilinio ryšio stiprumo priklausomybės nuo ryšio geometrijos, toks ryšys yra erdviškai specifinis, nes priklauso ne tik nuo atstumo tarp sąveikaujančių atomų. Vandenilinių ryšių indėlis į baltymų, nukleorūgščių antrinės, tretinės ir ketvirtinės struktūros susidarymą yra esminis. Silpnus vandenilinius ryšius gali sudaryti "C-H" grupės atomai, kai nuo anglies atomo nutraukiama elektronų tankio dalis ir vandenilis įgauna ryškesnį teigiamą polį [Bronowska, 2011]. Silpni vandeniliniai ryšiai, jų savybės bei svarba baltymo-ligando komplekso susidaryme yra apžvelgta [Panigrahi and Desiraju, 2007] publikacijoje.

1.6.4 Halogeninis ryšys ir daugiapoliarinė sąveika

Halogenai (F, Cl, Br, I) dažnai įeina į mažų junginių cheminę struktūrą. Halogeninio ryšio sudarymui svarbi taip vadinama σ -skylė (teigiamas elektrostatinis potencialas ar teigiamas krūvis), kuri atsiranda dėl netolygaus elektronų pasiskirstymo halogeno atome: priešingoje kovalentiniam ryšiui (pvz.: R-X, kur X – halogenas, R – elektroneigiamesnis už X halogeno atomą) halogeno paviršiaus pusėje susidaro teigiamo elektrostatinio potencialo sritis [Clark et al., 2007]. Halogeninis ryšys:

- (1) Yra elektrostatinės kilmės silpnas ryšys. Halogeno atomo σ -skylė atlieka panašų vaidmenį kaip ir vandenilis, esant vandeniliniam ryšiui.
- (2) Priklauso nuo ryšio geometrijos (krypties).
- (3) Priklauso nuo σ -skylės potencialo (teigiamo polio halogeno paviršiuje) dydžio, kuris priklauso nuo halogeno rūšies bei nuo elektronų tankio ištraukimo iš halogeno atomo efektyvumo. Pavyzdžiui, halogeninio ryšio stiprumas padidėja vandenilio atomus pakeitus fluoro atomais (CH₃-Br \rightarrow CF₃-Br).

Kaip minėta, halogeninio ryšio stiprumas taip pat priklauso nuo halogeno rūšies, t.y. sunkesni halogenai ($F \rightarrow CL \rightarrow Br \rightarrow I$) sudaro stipresnius halogeninius ryšius. Tokio tipo ryšiai yra nustatomi tiek mažųjų junginių kristalinėse struktūrose, tiek baltymo-ligando kompleksuose.

Kita tarpmolekulinė sąveika, kurioje dalyvauja halogenų atomai, yra vadinamoji ortogonalinė daugiapoliarinė sąveika (*angl.* orthogonal multipolar interactions). Ši sąveika – tai dviejų dipolių elektrostatinė sąveika, kai vienas dipolis išsidėsto statmenai kitam (pvz: C-F····C=O, kur fluoro atomas sąveikauja su teigiamu poliu ant anglies atomo) [Paulini et al., 2005].

1.6.5 Hidrofobinė sąveika

Hidrofobinės molekulės ar jų grupės yra linkusios sudaryti kontaktus išskirtinai su hidrofobinėmis molekulėmis (hidrofobiniu paviršiumi), kai kontaktai su hidrofilinėmis, polinėmis grupėmis yra ribojami [Bissantz et al., 2010].

1.6.6 Aromatinių sistemų specifinės sąveikos

Sąveikos tarp mažų molekulių aromatinių grupių (slopikliai ir kiti) ir aromatinių aminorūgščių liekanų (Phe, Trp ir Tyr) yra gana dažnai sutinkamos baltymo-ligando kompleksuose [Bissantz et al., 2010]. Yra išskiriami du pagrindiniai sąveikos mechanizmai:

- (1) Aromatinių sistemų žiedai išsidėsto lygiagrečiai vienas kito atžvilgiu: aromatinių sistemų konjuguotų π orbitalių plokštumų sąveika arba "stekingas".
- (2) Aromatinių sistemų žiedai išsidėsto statmenai vienas kito atžvilgiu.

Koks bus vyraujantis sąveikos mechanizmas tarp aromatinių sistemų priklauso nuo daugelio veiksnių, tame tarpe yra svarbios aromatinės sistemos pakaitų (cheminių grupių) donorinėsakceptorinės savybės.

Yra išskiriamos alifatinės-aromatinės sąveikos, kai alifatinės grupės anglies atomas yra statmenai nukreiptas į aromatinės sistemos žiedą. Tokios sąveikos stiprumas patenka į aromatinėaromatinė sistemų stiprumo sąveikos intervalus [Turk and Smithrud, 2001]. Baltymo-ligando kompleksuose sąveika tarp metilo grupės ir aromatinio žiedo nėra retas atvejis.

 π - π sąveikose gali dalyvauti baltymo karkaso peptidiniai ryšiai (-C(O)-NH-), aminorūgščių šoninės grandinės joninėse porose – Asp, Glu su Arg. Straipsnyje [James III et al., 2009] parodyta, kad peptidinio ryšio π orbitalių plokštumų sąveika vyksta nedideliuose modeliniuose peptiduose ir yra energetiškai naudinga (nustatyta iš infraraudonojo spektro pokyčių).

1.6.7 Tirpiklio įtaka jungimuisi, struktūrinės (kristalinės) ir tirpiklio fazės vandens molekulės

Tirpiklio molekulės (biologinėse sąlygose H₂O) yra neatsiejamas ligando-baltymo sąveikos dalyvis. Vandens molekulių dinamika, t.y. slopiklio solvatacijos, desolvatacijos procesai, vandens molekulių pašalinimas iš aktyviojo ar jų sutelkimas į aktyvųjį centrą, yra labai svarbi tiek jungimosi termodinamikai, tiek kinetikai. Vandens molekulės, priklausomai nuo jų lokalizacijos, turi skirtingas termodinamines ir dinamines savybes. Yra išskiriamos kristalinės vandens molekulės, kurios yra mažiau judrios dėl sudaromų vandenilinių ryšių su molekuliniu (baltymų, deoksiribonukleorūgščių ir t.t) paviršiumi. Jos yra nustatomos rentgenostruktūrine analize. Yra analizuojamas kristalinių vandens molekulių išsidėstymas kristalinėse struktūrose, bandoma akcentuoti jų svarbą termodinaminiams jungimosi procesams [Fox et al., 2015, Klebe, 2015, Snyder et al., 2013].

Tirpiklio fazės vandens molekulės – tai molekulės, nutolusios nuo ligando ir baltymo molekulinio paviršiaus tokiu atstumu, kad jų termodinaminės savybės jau nėra įtakojamos nei ligando, nei baltymo. Tirpiklio fazės molekulės sudaro didžiausią vandens molekulių frakcijos dalį tirpale. Parodyta, kad šalia hidrofobinio molekulinio paviršiaus pasikeičia vandens molekulių savybės, nežymiai padidėja vandens molekulių frakcijos dalis su stipresniais vandeniliniais ryšiais, taip pat padidėja šių vandens molekulių išsidėstymo tetraedrinė tvarka [Davis et al., 2012, 2013, 2015].

1.7 Jungimosi termodinamika ir jos analizė

Termodinaminiu požiūriu atpažinimo proceso Gibso energija (ΔG) priklauso nuo entalpinio (ΔH) ir entropinio ($-T\Delta S$) indėlių sumos. Tai reiškia, kad esant tai pačiai Gibso energijos vertei, ΔH ir $-T\Delta S$ verčių kombinacijos gali būti įvairios (lygtis 1).

 $\Delta G = \Delta H - T \Delta S (1);$

Mechanizmas, kai mažos molekulinės masės junginiai atrankiai atpažįsta taikinio molekulinį paviršių (pvz.: baltymo aktyviajame centre), dar nėra visiškai suprastas, kad būtų lengvai taikomas atrankių ir stipriai besijungiančių slopiklių kūrimui.

Ligando-Baltymo-Tirpalo sistema – tai yra procesų ir būsenų pasiskirstymų derinys, apie kurį detalios informacijos mes neturime, ir išmatuojami yra tiktai procesų ir būsenų sumos vidurkiai. K_d vertė reiškia, kad esant tam tikroms sąlygoms (pH, T, slėgiui ir t.t.), ligandas vidutiniškai jungiasi prie taikinio išmatuotu stiprumu. Koks yra K_d verčių pasiskirstymas, mes nežinome.

2017 metais buvo publikuota gana išsami jungimosi termodinamikos apžvalga [Claveria-Gimeno et al., 2017], kurios teiginiai bus apžvelgti žemiau.

Entalpijos indėlis. Jungimosi entalpijos (ΔH) pokytis gali būti suskirstytas į entalpijos pokyčio dedamąsias:

 $\Delta H^{matuota} = \Delta H_{s \verb"averliku"} + \Delta H_{desolvatacijos} + \Delta H_{konformacinis} + \Delta H_{main \verb"u"} + ...,$

kur $\Delta H_{s\bar{q}veik\bar{q}}$ yra entalpijos indėlis, kuris atsiranda dėl nekovalentinių sąveikų tarp ligando ir taikinio; $\Delta H_{desolvatacijos}$ yra entalpijos indėlis, kuris atsiranda dėl nutraukiamų ryšių tarp ligando, baltymo ir tirpiklio molekulių; $\Delta H_{konformacinis}$ yra entalpijos indėlis, kuris atsiranda dėl susijungiančiose molekulėse vykstančių konformacinių pokyčių ir kuris yra ypač aktualus jungiantis didelėms molekulėms (baltymai, DNR, RNR), kai įvyksta antrinės, tretinės struktūros pokyčiai; $\Delta H_{main\bar{q}}$ yra entalpijos indėlis, kuris atsiranda dėl ligando ir baltymo sąveikos su kitais buferio komponentais (jonais, protonais, kitomis mažomis molekulėmis). Reikia pabrėžti, kad $\Delta H_{main\bar{q}}$ entalpijos indėlis gali būti įvertintas ir pašalintas iš $\Delta H^{matuota}$ sumos. Pagal cheminę struktūrą panašių junginių jungimosi $\Delta H_{konformacinis}$ ir $\Delta H_{main\bar{q}}$ indėlių vertės gali būti panašios, šiuo atveju svarbesni tampa kiti jungimosi proceso entalpijos nariai – $\Delta H_{s\bar{q}veik\bar{q}}$ + $\Delta H_{desolvatacijos}$. Tokiu atveju jungimosi proceso $\Delta H^{matuota}$ pokytis gali būti supaprastintas iki 2 dedamųjų:

(a) Sąveikų nutraukimas vykstant desolvatacijos procesams – nutraukiami ligando ryšiai su vandens molekulėmis ir aktyviojo centro vandens molekulių ryšiai su baltymo molekuliniu paviršiumi, kai ligando atomai juos pakeičia.

(b) Sąveikų susidarymas tarp jungimosi proceso dalyvių (ligando ir taikinio).

Labai svarbus yra protonų mainų proceso entalpijos indėlio įvertinimas (ΔH_{main} ų dedamoji). Jei ligandui sąveikaujant su taikiniu vyksta protonų mainai tarp ligando, taikinio ir buferio, t.y. vyksta ligando ar taikinio protonizavimas ar deprotonizavimas, reikšmingas tampa protonų mainų proceso entalpijos indėlis. Esant skirtingam buferio pH bei jo sudėčiai, ΔH_{main} ų indėlis bus skirtingas. Kaip minėta, buferio bei jo pH įtaka termodinaminiams parametrams gali būti įvertinta.

Entropijos indėlis. Entropijos indėlio $(-T\Delta S^{matuota})$ vertė yra apskaičiuojama iš $\Delta G^{matuota}$ ir $\Delta H^{matuota}$ verčių skirtumo, entropijos indėlis panašiai kaip entalpijos indėlis $(\Delta H^{matuota})$ gali būti pavaizduotas kaip indėlių suma:

 $-T\Delta S \ ^{matuota} = -T\Delta S \ _{desolvatacijos} + -T\Delta S \ _{konformacinis} + -T\Delta S \ _{main \mathfrak{Q}} +$

 $-T\Delta S_{sukamasis-slenkamasis} + -T\Delta S_{vibracinis} + ..., kur <math>-T\Delta S_{desolvatacijos}$ yra ligando ir taikinio desolvatacijos proceso entropijos indėlis; $-T\Delta S_{konformacinis}$ yra entropijos nario indėlis, kuris atsiranda dėl besijungiančiose molekulėse vykstančių konformacinių pokyčių; $-T\Delta S_{main}$ ų yra entropijos nario indėlis, kuris atsiranda dėl ligando, baltymo sąveikų su kitais buferio komponentais (jonais, protonais, kitomis mažomis molekulėmis); $-T\Delta S_{sukamasis-slenkamasis}$ yra entropijos nario indėlis, kuris atsiranda dėl sąveikaujančiose molekulėse vykstančių grandinių ar ligando dalių sukamųjų-transliacinių laisvių pokyčių; $-T\Delta S_{vibracinis}$ yra entropijos nario indėlis, kuris atsiranda dėl kovalentinių ryšių vibracijos dažnio pokyčių jungimosi proceso metu. Yra pabrėžiama, kad reikia daugiau dėmesio skirti desolvatacijos ir konformacinės entropijos indėlių optimizavimui vaistų kūrimo procese.

Komplekso susidarymas. "Ligando-taikinio" komplekso susidarymas gali būti suskirstytas į 3 etapus:

- (1) Jungimosi dalyvių desolvatacijos procesai.
- (2) Konformacinis jungimosi dalyvių prisitaikymas.
- (3) Ryšių sudarymas tarp jungimosi dalyvių.

Vykstant ligando desolvatacijos procesui galima išskirti du reikšmingus etapus: 1) tai ryšių nutraukimas tarp ligando ir vandens molekulių bei 2) sąveikų (vandenilinių ryšių) pokyčiai tarp vandens molekulių, kurios yra aplink ligandą ir neturi tiesioginio kontakto su juo, bet yra netiesiogiai įtakojamos ligando paviršiaus. Desolvatacijos proceso entropijos pokyčiai (ΔS) dažniausiai yra naudingi jungimosi proceso efektyvumui.

Konformacinis jungimosi proceso dalyvių prisitaikymas gali būti siejamas tiek su dideliais konformaciniais persitvarkymais, pavyzdžiui, baltymo kilpos struktūros pokyčiai po susijungimo, tiek su pakankamai smulkiais, pavyzdžiui, molekulės cheminės grupės sukimosi aplink kovalentinį ryšį laisvės suvaržymas po prisijungimo. Yra teigiama, kad prisitaikymo entropijos pokytis po prisijungimo dažniausiai yra nenaudingas ($\Delta S < 0$) jungimosi procesui dėl ligando ir aktyviojo centro aminorūgščių liekanų judėjimo laisvės suvaržymo, tuo tarpu konformacinis entalpijos narys gali būti bet kokios vertės.

Nenaudingą jungimosi procesui entropijos pokytį ($\Delta S < 0$) dažniausiai kompensuoja naujai sudaromi ryšiai tarp ligando ir taikinio, kai suformuojamas galutinis kompleksas. Nenaudingas entropijos pokytis ($\Delta S < 0$) atsiranda dėl jungimosi dalyvių konformacinio prisitaikymo, kai suminis ligando ir taikinio konformacijų derinių skaičius po prisijungimo sumažėja. Apibendrinant galima teigti, kad naudingas entropijos pokyčio indėlis ($\Delta S > 0$) atsiranda vykstant desolvatacijos procesui, kai vandens molekulės, esančios šalia ligando ar taikinio aktyviajame centre, tampa "laisvesnės".

Nenaudingas entalpijos pokytis ($\Delta H > 0$) atsiranda desolvatacijos proceso metu, kai yra nutraukiami nekovalentinių sąveikų ryšiai tarp jungimosi dalyvių ir vandens molekulių. Naudingas jungimosi procesui entalpijos pokytis ($\Delta H < 0$) atsiranda dėl naujai suformuojamų ryšių tarp taikinio ir ligando.

Ligando jungimosi optimizavimas atsižvelgiant į termodinaminius parametrus. Ligando jungimosi efektyvumas (ΔG) gali būti pagerintas dėl:

- (1) Naudingesnio jungimosi entalpijos pokyčio ($\Delta H < 0$), kai įvedami nauji ryšiai tarp ligando ir taikinio, arba optimizuojami esantys ryšiai (pavyzdžiui, siekiant labiau kompensuoti entalpiškai nenaudingą desolvatacijos indėlį).
- (2) Naudingo desolvatacijos proceso entropijos pokyčio, kai į ligando struktūrą įvedamos hidrofobinės grupės.
- (3) Jungimosi dalyvių konformacinės prisitaikymo entropijos, kai bandoma sumažinti galimų ligando konformacijų skaičių.

Hidrofobinių (nepolinių) grupių įvedimas į ligando pirmtaką dažniausiai suteikia naudingą entropijos indėlio pokytį ($\Delta\Delta S > 0$). Sumažinus ligando galimų konformacijų skaičių, galima pasiekti šiek tiek geresnį jungimąsi prie taikinio iš nenaudingesnio mažesniu laipsniu entropijos nario $-T\Delta S_{konformacinis}$, kai ligando konformacinio prisitaikymo prie taikinio nenaudingas entropijos pokytis bus mažesnis. Kitas svarbus pastebėjimas, kad hidrofobinių (nepolinių) grupių desolvatacijos proceso nenaudingas entalpijos pokytis gali būti nenaudingesnis mažesniu laipsniu nei polinių grupių. Tokiu būdu gauname, kad iš jungimosi termodinamikos pusės labiau hidrofobinių ligandų kūrimas yra paprastesnis. Deja, labiau hidrofobiniai ligandai turi eilę farmakologinių problemų – tirpumas, jungimosi atrankumas, toksiškumas ir kiti.

Entalpiškai optimizuojant ligando jungimąsi bandoma įvesti entalpiškai naudingus ryšius

tarp ligando ir taikinio. Tokia strategija yra gana komplikuota, nes sudėtinga įvesti naują polinę grupę į ligando struktūrą taip, kad susiformuotų papildomas stiprus kontaktas tarp ligando ir taikinio, nes naujo kontakto stiprumas priklausys nuo atstumo tarp atomų bei jų erdvinės orientacijos. Atlikti ligando konformacinės laisvės suvaržymą bei hidrofobinių grupių įvedimą yra lengviau ir toks jungimosi optimizavimas gali būti naudingas paskutiniuose vaisto kūrimo etapuose. Entropinis ligando jungimosi optimizavimas yra paprastesnis, nes po hidrofobinės grupės įvedimo ligandas yra labiau linkęs vengti kontaktų su vandens molekulėmis (tirpikliu).

Paprasčiausia yra pradėti jungimio jungimosi prie taikinio optimizavimą nuo entalpijos varomo slopiklio, nes pagerinti jungimosi entalpijos indėlį yra sudėtinga, tuo tarpu optimizuoti entropiškai – žymiai paprasčiau. Pirmųjų žmogaus imuno deficito viruso HIV-1 proteazių slopiklių giminingumą lėmė jungimosi entropija, t.y. pagrindinis jungimosi energijai (ΔG) naudingas indėlis buvo gaunamas iš entropijos pokyčio. Šiuo momentu geriausi HIV-1 slopikliai yra labiau entalpiški, jie yra labiau atrankūs taikiniui, stipriau jungiasi prie taikinio, mažiau toksiški, labiau toleruoja taikinio struktūros pokyčius (mutacijas) [Freire, 2008]. Vandenilinių ryšių akceptorių ir donorų skaičius nekoreliuoja su ligando jungimosi entalpiškumu. Naujas polinis ryšys tarp ligando ir taikinio gali būti tiesiog entalpiškai nenaudingas, nes dėl erdviškai nepalankaus išsidėstymo entalpijos naudingas indėlis iš ryšio susidarymo gali būti mažesnis nei polinės grupės desolvatacijos entalpijos nenaudingas indėlis dėl ryšių tarp ligando polinių grupių ir vandens molekulių nutraukimo.

Jungimosi atrankumas. Jungimosi atrankumas yra svarbiausia vaisto savybė, kuri sumažina šalutinių poveikių tikimybę bei vaisto toksiškumą. Kaip buvo minėta ankščiau, labiau hidrofobiniai ligandai yra mažiau atrankūs, tuo tarpu entalpijos varomi ligandai pasižymi didesniu atrankumu taikiniui. Tai yra siejama su polinio ryšio savybėmis, nes polinės sąveikos stiprumas priklauso nuo atstumo tarp sąveikaujančių atomų ir jų padėties erdvėje, todėl toks erdvinis atpažinimas yra jautresnis [Tarcsay and Keserű, 2015]. Dažniausiai polinių grupių įvedimas į ligando struktūrą neturi pastebimo efekto jungimosi stiprumui, nes naujos sąveikos entalpijos indėlis yra tiesiog kompensuojamas nenaudingu entropijos indėliu, pasireiškia taip vadinamas entalpijos-entropijos kompensavimo efektas [Lafont et al., 2007]. Kaip buvo minėta, entalpijos varomų junginių kūrimas yra žymiai sudėtingesnis nei entropijos indėlis turi ne tik kompensuoti nenaudingą polinės grupės desolvatacijos proceso entalpijos indėli, bet ir pridėti naudingą jungimosi indėlį jungimosi stiprumui. Tai yra sudėtinga, nes reikia išvengti entalpijos-entropijos kompensavimo efekto. Įvedus naują polinę grupę galimi sekantys variantai:

- (a) Polinė grupė po prisijungimo yra nukreipta į tirpalą, pavyzdžiui, pagerina hidrofobinio junginio tirpumą.
- (b) Polinė grupė yra desolvatuota, bet nesudaro stipraus ryšio su taikiniu, pasireiškia jungi-

mosi stiprumo sumažėjimas dėl nevisiškai kompensuoto desolvatacijos proceso nenaudingo entalpijos indėlio.

- (c) Desolvatuota polinė grupė sudaro stiprų ryšį su taikiniu, bet tai neturi įtakos ligando jungimosi stiprumui dėl entalpijos-entropijos kompensavimo efekto.
- (d) Desolvatuota polinė grupė sudaro stiprų ryšį su taikiniu, aptinkamas jungimosi stiprumo prieaugis.

b) atveju pirmtakas su įvesta poline grupe turi būti pašalintas iš tolimesnio ligando jungimosi optimizavimo. d) atveju naują polinę grupę geriausiai yra įvesti šalia mažai judraus taikinio regiono, kai maždaug žinoma pirmtako pozicija taikinio aktyviajame centre. Tokiu atveju gali susidaryti stiprūs ryšiai tarp ligando ir taikinio, ryšiai, kurių entalpijos indėlis įveiks entalpijosentropijos kompensavimo efektą. c) ir d) atvejais polinės grupės dažniausiai pagerina atrankumą taikiniui [Kawasaki and Freire, 2011].

Bendru atveju, jungimosi atrankumas nereikalauja stipraus jungimosi prie taikinio. Stiprus jungimasis ir atrankumas taikiniui tarpusavyje nekoreliuoja, nes ryšio stiprumas priklauso nuo sudaromų ryšių tarp ligando ir taikinio kokybės, t.y. naudingo energetinio indėlio į Gibso laisvąją energiją (ΔG), tuo tarpu taikinio atpažinimas (atrankumas jam) priklauso nuo sudaromų ryšių erdvinio išsidėstymo. Kaip buvo minėta, papildomos polinės grupės gali neturėti indėlio į jungimosi stiprumą, bet gali pagerinti ligando atrankumą taikiniui. Tokiu būdu stipriai besijungiantis prie taikinio ligandas gali būti neatrankus ir turėti šalutinių farmakologinių poveikių, o vidutinio stiprumo ligandas gali turėti atrankaus ligando savybę. Svarbus yra ligando atrankumas bei jo farmakokinetinės ir farmakodinaminės savybės.

Jungimasis prie struktūriškai panašių taikinių. Kartais reikia, kad ligandas efektyviai prisijungtų prie homologinių taikinių, t.y. kad ligandas galėtų jungtis prie tikslinio baltymo šeimos ar jo mutantinio baltymo. Pirmame etape sukuriami ligandai, kurie sąveikauja su mažiau kintančiu (kitaip tariant konservatyvu) bei struktūriškai stabiliu taikinio regionu. Sekantis etapas yra cheminių grupių įvedimas, kurios konformaciniu atžvilgiu yra mažiau suvaržytos, t.y. gali užimti daugiau erdvės, lengviau prisitaikyti prie taikinio dėl grupių sukimosi laisvės, jų asimetrijos. Tokios grupės yra naudingos ligando sąveikai su struktūriškai mažiau stabiliais bei skirtingais taikinio regionais.

1.8 Kristalinės vandens molekulės CA izoformų aktyviajame centre

Kristalinės struktūros, kurių skiriamoji geba yra aukšta (didesnė nei 1,8 Å), dažniausiai turi gerus elektronų tankius, kurie leidžia aptikti vandens molekulių elektronų pikus. Vis dažniau publikuojami moksliniai straipsniai, kuriuose didesnis dėmesys yra skiriamas aktyviojo centro vandens molekulių analizei, siekiant įvertinti jų įtaką jungimosi proceso entropijos-entalpijos kompensavimui ([Klebe, 2015, Snyder et al., 2013], programa Watermap). Yra nuomonių, kad aktyviojo centro vandens molekulių savybės bei vandens molekulių dinamikos procesai yra kertinis ir vienas labiausiai nesuprastas baltymo-ligando jungimosi termodinamikos dalyvis [Snyder et al., 2013].

Žmogaus CA-ligandas kompleksų kristalinės struktūros, kaip taisyklė, yra aukštos skiriamosios gebos, todėl aktyviojo centro vandens molekulių pikai yra gerai apibrėžti. Nežiūrint į tai, aktyviojo centro kristalinių vandens molekulių dinamikos įvertinimas, t.y. kiek vandens molekulių atsijungė ar kiek buvo sutelkta po slopiklio prisijungimo prie aktyviojo centro, lyginant su struktūra be slopiklio, yra sudėtingas dėl šių priežasčių:

- (a) Elektronų tankių kokybės įvertinimo. Bet kurioje kristalinėje struktūroje vandens molekulių elektronų pikai yra skirtingos kokybės, tai reiškia, kad vandens molekulių kiekis priklauso nuo elektronų tankio interpretavimo. Silpni elektronų tankio pikai, t.y. ties triukšmo lygiu ar su aukštais B-faktoriais, t.y. labiau judrių atomų, gali būti traktuojami kaip vandens molekulių elektronų pikai. Skirtingos programos (Refmac, Sfall), kurios apskaičiuoja elektronų tankių žemėlapių parametrus, gali pateikti iš dalies skirtingą vandens molekules primenančių elektronų pikų išsidėstymą. Kitas svarbus dalykas, kad elektronų tankių interpretavimas priklauso nuo tyrėjo, kuris atlieka struktūros modeliavimą, žinių ir požiūrio. Reikia pabrėžti, kad labai judrių atomų ir molekulių pozicijos negali būti nustatytos naudojant kristalografijos metodą.
- (b) Baltymo molekulių susipakavimo kristale. CA baltymo subvienetai kristale susipakuoja gana tankiai ir gali būti, kad vienas baltymo subvienetas išsidėsto šalia kito baltymo subvieneto aktyviojo centro. Toks išsidėstymas sudaro palankesnes sąlygas kristalinių vandens molekulių elektronų pikų padidėjimui kristalinėje struktūroje.
- (c) Skirtumų tarp skirtingų baltymo subvienetų toje pačioje struktūroje. CA XII izoformos kristalinės struktūros turi dažniausiai 4 baltymo molekules. Įdomiausia yra tai, kad vandens molekulių skaičius bei jų tankių kokybė gali būti skirtingi skirtinguose baltymo subvienetuose.
- (d) Priklausomybės nuo kristalinimo buferio. Skirtingi kristalinimo buferiai (pavyzdžiui pagal pH vertę) sąlygoja skirtingą vandens molekulių išsidėstymą CA aktyviajame centre. Kristalinės struktūros aktyviajame centre gali būti aptiktos kristalinimo buferio molekulės, kurios keičia aktyviojo centro vandens molekulių išsidėstymą.

Minėtos priežastys apsunkina koreliacijos paieškas tarp vandens molekulių dinamikos ir jungimosi termodinamikos. Doktoranto spręstų struktūrų vandens molekulių dinamikos analizė buvo pradėta, bet nebaigta, todėl nepateikiama disertacijoje.

1.9 Sulfonamidinių slopiklių tikriniai jungimosi parametrai

CA sulfonamidinių slopiklių jungimosi termodinaminiai parametrai priklauso nuo buferio ir jo pH. Kaip minėta, prie žmogaus CA aktyviojo centro Zn(II) jono jungiasi tiktai deprotonizuota slopiklio forma – deprotonizuotas sulfonamidas R-SO₂NH⁻. Protono pernešimas nuo slopiklio sulfonamidinės grupės į buferį yra termodinaminis procesas, kuris turi savo indėlį į stebimų (matuotų) energijų (ΔH , ΔG) vertes [Pilipuitytė and Matulis, 2015, Taylor et al., 1970]. Buferio ir jo pH indėlis gali būti įvertintas atliekant matavimus skirtingo pH buferiuose [Baranauskienė and Matulis, 2012, Jogaitė et al., 2013, Krishnamurthy et al., 2008, Morkūnaitė et al., 2015].

E (dr. E. Čapkauskaitė) ir VD (dr. V. Dudutienė) klasių junginių tikriniai jungimosi prie CA izoformų parametrai yra paskelbti straipsniuose [Kišonaitė et al., 2014, Zubrienė et al., 2015, 2017]. Tikriniai jungimosi parametrai gali būti siejami su struktūriniais jungimosi duomenimis.

1.10 Baltymo-ligando sąveikos tyrimų rezultatų lūkesčiai ir realijos

Išvados, kaip taisyklė, remiasi faktais, kurie savo ruožtu gali atspindėti tik dalį informacijos apie nagrinėjamą objektą ar procesą. Kaip pavyzdį galima paimti "vaikišką dėlionę" – vaizdas yra aiškesnis esant didesniam skaičiui teisingai sudėtų dėlionės dalių.

Yra žinoma, kad jungimosi termodinamika yra įvairių kitų procesų bei juos įtakojančių veiksnių suma:

- (a) Tai nekovalentinių sąveikų indėliai vandenilinių ryšių, Van der Valso kontaktų, hidrofobinių, elektrostatinių sąveikų ir kitų.
- (b) Tai vandens molekulių persigrupavimo procesai ligando ir aktyviojo centro solvatacija ir desolvatacija, vandens molekulių sutelkimas ir pašalinimas iš aktyviojo centro.
- (c) Tai slopiklio bei baltymo konformaciniai pokyčiai prisijungimo metu.
- (d) Tai aktyviojo centro tūris ir forma, molekulinių paviršių topografija.
- (e) Tai kiti veiksniai.

Eksperimentiniu būdu nustatyti baltymo-ligando jungimosi parametrai (disociacijos konstantos, jungimosi termodinaminiai parametrai) – tai visų pirma yra sudėtingo proceso vidurkinės reikšmės. Mes, kaip buvo minėta, neturime informacijos apie atskirų, įtakojančių jungimąsi veiksnių indėlius į jungimosi procesą. Mes nežinome, kokie yra, pavyzdžiui, slopiklio sukamojoslenkamojo judėjimo ar konformacinių energijų pasiskirstymai esant laisvam slopikliui ir po prisijungimo prie taikinio. Priklausomybių paieškos tarp slopiklių cheminės struktūros (2D) ir jungimosi termodinamikos leidžia iš dalies nustatyti grupes, kurios pagerina jungimosi efektyvumą ar atrankumą taikiniui. Baltymų kristalografija leidžia nustatyti slopiklio poziciją aktyviajame centre atominės skiriamosios gebos tikslumu. Gauti ligando sąveikos su aktyviuoju centru struktūriniai duomenys leidžia formuoti tikslesnį ir išsamesnį baltymo-ligando jungimosi proceso vaizdą. Atsiranda galimybė atpažinti procesus, kurie įtakoja jungimosi termodinaminių parametrų verčių pokyčius.

1.11 Baltymų kristalografijos metodo taikymas vaistų kūrime

Kristalas – tai yra medžiagos struktūra, kurią suformuoja identiški, pasikartojantys blokai – elementarios kristalinės gardelės (*kristalografinis terminas*). Kiekviename bloke tie patys atomai ir molekulės turi tą pačią erdvinę poziciją. Kristalo blokai idealiame kristale išsidėsto simetriškai, todėl kristalas, esant tam tikroms sąlygoms, veikia kaip difrakcijos atspindžių stiprintuvas. Rentgeno spindulius kristale atspindi atomų elektronai, dėl to stebime Rentgeno spindulių interferencinį vaizdą.

Slopiklio molekulės elektronų tankis elektronų žemėlapiuose bus aptiktas tiktai tada, jei slopiklis nėra "per daug judrus", t.y. neturi daug alternatyvių pozicijų aktyviajame centre, nes tokiu atveju difrakcijos atspindžių nuo slopiklio informacija atsiduria difrakcijos triukšmo lygyje. Geriausias elektronų tankis yra tų molekulių, kurios sąveikauja su aktyviuoju centru vienodu mechanizmu, t.y. slopiklio pozicija kristalo narveliuose sutampa, jo atomai turi tą patį erdvinį išsidėstymą. Labilios, judrios slopiklio dalys dažniausiai visai neturi jokio elektronų tankio. Reikia neužmiršti, kad difrakcijos atspindžių surinkimas yra atliekamas 100 K (-173,15 °C) temperatūroje, nes baltymo kristalas yra užšaldomas. Tokiu būdu yra dalinai "užšaldomas" ligando ir baltymo šoninių grandinių judrumas. Baltymo ir ligando sąveikos kambario temperatūroje bus šiek tiek kitokios, ypač kalbant apie jų pasiskirstymą. Todėl yra daroma prielaida, kad kristalinėje struktūroje ligando pozicija aktyviajame centre atitinka ligando poziciją esant T_{kambario}, ir ji yra palankiausia.

Didelis temperatūrinis skirtumas tarp eksperimentinių sąlygų (difrakcijos eksperimentas yra atliekamas 100 K (-173,15 °C), o ITC – 310 K (37°C) temperatūroje) yra dar viena svari priežastis, kuri neleidžia atlikti patikimos kristalinių vandens molekulių dinamikos analizės CA aktyviuosiuose centruose, lyginant kristalinę struktūrą be ligando ir baltymo-ligando kompleksą. Temperatūrinis indėlis į vandens molekulių konfigūracijų gausą aktyviajame centre yra neabejotinas – didesnis baltymo grandinės šiluminis judėjimas sukelia baltymo molekulinio paviršiaus, su kuriuo sąveikauja vandens molekulės, pokyčius. Bandymas surišti vandens molekulių skaičiaus pokytį kristalinėse struktūrose su jungimosi termodinamika būtų nekorektiškas.

2 MEDŽIAGOS IR METODAI

2.1 Naudoti prietaisai, medžiagos

2.1.1 Naudoti prietaisai

- spektrofotometras "NanoDrop 1000"
- šaldoma mikrocentrifuga "Eppendorf Centrifuge 5415 R"
- šaldoma centrifuga "Eppendorf Centrifuge 5810-R"
- kristalinimo robotas "Oryx8"
- difraktometras "RIGAKU" MM007-HF
- \bullet termostatuojamas kambarys
- sinchrotrono EMBL DESY makromolekulinės kristalografijos spindulių linijos P13 ir P14
- sinchrotrono Lunde makromolekulinės kristalografijos spindulių linijos
- šviesinis mikroskopas "Carl Zeiss Stemi SN11" ir "O
FM<code>Э-Π</code>2"
- baltymų koncentratoriai "Amicon-Ultra-0,5ml" 10 kDa
- baltymų koncentratoriai Pierce Protein Concentrators, 9K
- kristalinimo lėkštelės, skirtos sėdinčio lašo metodui: "MRC Maxi 48-Well Crystallization Plate (Swissci)", "Cryschem Plate", "CrystalEX (Corning)"
- stalinis kompiuteris

2.1.2 Naudoti reagentai

Kristalinimo tirpalų reagentai.

Naudotų reagentų grynumas kristalinimo tirpalams gaminti buvo \geq (97-99) %. Baltymų kristalinimo efektyvumas taip pat priklauso nuo sekančių kristalinimo sąlygų:

- Nuo kristalinimo metodikos sėdinčio lašo, kabančio lašo, kristalinimo po aliejumi ar kitos metodikos.
- (2) Nuo kristalinimo lėkštelės tipo skirtingi lašo susitraukimo greičiai, pavyzdžiui, sėdinčio lašo.
- (3) Nuo tikslios pH reikšmės, nes, pavyzdžiui CA XII ties pH 7,0 nesikristalizuoja, bet ties pH 7,2 kristalizuojasi labai gerai.
- (4) Nuo pradinio lašo sudėties baltymo koncentracijos, kristalinimo buferio praskiedimo ir t.t.
- (5) Nuo rekombinantinio baltymo raiškai naudojamo konstrukto.

Reagentų gamintojai: Sigma, Roth, Fluka, Serva.

Dažniausiai naudoti buferiai:

MES 2-(N-morfolino)etansulfoninė rūgštis HEPES 4-(2-hidroksetil)-1-piperazinetansulfoninė rūgštis BIS-TRIS 2,2-Bis(hidroksimetil)-2,2',2"-nitrilotrietanolis citrinų rūgštis/citratas TRIS/HCl 2-Amino-2-(hidroksimetil)-1,3-propandiolio hidrochloridas, TRIS hidrochloridas, Tris(hidroksimetil)aminometano hidrochloridas, bicinas 2-(Bis(2-hidroksietil)amino)acetato rūgštis acto rūgštis acetatas tricinas N-(2-Hidroksi-1,1-bis(hidroksimetil)etil)glicinas sukcinatas malonatas.

Dažniausiai naudotos druskos:

Kalcio chloridas, natrio chloridas, amonio sulfatas

Dažniausiai naudoti nusodintojai:

PEG8000, PEG4000, PEG3350, PEG400, iPrOH, PVP (polivinilpirolidonas).

"Hampton" kristalinimo tirpalų rinkiniai (*angl.* crystal screens): "PEG6000", "PEG/LiCl", "Sodium Malonate", "Index", "PEG/Ion", "Cryo", "2 Cryo".

Tiriami CA slopikliai. Disertacijoje analizuojami junginiai buvo susintetinti Biotermodinamikos ir vaistų tyrimų skyriuje ir pagrinde sudaro dvi grupes:

- (1) Mono/di-pakeisti fluorinti benzensulfonamidai (dr. V. Dudutienė, VD klasė);
- (2) Mono/di-pakeisti chlorinti benzensulfonamidai (dr. E. Čapkauskaitė, E klasė);

Kiti ligandai, kurių kompleksų su CA struktūros išspręstos doktoranto, buvo gauti iš bendradarbiaujančių institucijų (KTU, prof. V. Mickevičius bei Latvijos organinės sintezės institutas, dr. Trapencieris). Junginių grynumas buvo > 95 %.

2.1.3 Baltymai

Visos kristalinimo eksperimentuose naudotos žmogaus CA izoformos, išvardintos žemiau, buvo ekspresuojamos ir išgrynintos BTI BVTS dr. J. Matulienės, dr. V. Jogaitės (Juozapaitienė), V. Michailovienės, dokt. J. Kazokaitės, dr. J. Jachno, D. Timm, M. Gedgaudo, A. Kasiliauskaitės, G. Milinavičiūtės.

СА	Konstrukto	Aminorūgščių	Uniprot	
	numeris *	seka	numeris	
CA I	pL0060	3-261	P00915	
CAIL	1.0050	1-260 (pilno	D00019	
UA II	ртооза	ilgio)	P00918	
CAW	pL0307	19-284	D99749	
CAIV	pL0200	19-284	P 22740	
CA MI	pL0136	21-280	00000	
UA VI	pL0213	31-280	P 23280	
CA VA	pL0147	34-305	P35218	
CL UD	pL0173	40-317	00V9D0	
CAVD	pL0214	40-297	Q912D0	
CA VII	nT 0051	1-264 (pilno	D42166	
	proost	ilgio)	F 43100	
CA IX	pL0323	138-390	Q16790	
CA XII	pL0119	30-291	O43570	
	T 005 9	1-262 (pilno	09N101	
	proose	ilgio)	QOIVIQI	

Lentelė 2.1: Kristalinimui naudoti CA baltymai.

 \ast BVTS sukonstruotos plazmidės numeris.

2.2 Metodai

2.2.1 Žmogaus CA I, II, IV, VA, VB, VI, VII, IX, XII ir XIII izoformų kristalinimas

CA kristalai buvo gauti naudojant sėdinčio lašo baltymų kristalinimo metodą, kai iš lašo, kuriame yra baltymo ir kristalinimo buferio mišinys (nuo 0.1 iki 5 μ L), vandens molekulės difunduoja į talpyklą (nuo 0.1 iki 0.5 mL), kurioje yra tik kristalinimo buferis. Baltymo ir kristalinimo buferio mišinio lašas susitraukia, didėja baltymo bei buferio komponentų koncentracija. Jei kristalinimo buferio komponentai skatina baltymo kristalinimo vyksmą, susidaro kristalinimo centrai ir prasideda baltymo kristalų augimas. Kristalinimo eksperimentų apibendrinimas yra parodytas Lentelėje 2.1.

Paskelbtų žmogaus CA-ligando kristalinių struktūrų kristalinimo sąlygos yra surašytos PDB struktūros aprašyme ir yra lengvai pasiekiamos naudojant PDB kodo numerį.

	Skiriam	oji
CA	geba,	Trumpas aprašymas
	(Å)	
	1 2_	CA I kristalinimo sąlygos buvo optimizuotos (dr. E. Manakova (VU
I	2.0	BTI)). Gerai su slopikliu besikristalizuojanti izoforma. Kristalai auga
	2,0	apie savaitę.
тт	1,0-	CA II kristalinimo sąlygos jau buvo optimizuotos (E. Manakova (VU
11	2,0	BTI)). Labai gerai besikristalizuojanti izoforma. Auga apie savaitę.
	wină	Lengvai besikristalizuojanti CA izoforma. Buvo nustatytos skirtingos
IV	0 5	kristalinimo sąlygos. Skiriamosios gebos pagerinti nepavyko. Gauta
	2,0	viena kristalinė struktūra. Auga apie savaitę.
X7A		Nepavyko aptikti kristalinimo sąlygų. Išbandyta 800 kristalinimo
VA	-	buferių.
		Nepavyko aptikti kristalinimo sąlygų, buvo bandyta su dviem skirtin-
VB	-	gais konstruktais, sukurtais A. Kasiliauskaitės. Išbandyta 1400 kristal-
		inimo sąlygų.
		Kristalinimo sąlygos buvo optimizuotos. Atlikti difrakcijos eksperimen-
	virš	tai ir nustatyta, kad CA VI baltymas dimerizuojasi taip, kad aktyvieji
	1,6	centrai slopikliui yra užblokuoti. Komplekso su slopikliu struktūros
		nepavyko gauti. Auga apie 3-4 savaites.

Lentelė 2.2: CA izoformos ir jų kristalinimo apibendrinimas.

VII		Kristalinimo sąlygos nebuvo optimizuotos. Buvo išbandyta 1000	
		kristalinimo sąlygų.	
		Kristalinimo sąlygos buvo optimizuotos, gauti maži, taisyklingos	
IX		geometrinės formos kristalai. Atlikti difrakcijos eksperimentai parodė	
3,0	netinkamą skiriamąją gebą. Kristalai atsiranda po mėnesio.		
VII	1,2-	Kristalinimo sąlygos buvo optimizuotos disertacijos autoriaus magis-	
2,0		trantūros metu. Kristalai atsiranda po 1 savaitės.	
1,6-		Kristalinimo sąlygos CA XIII jau buvo optimizuotos (E. Manakova	
	2,0	(VU BTI)). Auga apie 2-3 savaites.	

Skiriamosios gebos viršutinė riba yra 2,5 Å, kai dar įmanoma nustatyti slopiklio padėtį CA aktyviajame centre. Vandens molekulių elektronų žemėlapių pikus, esant > 2,5 Å, nustatyti negalima. Esant skiriamajai gebai mažiau nei 2 Å, vandens molekulių padėtys aktyviajame centre gali būti tiksliai nustatomos, jų skaičius didėja gerėjant skiriamajai gebai. Žmogaus CA izoformų baltymai buvo koncentruojami ultrafiltracijos būdu iki (15-50) mg mL⁻¹ baltymo koncentracijos verčių. Baltymų tirpalų koncentracijos buvo įvertinamos spektrofotometriškai naudojant spektrofotometrą "NanoDrop". Žemiau išvardinti kristalinimui naudoti buferiai ir CA baltymų koncentracijos.

Naudoti kristalinimo buferiai bei baltymų koncentracijos, kurioms esant gaunami kristalai:

- (1) **CA I**: $C_{baltymo}$ (15-25) mg mL⁻¹
 - 0,2 M natrio chloridas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG3350
 0,2 M natrio chloridas, 0,1 M Tris-HCl (pH 8,5), 20 % PEG8000
 0,2 M amonio sulfatas, 0,1 M Tris-HCl (pH 8,5), 24 % PEG4000
 0,2 M amonio sulfatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG4000
 0,2 M amonio sulfatas, 0,1 M Tris-HCl (pH 8,5), 24 % PEG3350
 0,2 M amonio sulfatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG3350
 0,2 M amonio sulfatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG3350
 0,2 M amonio sulfatas, 0,1 M Tris-HCl (pH 8,5), 20 % PEG8000
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 24 % PEG4000
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 24 % PEG4000
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG3350
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG3350
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 24 % PEG3350
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 24 % PEG3350
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG4000
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG3350
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG4000
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG4000
 0,2 M amonio acetatas, 0,1 M Tris-HCl (pH 8,5), 28 % PEG4000
 0,2 M natrio acetatas (pH 8,3), 0,1 M Tris-HCl (pH 8,5), 28 % PEG4000
 0,2 M natrio acetatas (pH 8,3), 0,1 M Tris-HCl (pH 8,5), 28 % PEG4000

15) 0,2 M natrio acetatas (pH 8,3), 0,1 M Tris-HCl (pH 8,5), 24 % PEG3350
16) 0,2 M natrio acetatas (pH 8,3), 0,1 M Tris-HCl (pH 8,5), 28 % PEG3350
17) 0,2 M natrio acetatas (pH 8,3), 0,1 M Tris-HCl (pH 8,5), 20 % PEG8000

- (2) **CA II**: $C_{baltymo}$ (15-50) mg mL⁻¹
 - 1) 0,1 M natrio bicinas (pH 9,0), 0,2 M amonio sulfatas, 2 M natrio malonatas (pH 7,0);
 - 2) 0,1 M natrio bicinas (pH 9,0), 2,0 M natrio malonatas (pH 7,0);
- (3) **CA IV**: $C_{baltymo}$ (15-25) mg mL⁻¹
 - 1) 0,2 M amonio sulfatas, 0,1 M natrio acetatas (pH 4,5), 23 % PEG3350
 - 2) 0,2 M amonio sulfatas, 0,1 M natrio acetatas (p
H 4,5), 25 % PEG3350
 - 3) 0,2 M amonio chloridas, 0,1 M natrio Mes (pH 6,5), 15 % PEG4000
 - 4) 0,2 M amonio sulfatas, 0,1 M natrio Mes (pH 6,5), 20 % PEG2000mme
 - 5) 0,2 M amonio sulfatas, 0,1 M natrio Mes (pH 6,5), 20 % PEG3350
- (4) **CA VI**: $C_{baltymo}$ (10-20) mg mL⁻¹
 - 1) 0,1 M amonio citratas (pH 5,0), 20 % PEG2000mme
 - 2) 0,1 M amonio citratas (pH 5,0), 15 % PEG3350
- (5) CA IX: mhCA IX, C_{baltymo} 3-6 mg mL⁻¹
 1) (0,25-0,55) M NH₄H₂PO₄
- (6) CA XII: C_{baltymo} (20-30) mg mL⁻¹
 1) 0,1 M amonio citratas (pH 7,23), 0,2 M amonio sulfatas, 26-30 % PEG4000
- (7) **CA XIII**: $C_{baltymo}$ (15-50) mg mL⁻¹
 - 1) 0,1 M natrio citratas (pH 5,5), 0,2 M natrio acetatas (pH 4,5), 30 % PEG4000;
 - 2) 0,1 M natrio citratas (pH 5,5), 0,1 M natrio acetatas (pH 4,5), 26 % PEG4000;
 - 3) 0,1 M amonio citratas (pH 7,0), 0,1 M natrio acetatas (pH 4,5), 26 % PEG3350;
 - 4) 0,1 M natrio citratas (pH 5,5), 0,2 M amonio sulfatas, 26 % PEG3350;
 - 5) 0,1 M amonio citratas (pH 5,0), 18-20 % PEG4000;

2.2.2 Slopiklio molekulės įvedimas į CA kristalus

CA II, CA IV, CA XII ir CA XIII izoformų kristalai apie savaitę iki difrakcijos eksperimento buvo mirkomi kristalinimo buferyje kartu su tiksliniu slopikliu. Kristalinimo buferis su slopikliu buvo gaunamas sumaišant (0,5-2,0) μ L 50 mM slopiklio tirpalo su 50 μ L kristalinimo buferio, gauto iš kristalinimo lėkštelės talpyklos. Lašų buferis, kur buvo aptinkami reikiamo dydžio kristalai, buvo tiesiog pakeičiamas buferiu su slopikliu. Tokios manipuliacijos CA-ligando kompleksui gauti buvo atliekamos su CA II, CA IV, CA XII ir CA XIII kristalais. CA I baltymoligando komplekso kristalai buvo gaunami ko-kristalinimo metu, kai kartu su baltymu buferyje buvo slopiklio molekulės.

2.2.3 Difrakcijos duomenų rinkimas

Rentgeno spindulių difrakcijos vaizdai nuo CA-ligandas kompleksų kristalų buvo renkami asmeniškai ir su kolegų pagalba (dr. S. Gražulis, dr. E. Manakova, dr. G. Tamulaitienė, dr. G. Sasnauskas) naudojant:

- (1) VU gyvybės mokslo centro BTI esantį difraktometrą RIGAKU MM007-HF.
- (2) Hamburgo sinchrotrono makromolekulių spindulių linijas P13 ir P14 (Vokietija).
- (3) Lund sinchrotrono spindulių linijas (Švedija).

2.2.4 Difrakcijos vaizdų apdorojimas, fazių problemos sprendimas

Difrakcijos rinkinių apdorojimas buvo atliekamas Linux OS aplinkoje, pagrinde naudojant CCP4 [Winn et al., 2011] paketo programinę įrangą. Naudotų programų sąrašas difrakcijos rinkiniams apdoroti yra surašytas Lentelėje 2.3.

Programa	Programos taikymas
MOSFLM [Battye et al., 2011]	MOSFLM buvo naudojamas difrakcijos vaizdų apdorojimui, kai nuo
	tikos. Programa sukuria MTZ tipo failą, kuriame yra surašyti aptikti difrakcijos atspindžiai.
	XDS programa skirta tam pačiam tikslui kaip ir Mosflm. XDS pa-
	galba buvo atliekamas difrakcijos vaizdų, gautų Hamburgo (linijos
XDS [Kab-	P13, P14) ir Lundo sinchrotronuose, apdorojimas. Taip pat XDS pro-
$\operatorname{sch}, 2010]$	grama buvo naudojama difrakcijos vaizdams apdoroti nuo VU BTI
	detektoriaus PILATUS3 R 200K-A. XDS sukuria HKL tipo failą.
	(http://xds.mpimf-heidelberg.mpg.de)
COMBAT	Programa, kuri generuoja MTZ failą iš HKL failo (iš XDS).
COMDAT	(http://www.ccp4.ac.uk/html/combat.html)
	Po difrakcijos vaizdų integravimo, kai yra gautas MTZ failas, SCALA
SCALA	programa įvertina surinktų difrakcijos atspindžių statistiką, juos su-
	vidurkina.
	Po SCALA programos veikimo UNIQUE programa
UNIQUE	sudaro unikalių atspindžių sąrašą MTZ formatu.
	(http://www.ccp4.ac.uk/html/unique.html)

Lentelė 2.3: Difrakcijos vaizdų apdorojimo programos.

	Po UNIQUE programos veikimo FREERFLAG pro-	
FREERFLAG	grama atrenka ir pažymi 10% unikalių sąrašo atspindžių.	
	(http://www.ccp4.ac.uk/html/freerflag.html)	
MTZUTILS	Programa, kuri naudojama MTZ failo duomenų struktūros pertvarky-	
	mui. ~(http://www.ccp4.ac.uk/html/mtzutils.html)	
	Po SCALA programos panaudojimo TRUNCATE atlieka atspindžių	
TRUNCATE	intensyvumų perskaičiavimą į struktūrinių faktorių amplitudes.	
	(http://www.ccp4.ac.uk/html/truncate.html)	

Po difrakcijos vaizdų rinkimo atliekamas gautų duomenų kokybės įvertinimas. Svarbūs parametrai, į kuriuos reikia atkreipti dėmesį, yra surašyti **Lentelėje 2.4**.

Parametras	Parametro reikšmė		
Skiriamoji	Nurodo minimalų atstumą tarp atspindžio plokštumų. Minimalus ats-		
geba	tumas apibrėžia maksimalią skiriamąją gebą. Šis parametras priklauso		
8000	nuo kristalo savybių.		
	Parodo sulietų atspindžių skirtumą esant tam tikrai skiriamajai		
	gebai. Idealiai tie patys atspindžiai (pagal hkl indeksavimą) skir-		
R_{merge}	tis neturi. Didėjant skiriamajai gebai, daugėja atspindžių skaičius,		
	\mathbf{R}_{merge} pradeda augti. Bendra i \mathbf{R}_{merge} parodo atspindžių duomenų		
	patikimumą esant tam tikrai maksimaliai skiriamajai gebai.		
	Šis parametras koreliuoja su \mathbf{R}_{merge} . Taip pat parodo atspindžių		
	duomenų patikimumą esant tam tikrai maksimaliai skiriamajai		
I/σ	gebai. Duomenys laikomi nepatikimais, jei I/ σ mažesnė už 2,0. Tai		
	reiškia, kad nustatomi intensyvumai skiriasi nuo paklaidos tik 2 kartus.		
	Mažėjant I $/\sigma$, auga \mathbf{R}_{merge} reikšmės.		
D:f== l==::==	Kiekvienai kristalo gardelei ir simetrijos grupei yra ribotas atspindžių		
Diffaccijos	skaičius, priklausomai nuo skiriamosios gebos. Difrakcijos duomenų		
duomenų	pilnumas parodo, kokia jų dalis buvo nuskaityta nuo difrakcijos vaizdų		
punumas	(gauta difrakcijos eksperimento metu).		

Lentelė 2.4: Surinktų nuo difrakcijos vaizdų atspindžių kokybės įvertinimas.

Surinktų atspindžių rinkinyje yra užkoduota informacija apie atomų išsidėstymą (t.y. koordinates) kristalo asimetriniame vienete. Jos išgavimui reikalingas savitas raktas – fazės. Po

difrakcijos vaizdų rinkinio apdorojimo yra atliekamas fazių problemos sprendimas, po kurio galima analizuoti elektronų tankių žemėlapius bei įjungti į juos molekulių atomus. Vienas iš fazių problemos sprendimo būdų yra molekulinis pakeitimas. Pradinės fazės yra tiesiogiai gaunamos iš jau išspręstos struktūros (kristalografijos, branduolio magnetinio rezonanso ar bioinformatiniais metodais), kuri yra labai artima sprendžiamai struktūrai. Šiuo atveju naudojamos programos MOLREP arba AMORE (Lentelė 2.5). Jų veikimas paremtas tuo, kad per eilę duoto pradinio modelio transliacijų bei rotacijų surandama tokia padėtis, kuri geriausiai atitinka difrakcijos duomenis.

Programos SFALL ir SIGMAA yra naudojamos .mtz formato failo gavimui, kuriame yra fazių ir elektronų tankio žemėlapių koeficientai, reikalingi elektronų tankiams vizualizuoti. Turint sufazuotą modelį ir elektronų žemėlapius, pradedamas kristalinės struktūros modeliavimas, naudojant COOT programą. Yra analizuojami sekantys elektronų tankių žemėlapių tipai:

- (1) tiesioginis elektronų žemėlapis;
- (2) skirtuminis elektronų žemėlapis.

r	-		
Pavadinimas	Programos taikymas		
MOLREP	Naudojama molekuliniam pakeitimui, t.y. pradinės fazės ap-		
	skaičiuojamos ir pateikiamos iš išspręstos ir struktūriškai identiškos		
	arba labai panašios struktūros.		
AMORE	MOLREP programos analogas.		
COOT [Em-	Naudojant COOT programą rankiniu būdu vykdomas struktūros mod-		
sley et al.,	eliavimas: neužpildyti elektroninio tankio žemėlapių pikai analizuojami		
2010]	ir užpildomi vandens ar kitomis molekulėmis/atomais.		
	Programa atlieka atominio modelio atomų padėties patikslinimą		
DEEMAC	pagal eksperimentinius duomenis bei geometrijos apribojimus. Po		
REFMAC [Murshudov et al., 1997, Vagin et al., 2004]	REFMAC struktūros patikslinimo vėl grįžtama prie COOT pro-		
	gramos, analizuojami pokyčiai po fazių pagerinimo. Ciklas kar-		
	tojamas, kol visi reikšmingi elektroninio tankio pikai (išskyrus		
	aktyvųjį centrą) yra užpildyti ir belieka sumodeliuoti slopiklio		
	padėtis pagal esamą neužpildytą elektronų tankį aktyviajame centre.		
	$\rm http://www.ccp4.ac.uk/html/refmac5.html$		
	Apskaičiuoja struktūrinius faktorius ir fazes naudojant modelio ir		
SFALL	difrakcijos eksperimento metu gautų struktūrinių faktorių (Fobs.mtz)		
	informaciją. $http://www.ccp4.ac.uk/dist/html/sfall.html$		

Lentelė 2.5: Struktūros modeliavimui naudojamos programos.

	Atlieka Furjė-koeficientų gerinimą naudojant apskaičiuotas fazes,	
SIGMAA	gautas iš SFALL. Bendrai ši programa yra reikalinga elektronų	
	žemėlapiams generuoti, t.y. apskaičiuoti elektronų žemėlapių koefi-	
	$cientus. \ http://www.ccp4.ac.uk/html/sigmaa.html$	
AVOGADRO	Programa naudojama slopiklio molekulės 3D modeliui sukurti. Gautas	
[Hanwell	modelis įjungiamas į skirtuminį elektronų žemėlapį aktyviajame centre,	
et al., 2012]	iš modelio taip pat apskaičiuojami slopiklio geometrijos apribojimai.	
	Programa iš slopiklio atominio modelio (PDB) failo generuoja	
LIBCHECK	išeities failą, kuriame yra surašytos slopiklio molekulės geometrinės	
	ir cheminės savybės, reikalingos REFMAC programos veikimui.	

Tiesioginis elektronų tankio žemėlapis gaunamas naudojant difrakcijos duomenų F struktūrinius faktorius ir pradines fazes (gautas iš pradinio atominio modelio). Skirtuminis elektronų žemėlapis apskaičiuojamas naudojant $F_{eksperimentas}$ - $F_{modelis}$ taisyklę ir modelio fazes. Jis parodo elektronų tankio skirtumus, apskaičiuotus iš struktūros ir surinktų duomenų. Elektronų tankio žemėlapiai yra labiau priklausomi nuo fazių nei nuo amplitudžių. Žemėlapių kokybė priklauso ir nuo skiriamosios gebos vertės: mažėjant skiriamajai gebai, dingsta informacija apie individualių atomų tikslų išsidėstymą, didėja paklaidos, elektronų žemėlapiai tampa sunkiau interpretuojami. Baltymo grandinių ir aminorūgščių šoninių grandinių alternatyvios padėtys, dalis vandens/jonų ir kitų molekulių negali būti įvertinti, nes informacija atsiduria žemiau difrakcijos triukšmo lygio.

Po modeliavimo, naudojant COOT, pakeistas atominis modelis perduodamas patikslinimo programai REFMAC. Po patikslinimo grįžtama prie žemėlapių analizės, nes po atominio modelio patikslinimo keičiasi fazės, o tai reiškia, kad keičiasi ir elektronų žemėlapiai. COOT – REF-MAC ciklas kartojamas kol skirtuminio žemėlapio pikai jau neturi prasmės (tiesiog triukšmas). Struktūros patikimumo parametrai yra surašyti **Lentelėje 2.4**.

2.2.5 BSA ir ASA paviršių plotų apskaičiavimas

BSA (*angl.* Buried Surface Area, nuo tirpiklio paslėptas molekulinis paviršiaus plotas) ir ASA (*angl.* Accessible Surface Area, tirpikliui prieinamas molekulinis paviršiaus plotas) ligandų paviršiai kompleksuose su CA izoformomis buvo įvertinti naudojant Voronota programą (v. 1.10.1544) [Olechnovič and Venclovas, 2014]. Buvo pasirinkti šie parametrai: **1**) numatytas riedėjimo zondo spindulys (1,4 Å); **2**) atomų VdV spinduliai: Cl atomui – 1,75 Å, C – 1,7 Å, F – 1,47 Å, N – 1,55 Å, O – 1,52 Å, S – 1,80 Å, Zn – 1,39 Å ir H – 1,09 Å.

3 Eksperimentų rezultatai ir jų aptarimas

3.0.1 Doktorantūros metu išspręstos CA-ligando komplekso kristalinės struktūros

Mano doktorantūros pagrindinis tikslas buvo nustatyti keliasdešimt baltymo ir baltymoligando komplekso struktūrų naudojant Rentgeno spindulių kristalografijos metodą. Iš kristalinių komplekso struktūrų galima spręsti kaip struktūriškai išsidėsto mūsų laboratorijoje susintetinti cheminiai junginiai įvairių karboanhidrazių izoformų aktyviuosiuose centruose. Man pavyko gerokai viršyti pradinius lūkesčius ir darbo metu išspręsti daugiau nei 61 aukštos kokybės struktūrą bei sudėti duomenis į baltymų duomenų bazę PDB. Šios kristalinės struktūros sudarė laboratorijoje išspręstų struktūrų pagrindinę grupę ir padėjo racionaliau kurti cheminius junginius, kurie būtų dar labiau efektyvūs ir atrankūs.

Doktorantūros eigoje iš viso buvo surinkti 181 Rentgeno spindulių difrakcijos duomenų rinkiniai, kurių didžioji dalis gauta tiriant CA kompleksus su slopikliais (išsamiai duomenys yra pateikti **Lentelėje 3.1**). Iš jų 61 kristalinės struktūros buvo sudėtos į PDB duomenų bazę: 5LLH, 5LLC, 5LLE, 5LLG, 5LLN, 5LLP, 5LLO, 5MSA, 5MSB, 5IPZ, 5LL4, 5LL5, 5LL9, 5LLA, 5E2N, 5DOG, 5DOH, 5DRS, 5E2M, 5EHE, 4QIY, 4QIZ, 4QJ0, 4QJM, 4QJO, 4QJP, 4QJW, 4QJX, 4QTL, 4WR7, 4WUP, 4WUQ, 4WW6, 4WW8, 4QSA, 4QSB, 4QSI, 4QSJ, 4PYX, 4PYY, 4Q0L, 4PZH, 4Q06, 4Q08, 4Q09, 4Q07, 4Q6D, 4Q6E, 4KNJ, 4KNN, 4KP5, 4KNI, 4KNM, 4KP8, 4HT2, 4HU1, 4HT0, 5OGJ, 5OGO, 5OHH, 4LHI. 62 kristalinės struktūros buvo tuščios, t.y. jų aktyviuosiuose centruose nebuvo aptinkamas elektronų tankis, kuris galėtų būti vienareikšmiškai priskirtas ligandui.

Bendra apdorotų difrakci- jos vaizdų informacija	Pastabos
iš viso buvo apdoroti 169 difrakcijos rinkiniai	Toks yra bendras surinktų difrakcijos rinkinių skaičius, kurį pavyko sėkmingai apdoroti, t.y. gauti elektronų tankių žemėlapius.
61 kristalinė struktūra buvo patalpinta į PDB duomenų bazę	Tai yra kristalinės struktūros, kurios turi PDB numerį ir yra laisvai prieinamos.
62 kristalinės struktūros buvo be slopiklio	Tai yra kristalinės struktūros, kurių aktyviuosiuose cen- truose neaptinkama elektronų tankio, kuris galėtų būti priskirtas ligandui.

Lentelė 3.1: Doktorantūros metu surinktų difrakcijos rinkinių apžvalga.

28 atvejais aktyviojo	Aktyviajame centre randami elektronų tankiai, kurių	
centro elektronų tankiai	kokybė neleidžia vienareikšmiškai interpretuoti duomenų	
buvo neaiškūs	ir sukurti patikimo modelio.	
18 kristalinių struktūrų	Kristalinės struktūros be slopiklio kristalinimo buferyje.	
be slopiklio		
virš 6 kristalinių		
struktūrų buvo	Nepublikuotos kompleksų kristalinės struktūros.	
$\operatorname{sumodeliuota}$		

Ligandų cheminės struktūros ir jų kompleksų su CA izoformomis PDB numeriai yra pateikti Lentelėje 3.2.

Lentelė 3.2: Ligandų cheminės struktūros ir jų kristalinių struktūrų kompleksų su CA izoformomis PDB numeriai. Iš viso 61 kompleksas.

Ligandas	Ligando struktūra	Kristalinės struktūros
VD12-25-2	$ \begin{array}{c} HO \\ O = S = O \\ F \\ HO \\ F \\ H \\ O \\ O$	4QIY, 4QIZ, 4QJ0 (CA II, CA XII, CA XIII)
VD11-28	O=S=O H F F F $O^{p}S \leq O^{NH_2}$	4QJM, 4QJO, 4QJP (CA II, CA XII, CA XIII)
VD10-39b	HO F F F F $O^{=}S=0$ F F F $O^{=}S=0$ F F F $O^{=}S=0$ F F $O^{=}S=0$ F F $O^{=}S=0$ F F $O^{=}S=0$ F F $O^{=}S=0$ F F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ F $O^{=}S=0$ $O^$	4QJW, 4QJX, 4QTL, 5EHE, 5OGO (CA II, CA XII, CA XIII, chCA I)
VD12-09	$ \begin{array}{c} HO\\ O=S=O\\ F\\ F\\ O^{2}S \approx O^{NH_{2}} \end{array} $	4PYX, 4Q06, 4Q08, 5OGJ (CA II, chCA IX, chCA XII, CA XIII)

VD11-4-2	F = F = O = S = O H	5E2M, 4PYY, 4Q0L, 4Q09, 4Q07, 5E2N (CA I, CA II, CA XII, chCA IX, chCA XII, CA XIII)
VD10-35	HO O=S=O F F F F F F F F	4PZH, 4HU1, 5MSB (CA II, CA XIII, CA XII)
E11-8		4KNJ, 4KP5, 4KNN (CA II, CA XII, CA XIII)
E11-10	CI C	4KNI, 4KNM (CA II, CA XIII)
E11-18	CI OF Store OF Store NH2	4QSA, 4QSJ (CA II, CA XIII)
E11-19		4QSB (CA II)
E11-9	O ^N N O ^S SO ^{NH} 2	4KP8 (CA XII)
E52		4QSI (CA II)

E35		5IPZ (CA IV)
E79	N N N N N N N N N N N N N N N N N N N	5LL4, 5LL5 (CA II, CA XII)
E11-36		5LL9, 5LLA (CA XII, CA XIII)
VD12-05		4WR7, 4WW6, 4WW8, 5LLN (CA I, CA II, CA XII, CA XIII)
МК3	O ^{PS} SO ^{NH} 2	4Q6D (CA II)
KR50-12	OFSEONH2	4Q6E (CA II)
OL-19		4LHI (CA II)
VD12-63		4WUQ (CA I)

VD12-15	$F \rightarrow F \rightarrow$	5DOH, 5OHH (CA II, CA XIII)
VD10-50	F F F F F F F F F F	4HT0, 4HT2, (CA II, CA XII)
VD12-34	HO = S = O H $F = F$ $O = S = O H$ $S = O H$ $S = O H$	5DRS, 5LLO (CA II, CA XII)
VD10-49	$F \rightarrow F \rightarrow F = O = O = O = O = O = O = O = O = O =$	5LLH (CA II)
VD11-26	$ \begin{array}{c} $	5LLC (CA II)
VD11-53-2	F F OF SSONH2	5DOG (CA II)
VD11-31	HO S OF ^S SO ^{NH} 2	4WUP (CA I)
VD10-51	$F \rightarrow F = O_{O}^{NH_{2}}$	5LLE (CA II)

VD12-10	OFSENH2	5LLG (CA II)
VD12-23	HO = S = O H	5LLP (CA XII)

Didžioji dalis kokybiškų struktūrų buvo publikuota 10 straipsnių, kuriuose doktorantas yra bendraautorių eilėje. Publikacijų sąrašas bei su jomis susijusios struktūros yra surašytos **Lentelėje 3.3**. Svarbiausia doktoranto publikacija yra [Smirnov et al., 2018], kurioje buvo apžvelgta didžioji dalis doktorantūros metu spręstų kristalinių struktūrų. Šioje publikacijoje buvo bandoma nustatyti koreliacijas tarp baltymo-ligando komplekso struktūros ir tikrinių, t.y. nepriklausomų nuo buferio ir pH verčių, jungimosi termodinaminių parametrų.

Disertacijoje analizuojami junginiai buvo susintetinti Biotermodinamikos ir vaistų tyrimų skyriuje ir pagrinde sudaro dvi grupes:

- (1) mono/di-pakeisti fluorinti benzensulfonamidai (dr. V. Dudutienė, VD klasė);
- (2) mono/di-pakeisti chlorinti benzensulfonamidai (dr. E. Čapkauskaitė, E klasė);

PDB numeriai	Aprašymas
5LLH, 5LLC, 5LLE, 5LLG, 5LLN, 5LLP, 5LLO, 5MSA, 5MSB [Smirnov et al., 2018]	Šiame straipsnyje buvo apžvelgta didžioji dalis doktoranto spręstų kristalinių struktūrų. Buvo ieškoma koreliacijų tarp ligandų jungimosi prie CA izoformų aktyviųjų centrų ir tikrinių jungimosi termodinaminių parametrų. Pateiktos devynios naujos kristalinės struktūros.
5IPZ CA IV [Mick- evičiūtė et al., 2017]	Viena mano išspręsta struktūra. Straipsnyje apžvelgiami slopiklių tikriniai termodinaminiai jungimosi parametrai prie CA IV izoformos.
5LL4, 5LL5, 5LL9, 5LLA [Čapkauskaitė et al., 2017]	Publikuoti dr. E. Čapkauskaitės susintetintų (E klasės) junginių tikriniai jungimosi prie 12 CA izoformų parametrai. Keturios mano išspręstos kristalinės struktūros.

Lentelė 3.3: PDB struktūros ir su jomis susiję straipsniai.

5E2N, 5DOG, 5DOH,	$Meta\mathchar`-, orto\mathchar`-pakeistų fluorintų benzensulfonamidų tikriniai$			
5DRS, 5 E2M, 5 EHE	jungimosi termodinaminiai parametrai. Šešios mano			
[Zubrienė et al., 2017]	išspręstos kristalinės struktūros.			
4 QIY, 4 QIZ, 4 QJ0,	Pirmą kartą buvo publikuoti dr. V. Dudutienės susintetinti			
4QJM, 4QJO, 4QJP,	para-, orto-, meta-pakeisti fluorinti benzensulfonamidai (VD			
4QJW, 4 QJX, 4 QTL	junginių klasė). Yra pateikti stebimieji jungimosi parametrai.			
[Dudutienė et al., 2015]	Pateiktos devynios mano išspręstos kristalinės struktūros.			
4WR7, 4WUP, 4WUQ,	Para-pakeistų fluorintų benzensulfonamidų tikriniai jungi-			
4WW6, 4WW8 [Zubrienė	mosi termodinaminiai parametrai. Penkios mano išspręstos			
et al., 2015]	kristalinės struktūros.			
4QSA, 4QSB, 4QSI,	Publikuoti dr. E. Čapkauskaitės susintetintų (E klasės)			
4QSJ [Kišonaitė et al.,	junginių tikriniai jungimosi termodinaminiai parametrai.			
2014]	Keturios mano išspręstos kristalinės struktūros.			
4PYX, 4PYY, 4Q0L,	Pirmą kartą buvo publikuoti atrankūs CA IX izoformai			
4PZH, 4Q06, 4Q08,	slopikliai. Aštuonių mano išspręstų kristalinių struktūrų,			
4Q09, 4Q07 [Dudutienė	kurių tarpe yra CA II izoformos mutantiniai baltymai, pub-			
et al., 2014]	likavimas.			
406D 406E [Putkougkog	Para-pakeisti benzensulfonamidai (susintetinti KTU, dr.			
at al 2014]	K. Rutkauskas). Pateiktos dvi mano išspręstos kristalinės			
et al., 2014]	${ m struktar{u}ros}.$			
4KNJ, 4KNN, 4KP5,	E klasés junginiu publikavimas (dr. E. Čankauskajtá)			
4KNI, 4KNM, 4KP8	Apžvolatas junginių atrankumas čošioms CA izoformoms			
[Čapkauskaitė et al.,	Šečios mano išeprestos kristalinės struktūros			
2013]	Sesios mano isspressos kristannes strukturos.			
	Pirmą kartą buvo publikuoti dr. V. Dudutienės susintet-			
4HT2, 4HU1, 4HT0	inti $para$ -pakeisti fluorinti benzensulfonamidai. Yra pateikti			
[Dudutienė et al., 2013]	stebimieji (išmatuoti) jungimosi parametrai. Trys mano			
	išspręstos kristalinės struktūros.			
4LHI, 5OGJ, 5OGO,	Struktūros be publikacijos			
5OHH	burantaroo oo publikacijoo.			

3.1 Baltymo-ligando kompleksų kristalinių struktūrų ir tikrinių jungimosi parametrų koreliacija

Straipsniuose [Čapkauskaitė et al., 2013, Dudutienė et al., 2013, 2014, 2015, Rutkauskas et al., 2014], kuriuose aš esu bendraautorių eilėje, kristalografinėje dalyje iš esmės buvo įrodyta,

kad naujai susintetinti sulfonamido pagrindu junginiai jungiasi būtent prie CA aktyviojo centro Zn(II) jono, o ne prie kitos baltymo dalies. Šiuose straipsniuose dažniausiai buvo pirmą kartą paviešinti naujai susintetinti junginiai kaip CA slopikliai. Straipsniuose buvo analizuojami stebimieji jungimosi parametrai. Kaip buvo minėta, sulfonamidinio ligando jungimasis priklauso nuo buferio, jo pH verčių ir sulfonamidinės grupės pK_a . Kituose straipsniuose buvo įvertinti junginių tikriniai jungimosi parametrai, kai yra įvertinamas buferio ir jo pH indėlis į jungimosi parametrų vertes [Kišonaitė et al., 2014, Zubrienė et al., 2015, 2017].

Mano spręstų CA-ligando kompleksų kristalinių struktūrų bendro skaičiaus augimas leido atlikti išsamesnę visų jo spręstų struktūrų analizę lyginant su tikriniais jungimosi parametrais. Lentelėje 3.4 yra išvardinti kristalinių struktūrų PDB numeriai ir tikriniai baltymo-ligando jungimosi termodinaminiai parametrai, kurie buvo įtraukti į doktoranto straipsnį [Smirnov et al., 2018]. Didžioji dalis kristalinių struktūrų ir tikrinių termodinaminių parametrų yra paimta iš ankščiau publikuotų straipsnių. Bus naudojamas dvigubas junginių numeravimas, t.y. raidžių ir skaičių derinys – BVTS naudojamas junginio numeris (pavyzdžiui, VD10-35) ir junginio numeris iš straipsnio [Smirnov et al., 2018].

CA ir slopik- lis	PDB ID	$egin{array}{c} K_d, \ ({ m nM}, \ { m FTSA}) \end{array}$	$\Delta G_{tik}; \Delta H_{tik};$ - $T\Delta S_{tik}, (kJ mol^{-1})$	Publikacija (pagal struktūras)
CA II - 1 (VD12-10)	5LLG	0,0074	-66,1 -69,0 2,9	[Smirnov et al., 2018]
CA XII - 1 (VD12-10)	4WW8	0,067	-60,4 -56,4 -4,0	[Zubrienė et al., 2015]
CA II - 2 (VD10-51)	5LLE	0,060	-60,7 -25,1 -35,6	[Smirnov et al., 2018]
CA I - 3 (VD12-05)	4WR7	0,0021	-69,4 -74,4 5,0	[Zubrienė et al., 2015]
CA II - 3 (VD12-05)	4WW6	0,062	-60,6 -46,4 -14,2	[Zubrienė et al., 2015]
CA XII - 3 (VD12-05)	5MSA*	1,14	-53,1 -31,7 -21,4	n/d
CA XIII - 3 (VD12-05)	5LLN*	0,099	-59,4 -54,3 -5,1	n/d
CA II - 4 (VD10-49)	5LLH	0,067	-60,4 -37,7 -22,8	[Smirnov et al., 2018]

Lentelė 3.4: CA-ligandas kompleksų kristalinės struktūros ir tikriniai jungimosi termodinaminiai parametrai.

CA I - 5 (VD12-63)	4WUQ	0,0015	-70,3 -59,7 -10,6	[Zubrienė et al., 2015]	
CA II - 6 (E65)	3SBH	0,080	-59,9 -48,4 -11,5	[Čapkauskaitė et al., 2012]	
CA II - 7 (E90)	3SBI	0,025	-63 -62 -1,0	[Čapkauskaitė et al., 2012]	
CA II - 8 (E11-10)	4KNI	0,085	-59,8 -41,1 -18,7	[Čapkauskaitė et al., 2013]	
CA XIII - 8 (E11-10)	4KNM	0,18	-57,9 -51,6 -6,3	[Čapkauskaitė et al., 2013]	
CA II - 9 (E11-8)	4KNJ	0,11	-59,0 -47,6 -11,4	[Čapkauskaitė et al., 2013]	
CA XII - 9 (E11-8)	4KP5*	3,0	-50,6 -32 -18,6	[Čapkauskaitė et al., 2013]	
CA XIII - 9 (E11-8)	4KNN	0,31	-56,5 -54,8 -1,7	[Čapkauskaitė et al., 2013]	
CA II - 10 (VD10-35)	4PZH	2,7	-50,9 -46,7 -4,2	[Dudutienė et al., 2014]	
CA XII - 10 (VD10-35)	5MSB	35	-44,3 -24,6 -19,7	[Smirnov et al., 2018]	
CA XIII - 10 (VD10-35)	4HU1	8,9	-47,8 -50,4 2,7	[Dudutienė et al., 2013]	
CA I - 11 (VD11-4-2)	$5E2M^*$	60	-42,9 0,8 -43,7	[Zubrienė et al., 2017]	
CA II - 11 (VD11-4-2)	4PYY*	2,4	-51,2 -9,5 -41,7	[Dudutienė et al., 2014]	
chimeric CA IX - 11 (VD11-4-2)	4Q07*	n/d	n/d n/d n/d	[Dudutienė et al., 2014]	
CA XII - 11 (VD11-4-2)	4Q0L	0,11	-59,0 -40,8 -18,2	[Dudutienė et al., 2014]	
CA XIII - 11 (VD11-4-2)	5E2N	0,29	-56,6 -11,4 -45,2	[Zubrienė et al., 2017]	
CA II - 12 (VD12-34)	5DRS	1,1	-53,2 -36,4 -16,8	[Zubrienė et al., 2017]	
CA XII - 12 (VD12-34)	5LLO	0,4	-55,8 -47,0 -8,8	[Smirnov et al., 2018]	

CA II - 13 (VD11-26)	5LLC	0,3	-56,5 -49,4 -7,1	[Smirnov et al., 2018]
CA II - 14 (VD11-28)	4QJM	0,34	-56,2 -23,1 -33,1	[Dudutienė et al., 2015]
CA XII - 14 (VD11-28)	4QJO*	n/d	n/d n/d n/d	[Dudutienė et al., 2015]
CA XIII - 14 (VD11-28)	4QJP*	0,13	-56,9 -17,7 -39,1	[Dudutienė et al., 2015]
CA II - 15 (VD10-39b)	4QTL*, 5EHE*	4,5	-49,5 -22,1 -27,4	[Dudutienė et al., 2015, Zubrienė et al., 2017]
CA XII - 15 (VD10-39b)	4QJW	1,2	-53,0 -36,1 -16,9	[Dudutienė et al., 2015]
CA XIII - 15 (VD10-39b)	4QJX*	1,6	-52,2 -34,2 -18,0	[Dudutienė et al., 2015]
CA XII - 16 (VD12-23)	5LLP	0,58	-54,8 -29,8 -25,0	[Smirnov et al., 2018]

 $\rm n/d$ - nėra duomenų.

Analizuojamų junginių cheminės struktūros yra pavaizduotos $\mathbf{Pav.}$ 3.1.

Pav. 3.1: Junginiai ir jų kompleksų su CA izoformomis PDB numeriai.

3.1.1 Jungimosi palyginimas naudojant užklotas molekulines poras

Kaip buvo minėta, ligando jungimosi prie taikinio procesas bei jo termodinamika priklauso nuo daugelio veiksnių, todėl buvo pasirinkta junginių poros palyginimo strategija toje pačioje CA izoformoje. Junginių pora (toliau molekulinė pora) yra apibrėžiama kaip du struktūriškai panašūs sulfonamidiniai junginiai, kurie tarpusavyje skiriasi pakaitais orto-, meta- arba parapadėtyse benzensulfonamido atžvilgiu. Buvo ieškoma molekulinių porų, kur slopiklių kristalografiniai modeliai turi panašų ligandų išsidėstymą tos pačios izoformos aktyviajame centre. Kompleksų kristalinių struktūrų rūšiavimas pagal molekulines poras leidžia suvienodinti kai kurių jungimosi proceso veiksnių indėlius:

- Jei molekulinės poros junginiai panašiai rišasi prie tos pačios CA izoformos, tai galima daryti prielaidą, kad molekulinės sąveikos komplekse tarp ligando ir baltymo bus tos pačios.
- (2) Nagrinėjamos molekulinės poros junginiai yra komplekse su ta pačia CA izoforma, tokiu būdu bandoma išvengti indėlio, atsirandančio dėl skirtumų tarp CA izoformų. Nedideli molekulinio paviršiaus skirtumai tarp CA izoformų aktyviųjų centrų gali būti reikšmingi (pavyzdžiai):
 - (a) Para ar para-,meta-pakeisto fluorinto benzensulfonamido žiedas aptinkamas CA II ir CA XII aktyviuosiuose centruose dviejose pozicijose (**Pav. 3.2B**), tuo tarpu CA XIII izoformoje sutinkama tik viena fluorinto žiedo padėtis (**Pav. 3.2C**). Manoma, kad šiuo atveju vienos aminorūgšties pakeitimas, t.y. treonino (Thr (CA II, CA XII)) į valiną (Val), lemia tik vieną fluorinto benzensulfonamido sąveikos būdą su CA XIII aktyviuoju centru.
 - (b) Kristalinių vandens molekulių išsidėstymas CA aktyviuosiuose centruose skiriasi tarp izoformų, nes vandens molekulės sąveikauja su skirtingu molekuliniu paviršiumi.

Pav. 3.2: Vienos aminorūgšties pakeitimo įtaka fluorinto benzeno pozicijai aktyviuosiuose CA II, CA XII ir CA XIII centruose. Parodytos CA II, CA XII ir CA XIII izoformų kristalinės struktūros komplekse su ligandu 14 (VD11-28). Aktyvieji centrai yra pavaizduoti vienoje orientacijoje. Fluorintas benzensulfonamidas gali būti randamas CA II ir CA XII aktyviuosiuose centruose "tarp" padėtyje, t.y. tarp leucino (Leu198 (CA II) ir Leu197 (CA XII)) ir treonino (Thr200 (CA II) ir Thr199 (CA XII)) liekanų (žiūrėti A, B (permatomas ligandas)). Toks fluorinto benzeno žiedo išsidėstymas nebuvo aptiktas CA XIII kompleksų kristalinėse struktūrose, kur fluorinto benzensulfonamido fluorai yra išsidėstę tiktai lygiagrečiai sulfonamidiniam S-N ryšiui (C). Manoma, kad treonino (Thr200 (CA II) ir Thr199 (CA XII)) pakeitimas į leuciną (CA XIII) neleidžia fluorintam žiedui užimti "tarp" pozicijos. Kaip minėta, CA II ir CA XII kristalinėse struktūrose sutinkamos abi fluorinto žiedo pozicijos.

Galimų molekulinių porų derinių skaičius yra akivaizdžiai apribotas turimų baltymo-ligando kristalinių struktūrų aibe. Peržiūrėjus visas doktoranto spręstas struktūras ir perrenkant jų derinius, buvo nustatytos 9 molekulinės poros, kuriose ligandų benzeno žiedo pozicijos tose pačiose CA izoformose sutampa, o skirtumai yra tiktai benzensulfonamido pakaitų pozicijose (**Pav. 3.4**, vienodai besijungiančių junginių poros bus išsamiau išnagrinėtos sekančioje dalyje). Pastebėta, kad daugelį porų faktiškai galima surūšiuoti pagal junginių hidrofobiškumo pokyčius poroje. Buvo palygintos šių porų BSA (*angl.* Buried Surface Area, nuo tirpiklio paslėptas molekulinio paviršiaus plotas) ir ASA (*angl.* Accessible Surface Area, tirpikliui prieinamas molekulinio paviršiaus plotas) vertės tarp ligando ir baltymo kompleksuose su tikriniais jungimosi termodinaminiais parametrais. Molekulinių paviršių skaitiniams įverčiams apskaičiuoti buvo pritaikytos 3 programos – Voronota [Olechnovič and Venclovas, 2014], V3 [Voss and Gerstein, 2010] ir PISA [Krissinel and Henrick, 2007]. Apžvelgus šių programų galimybes buvo nuspręsta naudoti tiktai Voronota, nes:

- (a) PISA skaičiuoja BSA ir ASA kontaktus bendrai visam ligandui.
- (b) V3 galima pritaikyti atskiro slopiklio ir aktyviojo centro tūrio bei molekulinių paviršių apskaičiavimams, bet tik visam ligandui.
- (c) Voronota labai patogi molekuliniam BSA ir ASA paviršių įvertinimui, nes leidžia apskaičiuoti paviršius pasirinktiems atomams, molekulių grupėms.

Kiekvienoje molekulinėje poroje, naudojant Voronota programą, buvo apskaičiuojami ligando fragmentų molekulinių paviršių plotai, t.y. sulfonamidinės grupės, pirmo žiedo, orto, meta, para-pakaitų. Tai leido įvertinti skirtingų funkcinių grupių, kurių cheminė struktūra skiriasi molekulinėje poroje, BSA ir ASA paviršių plotus. Apžvelgiamose molekulinėse porose nebuvo rasta atskirų koreliacijų tarp tikrinių jungimosi termodinaminių parametrų ir molekulinio paviršiaus BSA arba ASA (Å) ploto verčių pokyčių. Buvo pastebėta tendencija, kad didėjant hidrofobiniam paviršiui (BSA + ASA), entalpijos indėlis tampa mažiau naudingas, tuo tarpu entropinis narys (- $T\Delta S$, labiau palankus jungimosi procesui) kompensuoja jungimosi entalpijos nario praradimus. Papildomas molekulinis paviršius faktiškai nekeičia jungimosi prie CA I, CA II, CA XIII izoformų aktyviųjų centrų stiprumo (**Pav. 3.3**, žiūrėti ΔG arba **Lentelėje 3.5** – $\Delta\Delta G$). Susidurta su jungimosi termodinamikoje gerai žinomu reiškiniu – jungimosi entalpijosentropijos kompensavimo efektu, kai pavyzdžiui, jungimuisi naudingo entalpinio indėlio pokyčio ($\Delta\Delta H < 0$) užtenka tik entropinio nario nenaudingo pokyčio ($\Delta\Delta S < 0$) kompensavimui. Sekančiame skyriuje bus išsamiau apžvelgtos visos 9 molekulinės poros.

3.1.2 Hidrofobinių grupių įtaka ligando jungimosi termodinamikai: struktūriškai panašiai besijungiantys ligandai

Kaip buvo minėta, molekulinėje poroje po papildomo hidrofobinio paviršiaus pridėjimo entalpijos indėlio pokytis tampa nenaudingų jungimuisi, tuo tarpu entropinio nario pokytis visiškai ar iš dalies kompensuoja nenaudingą entalpijos indėlio pokytį. Tiksliai prognozuoti, kaip pasikeis skaitinės termodinaminių parametrų vertės junginių poroje po hidrofobinio paviršiaus pridėjimo, priklausomai nuo jo dydžio, negalima. Kaip pavyzdį galima apžvelgti dvi poras, kai nedidelis molekulinio paviršiaus prieaugis poroje CA I: 3 (VD12-05) su 5 (VD12-63) (pora S3) sukelia panašius entalpijos ir entropijos indėlio verčių svyravimus kaip ir junginių poroje CA II: 10 (VD10-35) su 12 (VD12-34) (pora S7), kurioje molekulinio paviršiaus prieaugis yra 11 kartų didesnis (Lentelė 3.5, minėti atvejai pažymėti raudonai).

Šiame skyriuje bus naudojamas dvigubas junginių numeravimas, t.y. raidžių ir skaičių derinys – darbinis junginio pavadinimas (pavyzdžiui, **VD10-35**) ir tik skaičiai – junginio numeris iš straipsnio [Smirnov et al., 2018].

Ligandų molekulinės poros	Numeracija iš straip- snio	Δ ASA, Å	$\Delta BSA,$ Å	$\Delta\Delta G,$ (kJ mol ⁻¹)	$\Delta\Delta H,$ (kJ mol ⁻¹)	$\begin{array}{c} \Delta(\text{-} & \\ T\Delta S), \\ (\text{kJ} & \\ \text{mol}^{-1}) \end{array}$
CA XIII: VD10-35 su VD11-4-2 (S1 pora)	10 su 11	15,5	154,1	-8,8	39	-47,9
CA II: VD12-05 su VD10-51 (S2 pora)	3 su 2	59,9	50,3	-0,1	21,3	-21,4
CA I: VD12-05 su VD12-63 (S3 pora)	3 su 5	25,5	-9,5	-0,9	14,7	-15,6
CA II: E90 su E65 (S4 pora)	7 su 6	73,4	22,3	3,1	13,6	-10,5
CA II: VD11-26 su VD11-28 (S5 pora)	13 su 14	40,4	79,4	0,3	26,3	-26,0
CA XIII: E11-8 su E11-10 (S6 pora)	9 su 8	36,5	42,1	-1,4	3,2	-4,6
CA II: VD10-35 su VD12-34 (S7 pora)	10 su 12	39,0	144,4	-2,3	10,3	-12,6

Lentelė 3.5: Molekulinių porų termodinaminių parametrų ir molekulinių paviršių pokyčiai (ASA, BSA). ASA ir BSA paviršių vertės buvo apskaičiuotos žalia ir rožine spalva pažymėtoms molekulinės poros funkcinėms grupėms (**Pav. 3.4**).

CA II: VD12-05 su	3 su 4	39,6	40,6	0,2	8,7	-8,6
VD10-49 (S8 pora)						
CA II: E11-8 su E11-	0 au 9	19	40.2	0.8	65	7.9
10 (S9 pora)	9 SU O		40,3	-0,8	0,0	-1,5

Lentelėje 3.5 yra surašyti junginių poros funkcinių grupių jungimosi BSA ir ASA paviršių plotų skirtumai (apskaičiuoti VORONOTA programa). Iš lentelėje pateiktų duomenų matyti, kad pasireiškia jungimosi proceso entalpijos-entropijos (H/S) kompensavimo efektas, t.y. $\Delta\Delta G$ vertės daugeliu atvejų yra nedidelės ir patenka į matavimų paklaidos ribas lyginant junginių jungimąsi (±2 kJ mol⁻¹). H/S kompensavimas yra žinomas kaip vienas iš pagrindinių barjerų stipriai besijungiančių prie taikinio ir atrankių slopiklių kūrimui. Pavyzdžiui, papildomų vandenilinių ryšių įvedimas tarp ligando ir taikinio gali tiesiog neturėti įtakos jungimosi stiprumui, nes naudingas entalpijos indėlio pokytis bus tiesiog eliminuotas nenaudingo entropijos nario pokyčio [Freire, 2008].

Paveiksle 3.3 yra parodyti devynių molekulinių porų jungimosi termodinaminių parametrų pokyčiai. x-ašyje yra atidėtos BSA, ASA verčių sumos, siekiant pabrėžti papildomo molekulinio paviršiaus prieaugį tarp molekulinės poros junginių. Matyti, kad jungimosi stiprumas (ΔG) po papildomo hidrofobinio paviršiaus pridėjimo praktiškai nesikeičia daugelyje porų, tuo tarpu entalpijos ir entropijos indėlių vertės faktiškai apsikeičia veidrodiniu būdu. Kaip minėta, entalpijos indėlio pokytis visais atvejais yra mažiau naudingas ligando jungimosi procesui prie CA aktyviojo centro ir dažniausiai yra pilnai kompensuojamas naudingu entropijos indėlio prieaugiu.

Pav. 3.3: Vienodai besijungiančių prie CA aktyviojo centro ligandų jungimosi termodinamikos ir pridėtinio hidrofobinio molekulinio paviršiaus priklausomybės. ASA ir BSA paviršių sumos buvo apskaičiuotos žalia ir rožine spalva pažymėtoms molekulinės poros funkcinėms grupėms (**Pav. 3.4**). Molekulinės poros junginiai tarpusavyje skiriasi būtent žalia ir rožine spalva pažymėtomis funkcinėmis grupėmis. Gerai matyti, kad jungimosi stiprumas (ΔG) po papildomo hidrofobinio paviršiaus pridėjimo praktiškai nesikeičia. Aptinkamas jungimosi proceso entalpijos-entropijos (H/S) kompensavimo efektas.

Apžvelgsime vienodai besijungiančių prie CA aktyviųjų centrų ligandų molekulines poras. Ligandai 2 (VD10-51), 3 (VD12-05) ir 4 (VD10-49) yra para-pakeisti fluorinti benzensulfonamidai, kurie jungiasi prie CA II izoformos aktyviojo centro identiškai, remiantis fluorinto benzeno pozicija (Pav. 3.4, poros S2 ir S8). Jų K_d vertės pagal FTSA yra tos pačios (Lentelė 3.4). Šių junginių fluorinto benzeno žiedo pozicijos sutampa, o jų para-padėties hidrofobinės grupės sąveikauja su to paties aktyviojo centro molekuliniu paviršiumi, kurį suformuoja aminorūgščių Phe131, Val135, Leu198, Pro202 ir Leu204 šoninės liekanos. Šių junginių paragrupės yra gana skirtingos:

- (a) slopiklis 3 (VD12-05) turi propilo grupės fragmentą, kuris yra lankstus, todėl gali efektyviau prisitaikyti prie taikinio molekulinio paviršiaus, įgauti optimalią konformaciją sąveikoje su taikiniu.
- (b) slopikliai 4 (VD10-49) ir 2 (VD10-51) turi didesnes bei nelanksčias grupes, t.y. atitinkamai adamantano ir heterociklines grupes.

Vienodas šių junginių jungimosi stiprumas CA II aktyviajame centre parodo, kad paragrupės turi panašų indėlį į ligando jungimąsi. Didesnis junginių 4 (VD10-49) ir 2 (VD10-51) hidrofobinis molekulinis paviršius, lyginant su 3 (VD12-05), sukelia jungimosi termodinaminių parametrų pokyčius, kai mažiau naudingas tampa entalpijos jungimosi narys, kurio nenaudingas pokytis yra pilnai kompensuojamas naudingu entropijos nario pokyčiu. Mes manome, kad tokių jungimosi termodinaminių parametrų pokyčių priežastis gali slypėti vandens struktūros pokyčių termodinamikoje (solvatacijos, desolvatacijos procesuose). Toks teiginys remiasi sekančiais samprotavimais:

- (a) Kaip buvo minėta, ligandai su CA II aktyviuoju centru sąveikauja identiškai, remiantis sulfonamido ir fluorinto žiedo pozicijomis, todėl daroma prielaida, kad ΔH_{sqveik} ų vertės turėtų būti panašios.
- (b) ΔH_{main} ų entalpijos indėlis į jungimąsi yra įvertintas ir pašalintas (pH ir buferio indėlis). Naudojami *tikriniai* jungimosi termodinaminiai parametrai.
- (c) Lieka $\Delta H_{desolvatacijos}$ ir $\Delta H_{konformacinis}$ entalpijos indėliai. $\Delta H_{konformacinis}$ indėliai tarp poros ligandų gali būti panašūs dėl: **1**) panašaus prisijungimo prie taikinio, **2**) struktūrinio panašumo tarp ligandų.
- (d) Tokiu būdu galimi kandidatai, kurie sukelia termodinaminių parametrų pokyčius junginių porose, yra termodinaminiai indėliai, susiję su desolvatacijos procesais. $\Delta H_{desolvatacijos}$ ir $-T\Delta S_{desolvatacijos}$ indėlių pokyčiai tikriausiai yra esminiai tarp kitų termodinaminių parametrų indėlių šiose molekulinėse porose. Jungimosi entropijos pokyčiai gali būti naudingi dėl padidėjusios vandens molekulių, buvusių solvatacijos sluoksnyje aplink ligandą, sukamosios-slenkamosios laisvės, nes, kaip buvo minėta literatūros apžvalgoje, vandens molekulės šalia hidrofobinio paviršiaus turi didesnį tetraedrinės tvarkos laipsnį ir šiek tiek stipresnius vandenilinius ryšius. Po ligando prisijungimo šių vandens molekulių energetinių būsenų skaičius galėtų padidėti, kas turėtų būti naudinga jungimosi entropijos indėliui.

Pav. 3.4: Vienodai besijungiančių prie CA izoformų aktyviųjų centrų slopiklių molekulinės poros. Visos 9 poros yra parodytos toje pačioje CA baltymo orientacijoje. Molekulinės poros junginių skirtingi pakaitai yra parodyti žaliais ir rožiniais ovalais. Poros ligandai yra nuspalvinti atitinkamai žalia ir rožine spalvomis. Vandens molekulės aktyviajame centre yra parodytos žalia ir rožine spalvomis, atitinkančiomis ligandų nuspalvinimą. Zn(II) jonas yra parodytas violetine sfera. Baltymo paviršius yra nuspalvintas naudojant sekančią spalvų schemą: 1) Val, Ile, Leu, Phe, Met, Ala, Gly ir Pro aminorūgščių liekanos yra priskirtos hidrofobiniam paviršiui, kuris nuspalvintas oranžine spalva; 2) Arg, Asp, Asn, Glu, Gln, His, Lys, Ser, Thr, Tyr, Trp ir Cys

Pav. 3.4: tesinys

aminorūgščių liekanos yra priskirtos poliniam, įkrautam paviršiui, kuris nuspalvintas mėlynai. S1, Junginiai 10 (VD10-35) (žalias, PDB ID 4HU1) ir 11 (VD11-4-2) (rožinis, PDB ID 5E2N) prisijungę prie CA XIII izoformos. S2, Junginiai 3 (VD12-05) (žalias, PDB ID 4WW6) ir 2 (VD10-51) (rožinis, PDB ID 5LLE) prisijungę prie CA II izoformos. S3, Junginiai 3 (VD12-05) (žalias, PDB ID 4WR7) ir 5 (VD12-63) (rožinis, PDB ID 4WUQ) prisijungę prie CA I izoformos. S4, Junginiai 7 (E90) (žalias, PDB ID 3SBI) ir 6 (E65) (rožinis, PDB ID 3SBH) prisijungę prie CA II izoformos. S5, Junginiai 13 (VD11-26) (žalias, PDB ID 5LLC) ir 14 (VD11-28) (rožinis, PDB ID 4QJM) prisijungę prie CA II izoformos. S6, Junginiai 9 (E11-8) (žalias, PDB ID 4KNN) ir 8 (E11-10) (rožinis, PDB ID 4KNM) prisijungę prie CA XIII izoformos. S7, Junginiai 10 (VD10-35) (žalias, PDB ID 4PZH) ir 12 (VD12-34) (rožinis, PDB ID 5DRS) prisijungę prie CA II izoformos. S8, Junginiai 3 (VD12-05) (žalias, PDB ID 4KNJ) ir 8 (E11-10) (rožinis, PDB ID 4FZH) ir 12 (VD12-34) (rožinis, PDB ID 5DRS) prisijungę prie CA II izoformos. S8, Junginiai 3 (VD12-05) (žalias, PDB ID 4KNJ) ir 8 (E11-10) (rožinis, PDB ID 4KNI) prisijungę prie CA II izoformos. S9, Junginiai 9 (E11-8) (žalias, PDB ID 4KNJ) ir 8 (E11-10) (rožinis, PDB ID 4KNI) prisijungę prie CA II izoformos. S9, Junginiai 9 (E11-8) (žalias, PDB ID 4KNJ) ir 8 (E11-10) (rožinis, PDB ID 4KNI) prisijungę prie CA II izoformos.

Iš Pav. 3.4 (poros S2, S8) matyti, kad CA II komplekso su 3 (VD12-05) aktyviajame centre yra randama daugiau vandens molekulių lyginant su struktūromis CA II-4 (VD10-49) ir CA II-2 (VD10-51), bet toks vaizdas yra tik iš dalies akivaizdus. Junginių 4 (VD10-49) ir 2 (VD10-51) kristalinėse struktūrose His64, kuris žinomas kaip CA protonų pompos elementas, turi dvi šoninės grandinės alternatyvias pozicijas, kurios silpnina vandens molekulių elektronų pikus aktyviajame centre. Kristalinės struktūros CA II-3 (VD12-05) aktyviajame centre nustatoma tik viena aminorūgšties His64 šoninės grandinės pozicija, kuri yra gerai apibrėžta, ir aktyviojo centro vandens molekulių pikai yra geros kokybės. Šių kristalinių struktūrų skiriamoji geba yra skirtinga: CA II-3 (VD12-05) (1,06 Å, surandama 17 vandens molekulių nuo cinko atomo 9 Å atstume, naudojant Pymol įrankį), CA II-4 (VD10-49) (1,90 Å, surandamos 6 vandens molekulės) ir CA II-2 (VD10-51) (1,90 Å, surandamos 9 vandens molekulės). Taigi, galima apibendrinti, kad atlikti vandens molekulių skaičiaus kitimo palyginimą kompleksų struktūrų aktyviuosiuose centruose yra sudėtinga, atsižvelgus į ankščiau minėtus niuansus. Jungimosi termodinaminių parametrų pokyčių tarp poros junginių priežastis tikriausiai slypi vandens molekulių dinamikos procesuose, vykstant ligando prisijungimui prie taikinio.

Ligandai 3 (VD12-05) ir 5 (VD12-63) yra para-pakeisti fluorinti benzensulfonamidai, kurie jungiasi prie CA I aktyviojo centro vienodu mechanizmu (Pav. 3.4, S3). Ligando 3 (VD12-05) sąveika su CA I yra detaliai aprašyta straipsnyje [Zubrienė et al., 2015]. Labai stiprus jungimasis prie CA I (tikrinė ΔG yra -69,4 kJ mol⁻¹ (K_d 1,5 pM)) yra paaiškinamas specifinės sąveikos buvimu: fluorintas benzeno žiedas yra užfiksuotas tarp dviejų molekulinių paviršių, t.y. iš vienos pusės fluorintas žiedas sąveikauja su Leu198 liekana (sudaroma aromatinė-alifatinė sąveika tarp Leu198 liekanos metilo grupės ir ligando benzeno žiedo), iš kitos pusės His200 šoninės grupės žiedas apriboja ligando fluorinto benzeno žiedo judrumą. Nedidelis hidrofobinio paviršiaus prieaugis (2 CH₂ grupės) sukelia ženklius entalpijos ir entropijos indėlių pokyčius ($\Delta\Delta G = -0.9$; $\Delta\Delta H = 14.7$; $\Delta(-T\Delta S) = -15.6$ (kJ mol⁻¹)). Tokie termodinaminių parametrų (H, S) pokyčiai gali būti siejami su vandens molekulių dinamikos procesais komplekso formavimosi metu.

Slopikliai **13** (VD11-26) ir **14** (VD11-28) (CA II, pora S5) yra meta/para-pakeisti fluorinti benzensulfonamidai. Abu ligandai para-padėtyje turi tą pačią funkcinę grupę, kuri išsidėsto CA II aktyviojo centro hidrofilinėje dalyje. Šioje hidrofilinėje aktyviojo centro dalyje yra randamos kristalinės vandens molekulės kristalinėse struktūrose be slopiklio arba struktūrose su junginiais, kurie nesąveikauja su minėta aktyviojo centro dalimi (pavyzdžiui, **Pav. 3.4**, pora **S2**). Įdomu, kad ligandas **13** (VD11-26), kuris efektyviai užpildo CA aktyviojo centro tūrį ir pašalina iš jo vandens molekules, yra entalpijos varomas slopiklis ($\Delta G = -56,5$; $\Delta H = -49,4$ (kJ mol⁻¹)). Atrodo, kad vandens molekulių pašalinimas iš aktyviojo centro šiuo atveju neturi pastebimo indėlio į jungimosi termodinaminius procesus. Šios (**S5**) poros ligandai tarpusavyje skiriasi tiktai meta-padėties grupe, jų surišimas su CA II aktyviuoju centru yra erdviškai vienodas. Po hidrofobinio paviršiaus prieaugio nustatomi ženklūs entalpijos ir entropijos indėlių svyravimai ($\Delta \Delta G = 0.3$; $\Delta \Delta H = 26,3$; $\Delta(-T\Delta S) = -26,0$ (kJ mol⁻¹)). Tokių termodinaminių pokyčių priežastis tikriausiai slypi vandens molekulių dinamikos skirtumuose, vykstant ligandų prisijungimui prie taikinio.

Molekulinės poros **S7** junginiai **10** (**VD10-35**) su **12** (**VD12-34**) (CA II) skiriasi pakaitu meta-padėtyje (atitinkamai fluoras yra pakeistas indenilamino grupe). Šios poros junginiai jungiasi prie CA II aktyviojo centro tokiu pat būdu, sutampa tiek fluorinto benzensulfonamido, tiek para-padėties grupių atomų pozicijos (**Pav. 3.4**, **S7**). Yra aptinkamas jungimosi stiprumo prieaugis – 2,3 kJ mol⁻¹ (esant paklaidai ±2 kJ mol⁻¹). Po hidrofobinio paviršiaus pridėjimo nustatomi toliau išvardinti entalpijos ir entropijos indėlių verčių pokyčiai: $\Delta\Delta G = -2,3$; $\Delta\Delta H$ = 10,3; $\Delta(-T\Delta S) = -12,6$ (kJ mol⁻¹). Entalpijos ir entropijos indėlių verčių pokyčiai yra apie 2 kartus mažesni nei poros (**S5**, **13** (**VD11-26**) su **14** (**VD11-28**)) atveju. Tarp porų **S7** ir **S5** junginių sutampa tiek jų fluorinto benzensulfonamido pozicijos, tiek labiau hidrofobinių ligandų meta-grupės išsidėstymas CA II aktyviajame centre. Hidrofobinio paviršiaus prieaugis **S7** poroje yra didesnis nei **S5** poroje, nes **S5** atveju tai yra metilbenzeno grupė, o **S7** – indenilamino. Taigi, **S7** molekulinėje poroje didesnis paviršiaus plotas sukelia mažesnius entalpijos ir entropijos indėlių verčių svyravimus.

Kaip buvo minėta, papildomas hidrofobinis molekulinis paviršius lyg ir nepagerina jungimosi tarp ligando ir baltymo, nors turėtų bent formuotis VdV kontaktai. Po hidrofobinės grupės įvedimo nėra aptinkamos naujos entalpiškai naudingos sąveikos (tokios kaip vandenilinis ryšys, joninis ryšys ir kitos) minėtose molekulinėse porose. Junginiai 9 (E11-8) ir 8 (E11-10) yra para-pakeisti 2-chlorobenzensulfonamidai, kurie tarpusavyje skiriasi para-padėties grupėmis: 9 (E11-8) para-padėtyje turi pirimidino žiedą, o 8 (E11-10) – dimetilpirimidino žiedą. Buvo gautos abiejų junginių kristalinės struktūros su CA II ir CA XIII: S9 (CA II) ir S6 (CA XIII). Abiem atvejais hidrofobinio paviršiaus prieaugis neturi įtakos jungimosi stiprumui. Jungimuisi naudingą entropijos indėlio pokytį kompensuoja nenaudingas entalpijos indėlio pokytis:

pora **S9** (CA II): $\Delta\Delta G = -0.8$; $\Delta\Delta H = 6.5$; $\Delta(-T\Delta S) = -7.3$ (kJ mol⁻¹); pora **S6** (CA XIII): $\Delta\Delta G = -1.4$; $\Delta\Delta H = 3.2$; $\Delta(-T\Delta S) = -4.6$ (kJ mol⁻¹).

Matyti, kad metilinto pirimidino žiedas poroje **S6** (CA XIII, junginys **8 (E11-10)**) yra išlindęs iš gilesnės pozicijos, lyginant su nemodifikuoto pirimidino žiedo surišimu (**Pav. 3.4**, **S6**). Poroje **S9** (CA II) metilintas pirimidinas sąveikauja su visai kita aktyviojo centro dalimi (**Pav. 3.4**, **S9**). Panašu, kad metilintas pirimidinas yra per didelis hidrofobinei kišenei, kurioje abiem atvejais išsidėsto nemodifikuoto pirimidino žiedas (junginio **9 (E11-8)**).

Junginiai 7 (E90) ir 6 (E65) yra junginių 9 (E11-8) ir 8 (E11-10) analogai: 7 (E90) ir 6 (E65) neturi chloro atomo 2' žiedo padėtyje (Pav. 3.4, S4). S4 poros jungimosi parametrai parodo sąveikos stiprumo su taikiniu sumažėjimą po hidrofobinio paviršiaus prieaugio dėl nepilnai kompensuoto nenaudingo entalpijos indėlio pokyčio: $\Delta\Delta G = 3,1$; $\Delta\Delta H = 13,6$; $\Delta(-T\Delta S)$ = -10,5 (kJ mol⁻¹). S4 poros junginių jungimosi prie CA II aktyviojo centro stiprumas skiriasi apie 3 kartus, kas nėra reikšminga, nes yra mažiau nei 4 kartai.

Bendru atveju, visoms **S1-9** poroms buvo nustatytas "klasikinis" hidrofobinis efektas, kai po hidrofobinio paviršiaus prieaugio entalpijos indėlio pokytis yra mažiau naudingas jungimuisi, ir toks pokytis yra pilnai ar iš dalies kompensuojamas palankiu entropijos indėliu. Šiose porose faktiškai nesikeičia sąveikos tarp taikinio ir ligandų, todėl panašu, kad jungimosi termodinamikos parametrų pokyčių porose priežastys slypi vandens molekulių dinamikos (persitvarkymo) proceso termodinamikoje.

Kaip buvo minėta, didžioji dalis **S1-9** porų neturi reikšmingo sąveikos su taikiniu stiprumo pokyčio po hidrofobinio paviršiaus prieaugio, bet yra išimtis poroje **S1** (CA XIII): **10 (VD10-35)** ir **11 (VD11-4-2)** yra aptinkamas gana ženklus jungimosi prie taikinio stiprumo padidėjimas (K_d sumažėja apie 30 kartų) po papildomo paviršiaus pridėjimo. Šioje poroje pasikeičia vandens molekulių prieinamumas prie labiau hidrofobinio ligando sulfonamido. CA XIII-10 (**VD10-35**) struktūroje ligandas užima tiktai dalį CA aktyviojo centro, kita aktyviojo centro dalis yra hidrofilinė ir užpildyta vandens molekulėmis (matyti **Fig. 3.4, S1**). Tuo tarpu struktūroje CA XIII-11 (**VD11-4-2**) ligandas užima didesnę aktyviojo centro dalį, papildomas hidrofobinis paviršius išstumia vandens molekules iš CA aktyviojo centro hidrofilinės dalies, kurioje yra randamos vandens molekulės komplekso su **10 (VD10-35)** struktūroje. Yra siūlomas mechanizmas, pagal kurį ligandas **11 (VD11-4-2)** prie CA XIII jungiasi 30 kartų stipriau, lyginant su 10 (VD10-35), dėl meta-padėties hidrofobinės grupės, kuri yra laikinas barjeras vandens molekulėms prasiskverbti prie CA aktyviojo centro Zn(II) jono, vykstant ligando atsijungimo procesui (Pav. 3.5A, B; K_d: 11 (VD11-4-2) – 0,29 nM ir 10 (VD10-35) – 8,9 nM; Lentelė 3.4). Kitose molekulinėse porose neaptinkama, kad ženkliai pasikeistų vandens molekulių prieinamumas prie labiau hidrofobinių ligandų sulfonamidų.

Pav. 3.5: Siūlomi vandens molekulių patekimo į CA aktyvųjį centrą atvejai, vykstant slopiklio atsijungimo procesui nuo CA aktyviojo centro. Mėlynas stačiakampis yra sulfonamido grupė, oranžinis – junginio pirmas žiedas su *para*-grupe, geltonas – hidrofobinė grupė *meta*-padėtyje. Zn(II) jonas yra violetinis ovalas, aktyviojo centro vandens molekulės parodytos kaip raudoni rutuliukai. HΦob ir hPhil atitinkamai žymi hidrofobinį ir hidrofilinį paviršių. **A**, Parodytas ligando atsijungimo procesas, kai hidrofilinė aktyviojo centro dalis yra užpildyta vandens molekulėmis ir jos gali varžytis dėl sąveikos sudarymo su sulfonamido grupe bei Zn(II) jonu. **B**, Slopiklio hidrofobinė grupė pašalina vandens molekules iš hidrofilinės CA aktyviojo centro dalies, sudaro laikiną barjerą vandens molekulėms skverbtis gilyn į CA aktyvųjį centrą, vykstant ligando atsijungimo nuo aktyviojo centro procesui. **C**, Siūlomas pakopinis ligando atsijungimo mechanizmas, kai ligando molekulė yra tarsi molekuliniuose spąstuose (molekulinės poros **D1-4**): **1**) ligando viršutinė *para*-padėties dalis palieka CA aktyviojo centro įdubą; **2**) disociacijos procesą apsunkina hidrofobinė ligando dalis, kuri sudaro laikiną barjerą vandens molekulėms.

3.1.3 Hidrofobinių grupių įtaka ligando jungimosi termodinamikai: struktūriškai skirtingai besijungiantys ligandai

Buvo išskirtos dar keturios junginių molekulinės poros, kuriose hidrofobinio paviršiaus padidėjimas yra analogiškas **S1-9** poroms, bet jų junginiai prie CA XII aktyviojo centro jungiasi skirtingai – skiriasi fluorinto žiedo pozicijos tarp ligandų poroje (**Pav. 3.7**). Jų jungimosi termodinaminiai parametrai keičiasi visiškai kitaip negu vienodai prie taikinio besijungiančių ligandų molekulinėse porose **S1-9**. Iš **Pav. 3.6** ir **Lentelės 3.6** matyti, kad po papildomo hidrofobinio paviršiaus prieaugio entalpijos indėlio pokytis tampa naudingas ir poroje ženkliai padidėja labiau hidrofobinės molekulės jungimosi prie taikinio stiprumas (pavyzdžiui, poroje **D1** jungimosi stiprumas padidėja 318 kartų). Entropijos indėlio pokytis porose **D1-4** yra įvairus: poroje **D3** aptinkamas naudingas entropijos indėlio pokytis, poroje **D4** – nenaudingas entropijos indėlio pokytis, poroje **D1** ir **D2** entropijos indėlio pokyčiai nėra reikšmingi.

Ligandų molekulinės poros	Numeracija iš straip- snio	ΔASA, Å	ΔBSA, Å	$\Delta\Delta G,$ (kJ mol ⁻¹)	$\begin{array}{c} \Delta \Delta H, \\ (kJ \\ mol^{-1}) \end{array}$	$\Delta(-T\Delta S),$ (kJ mol ⁻¹)
CA XII: 10 (VD10- 35) su 11 (VD11-4-2)	10 su 11	31,5	141,7	-14,7	-16,2	1,5
(D1 pora)						
CA XII: 10 (VD10-						
35) su 15 (VD10-	10 su 15	21,8	102,9	-8,7	-11,5	2,8
39b) (D2 pora)						
CA XII: 10 (VD10-						
35) su 16 (VD12-23)	10 su 16	34,9	150,2	-10,5	-5,2	-5,3
(D3 pora)						
CA XII: 10 (VD10-						
35) su 12 (VD12-34)	10 su 12	28,9	140,9	-11,5	-22,4	10,9
(D4 pora)						

Lentelė 3.6: Molekulinių porų **D1-4** termodinaminių parametrų ir molekulinių paviršių pokyčiai (ASA, BSA). ASA ir BSA paviršių vertės buvo apskaičiuotos žalia ir rožine spalva pažymėtoms molekulinės poros funkcinėms grupėms (**Pav. 3.7**).

Pav. 3.6: Skirtingai besijungiančių ligandų molekulinėse porose jungimosi termodinamikos ir pridėtinio hidrofobinio molekulinio paviršiaus priklausomybės. ASA ir BSA paviršių sumos buvo apskaičiuotos žalia ir rožine spalva pažymėtoms molekulinės poros funkcinėms grupėms (Pav. 3.7). Molekulinės poros junginiai tarpusavyje skiriasi būtent žalia ir rožine spalva pažymėtomis funkcinėmis grupėmis.

Naudingą entalpijos indėlio pokytį **D1-4** porose mes aiškiname tuo, kad labiau hidrofobinių ligandų hidrofilinės *para*-grupės išsidėsto hidrofilinėje CA XII aktyviojo centro aplinkoje. Dėl tokio labiau hidrofobinio ligando išsidėstymo sudaroma galimybė formuotis vandeniliniams ryšiams tarp ligando *para*-grupės ir baltymo aktyviojo centro hidrofilinės dalies. Manoma, kad tikriausiai pasireiškia naudingas entalpijos termodinaminis indėlis, atsirandantis dėl minėtų vandenilinių ryšių sudarymo.

Palyginus labiau hidrofobinius junginius **12 (VD12-34)** (iš poros **D4**) ir **16 (VD12-23)** (iš poros **D3**), buvo nustatyta, kad tokia pora atitinka vienodai prie taikinio besijungiančių junginių molekulines poras:

(a) Šie junginiai tarpusavyje skiriasi tiktai nearomatiniais žiedais meta-padėtyje: 16 (VD12-

23) žiedas yra didesnis -CH₂- fragmentu;

- (b) Abu junginiai prie CA XII aktyviojo centro rišasi identiškai pagal fluorinto žiedo poziciją (Pav. 3.7, D3, D4) ir jų jungimosi stiprumas yra toks pats: 0,58 nM 16 (VD12-23) ir 0,4 nM 12 (VD12-34).
- (c) Jungimosi prie CA XII termodinaminių parametrų skirtumai tarp 12 (VD12-34) ir 16 (VD12-23) yra ΔΔG = 1,0; ΔΔH = 17,2 (nenaudingas pokytis); Δ(-TΔS) = -16,2 (naudingas pokytis) (kJ mol⁻¹).

Matome, kad po -CH₂- fragmento pridėjimo (**12** (**VD12-34**) \rightarrow **16** (**VD12-23**)) įvyko jungimosi termodinaminių parametrų pasikeitimai, panašiai kaip vienodai besijungiančių ligandų porose: po hidrofobinio paviršiaus padidėjimo yra aptinkamas nenaudingas jungimosi entalpijos indėlio pokytis, kuris yra kompensuojamas naudingu entropijos indėlio pokyčiu. Tokių jungimosi termodinaminių parametrų pokyčių priežastys tarp **12** (**VD12-34**) ir **16** (**VD12-23**) junginių gali būti:

- (a) Vandens molekulių struktūrų persitvarkymo procesai (solvatacija, desolvatacija), panašiai kaip S2-9 porų atvejais.
- (b) Para-grupių pozicijos skirtumai tarp CA XII-12 (VD12-34) ir CA XII-16 (VD12-23) kompleksų, t.y. CA XII-12 (VD12-34) struktūroje yra gerai apibrėžta tik viena para-grupės pozicija, tuo tarpu CA XII-16 (VD12-23) struktūroje yra randamos dvi para-grupės alternatyvios pozicijos.

Kaip buvo minėta, visose **D1-4** porose yra aptinkamas ženklus jungimosi prie taikinio stiprumo padidėjimas. Išanalizuokime molekulinę porą **D1**, kuriai yra nustatomas didžiausias jungimosi stiprumo pokytis tarp **D1-4** porų – 318 kartų (junginio **10** (**VD10-35**) K_d yra 35,0 nM, junginio **11** (**VD11-4-2**) – 0,11 nM). Junginys **10** (**VD10-35**) pagrinde sąveikauja su hidrofobine CA XII aktyviojo centro dalimi, tuo tarpu hidrofilinė dalis yra užpildyta vandens molekulėmis (**Pav. 3.7, D1**). Junginys **11** (**VD11-4-2**) užpildo CA XII aktyvųjį centrą efektyviau nei **10** (**VD10-35**), nes CA XII aktyviojo centro hidrofilinėje dalyje yra išsidėstę ligando fluorintas žiedas ir *para*-padėties grupė, kuri yra tarsi palindusi po aminorūgščių Lys69 ir Asn64 liekanomis. Atrodo, kad ligando **11** (**VD11-4-2**) *meta*-padėties hidrofobinė grupė dalyvauja kitos ligando dalies "įkišime" į hidrofilinę CA XII aktyviojo centro dalį (t.y. būtent po aminorūgščių Lys69 ir Asn64 šoninėmis liekanomis). Toks ligando **11** (**VD11-4-2**) jungimosi būdas leido iškelti "molekulinių spąstų" prielaidą. **Pav. 3.5C** yra parodytas siūlomas ligandas-CA sąveikos mechanizmas, kuris galėtų paaiškinti ženklų jungimosi prie taikinio stiprumo pokytį porose **D1-4**. Galimas ligando **11** (**VD11-4-2**) atsijungimo nuo aktyviojo centro mechanizmas yra sudarytas iš 2 etapų:

- (a) Ligando nuo Zn(II) jono atsijungimo procesas gali prasidėti tik po slopiklio dalies išsilaisvinimo iš po minėtų aminorūgščių liekanų (Lys69 ir Asn64), nes jo vertikalus judėjimas (nuo Zn(II) jono iš aktyviojo centro) steriškai yra apribotas. Išėjimas iš po aminorūgščių šoninių grandinių gali prasidėti tik po konformacinių pokyčių meta-padėties grupėje.
- (b) Po išsilaisvinimo iš "molekulinių spąstų" gali būti apsunkintas vandens molekulių prasiskverbimas į aktyvųjį centrą dėl galimo hidrofobinio barjero, kurį sudaro meta-padėties hidrofobinė grupė. Tai galėtų būti papildomas veiksnys, kuris gerina ligando 11 (VD11-4-2) jungimosi prie taikinio stiprumą, nes ligando atsijungimo nuo CA aktyviojo centro metu vandens molekulėms yra tiesiog sunkiau prasiskverbti prie Zn(II) jono ir sulfonamidinės grupės.

Pav. 3.7: *Skirtingai* prie taikinio besijungiantys ligandai poroje. Visos 4 poros yra parodytos toje pačioje CA XII baltymo orientacijoje. Molekulinės poros junginių skirtingi pakaitai yra parodyti žaliais ir rožiniais ovalais. Poros ligandai yra nuspalvinti atitinkamai žalia ir rožine spalvomis. Vandens molekulės CA XII aktyviajame centre yra parodytos žalia ir rožine spalvomis, atitinkančiomis ligandų nuspalvinimą. Zn(II) jonas yra parodytas violetine sfera. Baltymo paviršius yra nuspalvintas naudojant sekančią spalvų schemą: **1)** Val, Ile, Leu, Phe, Met, Ala, Gly ir Pro aminorūgščių liekanos yra priskirtos hidrofobiniam paviršiui, kuris
Pav. 3.7: tęsinys

nuspalvintas oranžine spalva; 2) Arg, Asp, Asn, Glu, Gln, His, Lys, Ser, Thr, Tyr, Trp ir Cys aminorūgščių liekanos yra priskirtos poliniam, įkrautam paviršiui, kuris nuspalvintas mėlynai. (D1) Junginiai 10 (VD10-35) (žalias, PDB ID 5MSB) ir 11 (VD11-4-2) (rožinis, PDB ID 4Q0L) komplekse su CA XII (pora D1). (D2) Junginiai 10 (VD10-35) (žalias, PDB ID 5MSB) ir 15 (VD10-39b) (rožinis, PDB ID 4QJW) komplekse su CA XII (pora D2). (D3) Junginiai 10 (VD10-35) (žalias, PDB ID 5MSB) ir 16 (VD12-23) (rožinis, PDB ID 5LLP) komplekse su CA XII (pora D3). (D4) Junginiai 10 (VD10-35) (žalias, PDB ID 5MSB) ir 12 (VD12-34) (rožinis, PDB ID 5LLO) komplekse su CA XII (pora D4).

Kaip buvo minėta, jungimuisi naudingas entalpijos nario pokytis **D1-4** porose yra aiškinamas labiau hidrofobinio ligando hidrofilinės *para*-grupės išsidėstymu hidrofilinėje CA XII aktyviojo centro dalyje. Be to, ligando *para*-grupė atsiduria po minėtų aminorūgščių liekanomis, o tai turėtų apsunkinti vandens molekulių konkurenciją dėl vandenilinių ryšių sudarymo su ligando *para*-grupės atomais, tačiau palengvinti jų (ryšių) sudarymą su baltymo šoninėmis grandinėmis. Tokiu būdu vandeniliniai ryšiai tarp *para*-grupės ir baltymo turėtų būti stipresni. Bendru atveju, termodinaminių parametrų pokyčiai skirtingai besijungiantiems ligandams priklauso nuo pradinio ir modifikuoto junginio jungimosi termodinamikos bei nuo CA izoformos.

3.1.4 Aromatinis-alifatinis ryšys ir jo įtaka jungimosi stiprumui

Kaip buvo minėta anksčiau, po hidrofobinio paviršiaus pridėjimo poroje S4 (CA II, Pav. 3.8) šiek tiek sumažėja labiau hidrofobinio junginio 6 (E65) jungimosi prie taikinio stiprumas. Toks sumažėjimas nėra reikšmingas, nes yra ties FTSA metodo paklaidos riba (3 kartai, 0,080 nM (6 (E65)) ir 0,025 nM (7 (E90)) prie CA II). Nustatomas vienintelis jungimosi prie CA aktyviojo centro skirtumas tarp šių ligandų: metilinto pirimidino metilo grupė, esanti ligando 6 (E65) para-padėtyje, išstumia pirimidino žiedą iš gilesnės pozicijos, esančios tarp Pro204 ir Phe133 šoninių grandinių, lyginant su nemetilintu ligandu 7 (E90). Nustatoma, kad šių ligandų benzeno žiedai sudaro tą patį aromatinį-alifatinį ryšį su Leu198 šoninės grandinės metilo grupe (Pav. 3.8 (S4): atomai, sudarantys alifatinį-aromatinį ryšį, yra parodyti pilkomis sferomis).

Pav. 3.8: Ligandai, sudarantys alifatinį-aromatinį ryšį su CA II ir CA XII aktyviųjų centrų molekuliniu paviršiumi. Zn(II) jonas yra parodytas mėlyna sfera. **C1**, Ligandas **1 (VD12-10)** komplekse su CA II (PDB ID: 5LLG, žaliai pavaizduotas ligandas) ir XII (PDB ID: 4WW8, rožine spalva pavaizduotas ligandas) izoformomis. Geltonai pažymėtos aminorūgščių liekanos, priklausančios CA II grandinei (žali užrašai), tuo tarpu raudonai parodytos aminorūgščių liekanos – CA XII (raudoni užrašai, jei aktyviojo centro aminorūgštys yra skirtingos tarp CA II ir CA XIII izoformų). Apačioje yra pavaizduotas grafikas, kuriame yra parodyti junginio **1 (VD12-10)** tikriniai jungimosi prie CA II ir CA XII izoformų termodinaminiai parametrai: ΔG (mėlynai), ΔH (raudonai), - $T\Delta S$ (žaliai). **S4**, Junginiai **7 (E90)** (žalias, PDB ID: 3SBI) ir **6 (E65)** (rožinis, PDB ID: 3SBH) komplekse su CA II izoforma. Geltonai pavaizduotos aminorūgščių liekanos ir jas atitinkantys žali užrašai priklauso CA II. Atomai, sudarantys alifatinį-aromatinį ryšį, yra parodyti pilkomis sferomis.

Išnagrinėkime kitą atvejį, kur yra aptinkamas analogiškas aromatinis-alifatinis ryšys. Junginys 1 (VD12-10) yra para-pakeistas benzensulfonamidas, kaip ir minėtos S4 poros junginiai. Palyginus junginio 1 (VD12-10) jungimąsi prie CA II ir CA XII aktyviųjų centrų, buvo nustatyta, kad benzeno žiedas sudaro tą patį alifatinį-aromatinį ryšį su leucino liekana (Leu198 (CA II) ir Leu197 (CA XII), konservatyvi tarp šių CA izoformų). Junginio 1 (VD12-10) benzeno žiedo pozicija idealiai sutampa užklojus jo CA II ir CA XII kompleksų struktūrų modelius (Pav. 3.8, C1). Jungimosi K_d vertės rodo, kad 1 (VD12-10) prie CA II jungiasi stipriau nei prie CA XII ($K_d = 7,4$ pM (CA II) ir $K_d = 67,0$ pM (CA XII)). Jungimosi termodinaminių parametrų pokyčiai tarp CA II ir CA XII yra: $\Delta\Delta G = 5,7$; $\Delta\Delta H = 12,6$; $\Delta(-T\Delta S) = -6,9$ (kJ mol⁻¹). Nenaudingas entalpijos indėlio pokytis iš dalies kompensuojamas entropijos nario pokyčiu. Struktūriniai skirtumai tarp CA II-1 (VD12-10) ir CA XII-1 (VD12-10) modelių yra aptinkami *para*-padėties grupės pozicijoje. CA II atveju *para*-grupė išsidėsto hidrofobinėje aplinkoje tarp Pro202 ir Phe131 šoninių grandinių. CA XII atveju *para*-grupė išsidėsto statmenai alifatiniam-aromatiniam ryšiui, nes vietoje Phe131 (CA II) yra alanino liekana.

Bendru atveju, poros **S4** (prie CA II) ir **1 (VD12-10)** (prie CA II ir CA XII) junginių jungimesi dominuoja entalpijos indėlis:

1) CA II-7 (E90): $(\Delta G = -63,0; \Delta H = -62,0 \text{ (kJ mol}^{-1}))$, CA II-6 (E65): $(\Delta G = -59,9; \Delta H = -48,4 \text{ (kJ mol}^{-1}));$

2) CA II-1 (VD12-10): ($\Delta G = -66, 1; \Delta H = -69, 0 \text{ (kJ mol}^{-1})$), CA XII-1 (VD12-10): ($\Delta G = -60, 4; \Delta H = -56, 4 \text{ (kJ mol}^{-1})$).

Tikėtina, kad alifatinis-aromatinis ryšys tarp šių ligandų benzensulfonamido žiedo ir leucino šoninės grandinės labai stipriai pagerina jų jungimąsi prie CA II ir CA XII (K_d yra (10-100) pM).

3.1.5 CA IX atrankūs slopikliai

Doktorantūros metu buvo atliekami žmogaus CA IX kristalinimo darbai, siekiant gauti geros kokybės kristalus. Buvo kristalinamas glikozilintas katalizinis domenas, ekspresuotas žinduolių ląstelėse [Dudutienė et al., 2014]. Buvo gauti taisyklingos formos CA IX kristalai, bet jų difrakcijos savybės neleido toliau tęsti kristalografinių tyrimų, nes skiriamoji geba buvo apie 9 Å, o tai netinka net baltymo grandinės pozicijos nustatymui. Bandymai pagerinti kristalų difrakcijos skiriamąją gebą buvo nesėkmingi.

BVTS buvo sukurti CA II mutantiniai baltymai, kai taškinių mutacijų pagalba buvo bandoma imituoti kitų CA izoformų aktyviuosius centrus. CA II mutantinių baltymų idėja remiasi CA izoformų aktyviųjų centrų aukšto laipsnio struktūriniais panašumais tarpusavyje [Pinard et al., 2015b]. CA II mutantiniai baltymai galėtų būti ypač aktualūs, kai tikslinės CA izoformos gryninimo išeiga yra labai maža arba gryninimo kaštai yra dideli. Be to, CA II mutantinių baltymų kristalų savybės turėtų būti panašios į CA II kristalų savybes.

Bendru atveju, CA II mutantai yra unikalios karboanhidrazės ir jų jungimasis gali būti įvairus:

- (1) CA II mutantas gali būti panašus į CA II baltymą pagal jungimosi K_d vertes.
- (2) CA II mutantas gali būti panašus į CA izoformą, kurios aktyvųjį centrą bandoma imituoti pagal jungimosi K_d vertes.
- (3) K_d vertės yra tarp CA II ir kitos CA izoformos verčių ir t.t.

Iš mano pusės svarbus buvo kristalografinis indėlis. Keturios chimerinės struktūros yra publikuotos. Straipsnyje [Dudutienė et al., 2014], kuriame buvo analizuojami CA IX atrankūs slopikliai, buvo publikuotos dvi chCA IX (CA XII aktyviojo centro imitavimas) ir dvi chCA IX (CA IX aktyviojo centro imitavimas) kristalinės struktūros. **Lentelėje 3.7** yra surašytos taškinės mutacijos, kurios buvo įvestos į CA II aktyviojo centro struktūrą, siekiant gauti į CA IX ir CA XII panašius aktyviuosius centrus. Reikia pabrėžti, kad chCA IX baltymai buvo kuriami ir kitose mokslininkų grupėse [Genis et al., 2009, Mujumdar et al., 2016, Pinard et al., 2013, Sippel et al., 2011].

Lentelė 3.7: Dviejų CA II mutantinių konstruktų taškinės mutacijos. Taškinės mutacijos yra pasiūlytos dr. V. Kairio (VU, Gyvybės mokslų centras, BTI, Bioinformatikos skyrius), kai buvo pradėtas CA II mutantinių baltymų kūrimas.

CA izoforma	CA II izoformos taškinės mutacijos	Konstrukto auto-
	CA II Izolofinos taskinės mutacijos	rius

chCA IX (6 mu- tacijos)	A65S, N67Q, I91L, F130V, V134L, L203A	D. Timm
chCA XII (6 mu- tacijos)	A65S, N67K, I91L, F130A, V134S, L203N	D. Timm

Analizuojant publikuotą medžiagą [Dudutienė et al., 2014], buvo pastebėtos jungimosi stiprumo priklausomybės nuo aktyviojo centro dydžio ir nuo molekulinio paviršiaus topologijos. **Pav. 3.9** yra parodyti straipsnyje analizuoti junginiai (iš viso 6).

Pav. 3.9: Šeši junginiai, kurie buvo analizuojami straipsnyje [Dudutienė et al., 2014]. Junginiai **VD11-4-2**, **VD12-09** ir **PG7** yra atrankūs CA IX izoformai.

Šie junginiai yra mono- arba di-pakeisti fluorinti benzensulfonamidai (išskyrus vaistinį preparatą AZM). Iš jų trys ligandai VD11-4-2, VD12-09 ir PG7 yra atrankūs CA IX izoformai. Junginiai VD10-35 ir VD10-13 yra para-pakeisti fluorinti benzensulfonamidai, kurie nėra atrankūs kuriai nors CA izoformai. Junginys AZM nuo 20 a. vidurio naudojamas medicinoje kaip žmogaus CA izoformų slopiklis.

Lentelėje 3.8 yra surašytos šių junginių stebimosios K_d vertės [Dudutienė et al., 2014]. Matyti, kad junginiai VD11-4-2, VD12-09 ir PG7 prie CA IX jungiasi atitinkamai 1 180, 1 200 ir 21 000 kartų stipriau nei prie CA II, kurios slopinimas nėra pageidautinas dėl jos paplitimo žmogaus organizme ir jos funkcijos svarbos. Tuo tarpu junginiai **VD10-35**, **VD10-13** ir **AZM** pagal K_d vertes prie CA II ir IX izoformų jungiasi panašiu stiprumu: **VD10-13** (6,7 nM su 32 nM), **VD10-35** (17 nM su 50 nM) ir **AZM** (38 nM su 20 nM).

CA izoforma	VD12-	PG7	VD11-4-	VD10-	VD10-	AZM
	09		2	13	35	
CA I	50 000	$> 200 \ 000$	710	0,11	0,20	1 400
CA II	1300	$> 200 \ 000$	60	6,7	17	38
CA IX	1,1	9,5	0,050	32	50	20
chCA IX	25	630	2,0	63	83	50
(6 mutacijos)						
CA XII	330	$> 200 \ 000$	3,3	220	250	130
chCA XII	500	>200 000	6,7	310	250	220
(6 mutacijos)						000
CA XIII	140	1700	3,6	8,3	29	50

Lentelė 3.8: Šešių junginių jungimosi prie CA I, CA II, CA IX, chCA IX, CA XII ir chCA XII baltymų duomenys ($K_{d,stebimoji}$ (nM) vertės, [Dudutienė et al., 2014]).

Pereikime prie kristalinių struktūrų analizės ir ryšio tarp jungimosi K_d verčių ir baltymoligando sąveikos kompleksuose nustatymo.

Pav. 3.10A yra pavaizduotas *para*-pakeistas junginys **VD10-35** komplekse su CA II (geltonas) ir CA XIII (oranžinis). Matyti, kad fluorinto benzeno žiedo pozicijos yra skirtingos, bet K_d vertės yra paklaidos ribose – 17 nM (CA II) ir 29 nM (CA XIII). Be to, slopiklis užima tik dalį šių izoformų aktyviųjų centrų, kai kita dalis yra užpildyta vandens molekulėmis (geltoni ir oranžiniai rutuliukai). Bendru atveju, *para*-pakeisti fluorinti benzensulfonamidai be sterinių trukdžių prieina prie aktyviojo centro Zn(II) jono ir jų K_d vertės gali būti panašios. Jie sąveikauja tik su tam tikra aktyviojo centro dalimi. Mūsų spręstose kristalinėse struktūrose nustatyta, kad *para*-pakeisti fluorinti benzensulfonamidai sąveikauja su ta pačia CA II, CA XII ir CA XIII aktyviojo centro dalimi, kuri yra hidrofobinė (gerai matyti CA II ir CA XIII izoformų atvejais – **Pav. 3.4**, poros **S1, S2, S7, S8, S9;** CA XII – **Pav. 3.7**, junginys **VD10-35**).

CA I aktyvusis centras yra siauresnis dėl histidinų šoninių grupių (His67 ir His200), kurios užima aktyviojo centro dalį (**Pav. 3.10E**; papildomai **Pav. 3.4 (S3)**. *Para*-pakeisti fluorinti benzensulfonamidai prie CA I jungiasi labai stipriai (**Lentelė 3.8**). Jų jungimosi mechanizmas yra detaliai išnagrinėtas straipsnyje [Zubrienė et al., 2015]. **Paveiksle 3.10E** yra parodytas fluorinto žiedo išsidėstymas, kuris yra aptinkamas CA I kompleksuose su *para*-pakeistais fluorintais benzensulfonamidais. Fluorintas žiedas yra užfiksuotas tarp dviejų molekulinių paviršių, t.y. iš vienos pusės fluorintas žiedas sąveikauja su Leu198 liekana (sudaroma aromatinė-alifatinė sąveika tarp Leu198 liekanos metilo grupės ir ligando benzeno žiedo), iš kitos pusės His200 liekanos šoninės grupės žiedas apriboja ligando fluorinto benzeno žiedo judrumą.

Pereikime prie CA IX atrankių junginių analizės. Pav. 3.10B, D parodyti atvejai, kurie geriausiai iliustruoja aktyviojo centro dydžio svarbą atrankiam jungimuisi. Pav. 3.10B yra pavaizduotas junginys VD12-09 komplekse su CA II ir chCA IX. Prie chCA IX baltymo aktyviojo centro **VD12-09** rišasi 50 kartų stipriau. Matyti, kad junginys **VD12-09** prie CA II (žalias) ir chCA IX (žydras) aktyviųjų centrų jungiasi skirtingais būdais pagal fluorinto žiedo pozicijas. Didžiausias skirtumas tarp CA II ir chCA IX aktyviųjų centrų yra taškinė mutacija (Phe131 j Val (chCA IX struktūroje Val130)) (Lentelė 3.7 ir Pav. 3.10B yra parodyti skirtumai tarp CA II ir chCA IX aktyviųjų centrų). Ligandui VD12-09 jungiantis prie CA II aktyviojo centro, orto-padėties ciklooktilamino grupė pašalina vandens molekules iš hidrofilinės aktyviojo centro dalies. Ligandui VD12-09 jungiantis prie chCA IX, ligando orto-padėties ciklooktilamino grupė išsidėsto hidrofobinėje aplinkoje (Val130, Leu134, Leu91), o kita, hidrofiliškesnė ligando dalis, pakeičia vandens molekules hidrofilinėje aktyviojo centro dalyje. Hidrofiliškesnė ligando dalis – tai fluorintas benzeno žiedas ir jo para-grupė. CA II aktyviojo centro fenilalanino pakeitimas (Phe131 j Val) sudaro galimybę ligandui VD12-09 sudaryti sąveikas tarp ligando VD12-09 orto-padėties hidrofobinės grupės ir naujai prieinamo hidrofobinio paviršiaus (Val130, Leu134, Leu91). Kalbant apie skirtingai besijungiančių ligandų poras (analizuotos skyriuje 3.1.3, D1-D4), buvo minėta, kad labiau hidrofobinio junginio meta-padėties grupė sąveikauja su aktyviojo centro hidrofobiniu paviršiumi ir nukreipia kitą ligando dalį į hidrofilinę baltymo aktyviojo centro aplinką po aminorūgščių šoninėmis grandinėmis (priminimui Pav. 3.7, 3.5C). Junginys VD12-09 prie chCA IX jungiasi panašiai, todėl 50 kartų jungimosi stiprumo padidėjimas, lyginant su VD12-09-CA II, gali būti salvgotas minėtų "molekulinių spastų" ir ligando atsijungimo nuo aktyviojo centro proceso apsunkinimo, kai ligando orto-padėties hidrofobinė grupė įspaudžia kitą ligando dalį į aktyviojo centro įdubą ir apsunkina vandens molekulių prieinamumą prie hidrofilinės ligando dalies.

Pav. 3.10D yra parodytas junginys VD11-4-2 komplekse su CA II ir chCA IX baltymais. Junginys VD11-4-2 CA II aktyviajame centre turi dvi gerai apibrėžtas alternatyvias pozicijas (violetinė ir violetinė-raudona). Viena iš jų išstumia Phe131 šoninę grandinę iš pastovios pozicijos (palyginimui Phe131 šoninės grandinės padėtis Pav. 3.10A). Kaip matome, ligandas gali keisti aminorūgščių didelių šoninių grandinių išsidėstymą. Slopiklis VD11-4-2 prie chCA IX aktyviojo centro jungiasi tik vienu būdu. Ligandas VD11-4-2 prie CA II jungiasi 30 kartų silpniau nei prie chCA IX, ir toks jungimasis gali būti paaiškinamas analogišku būdu, kaip ir ligando VD12-09 atveju, kai buvo analizuojamas jo jungimasis prie CA II ir chCA IX (Pav. 3.10B). chCA IX aktyviajame centre ligando VD11-4-2 (raudonas) meta-padėties ciklooktilamino grupė yra lokalizuota prie naujai prieinamo hidrofobinio paviršiaus (lyginant su CA II),

tuo tarpu ligando hidrofilinė dalis – chCA IX aktyviojo centro hidrofilinėje dalyje.

Pav. 3.10: Slopiklių VD12-09, VD11-4-2 ir VD10-35 jungimosi palyginimas CA I, CA II, CA XIII ir chCA IX aktyviuosiuose centruose. Aminorūgščių liekanos yra nuspalvintos pagal sekančią schemą: CA I – šviesiai mėlynai, CA II – geltonai ir chCA IX – šviesiai raudonai. Zn(II) jonas yra pavaizduotas kaip mėlynas rutulys. Histidinų triada, fiksuojanti Zn(II) joną, yra balta. A, Junginys VD10-35 komplekse su CA II (geltonas, PDB ID: 4PZH) ir CA XIII (oranžinis, PDB ID: 4HU1). Matyti, kad fluorinto benzeno žiedo pozicijos yra skirtingos. Junginys užima tik dalį aktyviojo centro, kita dalis yra užpildyta vandens molekulėmis (maži rutuliukai: geltonos spalvos – CA II ir oranžinės – CA XIII). Kristalinėse struktūrose su junginiais VD12-09 ir VD11-4-2 šių vandens molekulių nėra. B, Junginys VD12-09 komplekse su CA II (žalias, PDB ID: 4PYX) ir chCA IX (žydras, PDB ID: 4Q06). Junginio VD12-09 ciklooktilamino grupė dėl Phe131 (CA II) didelės šoninės grupės gali išsidėstyti tik hidrofilinėje CA II aktyviojo

Pav. 3.10: tesinys

centro dalyje. Phe131 pakeitimas į Val130 (chCA IX) leidžia junginiui kitaip prisijungti prie chCA IX aktyviojo centro. Juodai yra pažymėtos chCA IX aktyviojo centro aminorūgščių liekanos, geltonai – CA II. C, Junginių VD12-09 (žydras, PDB ID: 4Q06) ir VD11-4-2 (raudonas, PDB ID: 4Q07) jungimosi prie chCA IX aktyviojo centro palyginimas. Junginiai chCA IX aktyviajame centre išsidėsto gana panašiai. D, Junginys VD11-4-2 komplekse su CA II (yra parodytos dvi alternatyvios ligando pozicijos: violetinė ir violetinė-raudona; PDB ID: 4PYY) ir chCA IX (raudonas; PDB ID: 4Q07). Pažymėtos yra chCA IX aktyviojo centro aminorūgščių liekanos. E, F, Junginys VD11-4-2 CA I aktyviajame centre (PDB ID: 5E2M, A subvienetas). Parodytos dvi alternatyvios ligando pozicijos. (F) atveju ligandas pakeičia His200 šoninės grandinės poziciją. His 200 ir His67 šoninės grandinės siaurina CA I aktyvųjį centrą. Siauras CA I aktyvusis centras gali sąlygoti silpnesnį VD11-4-2 jungimąsi prie CA I, lyginant su CA IX (14 200 kartų, 710 nM (CA I) ir 0,050 nM (CA IX)).

Junginių VD12-09 ir VD11-4-2 jungimasis prie chCA IX (6 mut.) yra palygintas Pav. 3.10C. Jungimosi K_d vertės atitinkamai yra 25 nM ir 2 nM. Iš kristalinių struktūrų palyginimo yra sudėtinga įvardinti K_d verčių skirtumo priežastis. Viena iš galimų priežasčių yra ta, kad VD11-4-2 junginio para-grupė yra labiau hidrofilinė, lyginant su junginio VD12-09 grupe (-SO₂- su -S-), ir jos atomai gali sudaryti vandenilinius ryšius su hidrofiline aktyviojo centro dalimi. Be to, K_d vertės yra stebimosios. Tikrinės K_d vertės mutantiniams baltymams yra nenustatytos.

Junginiai VD12-09 ir VD11-4-2 prie chCA IX jungiasi atitinkamai 52 ir 30 kartų stipriau nei prie CA II, tuo tarpu prie CA IX šie junginiai jungiasi apie 1 200 kartų stipriau nei prie CA II. Nežinomi struktūriniai faktoriai neleidžia pasiekti panašaus jungimosi prie CA IX. Įdomu, kad jungimosi identiškumas tarp mutantinio baltymo chCA XII ir CA XII yra idealus. Iš Lentelės 3.8 duomenų matyti, kad nagrinėjamų ligandų (visi 6) jungimasis prie chCA XII ir CA XII yra toks pat (skirtumai yra mažesni nei 4 kartai). Šiuo atveju CA XII aktyviojo centro paviršiaus sukūrimas CA II baltymo aktyviajame centre idealiai pavyko.

Pav. 3.11: Slopiklio VD11-4-2 jungimosi prie CA XII, chCA IX ir chCA XII palyginimas. Aminorūgščių liekanos yra nuspalvintos pagal sekančią schemą: chCA IX – šviesiai raudonai, CA XII – šviesiai rožiniai ir chCA XII – šviesiai žaliai. Zn(II) jonas yra pavaizduotas kaip mėlynas rutulys. Histidinų triada, fiksuojanti Zn(II) joną, yra balta. A, Junginys VD11-4-2 komplekse su chCA IX (raudonas; PDB ID 4Q07) ir chCA XII (tamsiai raudonas; PDB ID 4Q09). Yra pažymėtos chCA IX aminorūgščių liekanos. B, Junginys VD11-4-2 komplekse su CA XII (šviesiai rožinis; PDB ID 4Q0L) ir chCA XII (tamsiai raudonas; PDB ID 4Q09). Ligandų išsidėstymai sutampa. Yra pažymėtos chCA XII aminorūgščių liekanos.

Pav. 3.11 yra parodytas junginio **VD11-4-2** jungimosi prie chCA IX, chCA XII ir CA XII aktyviųjų centrų palyginimas. **Paveiksle 3.11B** parodyta, kad ligandas **VD11-4-2** jungiasi tiesiog identiškai prie chCA XII ir CA XII aktyviųjų centrų. CA II aktyviojo centro pakeistų aminorūgščių pozicijos (chCA XII) sutampa su CA XII aktyviojo centro atitinkamų aminorūgščių pozicijomis. Jungimosi K_d vertės yra vienodos – 6,7 nM (chCA XII) ir 3,3 (CA XII). Galima apibendrinti, kad CA II aktyviojo centro pertvarkymas į CA XII aktyvųjį centrą pavyko.

Pav. 3.11A yra palygintas VD11-4-2 junginio jungimasis prie chCA XII ir chCA IX aktyviųjų centrų. Gerai matyti, kad ligando padėtys sutampa, jungimosi reikšmės yra tos pačios - 6,7 nM (chCA XII) ir 2,0 nM (chCA IX).

Iš bendradarbiavimo su kitais tyrėjais (K. Tars) yra žinoma, kad junginiai VD11-4-2 ir VD12-09 prie CA IX aktyviojo centro jungiasi taip pat, kaip ir mūsų kristalinėse struktūrose chCA IX-VD11-4-2 ir chCA IX-VD12-09 atitinkamai: fluorinto benzensulfonamido ir *para*grupių pozicijos sutampa idealiai. Junginio VD11-4-2 *meta*-grupės ciklooktilo žiedas turi daugiau laisvos erdvės struktūros CA IX-VD11-4-2 aktyviajame centre, lyginant su chCA IX aktyviuoju centru. Deja, VD11-4-2 ir VD12-09 kompleksų su CA IX negaliu pateikti, o tik aprašyti, nes struktūros nėra mano ir nepublikuotos PDB duomenų bazėje. **Pav. 3.12** yra parodytas chCA IX ir CA IX (PDB ID: IAI3) aktyviųjų centrų palyginimas. Matyti, kad chCA IX ir CA IX aktyviųjų centrų didžioji dalis aminorūgščių pozicijų idealiai sutampa, tame tarpe ir taškinių mutacijų Gln67, Ser65 ir Ala204 pozicijos. Leu91 atveju nesutampa šoninės grandinės pozicija, o Val131 ir Leu135 atvejais yra nustatomas (1,0-1,5 Å) poslinkis. CA IX komplekso struktūroje **VD11-4-2** ligando ciklooktilo žiedas išsidėsto truputį kitaip nei chCA IX aktyviajame centre. Tikriausia, kad šiek tiek skirtingas Leu91, Val131 ir Leu135 erdvinis išsidėstymas chCA IX aktyviajame centre, lyginant su atitinkamomis aminorūgštimis CA IX aktyviajame centre, neleidžia pasiekti panašaus jungimosi į CA IX. Hidrofilinė CA IX ir chCA IX aktyviųjų centrų dalis, su kuria sąveikauja ligandas, yra tokia pati.

Pav. 3.12: chCA IX ir CA IX (PDB ID: IAI3) aktyviųjų centrų palyginimas. chCA IX aktyviojo centro aminorūgščių liekanos yra parodytos žydra spalva, tuo tarpu jas atitinkančios CA IX – žalia. Pažymėtos aminorūgščių liekanos priklauso chCA IX. Didesnės aminorūgščių liekanos parodo į CA II aktyvųjį centrą įvestas mutacijas (chCA IX) ir jas atitinkančias aminorūgščių liekanas CA IX aktyviąjame centre. Matyti, kad chCA IX ir CA IX aktyviųjų centrų didžioji dalis aminorūgščių liekanų idealiai sutampa, tame tarpe ir taškinių mutacijų pagalba įvestos liekanos Gln67, Ser65 ir Ala204. Leu91 atveju nesutampa šoninės grandinės pozicija, o Val131 ir Leu135 yra nustatomas (1,5-2,0) Å poslinkis tarp "CA" atomų.

Bendru atveju mes tikrai žinome junginio **VD11-4-2** išsidėstymą CA IX aktyviajame centre. Buvo minėta, kad *para*-pakeisti fluorinti benzensulfonamidai jungiasi prie tam tikros CA II, CA XII ir CA XIII aktyviųjų centrų dalies. Mes neturime chCA IX ir CA IX kompleksų kristalinių struktūrų su junginiu **VD10-35**. Yra žinoma, kad **AZM** jungiasi prie tos pačios aktyviojo centro dalies, kaip ir *para*-pakeisti fluorinti benzensulfonamidai, todėl **VD10-35** junginio padėtis CA IX aktyviajame centre yra nuspėjama (**AZM** kompleksų kristalinės struktūros su CA IX (PDB ID: 3IAI), CA XII (PDB ID: 1JD0), CA XIII (PDB ID: 3CZV), CA II (PDB ID: 3HS4) ir CA I (PDB ID: 1AZM)). Tokiu būdu **VD10-35** ir **VD11-4-2** junginiai gali būti palyginti kaip skirtingai prie CA IX aktyviojo centro besijungiantys ligandai (kaip molekulinės poros **D1-D4** (prie CA XII)).

Junginys **VD11-4-2** prie CA IX jungiasi 1000 kartų stipriau nei **VD10-35** (50 nM (**VD11-4-2**) ir 0,050 nM (**VD10-35**)). Tikriausiai, kad jungimosi stiprumo pokyčio priežastys yra tos pačios, kaip ir molekulinėms poroms **D1-D4**: hidrofobinė grupė meta-padėtyje sudaro galimybę kitai ligando daliai atsidurti aktyviojo centro hidrofilinės dalies įduboje. Pagal tikrinius parametrus [Zubrienė et al., 2017] junginys **VD11-4-2** prie CA IX jungiasi 4 400 kartų stipriau nei **VD10-35**. Termodinaminių jungimosi parametrų pokyčiai yra kitokie nei porų **D1-D4** (su CA XII): $\Delta\Delta G = -21.8$; $\Delta\Delta H = 10.7$ (nenaudinga); $\Delta(-T\Delta S) = -32.4$ (naudinga) (kJ mol⁻¹). Ligandas **VD11-4-2** prie CA IX jungiasi geriau dėl naudingo entropijos indėlio pokyčio. Junginių **VD10-35** ir **VD11-4-2** jungimosi prie CA IX termodinaminių parametrų pokyčiai nebūtinai turi būti panašūs į termodinaminius pokyčius porose **D1-D4** (prie CA XII). Skirtingi aktyvieji centrai turi skirtingas termodinaminių parametrų pokyčių tendencijas.

Junginys VD11-4-2 prie CA I jungiasi 14 200 kartų silpniau nei prie CA IX. Iš komplekso struktūros matyti, kad CA I aktyvusis centras junginiui VD11-4-2 yra gana siaurokas: His200 ir His67 šoninės grandinės siaurina CA I aktyvųjį centrą (Fig. 3.10E, F). Kitam CA IX atrankiam slopikliui VD12-09 patekti į CA I aktyvųjį centrą bus dar sunkiau, nes hidrofobinė grupė yra *orto*-padėtyje. Junginys VD12-09 prie CA I jungiasi 45 000 kartų silpniau nei prie CA IX.

Bendru atveju junginių VD11-4-2 ir VD12-09 atrankumas CA IX yra paaiškintas. CA I ir CA II izoformų slopinimas nėra pageidautinas, nes šios izoformos dalyvauja kvėpavimo procese (CO₂/HCO₃⁻ molekulių pernaša). Prie CA IX aktyviojo centro ligandai jungiasi kitaip nei prie CA I ir CA II aktyviųjų centrų. Junginio VD11-4-2 jungimasis prie CA XIII aktyviojo centro buvo parodytas Pav. 3.4(S1). Jis prie CA XIII aktyviojo centro jungiasi taip pat, kaip ir prie CA II (violetinis ligandas, Pav. 3.10D). VD11-4-2 ligando jungimosi prie CA IX ir CA XII skirtumai tikriausiai yra sąlygoti aktyviųjų centrų hidrofobinės dalies skirtumų (ligandų ciklooktilamino grupė sąveikauja su hidrofobine aktyviųjų centrų dalimi).

Junginių **VD11-4-2** ir **VD12-09** jungimasis buvo ištirtas gana detaliai, buvo nustatytos priežastys, kurios sąlygoja šių junginių atrankumą CA IX. Atlikti kristalografiniai tyrimai turėtų padėti šiems junginiams kada nors tapti vaistiniais preparatais.

IŠVADOS

- (1) Buvo nustatytos CA izoformų CA IV, CA VI ir CA IX kristalinimo sąlygos. Gauti CA IX kristalai netinka dėl difrakcijos savybių (9 Å). CA VI kompleksų kristalinių struktūrų gauti nepavyko, nors CA VI kristalų skiriamoji geba buvo gera (1,6-2,0 Å). CA VI baltymas kristalizuojasi kaip dimeras, kurio aktyvieji centrai yra vienas šalia kito. Esant ligandams, CA VI kristalai yra nestabilūs. CA IV baltymas kristalizuojasi gana lengvai, jo kristalų skiriamoje geba buvo vidutinė (2,5 Å).
- (2) Naudojant rentgenostruktūrinės analizės metodą, buvo išspręsta 181 kristalinė struktūra, iš kurių 61 geros kokybės CA-ligandas komplekso kristalinė struktūra buvo pateikta į PDB duomenų bazę. Buvo nustatytos laboratorijoje susintetintų aromatinių sulfonamidų prisijungimo pozicijos prie 5 karboanhidrazių izoformų (CA I, CA II, CA IV, CA XII ir CA XIII) bei dviejų CA II mutantinių baltymų, kurių aktyvieji centrai yra panašūs į izoformų CA IX ir CA XII. Baltymai difragavo skiriamosios gebos 1,1-2,0 Å intervale, kas leido nustatyti tikslias sulfonamidinių ligandų pozicijas kompleksuose. Baltymų struktūros aktyviuosiuose centruose, lyginant baltymus be ir su ligandu, neturėjo struktūriškai reikšmingų skirtumų, todėl vyraujanti jungimosi energijų priežastis slypi pačiame jungimosi, o ne konformacinių pakitimų procese. Daugeliui ligandų yra nustatyta daugiau nei viena struktūra su skirtingomis CA izoformomis, kas yra svarbu atrankaus jungimosi prie taikinio mechanizmų tyrimams.
- (3) Buvo išnagrinėti slopiklių VD11-4-2 ir VD12-09 atrankumą CA IX sąlygojantys veiksniai. Junginys VD11-4-2 labai stipriai jungiasi prie CA IX (apie 50 pM). Mes turime 6 kompleksų kristalines struktūras su šiuo junginiu: prie keturių izoformų CA I, CA II, CA IX, CA XII ir dviejų CA II mutantinių baltymų (chCA IX ir chCA XII) (PDB ID: 5E2M, 4PYY, 4Q0L, 4Q09, 4Q07, 5E2N). Junginys VD11-4-2 yra perspektyvus CA IX slopiklis.
- (4) Buvo nustatytos koreliacijos tarp jungimosi tikrinių termodinaminių parametrų ir struktūrinių parametrų iš CA-ligando kompleksų kristalinių struktūrų. Po hidrofobinės grupės prikabinimo ligandai dažniausiai jungiasi labiau entropiškai negu entalpiškai. Hidrofobinės grupės įvedimas kartais gali neturėti jokios įtakos jungimosi stiprumui, tokiais atvejais yra nustatoma, kad modifikuotas ir pradinis junginys gali turėti tą pačią poziciją taikinio aktyviajame centre. Dideli jungimosi pokyčiai po hidrofobinės grupės įvedimo gali reikšti, kad modifikuotas junginys kitaip sąveikauja su taikinio aktyviuoju centru ir jungimosi termodinaminių parametrų pokyčiai gali būti įvairūs.

Mokslinių darbų sąrašas

Moksliniai straipsniai, kurių medžiaga naudojama disertacijoje:

 Smirnov A., Zubrienė A., Manakova E., Gražulis S., Matulis D. 2018. Crystal structure correlations with the intrinsic thermodynamics of human carbonic anhydrase inhibitor binding. *PeerJ*, 6:e4412, Feb. 2018. ISSN 2167-8359. doi: 10.7717/peerj.4412.

Doktoranto indėlis: ligandų jungimosi kompleksuose ir jungimosi termodinamikos priklausomybių analizė, straipsnio rašymas, iliustracijų paruošimas, naujų struktūrų sprendimas ir patalpinimas į PDB duomenų bazę (5LLH, 5LLC, 5LLE, 5LLG, 5MSB, 5LLO, ir 5LLP).

(2) Dudutienė V, Matulienė J, Smirnov A, Timm DD, Zubrienė A, Baranauskienė L, Morkūnaitė V, Smirnovienė J, Michailovienė V, Juozapaitienė V, Mickevičiūtė A, Kazokaitė J, Bakšytė S, Kasiliauskaitė A, Jachno J, Revuckienė J, Kišonaitė M, Pilipuitytė V, Ivanauskaitė E, Milinavičiūtė G, Smirnovas V, Petrikaitė V, Kairys V, Petrauskas V, Norvaišas P, Lingė D, Gibieža P, Capkauskaitė E, Zakšauskas A, Kazlauskas E, Manakova E, Gražulis S, Ladbury JE and Matulis D. Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. J Med Chem 2014, 57: 9435-9446.

Doktoranto indėlis: CA II, CA XII, CA XIII ir CA II mutantinių baltymų kristalų auginimas, difrakcijos duomenų apdorojimas, struktūrų sprendimas, patalpinimas į PDB duomenų bazę (4PYX, 4PYY, 4Q0L, 4PZH, 4Q06, 4Q08, 4Q09, 4Q07), jų analizė ir iliustracijų paruošimas.

(3) Zubrienė A., Smirnov A., Dudutienė V., Timm DD., Matulienė J., Michailovienė V., Zakšauskas A., Manakova E., Gražulis S., Matulis D. 2017. Intrinsic Thermodynamics and Structures of 2,4- and 3,4-Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases. *ChemMedChem* 12:161–176. DOI: 10.1002/cmdc.201600509.

Doktoranto indėlis: CA izoformų kristalų auginimas, difrakcijos duomenų rinkimas ir apdorojimas, struktūrų sprendimas, patalpinimas į PDB duomenų bazę (5E2N, 5DOG, 5DOH, 5DRS, 5E2M, ir 5EHE), straipsnio kristalografinės dalies paruošimas.

(4) Zubrienė A., Smirnovienė J., Smirnov A., Vaida Morkūnaitė, Michailovienė V., Jachno J., Juozapaitienė V., Norvaišas P., Manakova E., Gražulis S., Matulis D. 2015. Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry. *Biophys Chem* 205:51–65. DOI: 10.1016/j.bpc.2015.05.009.

Doktoranto indėlis: CA izoformų kristalų auginimas, difrakcijos duomenų rinkimas ir apdorojimas, struktūrų sprendimas, patalpinimas į PDB duomenų bazę (4WR7, 4WUP, 4WUQ, 4WW6, ir 4WW8), straipsnio kristalografinės dalies paruošimas. (5) Dudutienė V, Zubrienė A, Smirnov A, Timm DD, Smirnovienė J, Kazokaitė J, Michailovienė V, Zakšauskas A, Manakova E, Gražulis S and Matulis D. Functionalization of Fluorinated Benzenesulfonamides and Their Inhibitory Properties toward Carbonic Anhydrases. ChemMedChem 2015, 10: 662-687.

Doktoranto indėlis: CA II, CA XII, CA XIII ir kristalų auginimas, difrakcijos duomenų surinkimas ir apdorojimas, struktūrų sprendimas, patalpinimas į PDB duomenų bazę (4QIY, 4QIZ, 4QJ0, 4QJM, 4QJO, 4QJP, 4QJW, 4QJX, 4QTL), iliustracijų paruošimas.

Kitos publikacijos:

- Čapkauskaitė E., Linkuvienė V., Smirnov A., Milinavičiūtė G., Timm DD., Kasiliauskaitė A., Manakova E., Gražulis S., Matulis D. 2017. Combinatorial Design of Isoform-Selective N-Alkylated Benzimidazole-Based Inhibitors of Carbonic Anhydrases. *ChemistrySelect* 2:5360–5371. DOI: 10.1002/slct.201700531.
- (2) Mickevičiūtė A., Timm DD., Gedgaudas M., Linkuvienė V., Chen Z., Waheed A., Michailovienė V., Zubrienė A., Smirnov A., Čapkauskaitė E., Baranauskienė L., Jachno J., Revuckienė J., Manakova E., Gražulis S., Matulienė J., Cera ED., Sly WS., Matulis D. 2017. Intrinsic thermodynamics of high affinity inhibitor binding to recombinant human carbonic anhydrase IV. Eur. Biophys. J. DOI: 10.1007/s00249-017-1256-0.
- (3) Kišonaitė M, Zubrienė A, Capkauskaitė E, Smirnov A, Smirnovienė J, Kairys V, Michailovienė V, Manakova E, Gražulis S and Matulis D. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII. PLoS One 2014, 9: e114106.
- (4) Rutkauskas K, Zubrienė A, Tumosienė I, Kantminienė K, Kažemėkaitė M, Smirnov A, Kazokaitė J, Morkūnaitė V, Capkauskaitė E, Manakova E, Gražulis S, Beresnevičius ZJ and Matulis D. 4-Amino-substituted Benzenesulfonamides as Inhibitors of Human Carbonic Anhydrases. *Molecules* 2014, 19: 17356-17380.
- (5) Capkauskaitė E, Zubrienė A, Smirnov A, Torresan J, Kišonaitė M, Kazokaitė J, Gylytė J, Michailovienė V, Jogaitė V, Manakova E, Gražulis S, Tumkevičius S and Matulis D. Benzenesulfonamides with pyrimidine moiety as inhibitors of human carbonic anhydrases I, II, VI, VII, XII, and XIII. Bioorg Med Chem 2013, 21: 6937-6947.
- (6) Dudutienė V, Zubrienė A, Smirnov A, Gylytė J, Timm D, Manakova E, Gražulis S and Matulis D. 4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII and XIII. *Bioorg Med Chem* 2013, 21: 2093-2106.

Tarptautinių konferencijų pranešimai:

- Smirnov, A., Manakova, E., Zubrienė, A., Čapkauskaitė, E., Dudutienė, V., Matulis, D. "Correlation of binding thermodynamics with crystal structures in drug design". RICT 2017 - 53rd International Conference on Medicinal Chemistry - Drug Discovery & Selection. Tulūza, Prancūzija. 2017 07 5 - 7. (stendinis pranešimas).
- (2) <u>Smirnov</u>, A., Manakova, E., Zubrienė, A., Čapkauskaitė, E., Dudutienė, V., Matulis, D. "Crystallography and thermodynamics of primary sulfonamide inhibitors complexed with human carbonic anhydrases I, II, XII and XIII". XIVth International Conference of Lithuanian Biochemical Society, Druskininkai, Lietuva. 2016 06 27 30 (stendinis pranešimas).
- (3) <u>Linkuvienė, V.</u>, Zubrienė, A., Paketurytė, V., Smirnov, A., Petrauskas, V., Matulis, D. Database of CA Protein-Ligand Binding Gibbs Energies, Enthalpies, Entropies and Crystal Structures. "ARBRE-MOBIEU ant COST Action CA 15126". Warsaw, Lenkija. 2018 03 19-21.
- (4) <u>Dudutienė, V.</u>, Matulienė, J., Smirnov, A., Timm, D., Zubrienė, A., Baranauskienė, L., Morkunaitė, V., Smirnovienė, J., Michailovienė, V., Juozapaitienė, V., Mickevičiūtė, A., Kazokaitė, J., Bakšytė, S., Kasiliauskaitė, A., Jachno, J., Revuckienė, J., Kišonaitė, M., Pilipuitytė, V., Ivanauskaitė, E., Milinavičiūtė, G., Smirnovas, V., Petrikaitė, V., Kairys, V., Petrauskas, V., Norvaišas, P., Lingė, D., Gibieža, P., Čapkauskaitė, E., Zakšauskas, A., Kazlauskas, E., Manakova, E., Gražulis, S., Ladbury, J.E., Matulis, D. "Discovery and Characterization of Novel Selective Inhibitors of Carbonic Anhydrase IX". "10th International Carbonic Anhydrase Conference". Maastricht, Nyderlandai. 2015 04 19-22.
- (5) <u>Matulis, D.</u>, Zubrienė, A., Baranauskienė, L., **Smirnov, A.**, Morkunaitė, V., Smirnovienė, J., Kišonaitė, M., Norvaišas, P., Timm, D. "Intrinsic thermodynamics-structure correlation of carbonic anhydrase inhibitors". "Biophysical Society 59th Annual Meeting". Baltimore, JAV. 2015 02 06-12.
- (6) <u>Gylytė, J.</u>, Zubrienė, A., Dudutienė, V., Smirnov, A., Timm, D., Manakova, E., Gražulis, S., Matulis, D. "Intrinsic thermodynamics-structure correlations of fluorinated benzensul-fonamides as inhibitors of human carbonic anhydrases". "Biophysical Society 58th Annual Meeting". San Francisco, USA. 2014 02 14-25.
- (7) <u>Gylytė, J.</u>, Zubrienė, A., Dudutienė, V., Smirnov, A., Timm, D., Manakova, E., Gražulis, S., Matulis, D. "Intrinsic thermodynamics-structure correlations of fluorinated benzensul-fonamides as inhibitors of human carbonic anhydrases". "The Twenty-seventh Annual Gibbs Conference on Biothermodynamics". Carbondale, JAV. 2013 10 05-08.

(8) Justina Kazokaitė, Goda Milinavičiūtė, Joana Gylytė, Virginija Dudutienė, Alexey Smirnov, Jurgita Matulienė, and Daumantas Matulis "Differences in Stability Profiles and Thermodynamics of Inhibitor Binding to Target Protein Purified from E. coli, Mammalian Cells, and Human Saliva". European Biotehnology Congress 2014, Leece, Italija.

Literatūros sąrašas

- R. S. Alexander, L. L. Kiefer, C. A. Fierke, and D. W. Christianson. Engineering the zinc binding site of human carbonic anhydrase II: Structure of the His-94->Cys apoenzyme in a new crystalline form. *Biochemistry*, 32(6):1510-1518, Feb. 1993. PDB ID: 1HVA.
- V. Alterio, M. Hilvo, A. Di Fiore, C. T. Supuran, P. Pan, S. Parkkila, A. Scaloni, J. Pastorek, S. Pastorekova, C. Pedone, and others. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. *Proc. Natl. Acad. Sci. U. S. A.*, 106(38): 16233–16238, 2009.
- V. Alterio, A. D. Fiore, K. D'Ambrosio, C. T. Supuran, and G. D. Simone. Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms? *Chem Rev*, May 2012. doi: 10.1021/cr200176r.
- A. Aspatwar, M. E. E. Tolvanen, C. Ortutay, and S. Parkkila. Carbonic anhydrase related proteins: Molecular biology and evolution. *Sub-Cellular Biochemistry*, 75:135–156, 2014. ISSN 0306-0225. doi: 10.1007/978-94-007-7359-2\ 8.
- B. S. Avvaru, S. A. Busby, M. J. Chalmers, P. R. Griffin, B. Venkatakrishnan, M. Agbandje-McKenna, D. N. Silverman, and R. McKenna. Apo-human carbonic anhydrase II revisited: Implications of the loss of a metal in protein structure, stability, and solvent network. *Biochemistry*, 48(31):7365–7372, 2009. PDB ID: 3GZ0.
- B. S. Avvaru, C. U. Kim, K. H. Sippel, S. M. Gruner, M. Agbandje-McKenna, D. N. Silverman, and R. McKenna. A short, strong hydrogen bond in the active site of human carbonic anhydrase II. *Biochemistry*, 49(2):249–251, Jan. 2010. doi: 10.1021/bi902007b. PDB ID: 3KS3.
- L. Baranauskienė and D. Matulis. Intrinsic thermodynamics of ethoxzolamide inhibitor binding to human carbonic anhydrase XIII. *BMC biophys.*, 5(1):12, 2012.
- M. Barathova, M. Takacova, T. Holotnakova, A. Gibadulinova, A. Ohradanova, M. Zatovicova, A. Hulikova, J. Kopacek, S. Parkkila, C. T. Supuran, S. Pastorekova, and J. Pastorek. Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype. *British Journal of Cancer*, 98(1):129–136, Jan. 2008. ISSN 0007-0920. doi: 10.1038/sj.bjc.6604111.
- A. A. Barrese, C. Genis, S. Z. Fisher, J. N. Orwenyo, M. T. Kumara, S. K. Dutta, E. Phillips, J. J. Kiddle, C. Tu, D. N. Silverman, Lakshmanan Govindasamy, M. Agbandje-McKenna, R. McKenna, and B. C. Tripp. Inhibition of carbonic anhydrase II by thioxolone: A mechanistic and structural study. *Biochemistry*, 47(10):3174–3184, Mar. 2008. doi: 10.1021/bi702385k.

- T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, and A. G. W. Leslie. iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallographica. Section D, Biological Crystallography, 67(Pt 4):271-281, Apr. 2011. ISSN 1399-0047. doi: 10.1107/S0907444910048675.
- D. Bhatt, C. Tu, S. Z. Fisher, J. A. H. Prada, R. McKenna, and D. N. Silverman. Proton transfer in a Thr200His mutant of human carbonic anhydrase II. *Proteins*, 61(2):239–245, Nov. 2005. doi: 10.1002/prot.20615. PDB ID: 1YO0, 1YO1, 1YO2.
- C. Bissantz, B. Kuhn, and M. Stahl. A Medicinal Chemist's Guide to Molecular Interactions. Journal of Medicinal Chemistry, 53(14):5061-5084, July 2010. ISSN 0022-2623, 1520-4804. doi: 10.1021/jm100112j.
- A. K. Bronowska. Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. 2011. doi: 10.5772/19447.
- M. Budayova-Spano, S. Z. Fisher, M. T. Dauvergne, M. Agbandje-McKenna, D. N. Silverman, D. A. A. Myles, and R. McKenna. Production and X-ray crystallographic analysis of fully deuterated human carbonic anhydrase II. Acta Crystallogr. F Struct. Biol. Cryst. Commun., 62(Pt 1):6–9, Jan. 2006. doi: 10.1107/S1744309105038248. PDB ID: 2AX2.
- T. Bugg. Hydroxamic Acids: A Unique Family of Chemicals with Multiple Biological Activities. Edited by Satya P. Gupta. *ChemBioChem*, 15(16):2467–2467, Nov. 2014. ISSN 1439-7633. doi: 10.1002/cbic.201402188.
- E. Čapkauskaitė, A. Zubrienė, L. Baranauskienė, G. Tamulaitienė, E. Manakova,
 V. Kairys, S. Gražulis, S. Tumkevičius, and D. Matulis. Design of [(2-pyrimidinylthio)acetyl]benzenesulfonamides as inhibitors of human carbonic anhydrases. *Eur. J. Med. Chem.*, 51:259–270, May 2012. ISSN 02235234. doi: 10.1016/j.ejmech.2012.02.050.
- E. Čapkauskaitė, A. Zubrienė, A. Smirnov, J. Torresan, M. Kišonaitė, J. Kazokaitė, J. Gylytė, V. Michailovienė, V. Jogaitė, E. Manakova, S. Gražulis, S. Tumkevičius, and D. Matulis. Benzenesulfonamides with pyrimidine moiety as inhibitors of human carbonic anhydrases I, II, VI, VII, XII, and XIII. *Bioorganic & Medicinal Chemistry*, 21(22):6937–6947, Nov. 2013. ISSN 09680896. doi: 10.1016/j.bmc.2013.09.029. 00007.
- E. Čapkauskaitė, V. Linkuvienė, A. Smirnov, G. Milinavičiūtė, D. D. Timm, A. Kasiliauskaitė, E. Manakova, S. Gražulis, and D. Matulis. Combinatorial Design of Isoform-Selective N-Alkylated Benzimidazole-Based Inhibitors of Carbonic Anhydrases. *ChemistrySelect*, 2(19): 5360–5371, July 2017. ISSN 2365-6549. doi: 10.1002/slct.201700531.
- F. Carta, C. Temperini, A. Innocenti, A. Scozzafava, K. Kaila, and C. T. Supuran. Polyamines Inhibit Carbonic Anhydrases by Anchoring to the Zinc-Coordinated Water Molecule. J. Med. Chem., 53(15):5511–5522, Aug. 2010. ISSN 0022-2623, 1520-4804. doi: 10.1021/jm1003667.

- T. Clark, M. Hennemann, J. S. Murray, and P. Politzer. Halogen bonding: The σ-hole. Journal of Molecular Modeling, 13(2):291–296, Feb. 2007. ISSN 1610-2940, 0948-5023. doi: 10.1007/ s00894-006-0130-2.
- R. Claveria-Gimeno, S. Vega, O. Abian, and A. Velazquez-Campoy. A look at ligand binding thermodynamics in drug discovery. *Expert Opinion on Drug Discovery*, 12(4):363–377, Apr. 2017. ISSN 1746-0441. doi: 10.1080/17460441.2017.1297418.
- J. D. Cox, J. A. Hunt, K. M. Compher, C. A. Fierke, and D. W. Christianson. Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II. *Biochemistry*, 39(45):13687–13694, Nov. 2000.
- K. D'Ambrosio, S. Carradori, S. M. Monti, M. Buonanno, D. Secci, D. Vullo, C. T. Supuran, and G. De Simone. Out of the active site binding pocket for carbonic anhydrase inhibitors. *Chem. Comm.*, 51(2):302-305, 2015. ISSN 1359-7345, 1364-548X. doi: 10.1039/C4CC07320G.
- J. G. Davis, K. P. Gierszal, P. Wang, and D. Ben-Amotz. Water structural transformation at molecular hydrophobic interfaces. *Nature*, 491(7425):582-585, Nov. 2012. doi: 10.1038/ nature11570.
- J. G. Davis, B. M. Rankin, K. P. Gierszal, and D. Ben-Amotz. On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. *Nat Chem*, 5(9):796–802, Sept. 2013. doi: 10.1038/nchem.1716.
- J. G. Davis, S. R. Zukowski, B. M. Rankin, and D. Ben-Amotz. Influence of a Neighboring Charged Group on Hydrophobic Hydration Shell Structure. J Phys Chem B, 119(29):9417– 9422, July 2015. doi: 10.1021/jp510641a.
- J. R. Dilworth, S. I. Pascu, P. A. Waghorn, D. Vullo, S. R. Bayly, M. Christlieb, X. Sun, and C. T. Supuran. Synthesis of sulfonamide conjugates of Cu(ii), Ga(iii), In(iii), Re(v) and Zn(ii) complexes: Carbonic anhydrase inhibition studies and cellular imaging investigations. *Dalton Trans*, 44(11):4859–4873, Mar. 2015. doi: 10.1039/c4dt03206c.
- J. F. Domsic, B. S. Avvaru, C. U. Kim, S. M. Gruner, M. Agbandje-McKenna, D. N. Silverman, and Robert McKenna. Entrapment of carbon dioxide in the active site of carbonic anhydrase II. J. Biol. Chem., 283(45):30766-30771, Nov. 2008. doi: 10.1074/jbc.M805353200.
- J. F. Domsic, W. Williams, S. Z. Fisher, C. Tu, M. Agbandje-McKenna, D. N. Silverman, and R. McKenna. Structural and kinetic study of the extended active site for proton transfer in human carbonic anhydrase II. *Biochemistry*, 49(30):6394–6399, Aug. 2010. doi: 10.1021/ bi1007645. PDB ID: 3MNH, 3MNI, 3MNJ, 3MNK.
- D. Duda, C. Tu, M. Qian, P. Laipis, M. Agbandje-McKenna, D. N. Silverman, and R. McKenna. Structural and Kinetic Analysis of the Chemical Rescue of the Proton Transfer Function of

Carbonic Anhydrase II. *Biochemistry*, 40(6):1741–1748, Feb. 2001. ISSN 0006-2960. doi: 10.1021/bi002295z.

- V. Dudutienė, A. Zubrienė, A. Smirnov, J. Gylytė, D. Timm, E. Manakova, S. Gražulis, and D. Matulis. 4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII. *Bioorganic & Medicinal Chemistry*, 21(7):2093–2106, Apr. 2013. ISSN 09680896. doi: 10.1016/j.bmc.2013.01.008. 00010.
- V. Dudutienė, J. Matulienė, A. Smirnov, D. D. Timm, A. Zubrienė, L. Baranauskienė,
 V. Morkūnaite, J. Smirnovienė, V. Michailovienė, V. Juozapaitienė, A. Mickevičiūtė, J. Kazokaitė, S. Bakšytė, A. Kasiliauskaitė, J. Jachno, J. Revuckienė, M. Kišonaitė, V. Pilipuitytė,
 E. Ivanauskaitė, G. Milinavičiūtė, V. Smirnovas, V. Petrikaitė, V. Kairys, V. Petrauskas,
 P. Norvaišas, D. Lingė, P. Gibieža, E. Capkauskaitė, A. Zakšauskas, E. Kazlauskas, E. Manakova, S. Gražulis, J. E. Ladbury, and D. Matulis. Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. *Journal of Medicinal Chemistry*, 57(22):9435–9446, Nov. 2014. ISSN 1520-4804. doi: 10.1021/jm501003k.
- V. Dudutienė, A. Zubrienė, A. Smirnov, D. D. Timm, J. Smirnovienė, J. Kazokaitė, V. Michailovienė, A. Zakšauskas, E. Manakova, S. Gražulis, and D. Matulis. Functionalization of Fluorinated Benzenesulfonamides and Their Inhibitory Properties toward Carbonic Anhydrases. *ChemMedChem*, 10(4):662–687, Apr. 2015. ISSN 18607179. doi: 10.1002/cmdc.201402490.00000.
- S. Durdagi, D. Vullo, P. Pan, N. Kähkönen, J. A. Määttä, V. P. Hytönen, A. Scozzafava, S. Parkkila, and C. T. Supuran. Protein-protein interactions: Inhibition of mammalian carbonic anhydrases I-XV by the murine inhibitor of carbonic anhydrase and other members of the transferrin family. *Journal of Medicinal Chemistry*, 55(11):5529–5535, June 2012. ISSN 1520-4804. doi: 10.1021/jm3004587.
- P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan. Features and development of it Coot. Acta Crystallographica Section D, 66:486–501, 2010. doi: 10.1107/S0907444910007493.
- A. E. Eriksson, T. A. Jones, and A. Liljas. Refined structure of human carbonic anhydrase II at 2.0 A resolution. *Proteins*, 4(4):274–282, 1988. doi: 10.1002/prot.340040406. PDB ID: 1CA2, 4CAC, 5CAC.
- I. Fenesan, R. Popescu, A. Scozzafava, V. Crucin, E. Mateiciuc, R. Bauer, M. A. Ilies, and C. T. Supuran. Carbonic anhydrase inhibitors; phosphoryl-sulfonamides-a new class of high affinity inhibitors of isozymes I and II. *Journal of Enzyme Inhibition*, 15(3):297-310, 2000. ISSN 8755-5093.
- M. Ferraroni, S. Tilli, F. Briganti, W. R. Chegwidden, C. T. Supuran, K. E. Wiebauer, R. E. Tashian, and A. Scozzafava. Crystal structure of a zinc-activated variant of human carbonic

anhydrase I, CA I Michigan 1: Evidence for a second zinc binding site involving arginine coordination. *Biochemistry*, 41(20):6237–6244, May 2002. PDB ID: 1J9W, 1JV0.

- A. V. Finkelstein. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding. *Chemistry Central Journal*, 1:21, July 2007. ISSN 1752-153X. doi: 10.1186/1752-153X-1-21.
- A. D. Fiore, S. M. Monti, M. Hilvo, S. Parkkila, V. Romano, A. Scaloni, C. Pedone, Andrea Scozzafava, C. T. Supuran, and G. D. Simone. Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. *Proteins*, 74(1):164–175, Jan. 2009. doi: 10.1002/prot.22144.
- S. Z. Fisher, C. M. Maupin, M. Budayova-Spano, L. Govindasamy, C. Tu, M. Agbandje-McKenna, D. N. Silverman, G. A. Voth, and R. McKenna. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: Insights into the proton transfer mechanism. *Biochemistry*, 46(11):2930–2937, Mar. 2007a. doi: 10.1021/bi062066y. PDB ID: 21LI.
- S. Z. Fisher, C. Tu, D. Bhatt, L. Govindasamy, M. Agbandje-McKenna, R. McKenna, and D. N. Silverman. Speeding up proton transfer in a fast enzyme: Kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II. *Biochemistry*, 46(12):3803–3813, Mar. 2007b. doi: 10.1021/bi602620k. PDB ID: 2NWO, 2NWP, 2NWY, 2NWZ, 2NXR, 2NXS, 2NXT.
- S. Z. Fisher, A. Y. Kovalevsky, J. F. Domsic, M. Mustyakimov, R. McKenna, D. N. Silverman, and P. A. Langan. Neutron structure of human carbonic anhydrase II: Implications for proton transfer. *Biochemistry*, 49(3):415–421, Jan. 2010. doi: 10.1021/bi901995n. PDB ID: 3KKX.
- S. Z. Fisher, M. Aggarwal, A. Y. Kovalevsky, D. N. Silverman, and R. McKenna. Neutron Diffraction of Acetazolamide-Bound Human Carbonic Anhydrase II Reveals Atomic Details of Drug Binding. J. Am. Chem. Soc., 134(36):14726–14729, Aug. 2012. ISSN 0002-7863. doi: 10.1021/ja3068098. PDB ID: 4G0C.
- Z. Fisher, J. A. H. Prada, C. Tu, David Duda, C. Yoshioka, H. An, L. Govindasamy, D. N. Silverman, and R. McKenna. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. *Biochemistry*, 44(4):1097–1105, Feb. 2005. doi: 10.1021/bi0480279.
- Z. Fisher, A. Y. Kovalevsky, M. Mustyakimov, D. N. Silverman, R. McKenna, and P. Langan. Neutron structure of human carbonic anhydrase II: A hydrogen-bonded water network "switch" is observed between pH 7.8 and 10.0. *Biochemistry*, 50(44):9421–9423, Nov. 2011. doi: 10.1021/bi201487b. PDB ID: 3TMJ.

- J. M. Fox, K. Kang, W. Sherman, A. Héroux, G. M. Sastry, M. Baghbanzadeh, M. R. Lockett, and G. M. Whitesides. Interactions between Hofmeister Anions and the Binding Pocket of a Protein. *Journal of the American Chemical Society*, 137(11):3859–3866, Mar. 2015. ISSN 0002-7863. doi: 10.1021/jacs.5b00187.
- E. Freire. Do enthalpy and entropy distinguish first in class from best in class? Drug Discovery Today, 13(19-20):869-874, Oct. 2008. ISSN 1359-6446. doi: 10.1016/j.drudis.2008.07.005.
- S. C. Frost and R. McKenna, editors. Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications, volume 75 of Subcellular Biochemistry. Springer Netherlands, Dordrecht, 2014. ISBN 978-94-007-7358-5 978-94-007-7359-2. doi: 10.1007/ 978-94-007-7359-2.
- R. Gaspari, C. Rechlin, A. Heine, G. Bottegoni, W. Rocchia, D. Schwarz, J. Bomke, H.-D. Gerber, G. Klebe, and A. Cavalli. Kinetic and Structural Insights into the Mechanism of Binding of Sulfonamides to Human Carbonic Anhydrase by Computational and Experimental Studies. *Journal of Medicinal Chemistry*, 59(9):4245-4256, May 2016. ISSN 0022-2623, 1520-4804. doi: 10.1021/acs.jmedchem.5b01643.
- C. Genis, K. H. Sippel, N. Case, Wengang Cao, B. S. Avvaru, L. J. Tartaglia, Lakshmanan Govindasamy, C. Tu, M. Agbandje-McKenna, D. N. Silverman, C. J. Rosser, and R. McKenna. Design of a carbonic anhydrase IX active-site mimic to screen inhibitors for possible anticancer properties. *Biochemistry*, 48(6):1322–1331, Feb. 2009. ISSN 0006-2960, 1520-4995. doi: 10.1021/bi802035f.
- A. Grandane, M. Tanc, R. Zalubovskis, and C. T. Supuran. 6-Triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrases IX and XII. *Bioorganic & Medicinal Chemistry Letters*, 24(5):1256–1260, Mar. 2014. ISSN 0960-894X.
- K. Haakansson and A. Wehnert. Structure of cobalt carbonic anhydrase complexed with bicarbonate. J. Mol. Biol., 228(4):1212–1218, Dec. 1992. PDB ID: 1CAH.
- K. Haakansson, M. Carlsson, L. A. Svensson, and A. Liljas. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J. Mol. Biol., 227(4):1192– 1204, Oct. 1992. PDB ID: 2CBA 2CBB 2CBC 2CBD 2CBE.
- K. Haakansson, A. Wehnert, and A. Liljas. X-ray analysis of metal-substituted human carbonic anhydrase II derivatives. Acta Crystallogr. D Biol. Crystal., 50(Pt 1):93–100, Jan. 1994. doi: 10.1107/S0907444993008790. PDB ID: 1RZA, 1RZB, 1RZC, 1RZD, 1RZE.
- M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform, 4(1):17, Aug. 2012. doi: 10.1186/1758-2946-4-17.

- C. C. Huang, C. A. Lesburg, L. L. Kiefer, C. A. Fierke, and D. W. Christianson. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. *Biochemistry*, 35(11):3439–3446, Mar. 1996. doi: 10.1021/bi9526692. PDB ID: 1ZSA, 1ZSB, 1ZSC.
- M. A. Ilies, C. T. Supuran, and A. Scozzafava. Carbonic Anhydrase Inhibitors. Part 91. Metal Complexes of Heterocyclic Sulfonamides asPotential Pharmacological Agents in the Treatment of Gastric Acid Secretion Imbalances. https://www.hindawi.com/archive/2000/182617/cta/, 2000.
- A. Innocenti, M. A. Firnges, J. Antel, M. Wurl, A. Scozzafava, and C. T. Supuran. Carbonic anhydrase inhibitors: Inhibition of the membrane-bound human isozyme IV with anions. *Bioorganic & Medicinal Chemistry Letters*, 14(23):5769-5773, Dec. 2004. ISSN 0960-894X. doi: 10.1016/j.bmcl.2004.09.063.
- A. Innocenti, A. Maresca, A. Scozzafava, and C. T. Supuran. Carbonic anhydrase inhibitors: Thioxolone versus sulfonamides for obtaining isozyme-selective inhibitors? *Bioorg Med Chem Lett*, 18(14):3938–3941, July 2008. doi: 10.1016/j.bmcl.2008.06.024.
- A. Innocenti, S. Durdagi, N. Doostdar, T. Amanda Strom, A. R. Barron, and C. T. Supuran. Nanoscale enzyme inhibitors: Fullerenes inhibit carbonic anhydrase by occluding the active site entrance. *Bioorganic & Medicinal Chemistry*, 18(8):2822-2828, Apr. 2010. ISSN 09680896. doi: 10.1016/j.bmc.2010.03.026.
- J. A. Ippolito and D. W. Christianson. Structure of an engineered His3Cys zinc binding site in human carbonic anhydrase II. *Biochemistry*, 32(38):9901–9905, Sept. 1993. PDB ID: 1DCA, 1DCB.
- J. A. Ippolito and D. W. Christianson. Structural consequences of redesigning a protein-zinc binding site. *Biochemistry*, 33(51):15241–15249, Dec. 1994. PDB ID: 1CNB, 1CNC, 1CVD, 1CVE, 1CVF, 1CVH.
- J. A. Ippolito, T. T. Baird, S. A. McGee, D. W. Christianson, and C. A. Fierke. Structureassisted redesign of a protein-zinc-binding site with femtomolar affinity. *Proc. Natl. Acad. Sci.* U. S. A., 92(11):5017–5021, May 1995. PDB ID: 1CCS, 1CCT, 1CCU.
- W. H. James III, C. W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier. Intramolecular Amide Stacking and Its Competition with Hydrogen Bonding in a Small Foldamer. *Journal of the American Chemical Society*, 131(40):14243–14245, Oct. 2009. ISSN 0002-7863. doi: 10.1021/ja9054965.
- V. Jogaitė, A. Zubrienė, V. Michailovienė, J. Gylytė, V. Morkūnaitė, and D. Matulis. Characterization of human carbonic anhydrase XII stability and inhibitor binding. *Bioorganic & Medicinal Chemistry*, 21(6):1431–1436, Mar. 2013. ISSN 09680896. doi: 10.1016/j.bmc.2012.10.016. 00014.

- W. Kabsch. XDS. Acta Crystallographica Section D, D66:125–132, 2010. doi: 10.1107/ S0907444909047337.
- K. K. Kannan, K. Fridborg, P. C. Bergsten, A. Liljas, S. Lovgren, M. Petef, B. Strandberg, I. Waara, L. Adler, S. O. Falkbring, P. O. Göthe, and P. O. Nyman. Structure of human carbonic anhydrase B. I. Crystallization and heavy atom modifications. *J. Mol. Biol.*, 63(3): 601–604, Feb. 1972a. PDB ID: 1CAB, 2CAB.
- K. K. Kannan, A. Liljas, I. Waara, P. C. Bergsten, S. Lovgren, B. Strandberg, U. Bengtsson, U. Carlbom, K. Fridborg, L. Jarup, and M. Petef. Crystal structure of human erythrocyte carbonic anhydrase C. VI. The three-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases. *Cold Spring Harb. Symp. Quant. Biol.*, 36:221–231, 1972b.
- K. K. Kannan, B. Notstrand, K. Fridborg, S. Lovgren, A. Ohlsson, and M. Petef. Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-Å resolution. Proc. Natl. Acad. Sci. U. S. A., 72(1):51–55, Jan. 1975.
- K. K. Kannan, M. Ramanadham, and T. A. Jones. Structure, refinement, and function of carbonic anhydrase isozymes: Refinement of human carbonic anhydrase I. Ann. N. Y. Acad. Sci., 429:49–60, 1984. PDB ID: 2CAB.
- Y. Kawasaki and E. Freire. Finding a better path to drug selectivity. Drug Discovery Today, 16 (21-22):985-990, Nov. 2011. ISSN 1359-6446. doi: 10.1016/j.drudis.2011.07.010.
- L. Kiefer, J. Ippolito, C. Fierke, and D. Christianson. Redesigning the Zinc-Binding Site of Human Carbonic Anhydrase-Ii - Structure of a His2asp-Zn2+ Metal Coordination Polyhedron. J. Am. Chem. Soc., 115:12581-12582, 1993. PDB ID: 1CVC.
- M. Kišonaitė, A. Zubrienė, E. Čapkauskaitė, A. Smirnov, J. Smirnovienė, V. Kairys, V. Michailovienė, E. Manakova, S. Gražulis, and D. Matulis. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII. *PLoS ONE*, 9(12):e114106, Dec. 2014. ISSN 1932-6203. doi: 10.1371/journal.pone.0114106. 00000.
- G. Klebe. Applying thermodynamic profiling in lead finding and optimization. Nature Reviews Drug Discovery, 14(2):95–110, 2015.
- L. P. Kose, I. Gulcin, A. Yıldırım, U. Atmaca, M. Çelik, S. H. Alwasel, and C. T. Supuran. The human carbonic anhydrase isoenzymes I and II inhibitory effects of some hydroperoxides, alcohols, and acetates. *J Enzyme Inhib Med Chem*, pages 1–6, Dec. 2015. doi: 10.3109/ 14756366.2015.1120723.

- J. F. Krebs, C. A. Fierke, R. S. Alexander, and D. W. Christianson. Conformational mobility of His-64 in the Thr-200—Ser mutant of human carbonic anhydrase II. *Biochemistry*, 30(38): 9153–9160, Sept. 1991. PDB ID: 5CA2.
- J. F. Krebs, J. A. Ippolito, D. W. Christianson, and C. A. Fierke. Structural and functional importance of a conserved hydrogen bond network in human carbonic anhydrase II. J. Biol. Chem., 268(36):27458-27466, Dec. 1993. PDB ID: 1CVA, 1CVB.
- V. M. Krishnamurthy, G. K. Kaufman, A. R. Urbach, I. Gitlin, K. L. Gudiksen, D. B. Weibel, and G. M. Whitesides. Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein-Ligand Binding. *Chem. Rev.*, 108(3):946–1051, Mar. 2008. ISSN 0009-2665. doi: 10.1021/cr050262p.
- E. Krissinel and K. Henrick. Inference of macromolecular assemblies from crystalline state. J Mol Biol, 372(3):774-797, Sept. 2007. doi: 10.1016/j.jmb.2007.05.022.
- V. Kumar and K. K. Kannan. Enzyme-substrate interactions. Structure of human carbonic anhydrase I complexed with bicarbonate. J. Mol. Biol., 241(2):226-232, Aug. 1994. doi: 10.1006/jmbi.1994.1491. PDB ID: 1HCB.
- V. Kumar, K. K. Kannan, and P. Sathyamurthi. Differences in anionic inhibition of human carbonic anhydrase I revealed from the structures of iodide and gold cyanide inhibitor complexes. Acta Crystallogr. D Biol. Crystal., 50(Pt 5):731-738, Sept. 1994. doi: 10.1107/S0907444994001873. PDB ID: 1HUH, 1HUG.
- V. Lafont, A. A. Armstrong, H. Ohtaka, Y. Kiso, L. Mario Amzel, and E. Freire. Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization. *Chemical Biology & Drug Design*, 69(6):413–422, June 2007. ISSN 1747-0277, 1747-0285. doi: 10.1111/j.1747-0285. 2007.00519.x.
- J. Leitans, A. Kazaks, A. Balode, J. Ivanova, R. Zalubovskis, C. T. Supuran, and K. Tars. Efficient Expression and Crystallization System of Cancer-Associated Carbonic Anhydrase Isoform IX. *Journal of Medicinal Chemistry*, 58(22):9004–9009, Nov. 2015. ISSN 0022-2623, 1520-4804. doi: 10.1021/acs.jmedchem.5b01343.
- C. Lesburg and D. Christianson. X-Ray Crystallographic Studies of Engineered Hydrogen Bond Networks in a Protein-Zinc Binding Site. J. Am. Chem. Soc., 117:6838–6844, 1995. PDB ID: 1CNK, 1CNI, 1CNJ, 1CNH, 1CNG.
- C. A. Lesburg, C. Huang, D. W. Christianson, and C. A. Fierke. Histidine -> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. *Biochemistry*, 36(50):15780-15791, Dec. 1997. doi: 10.1021/bi971296x. PDB ID: 1H4N, 1H9N, 1H9Q, 2H4N.

- A. Liljas, K. K. Kannan, P. C. Bergsten, I. Waara, K. Fridborg, B. Strandberg, U. Carlbom, L. Jarup, S. Lovgren, and M. Petef. Crystal structure of human carbonic anhydrase C. Nat. New. Biol., 235(57):131-137, Feb. 1972.
- Y. Lou, P. C. McDonald, A. Oloumi, S. Chia, C. Ostlund, A. Ahmadi, A. Kyle, U. auf dem Keller, S. Leung, D. Huntsman, B. Clarke, B. W. Sutherland, D. Waterhouse, M. Bally, C. Roskelley, C. M. Overall, A. Minchinton, F. Pacchiano, F. Carta, A. Scozzafava, N. Touisni, J.-Y. Winum, C. T. Supuran, and S. Dedhar. Targeting Tumor Hypoxia: Suppression of Breast Tumor Growth and Metastasis by Novel Carbonic Anhydrase IX Inhibitors. *Cancer Res.*, 71 (9):3364–3376, May 2011. ISSN 0008-5472, 1538-7445. doi: 10.1158/0008-5472.CAN-10-4261.
- B. P. Mahon, A. Bhatt, L. Socorro, J. M. Driscoll, C. Okoh, C. L. Lomelino, M. Y. Mboge, J. J. Kurian, C. Tu, M. Agbandje-McKenna, S. C. Frost, and R. McKenna. The Structure of Carbonic Anhydrase IX Is Adapted for Low-pH Catalysis. *Biochemistry*, 55(33):4642-4653, Aug. 2016. doi: 10.1021/acs.biochem.6b00243.
- S. Mangani and A. Liljas. Crystal structure of the complex between human carbonic anhydrase II and the aromatic inhibitor 1,2,4-triazole. J. Mol. Biol., 232(1):9–14, July 1993. doi: 10. 1006/jmbi.1993.1365. PDB ID: 1CRA.
- A. Maresca, C. Temperini, H. Vu, N. B. Pham, S.-A. Poulsen, A. Scozzafava, R. J. Quinn, and C. T. Supuran. Non-zinc mediated inhibition of carbonic anhydrases: Coumarins are a new class of suicide inhibitors. J. Am. Chem. Soc., 131(8):3057–3062, Mar. 2009. doi: 10.1021/ja809683v.
- R. Michalczyk, C. J. Unkefer, J.-P. Bacik, T. E. Schrader, A. Ostermann, A. Y. Kovalevsky,
 R. McKenna, and S. Z. Fisher. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer. *Proc. Natl. Acad. Sci. U.S.A.*, 112(18):5673–5678, May 2015. doi: 10.1073/pnas.1502255112.
 PDB ID: 4Q49, 4Y0J.
- A. Mickevičiūtė, D. D. Timm, M. Gedgaudas, V. Linkuvienė, Z. Chen, A. Waheed, V. Michailovienė, A. Zubrienė, A. Smirnov, E. Čapkauskaitė, L. Baranauskienė, J. Jachno, J. Revuckienė, E. Manakova, S. Gražulis, J. Matulienė, E. D. Cera, W. S. Sly, and D. Matulis. Intrinsic thermodynamics of high affinity inhibitor binding to recombinant human carbonic anhydrase IV. *Eur. Biophys. J.*, Oct. 2017. ISSN 0175-7571, 1432-1017. doi: 10.1007/s00249-017-1256-0.
- R. Mikulski, B. S. Avvaru, C. Tu, N. Case, R. McKenna, and D. N. Silverman. Kinetic and crystallographic studies of the role of tyrosine 7 in the active site of human carbonic anhydrase II. Arch. Biochem. Biophys., 506(2):181-187, Feb. 2011a. doi: 10.1016/j.abb.2010.12.004. PDB ID: 3RLD.

- R. Mikulski, J. F. Domsic, G. Ling, C. Tu, A. H. Robbins, D. N. Silverman, and R. McKenna. Structure and catalysis by carbonic anhydrase II: Role of active-site tryptophan 5. Arch. Biochem. Biophys., 516(2):97–102, Dec. 2011b. ISSN 0003-9861. doi: 10.1016/j.abb.2011.09. 011.
- R. Mikulski, D. West, K. H. Sippel, B. S. Avvaru, M. Aggarwal, C. Tu, R. McKenna, and D. N. Silverman. Water Networks in Fast Proton Transfer during Catalysis by Human Carbonic Anhydrase II. *Biochemistry*, 52(1):125–131, Jan. 2013. ISSN 0006-2960, 1520-4995. doi: 10.1021/bi301099k.
- V. Morkūnaitė, J. Gylytė, A. Zubrienė, L. Baranauskienė, M. Kišonaitė, V. Michailovienė, V. Juozapaitienė, M. J. Todd, and D. Matulis. Intrinsic thermodynamics of sulfonamide inhibitor binding to human carbonic anhydrases I and II. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 30(2):204–211, Apr. 2015. ISSN 1475-6366, 1475-6374. doi: 10.3109/ 14756366.2014.908291. 00000.
- P. Mujumdar, K. Teruya, K. F. Tonissen, D. Vullo, C. T. Supuran, T. S. Peat, and S.-A. Poulsen. An Unusual Natural Product Primary Sulfonamide: Synthesis, Carbonic Anhydrase Inhibition, and Protein X-ray Structures of Psammaplin C. *Journal of Medicinal Chemistry*, 59 (11):5462–5470, June 2016. ISSN 0022-2623, 1520-4804. doi: 10.1021/acs.jmedchem.6b00443.
- G. N. Murshudov, A. A. Vagin, and E. J. Dodson. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 53(Pt 3):240–55, May 1997.
- S. K. Nair and D. W. Christianson. Unexpected pH-dependent conformation of His-64, the proton shuttle of carbonic anhydrase II. J. Am. Chem. Soc., 113(25):9455-9458, Dec. 1991. doi: 10.1021/ja00025a005. PDB ID: 1CA3, 1HCA.
- S. K. Nair, P. A. Ludwig, and D. W. Christianson. Two-Site Binding of Phenol in the Active Site of Human Carbonic Anhydrase II: Structural Implications for Substrate Association. J. Am. Chem. Soc., 116(8):3659–3660, Apr. 1994. ISSN 0002-7863. doi: 10.1021/ja00087a086.
- K. Olechnovič and Č. Venclovas. Voronota: A Fast and Reliable Tool for Computing the Vertices of the Voronoi Diagram of Atomic Balls. *Journal of Computational Chemistry*, 35:672–681, 2014. doi: 10.1002/jcc.23538.
- S. K. Panigrahi and G. R. Desiraju. Strong and weak hydrogen bonds in the protein-ligand interface. *Proteins: Structure, Function, and Bioinformatics*, 67(1):128-141, Apr. 2007. ISSN 1097-0134. doi: 10.1002/prot.21253.
- S. Parkkila, A. Innocenti, H. Kallio, M. Hilvo, A. Scozzafava, and C. T. Supuran. The protein tyrosine kinase inhibitors imatinib and nilotinib strongly inhibit several mammalian α-carbonic anhydrase isoforms. *Bioorganic & Medicinal Chemistry Letters*, 19(15):4102–4106, Aug. 2009. ISSN 0960894X. doi: 10.1016/j.bmcl.2009.06.002.

- M. Patrikainen, P. Pan, N. Kulesskaya, V. Voikar, and S. Parkkila. The role of carbonic anhydrase VI in bitter taste perception: Evidence from the Car6-/- mouse model. *Journal of Biomedical Science*, 21:82, Aug. 2014. ISSN 1423-0127. doi: 10.1186/s12929-014-0082-2.
- R. Paulini, K. Müller, and F. Diederich. Orthogonal multipolar interactions in structural chemistry and biology. Angewandte Chemie (International Ed. in English), 44(12):1788–1805, Mar. 2005. ISSN 1433-7851. doi: 10.1002/anie.200462213.
- E. O. Pettersen, P. Ebbesen, R. G. Gieling, K. J. Williams, L. Dubois, P. Lambin, C. Ward, J. Meehan, I. H. Kunkler, S. P. Langdon, A. H. Ree, K. Flatmark, H. Lyng, M. J. Calzada, L. D. Peso, M. O. Landazuri, A. Görlach, H. Flamm, J. Kieninger, G. Urban, A. Weltin, D. C. Singleton, S. Haider, F. M. Buffa, A. L. Harris, A. Scozzafava, C. T. Supuran, I. Moser, G. Jobst, M. Busk, K. Toustrup, J. Overgaard, J. Alsner, J. Pouyssegur, J. Chiche, N. Mazure, I. Marchiq, S. Parks, A. Ahmed, M. Ashcroft, S. Pastorekova, Y. Cao, K. M. Rouschop, B. G. Wouters, M. Koritzinsky, H. Mujcic, and D. Cojocari. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: The METOXIA consortium. J Enzyme Inhib Med Chem, pages 1–33, Oct. 2014. doi: 10.3109/14756366.2014.966704.
- V. Pilipuitytė and D. Matulis. Intrinsic thermodynamics of trifluoromethanesulfonamide and ethoxzolamide binding to human carbonic anhydrase VII: THERMODYNAMICS OF TFS AND EZA BINDING TO CA VII. Journal of Molecular Recognition, 28(3):166-172, Mar. 2015. ISSN 09523499. doi: 10.1002/jmr.2404.00000.
- E. S. Pilka, G. Kochan, U. Oppermann, and W. W. Yue. Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: Implications for biological assembly and inhibitor development. *Biochem. Biophys. Res. Commun.*, 419(3):485–489, Mar. 2012. doi: 10.1016/j.bbrc.2012.02.038. PDB ID: 3FE4.
- M. A. Pinard, C. D. Boone, B. D. Rife, C. T. Supuran, and R. McKenna. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases. *Bioorg Med Chem*, 21(22):7210-7215, Nov. 2013. doi: 10.1016/j.bmc.2013.08.033. PDB ID: 4M2R, 4M2U, 4M2W, 4M2V.
- M. A. Pinard, S. R. Lotlikar, C. D. Boone, D. Vullo, C. T. Supuran, M. A. Patrauchan, and R. McKenna. Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. *Bioorganic & Medicinal Chemistry*, 23(15):4831-4838, Aug. 2015a. ISSN 0968-0896. doi: 10.1016/j.bmc.2015.05.029.
- M. A. Pinard, B. Mahon, and R. McKenna. Probing the Surface of Human Carbonic Anhydrase for Clues towards the Design of Isoform Specific Inhibitors. *BioMed Research International*, vol. 2015:1–15, 2015b. doi: doi:10.1155/2015/453543.

- S. Rusconi, A. Innocenti, D. Vullo, A. Mastrolorenzo, A. Scozzafava, and C. T. Supuran. Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with phosphates, carbamoyl phosphate, and the phosphonate antiviral drug foscarnet. *Bioorg. Med. Chem. Lett.*, 14(23):5763–5767, Dec. 2004. doi: 10.1016/j.bmcl.2004.09.064.
- K. Rutkauskas, A. Zubrienė, I. Tumosienė, K. Kantminienė, M. Kažemėkaitė, A. Smirnov, J. Kazokaitė, V. Morkūnaitė, E. Čapkauskaitė, E. Manakova, S. Gražulis, Z. Beresnevičius, and D. Matulis. 4-Amino-substituted Benzenesulfonamides as Inhibitors of Human Carbonic Anhydrases. *Molecules*, 19(11):17356–17380, Oct. 2014. ISSN 1420-3049. doi: 10.3390/ molecules191117356. 00000.
- L. Scolnick and D. Christianson. X-ray crystallographic studies of alanine-65 variants of carbonic anhydrase II reveal the structural basis of compromised proton transfer in catalysis. *Biochemistry*, 35:16429–16434, 1996. doi: 10.1021/bi9617872. PDB ID: 1UGA, 1UGB, 1UGC, 1UGD, 1UGE, 1UGF, 1UGG.
- K. H. Sippel, A. Stander, C. Tu, B. Venkatakrishnan, A. H. Robbins, M. Agbandje-McKenna, J. Fourie, A. M. Joubert, and R. McKenna. Characterization of Carbonic Anhydrase Isozyme Specific Inhibition by Sulfamated 2-Ethylestra Compounds. *Lett. Drug Des. Discovery*, 8: 1–25, 2011. PDB ID: 30IK, 30IL, 30IM, 30KU, 30KV.
- A. Smirnov, A. Zubrienė, E. Manakova, S. Gražulis, and D. Matulis. Crystal structure correlations with the intrinsic thermodynamics of human carbonic anhydrase inhibitor binding. *PeerJ*, 6:e4412, Feb. 2018. ISSN 2167-8359. doi: 10.7717/peerj.4412.
- P. W. Snyder, M. R. Lockett, D. T. Moustakas, and G. M. Whitesides. Is it the shape of the cavity, or the shape of the water in the cavity? *The European Physical Journal Special Topics*, 223:853-891, 2013. doi: 10.1140/epjst/e2013-01818-y.
- T. Stams, S. K. Nair, T. Okuyama, A. Waheed, W. S. Sly, and D. W. Christianson. Crystal structure of the secretory form of membrane-associated human carbonic anhydrase IV at 2.8-A resolution. Proc. Natl. Acad. Sci. U. S. A., 93(24):13589–13594, Nov. 1996.
- C. T. Supuran. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery, 7(2):168–181, Feb. 2008. ISSN 1474-1776, 1474-1784. doi: 10.1038/nrd2467.
- C. T. Supuran. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opinion on Drug Discovery, 12(1):61-88, Jan. 2017a. ISSN 1746-045X. doi: 10.1080/ 17460441.2017.1253677.
- C. T. Supuran. Bortezomib inhibits mammalian carbonic anhydrases. Bioorganic & Medicinal Chemistry, 25(19):5064–5067, Oct. 2017b. ISSN 0968-0896. doi: 10.1016/j.bmc.2016.10.023.

- A. Tarcsay and G. M. Keserű. Is there a link between selectivity and binding thermodynamics profiles? Drug Discovery Today, 20(1):86–94, Jan. 2015. ISSN 1359-6446. doi: 10.1016/j. drudis.2014.09.014.
- K. Tars, D. Vullo, A. Kazaks, J. Leitans, A. Lends, A. Grandane, R. Zalubovskis, A. Scozzafava, and C. T. Supuran. Sulfocoumarins (1,2-Benzoxathiine-2,2-dioxides): A Class of Potent and Isoform-Selective Inhibitors of Tumor-Associated Carbonic Anhydrases. J. Med. Chem., 56 (1):293-300, Jan. 2013. ISSN 0022-2623, 1520-4804. doi: 10.1021/jm301625s.
- P. W. Taylor, R. W. King, and A. S. V. Burgen. Influence of pH on the kinetics of complex formation between aromatic sulfonamides and human carbonic anhydrase. *Biochemistry*, 9 (20):3894–3902, 1970. doi: 10.1021/bi00822a007.
- C. Temperini, A. Innocenti, A. Guerri, A. Scozzafava, S. Rusconi, and C. T. Supuran. Phosph(on)ate as a zinc-binding group in metalloenzyme inhibitors: X-ray crystal structure of the antiviral drug foscarnet complexed to human carbonic anhydrase I. *Bioorg. Med. Chem. Lett.*, 17(8):2210–2215, Apr. 2007. doi: 10.1016/j.bmcl.2007.01.113. PDB ID: 2IT4.
- C. Temperini, A. Scozzafava, and C. T. Supuran. Carbonic anhydrase inhibitors. X-ray crystal studies of the carbonic anhydrase II-trithiocarbonate adduct—an inhibitor mimicking the sulfonamide and urea binding to the enzyme. *Bioorg. Med. Chem. Lett.*, 20(2):474–478, Jan. 2010. doi: 10.1016/j.bmcl.2009.11.124. PDB ID: 3K7K.
- C. Tu, M. Qian, H. An, N. R. Wadhwa, D. Duda, C. Yoshioka, Y. Pathak, R. McKenna, P. J. Laipis, and D. N. Silverman. Kinetic Analysis of Multiple Proton Shuttles in the Active Site of Human Carbonic Anhydrase. J. Biol. Chem., 277(41):38870–38876, Nov. 2002. ISSN 0021-9258, 1083-351X. doi: 10.1074/jbc.M205791200.
- J. A. Turk and D. B. Smithrud. Synthesis and Physical Properties of Protein Core Mimetics. The Journal of Organic Chemistry, 66(25):8328-8335, 2001. doi: 10.1021/jo0106849.
- B. Ulmasov, A. Waheed, G. N. Shah, J. H. Grubb, W. S. Sly, C. Tu, and D. N. Silverman. Purification and kinetic analysis of recombinant CA XII, a membrane carbonic anhydrase overexpressed in certain cancers. *Proc. Natl. Acad. Sci. U. S. A.*, 97(26):14212–14217, Dec. 2000. doi: 10.1073/pnas.97.26.14212.
- A. A. Vagin, R. A. Steiner, A. A. Lebedev, L. Potterton, S. McNicholas, F. Long, and G. N. Murshudov. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr, 60(Pt 12 Pt 1):2184–95, Dec. 2004.
- N. R. Voss and M. Gerstein. 3V: Cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res, 38(Web Server issue):W555-W562, July 2010. doi: 10.1093/nar/gkq395.
- D. Vullo, S. Del Prete, V. De Luca, V. Carginale, M. Ferraroni, N. Dedeoglu, S. M. Osman, Z. AlOthman, C. Capasso, and C. T. Supuran. Anion inhibition studies of the β -carbonic

anhydrase from the pathogenic bacterium Vibrio cholerae. *Bioorganic & Medicinal Chemistry* Letters, 26(5):1406–1410, Mar. 2016. ISSN 1464-3405. doi: 10.1016/j.bmcl.2016.01.072.

- D. A. Whittington, A. Waheed, B. Ulmasov, G. N. Shah, J. H. Grubb, W. S. Sly, and D. W. Christianson. Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. *Proc. Natl. Acad. Sci. U.S.A.*, 98(17):9545–9550, Aug. 2001. doi: 10.1073/pnas.161301298.
- M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, and K. S. Wilson. Overview of the CCP4 suite and current developments. Acta Crystallographica Section D: Biological Crystallography, 67(Pt 4):235-242, Apr. 2011. ISSN 0907-4449. doi: 10.1107/S0907444910045749.
- Y. Xue, A. Liljas, B. Jonsson, and S. Lindskog. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II. *Proteins*, 17:93–106, 1993. doi: 10.1002/prot.340170112. PDB ID: 1CAI, 1CAJ, 1CAK, 1CAL, 1CAM.
- J. Zheng, B. S. Avvaru, C. Tu, R. McKenna, and D. N. Silverman. Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II. *Biochemistry*, 47(46): 12028–12036, Nov. 2008. doi: 10.1021/bi801473w. PDB ID: 3DV7, 3DVB, 3DVC, 3DVD.
- A. Zubrienė, J. Smirnovienė, A. Smirnov, Vaida Morkūnaitė, V. Michailovienė, J. Jachno, V. Juozapaitienė, P. Norvaišas, E. Manakova, S. Gražulis, and D. Matulis. Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry. *Biophys Chem*, 205:51–65, June 2015. doi: 10.1016/j.bpc.2015.05.009.
- A. Zubrienė, A. Smirnov, V. Dudutienė, D. D. Timm, J. Matulienė, V. Michailovienė, A. Zakšauskas, E. Manakova, S. Gražulis, and D. Matulis. Intrinsic Thermodynamics and Structures of 2,4- and 3,4-Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases. *ChemMedChem*, 12(2):161–176, Jan. 2017. ISSN 1860-7187. doi: 10.1002/cmdc.201600509.