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We study the gauge dependence of the neutrino mass renormalization in a two Higgs doublet model, that
is extended with one singlet seesaw neutrino. This model gives only one light neutrino a mass at tree level,
while the second light mass is generated at loop level via the interaction with the second Higgs doublet. At
one loop level, one neutrino stays massless. We use multiplicative renormalization constants to define
counterterms. The renormalized mass parameters are defined as the complex poles of the propagators,
using the complex mass scheme for mass renormalization. With this setup, we analytically get the
expressions for the neutrino mass counterterms and isolate the gauge dependent part. We show, how
relating this gauge dependent part with the tadpole renormalization leads to gauge independent counterterm
definitions, hence gauge independent bare masses for neutrinos.
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I. INTRODUCTION

Neutrino oscillations are known for more than 30 years
[1]. They prove that neutrinos are not massless. However,
how exactly neutrinos get their masses in the framework of
quantum field theory is still unclear. Seesaw mechanisms
[2,3] are by far the most popular attempts to extend the
standard model with massive neutrinos. The type I seesaw
mechanism [2] is the earliest and simplest such extension,
which includes neutrino mass terms induced by the Higgs
boson of the standard model (SM). In case there are more
Higgs bosons than the single SM Higgs, the type I seesaw
extension can be generalized as in [4]. This allows for awider
range of configurations in the seesaw and Yukawa sectors to
generate the masses for neutrinos that are in agreement
with the experimental values. Also, there are numerous
theoretical motivations [5–8] suggesting a larger scalar
sector. We restrict ourselves to a general CP conserving
two Higgs doublet model (2HDM) [9], which can be viewed
as a general class of more specific models that include two
scalar doublets under the gauge group SUð2Þweak.
The 2HDM paired with the seesaw mechanism gives a

new way of generating masses for neutrinos that is absent in
the usual SM seesaw extensions. That is, the mass terms
that are absent at tree level arise at loop level due to the

interactions with the second Higgs doublet. This radiative
mass generation makes it possible to account for both
experimentally measured mass differences at one loop level
having only one sterile neutrino in the seesaw mechanism.
This set up, with the 2HDM and one sterile neutrino at one
loop was first proposed in [4] and we call it the Grimus-
Neufeld model (GN model).
We look at the gauge parameter dependence of the

neutrino mass renormalization in this GN model with a CP
symmetric 2HDM potential. It is proven in general [10],
that the position of the complex pole of the propagator is
independent of the gauge. Hence one can extend the on-
shell (OS) scheme to the complex domain to define gauge
invariant masses as is done in the complex mass scheme
(CMS) [11,12]. However, this does not mean that the mass
counterterms are necessarily gauge parameter independent.
In fact, at one loop there is the same gauge dependence of
the mass counterterms in the CMS as in the OS scheme.
This is because the one loop expressions for the OS are the
same as in the CMS except for the required reality of loop
functions in the OS scheme. As long as the mass is
evaluated at the exact pole (as in the CMS), this gauge
dependence of the counterterm does not bother the defi-
nition of mass since the exact pole is gauge independent
anyway. Defining a gauge independent counterterm, how-
ever, is important in other schemes such as (modified)
minimal subtraction, where the gauge dependence might
occur in the running of parameters [13,14]. Some explicit
examples of the gauge dependence in the MS scheme are
given in [15–17]. Hence it is worth to look at the
possibilities to define gauge independent mass counter-
terms in the CMS or the OS, as well.
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In the GN model, we analytically check that the gauge
dependent terms for the fermion two point function vanish
if the tadpole diagrams are attached to the propagator as
discussed in [18]. This way of dealing with gauge depen-
dent parts originates from the pinch technique [19]. Hence
applying this technique to define numerically gauge invari-
ant counterterms seems rather straightforward. However, to
analytically isolate these tadpole diagrams from the coun-
terterms requires some effort. We present how we achieve
this isolation of the gauge dependent terms for the neutrino
mass counterterms in the GN model. We try to be as
transparent as possible in showing our steps so that the
reader can easily reproduce our results. All our renormal-
ization constants arise from multiplicative renormalization
and we use Weyl spinors for our expressions rather than
Dirac spinors.
In Sec. II we present the main definitions and discuss the

implications of using the complex mass scheme over the
on-shell scheme. In Sec. III we introduce the scalar sector
and present the tadpole renormalization conditions in the
2HDM. In Sec. IV we introduce the Yukawa sector of the
GN model and show the expressions of mass counterterms
for neutrinos. The relationship between tadpole conditions
of Sec. III and mass counterterms is also explained in
Sec. IV. In Sec. V we show how we set up the calculations
using SARAH [20](version 4.12.0 [21]), FEYNARTS [22]
(version 3.9) and FORMCALC [23] (version 9.4) and present
the analytical results. Section V is accompanied by the
Appendix B in which we present some intermediate steps
of the derivations. We conclude the results in Sec. VI by
discussing the cancellation of the gauge dependence of
neutrino propagators in the GN model.

II. DEFINITIONS AND THE COMPLEX
MASS SCHEME

We use the same definitions as in [24], where we
presented the adaptation of the complex mass scheme
[12] for Majorana fermions in Weyl spinor formalism.
The renormalized Green functions are

1

i
hϕ1…ϕni½loop�1PI ¼ δnΓ̂½loop�

δϕ1::δϕn

����
ϕi¼0

≡ Γ̂½loop�
ϕ1…ϕn

≡ Γ½loop�
ϕ1…ϕn

þ δΓ½loop�
ϕ1…ϕn

; ð1Þ
where δΓ½loop� stands for the counterterm part of the
renormalized effective action. The superscript denotes
the loop order of the function in consideration. The tadpole
function is defined as the special case of Eq. (1):

T ½loop�
ϕ ≡ Γ½loop�

ϕ : ð2Þ
The definitions for using Weyl spinors as the basis of
Feynman diagram calculations can be found in [25]. The
scalar parts of Green’s functions of a left handed Weyl

spinor νi and its Hermitian conjugate ν†i can be separated by
the Lorentz index structure:

Γ̂νiνi ¼ miΣ̂νiνi ; Γ̂ν†i ν
†
i
¼ miΣ̂ν†i ν

†
i
;

Γ̂νiν
†
j
¼ pσΣ̂νiν

†
j
; Γ̂ν†i νj

¼ pσ̄Σ̂ν†i νj
: ð3Þ

The definitions of Eq. (3) work well for the on-shell
scheme, but have to be slightly modified for the complex
mass scheme.
We work in renormalized perturbation theory, where the

renormalized parameters p and the renormalized fields ϕj
are related to bare parameters and bare fields by multipli-
cative renormalization constants:

p0 ¼ pð1þ δpÞ; ϕ0i ¼
X
j

ð1ij þ δijÞϕj: ð4Þ

We use the subscript 0 to denote the bare quantities, 1ij
stands for the Kronecker delta, δp and δij are one loop order
renormalization constants. These redefinitions of parame-

ters and fields give rise to the counterterms δΓ½loop�
ϕ1…ϕn

in Eq. (1).
We use the general Rξ gauge for calculations. As we will

look at the gauge parameter dependencies, we will fre-
quently look at only the gauge parameter dependent part of
the expressions. To denote the gauge dependent term, we
will add the gauge parameter ξ in the subscript at the end of
the renormalization constants, self-energies, and tadpole
functions; e.g.:

δp ≡ δpξ þ gauge independent terms; δpξ ¼ δpξW þ δpξZ :

ð5Þ
We use the complex mass scheme [12] (CMS) to

renormalize masses and fields. The CMS for mixed
fermions is presented in [26–28] and the adaptation to
Weyl spinor formulation is presented in [24]. Here we
mention the main differences that need to be considered
when generalizing the OS framework to the CMS.
Considering a Majorana mass term for the Weyl fermion ν:

Lm0
¼ −

1

2
m0ν0ν0 −

1

2
m†

0ν
†
0ν

†
0; ð6Þ

we can absorb the phase of the mass parameter into the
field, so that m0 ∈ R:

Lm0
¼ −

1

2
m0ðν0ν0 þ ν†0ν

†
0Þ: ð7Þ

Renormalizing the mass parameter leads to

Lm0
¼ −

1

2
mðν0ν0 þ ν†0ν

†
0Þ þ c:t:; ð8Þ

where m ∈ C and c:t: stands for the counterterms. Hence
the CMS introduces an apparent nonhermiticity in the
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renormalized tree level Lagrangian (the full Lagrangian
including all the counterterms is Hermitian). Also, the
condition for the residue at the complex pole leads to an
additional phase difference in the fields [26–28]. That
means that the field renormalization constants are not
Hermitian conjugate to each other either [24]:

ν†0¼ð1þ δ̄Þν̄; ν0¼ð1þδÞν⇒ ν̄≠ ν†; δ† ≠ δ̄; ð9Þ

where we use overbars as parts of the names of the
renormalization constants and the fields. Hence the renor-
malized mass Lagrangian in the CMS is:

Lm ¼ −
1

2
mðννþ ν̄ ν̄Þ: ð10Þ

Comparing with the bare Lagrangian, we see that we could
write Eq. (6) or Eq. (7) as:

Lm0
¼ −

1

2
m0ν0ν0 þ H:c: ð11Þ

We cannot write Eq. (10) in the same way, since it is not
hermitian. However, we can try to define a new symbol
H:c:� to have the possibility to write:

Lm ¼ −
1

2
mðννþ ν̄ ν̄Þ ¼ −

1

2
mννþ H:c:� ð12Þ

In this equation the symbol H:c:� makes the replacement
for the field ν → ν̄ and leaves m → m. The mass parameter
is unchanged in the H:c:� since we found the basis, in which
the bare parameter is real by absorbing the phase into ν0 in
Eq. (7). Hence the algebraic structure of Eq. (7) is kept in
the renormalized version shown in Eq. (10). A similar thing
happens in the CP conserving Higgs sector: the CP
symmetry constrains the form of the Lagrangian, which
has to be kept during the renormalization condition. Also,
in the scalar and the vector case, if we have ϕ0 ∈ R, then
ϕ ¼ ϕ̄. The easiest way to generalize the H:c:� symbol is to
say that we choose the basis in which the bare parameters
that can be real are made real; then we can summarize:

H:c:�∶
�
p → p;ϕ → ϕ̄; p0 ∈ R

p → p†;ϕ → ϕ̄; p0 ∉ R:
ð13Þ

Normally, if a bare parameter is related to the bare mass
term, that parameter can be made real by absorbing the
phase into the field. Hence the second line of Eq. (13)
assumes that there is no effect of the mass renormalization
to the parameter p if p0 cannot be related to the mass term.
While this assumption is correct at one loop level, the
definition Eq. (13) at higher loops should be treated with
caution. Without going into too much technical details, one
can think of H:c:� as a shorthand notation for the renor-
malized H:c: terms of the bare Lagrangian.

Now we can come back to the definitions of Eq. (3). As
the CMS renormalized field is ν̄ and not ν†, as can be seen
from Eq. (9), we write [24]:

Γ̂νiνi ¼ miΣ̂νiνi ; Γ̂ν̄i ν̄i ¼ miΣ̂ν̄i ν̄i ;

Γ̂νi ν̄j ¼ pσΣ̂νiν̄j ; Γ̂ν̄iνj ¼ pσ̄Σ̂ν̄iνj : ð14Þ

The difference between Eqs. (3) and (14) is rather formal:
i.e., one does not really see the difference when calculating
the Feynman diagrams. However, for using the CMS for
field and mass renormalization, one should keep this
difference in mind for the conceptual consistency.
After we have the consistent set up for renormalizing the

fermions in the CMS, we continue to look at the gauge
parameter dependencies of the renormalization constants in
this scheme. The multiplicative renormalization constants
Eq. (4) can be used for any renormalization condition. The
algebra of the CMS is basically the same as in the OS, as
the CMS is just the analytical continuation of the OS to the
complex domain. In this paper, we study the algebraic
relations that allow to isolate the gauge parameter term in
the mass counterterm. As this procedure is purely algebraic,
the expressions concerning the isolation of the gauge
dependent part are the same as in the OS scheme apart
from the reality requirement. We, however, do these
manipulations with the CMS in mind, as the generalizations
despite being rather straightforward are still needed for a
full consistency. We now turn to the explicit expressions for
the GN model.

III. SCALAR SECTOR AND TADPOLE
CONDITIONS

The general 2HDM is an extension of the SM with
a second Higgs doublet having the same charges as the
SM Higgs doublet. The most general potential can be
written as [9,29]:

VHiggs¼m2
011H

†
01H01þm2

022H
†
02H02−ðm2

012H
†
01H02þH:c:Þ

þ1

2
λ01ðH†

01H01Þ2þ
1

2
λ02ðH†

02H02Þ2

þλ03ðH†
01H01ÞðH†

02H02Þþλ04ðH†
02H01ÞðH†

01H02Þ

þ
�
1

2
λ05ðH†

02H01ÞðH†
02H01Þþλ06ðH†

01H01ÞðH†
01H02Þ

þλ07ðH†
02H02ÞðH†

02H01ÞþH:c:

�
; ð15Þ

whereH01 andH02 are the two Higgs doublets. In a general
basis, they both develop VEVs: v01 and v02, respectively.
The VEV value that is responsible for the electroweak
symmetry breaking is v20 ¼ v201 þ v202. We choose to work
in the Higgs basis, where we can parametrize the Higgs
doublets as:
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H01 ¼
� χþ0W

1ffiffi
2

p ðv0 þ h0 þ iχ0ZÞ
�
;

H02 ¼
� Hþ

0

1ffiffi
2

p ðH0 þ iA0Þ
�
: ð16Þ

In this basis, H02 is chosen to have 0 vacuum expectation
value (VEV), v0 is the VEVof H01, χ0Z, and χ0W stand for
Goldstone bosons, h0, H0, and A0 are neutral scalars and
Hþ

0 is a charged scalar. Note that when we choose the Higgs
basis by Eq. (16) and insert into the Eq. (15), the parameters
in Eq. (15) are the Higgs basis parameters and not the ones
of the general basis. The transformation of parameters
between the Higgs and the general basis can be found in
[9,30]. We consider the CP conserving case, where all the
bare parameters are real,

m2
0ij; λ0k ∈ R; i; j ¼ 1; 2; k ¼ 1;…; 7; ð17Þ

by an imposed CP symmetry on the bare Lagrangian.
After introducing the renormalization constants, Eq. (4),

we write the zeroth order renormalized effective action (or
the renormalized Lagrangian, ignoring the kinetic terms) of
the Higgs sector as:

Γ½0�
Higgs¼−m2

11H̄1H1−m2
22H̄2H2þfm2

12H̄1H2þH:c�:g

−
1

2
λ1ðH̄1H1Þ2−

1

2
λ2ðH̄2H2Þ2−λ3ðH̄1H1ÞðH̄2H2Þ

−λ4ðH̄2H1ÞðH̄1H2Þ

−
�
1

2
λ5ðH̄2H1ÞðH̄2H1Þþλ6ðH̄1H1ÞðH̄1H2Þ

þ λ7ðH̄2H2ÞðH̄2H1ÞþH:c�:
�
; ð18Þ

where we used the definitions of Eq. (13). As the bare fields
h0, H0, A0 are real, the renormalized fields are written as:

H1 ¼
 

χþW
1ffiffi
2

p ðvþ hþ iχZÞ

!
; H2 ¼

 
Hþ

1ffiffi
2

p ðH þ iAÞ

!
;

H̄i ¼ HT
i ðχþ → χ−; Hþ → H−; i → −iÞ: ð19Þ

χþW and χ−W are related to χþ0W as described by Eq. (9).
The same holds forHþ andH−. The neutral fields appear in
the barred doublets in the same way as in the unbarred
doublets.
To get the minimum of the potential, Eq. (18), we need to

solve three tadpole equations for the three neutral scalars. It
is important to note that we will express the tadpole
equations in the Higgs basis and not in the mass eigenstate
basis as the expressions are simpler. The mass eigenstate

basis for h and H and the Higgs basis is related by an
orthogonal transformation parametrized by [9]:

Oϕ ¼
�

cα sα
−sα cα

�
; ϕmass

i ¼ Oϕ
ijϕ

Higgs
j ;

ϕHiggs
i ¼ ðh;HÞi; ð20Þ

where sα and cα are sine and cosine functions of a mixing
angle α, respectively. In general, we would have 3 × 3
mixing matrix, but the imposed CP symmetry on the
potential does not allow A to mix with h and H at tree
level. Then the tadpole functions in different bases are
related by:

Th ¼ cαThðmÞ − sαTHðmÞ ; TH ¼ cαTHðmÞ þ sαThðmÞ ;

TA ¼ TAðmÞ ; ð21Þ

where we added the m in the subscript to indicate that the
fields are in the mass eigenstates. At tree level, the tadpole
functions are

T̂ ½0�
h ¼ δΓ½0�

Higgs

δh
¼ −v

�
m2

11 þ
1

2
λ1v2

�
;

T̂ ½0�
H ¼ δΓ½0�

Higgs

δH
¼ v

�
m2

12 −
1

2
v2λ6

�
;

T̂ ½0�
A ¼ δΓ½0�

Higgs

δA
¼ 0: ð22Þ

We see that the third tadpole function is already zero in the
CP conserving case. We require the tadpole conditions to
hold for all loop levels:

T̂ ½i�
h ¼ T̂ ½i�

H ¼ T̂ ½i�
A ¼ 0: ð23Þ

The tree level tadpole conditions T̂ ½0�
h ¼ T̂ ½0�

H ¼ T̂ ½0�
A0

¼ 0

give:

m2
11 ¼ −

1

2
λ1v2 and m2

12 ¼
1

2
λ6v2: ð24Þ

Now we require the tadpole conditions Eq. (23) for tree
and one loop level together:

T̂ ½0� ¼ 0; ðT ½1� þ δT̂ ½1�Þ
���
T̂ ½0�¼0

¼ 0; ð25Þ

where we indicate in the second equation that we use
the relations from the first condition at the loop order
after algebraically deriving counterterms from the multi-
plicative constants shown in Eq. (4). The one loop tadpole
counterterms evaluated at T̂ ½0� ¼ 0 for the CP conserving
case then are
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δT̂ ½1�
h ¼ 1

2
λ1v3ð2δm11 − δλ1 − 2δvÞ;

δT̂ ½1�
H ¼ 1

2
λ6v3ð2δm12 − δλ6 − 2δvÞ;

δT̂ ½1�
A0

¼ 0: ð26Þ

As v is defined dynamically by Eq. (24), it is not an
independent parameter of the theory. This means that one of
the counterterms δm11, δλ1, δv is redundant. This is because
we did not yet choose which parameter is used over which
from the tree level minimum condition Eq. (24). One of the
choices is treating λ1 and v as the independent ones so that
the shift of m11 is given by:

δm11 ¼
1

2
δλ1: ð27Þ

Then the shift of the VEV yields the one loop tadpole
counterterms, evaluated at T̂ ½0� ¼ 0:

δT̂ ½1�
h ¼ −λ1v3δv; ð28Þ

δT̂ ½1�
H ¼ 1

2
λ6v3ð2δm12 − δλ6 − 2δvÞ: ð29Þ

The one loop tadpole conditions Eq. (25) give:

δv ¼
1

λ1v3
T ½1�
h ; ð30Þ

�
δm12 −

1

2
δλ6

�
¼ 1

v3

�
1

λ1
T ½1�
h −

1

λ6
T ½1�
H

�
: ð31Þ

The v now stands for a loop renormalized VEV or the
“proper VEV” as in [31]. So far, the construction is similar
to the βt scheme of [32], “scheme 3” in [13] or [31] of the
SM, but without the proper relation of the VEV to the mass
terms, it is not yet complete. To complete it as in [13,31,32],
one identifies the bare mass parameters arising from the
proper VEV, rather than v0, as also noted in [13,31–35].
The idea is to avoid the inclusion of the gauge dependence
coming from δv into the definition of the mass counterterm
δm as will be shown in the next sections.

IV. YUKAWA SECTOR

The GN model adds a single sterile neutrino N0 to the
general 2HDM. This sterile neutrino is a gauge singlet
under all gauge groups of the SM and has a Majorana mass
term M0. To write the Yukawa couplings, we start in the
flavor basis, in which the Yukawa coupling of the charged
fermions to the first Higgs doublet in the Higgs basis is
diagonal. Then the general Yukawa couplings for neutrinos
can be seen as two three-vectors Y1 and Y2. The neutrino
Yukawa Lagrangian together with the Majorana mass term
then is written as:

LYuk¼−Y1
i n0iN0H01−Y2

i n0iN0H02−
1

2
M0N0N0þH:c:

ð32Þ

where n0i are neutrinos in the flavor basis with i ¼ e, μ, τ.
The Yukawa couplings Y1

i and Y
2
i give in general 6 complex

parameters and M0 gives 1 complex parameter. We absorb
four phases into the n0i and N0 to get Y1

i , M0 ∈ R. By a
singular value decomposition, we can parametrize the
Yukawa couplings with only four real parameters:

d0; y0 ∈ R; d00 ∈ C; ð33Þ

absorbing the other degrees of freedom into the Unitary
mixing matrix. To make the parametrization easy, we
decompose it into subsequent orthogonal rotations O and
phase shifts U, so that O23 produces zero in the second
position of Y1 (O23

2jY
1
j ¼ 0), O13 in the first (O13

1kO
23
kjY

1
j ¼

0). Uσ adjusts the phase of the first element of Y2 to
match it with the phase of the second element
(argðUα

1lO
13
lk O

23
kjY

2
jÞ ¼ argðUα

2lO
13
lk O

23
kjY

2
j ), O12 makes

the first element of Y2 zero (O12
1mU

α
mlO

13
lk O

23
kjY

2
j ¼ 0)

and Uρ adjust the phase so that the second element
of Y2 is real (Uβ

2nO
12
nmUα

mlO
13
lk O

23
kjY

2
j ∈R). Writing

V¼UβO12UαO13O23, the basis choice is summarized as:

V1jY1
j ¼ 0; V2jY1

j ¼ 0; V3jY1
j ¼ y0;

V1jY2
j ¼ 0; V2jY2

j ¼ d0; V2jY2
j ¼ d00;

d0; y0 ∈ R; d00 ∈ C: ð34Þ

Note that we are still free to adjust the phase of the first
row of V. To combine these rotations with the seesaw
transformation, we combine all neutrinos to a single
vector, consisting of four flavor basis neutrinos:

νF0i ¼ ðn0e; n0μ; n0τ; N0Þi: ð35Þ

To account for the fourth component of this vector, the
3 × 3 matrix V is trivially extended to a 4 × 4 matrix by
adding an identity element on the diagonal. As we work
in the Higgs basis, only the first Higgs doublet gets the
VEV. With the parametrization Eq. (34), the seesaw
transformation acts on the third and fourth component
yielding the whole 4 × 4 mixing matrix:

U ¼ U34V ¼ U34UβO12UαO13O23 ð36Þ

and the relation between the mass eigenstate and the
flavor basis becomes:

νmass
0i ¼ U�

ijν
F
0j: ð37Þ
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All the parametrization of neutrino mixing matrix is
summarized in Appendix A.
In order to see the differences in the mass terms between

the tadpole schemes, we first do the usual construction like
in, e.g., [12], and then modify it according to the discussion
at the end of Sec. III. After the electroweak symmetry
breaking, the seesaw mechanism yields two bare mass
eigenvalues m03 and m04 that have the relations:

M0 ¼ m04 −m03 and y20v
2
0 ¼ 2m03m04: ð38Þ

The seesaw parameters are expressed in terms of masses:

s2034 ¼
m03

m04 þm03

and c2034 ¼
m04

m04 þm03

: ð39Þ

Note that as long as we stay at tree level, v0 ¼ v. In this basis
we have four neutrino states ν0i, where ν01 and ν02 have zero
mass, but ν02 is distinguished from ν01 by its interactionwith
the second Higgs doublet, i.e., ν01 does not couple to any of
the Higgses. By applying the rotation Eq. (37) in Eq. (32),
using the parametrizations of Eq. (34), (38), and (39) and
inserting the explicit Higgs basis Eq. (16), we write the
Yukawa Lagrangian part that includes only neutral scalar
fields together with the Majorana mass terms:

LYuk ¼ −
1

2
m03ν03ν03 −

1

2
m04ν04ν04

−
1ffiffiffi
2

p d0ðH0 þ iA0Þν02ð−is034ν03 þ c034ν04Þ

−
1ffiffiffi
2

p ½y0ðh0 þ iχZ0Þ þ d00ðH0 þ iA0Þ�

× ½c034s034ν03ν03 þ iðc2034 − s234Þν03ν04
þ c034s034ν04ν04� þ H:c: ð40Þ

We straightforwardly apply the multiplicative renormaliza-
tion constants, Eq. (4), for all the parameters and fields. The
tree level renormalized effective action is then written in the
sameway as the bare Lagrangian, except that the parameters
and fields are the renormalized ones:

Γ̂½0�
Yuk ¼ −

1

2
m3ν3ν3 −

1

2
m4ν4ν4

−
1ffiffiffi
2

p dðH þ iAÞν2ð−is34ν3 þ c34ν4Þ

−
1ffiffiffi
2

p ½yðhþ iχZÞ þ d0ðH þ iAÞ�

× ½c34s34ν3ν3 þ iðc234 − s234Þν3ν4 þ c34s34ν4ν4�
þ H:c�:; ð41Þ

where:

M ¼ m4 −m3; y2v2 ¼ 2m3m4: ð42Þ

s234 ¼
m3

m4 þm3

; c234 ¼
m4

m4 þm3

: ð43Þ

Having Eqs. (38) and (39) for the bare theory and Eqs. (42)
and (43) for the renormalized one gives us the relations
between the renormalization constants:

δm3 þ δm4 ¼ 2ðδv þ δyÞ; ð44Þ

m4δm4 −m3δm3 ¼ ðm4 −m3ÞδM: ð45Þ

The mass renormalization constants are fixed by the CMS
condition [24]:

δmi ¼
1

2
ðΣνiνi þΣν̄i ν̄i þΣνiν̄i þΣν̄iνiÞjp2¼m2

i
; mi ≠ 0; ð46Þ

which is nothing more than the usual expression for the OS
renormalized mass counterterm (as in [36]) extended to
the complex domain and written in Weyl spinor formalism.
The CMS condition gives us the renormalized mass param-
eters gauge independent, however from Eq. (44) we see that
themass counterterm has the δv contribution, which is gauge
dependent. Hence in this way the baremasses becomegauge
dependent as well.
Recalling the discussion at the end of Sec. III: to define

the gauge invariant mass counterterm we need to identify
the bare mass with the proper VEV [31]. Thus the bare
relation Eq. (38) is modified to:

M0 ¼ m0
04 −m0

03; y20v
2 ¼ 2m0

04m
0
03; ð47Þ

so that there is no δv in the definition of δ0m s. From v0 ¼
vð1þ δvÞ and comparing Eq. (38) with Eq. (47), we get the
relationship between primed (FJ scheme) and unprimed
(usual tadpole scheme) mass parameters:

m0i ¼m0
0iþΔ0; Δ0 ¼ 2

m0
04m

0
03δv

m0
04þm0

03

; i¼ 3;4: ð48Þ

As the seesaw mixing parameters depend on the masses,
they are shifted as well:

s2034 → s2034 þ 2δvc2034s
2
034ðc2034 − s2034Þ;

c2034 → c2034 − 2δvc2034s
2
034ðc2034 − s2034Þ: ð49Þ

However, these shifts of the mixing parameters become
relevant only at higher loops than one, so we can drop them
from our one loop expressions. At one loop level, every-
thing is the same as in Eq. (40), except that the bare mass
term Lagrangian for neutrinos becomes:
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Lmass ¼−
1

2
ðm0

03þΔ0Þν03ν03−
1

2
ðm0

04þΔ0Þν04ν04: ð50Þ

Starting from this bare Lagrangian, Eq. (46) is modified to:

δ0mi ¼
1

2
ðΣνiνi þ Σν̄i ν̄i þ Σνi ν̄i þ Σν̄iνiÞ

���
p2¼m2

i

−
Δ
mi

;

for mi ≠ 0; ð51Þ

where:

Δ ¼ 2
m3m4δv
m4 þm3

ð52Þ

is defined with the renormalized massesm3 andm4. We see
that Δ is the same for ν3 and ν4. To check if Δ cancels the
gauge invariance, we analytically calculate the gauge
dependent parts of Eqs. (46) and (52) for ν3 and ν4.
Note that in both tadpole schemes the renormalized masses
are the same CMS masses, while the bare massesm0i differ
from m0

0i by Δ0 as in Eq. (48).

V. ARRIVING AT THE EXPRESSIONS FOR
RENORMALIZATION CONSTANTS

We use FEYNARTS [22] and FORMCALC [23] to arrive at
one loop expressions for self energies and tadpoles. For
making the FEYNARTS model file we found the SARAH [20]
package to be useful, which allows to quickly generate a
model file from an input of the Lagrangian in terms of Weyl
spinors and scalars in the user specified gauge group
representations. It also has some built in functions to check
the consistency of the model. We choose the Higgs basis by
simply putting the VEVof the second Higgs doublet to zero
in the input file. We leave all the other parameters arbitrary
for generating the FEYNARTS model file and make replace-
ment rules for the FEYNARTS model file parameters to
implement our parametrization afterwards. As we work at
the one loop level, tree level relations to simplify one loop
diagrams can be used. As discussed in Sec. II, the CMS
keeps the algebraic structure of the bare theory. This means
that for the algebraic simplifications, all the properties and
the relations of bare parameters can be used for the
renormalized parameters in the CMS as well. Hence we
can implement these properties and relations into the
assumptions of the Mathematica file in which we do these
simplifications. Then the results can be consistently con-
tinued to the complex domain afterwards. In the following
subsection we show how we implemented the parametri-
zations into the FEYNARTS model file and the assumptions
for the bare parameters that carry over to the algebraic one
loop simplifications. Then we present the results that we
got for the gauge dependent terms in mass and tadpole
renormalization.

A. Getting FEYNARTS model file

(1) We generate a FEYNARTS model file using SARAH:
(i) We take a SARAH model file for a 2HDM, and

define 1 additional gauge singlet like this:

FermionFields ½½6�� ¼
fn; 1; conj½nR�;0; 1; 1g

where the last three entries are the charges
under the gauge groups (singlets under all of
them), the second is the number of families, the
first and the third is the name of the field and its
component, respectively (see [20]).

(ii) We modify the Yukawa Lagrangian of that
model file to include the general Yukawa
couplings of neutrinos with the first and the
second Higgs doublet as in Eq. (32) in a direct
analog to the quark sector and add the Majorana
mass term for the sterile neutrino:

LagYukawan ¼ -ð-Yn1H1.n.l

-Yn2H2.n.lþ 1=2 Mn.n Þ

(iii) In the definitions for the “EWSB” phase, we set
the VEVof the second Higgs doublet to zero to
implement the Higgs basis as in Eq. (16):

DEFINITION½EWSB�½VEVs� ¼
ffH10; fv; 1=Sqrt½2�g;
fsigma1;n½ImaginaryI�=Sqrt½2�g;
fphi1;1=Sqrt½2�gg;
fH20; f0;1=Sqrt½2�g;
fsigma2; n½ImaginaryI�=Sqrt½2�g;
fphi2;1=Sqrt½2�ggg;

(iv) We leave the definition of mixing between
Higgses h and H as in the 2HDM model, but
omit mixings between the pseudoscalars and
the charged scalars as they do not appear in the
Higgs basis with CP conserved potential.

(v) We define an additional mixing matrix
for neutrinos in the DEFINITION[EWSB]
[MatterSector], combining the flavor
basis SM neutrinos vL with the sterile neutrino
conj(nR) as:

ffvL;conj½nR�g; fVL;Ungg

where the VL is the combined four-vector of the
neutrino mass eigenstates and Un is the mixing
matrix U� from Eq. (37).

(vi) We generate the FEYNARTS model file by the
SARAH command MakeFeynArts[].

GAUGE DEPENDENCE OF TADPOLE AND MASS … PHYS. REV. D 98, 035034 (2018)

035034-7



(2) We make modifications to the FEYNARTS model file:
(i) To achieve the parametrization of Eq. (34) we

make the replacements in the model file for the
neutrino-neutrino—Higgs vertices:

X3
j¼1

UijY1
j → ð0; 0;−ic34y; s34yÞj; ð53Þ

X3
j¼1

UijY2
j → ð0; d;−ic34d0; s34d0Þj: ð54Þ

We do not replace the neutrino—electron—
scalar vertices, hence they depend on Y1 and Y2

instead of the y, d and d0 parameters in themodel
file.We leave themgeneral, because it is easier to
make algebraic simplifications of amplitudes in
the general couplings for thesevertices. After the
expressions are simple enough, we invert
Eqs. (53) and (54) to express Y1 and Y2 in terms
of U, y, d and d0 in the Mathematica note-
book file.

After setting up the FEYNARTS model file, we generate 1
loop diagrams for the wanted correlation functions. The
parametrizations and relations of Secs. III and IV are
imposed as replacement rules during the algebraic sim-
plifications of the expressions. The summary of the
parameters and their relations is given in the Appendix A.

B. Mass renormalization

We construct the mass renormalization constants as in
Eq. (46) to isolate the gauge dependent part so that we can
later check if the definition in Eq. (51) really cancels it.
The FormCalc output is easy to use in Weyl spinor notation
as the spinor products in the result of the amplitude
appear in “WeylChains”. By collecting terms near those
“WeylChains” we can take separately all four components
presented in Eq. (3). The structure of the correction to a
propagator is:

hνiνiiΓνiνi þhν̄iν̄iiΓν̄iν̄i þhνipσν̄iiΣνi ν̄i þhν̄ipσ̄νiiΣν̄iνi :

ð55Þ
For Majorana particles only two of the scalar self energies
are independent, since Σνν̄ is the same as Σν̄ν and Γνν is
related to Γν̄ ν̄. At one loop, this relation is just the Hermitian
conjugation of couplings that enter the loop functions.
To make algebra simplifications easier and faster we

separate different one loop contributions to self energies
according to the particles that appear in the loop. Those
contributions are from the neutral Higgs scalars, the charged
scalar Higgs, the neutral Goldstone boson, the charged
Goldstone boson, the W boson and the Z boson. We label
them as ΣH0, ΣHþ, Σχ0, Σχþ, ΣW and ΣZ, respectively. Note
that the Σs are the dimensionless one loop self energy
functions defined in Eq. (14). Analogously, we write the

dimensionful self energies as ΓH0
ϕ1ϕ2

, ΓHþ
ϕ1ϕ2

, etc… Naturally,
ΓH0
νiνj and Γ

Hþ
νiνj do not depend on any gauge parameter. As the

first results of the calculations give us:

Γ½1�
ν1ν1 ¼ 0 and Γ½1�

ν2ν2 ¼ ΓH0
ν2ν2 : ð56Þ

Note that ν2 and ν1 do not have mass renormalization
constants coming from Eq. (4), since they do not have bare
mass parameters. The nonvanishing contribution for the
mass of ν2 is gauge independent and finite. This is a good
first crosscheck to see that the implementation of the model
gives us expected results.
We are interested in the gauge dependent part of δm3 and

δm4, so we are interested only in Σχ0, Σχþ, ΣW , and ΣZ. ξW
will appear only inΣχþ andΣW and ξZ only inΣχ0 andΣZ. As
one can check, the charged loop formasslike terms vanishes:

ΓW
ν3ν3 ¼ ΓW

ν†
3
ν†
3

¼ 0: ð57Þ

Hence the potentially ξW dependent contribution for
m3δm3 is

1

2
ðΓχþ

ν3ν3 þ Γχþ
ν†
3
ν†
3

Þ þm3ΣW
ν3ν

†
3

þm3Σ
χþ
ν3ν

†
3

: ð58Þ

After some effort (see the Appendix B), we arrive at the ξW
dependent part of the mass counterterm [recall Eq. (5)]:

m3δm3ξW ¼ m3m4

ðm3 þm4Þ
g2e

16π2m2
Zs

2
2W

2A0ðm2
WξWÞ; ð59Þ

where s2W ≡ 2sWcW is the sine of a double Weinberg angle
Eq. (A5). For calculating δm3ξZ one should note that
ΓZ
ν3ν3 ≠ 0. Apart from that, everything is analogous to the

ξW case.At the end the full gauge dependence of the neutrino
mass counterterms is

m3δm3ξ ¼m4δm4ξ

¼ m3m4

ðm3þm4Þ
g2e

16π2m2
Zs

2
2W

½A0ðm2
ZξZÞþ2A0ðm2

WξWÞ�:

ð60Þ

C. VEV renormalization

When separating the gauge parameter dependent part of

T ½1�
h we first observe that tadpoles with physical Higgs

bosons and fermions in the loop do not have any gauge
dependence. The gauge dependent part of loops with gauge
bosons and ghosts exactly cancel when these contributions
are summed up. Hence the only gauge dependent terms in
the tadpole contributions are the tadpoles with Goldstone
bosons in the loops, which are

T ½1�
hξ ¼

λ1v
32π2

½A0ðm2
ZξZÞ þ 2A0ðm2

WξWÞ�: ð61Þ

VYTAUTAS DŪDĖNAS and THOMAS GAJDOSIK PHYS. REV. D 98, 035034 (2018)

035034-8



This is exactly the same term that we would get for the
Higgs tadpole in the SM. This again shows the convenience
of the Higgs basis in the tadpole equations. From Eqs. (30)
and (52) we have:

Δξ ¼
m3m4

ðm3 þm4Þ
1

16π2v2
½A0ðm2

ZξZÞ þ 2A0ðm2
WξWÞ�; ð62Þ

which, inserting the SM relations of Eq. (A5) gives exactly
the same result as Eq. (60).

VI. DISCUSSION AND CONCLUSIONS

We analytically checked in the CMS or the OS scheme
that the gauge dependent term of the mass counterterms
for the neutrinos of the GN model comes only from the
tadpole contributions, Eq. (60), as suggested in [18]. Using
multiplicative renormalization constants and the relations
between them, shown in Eqs. (44) and (45), we present how
the gauge dependence of neutrino mass counterterms can
be seen as a contribution coming from δv, the renormal-
ization constant of the VEV in the usual tadpole renorm-
alization (e.g., [36]). We also get that this tadpole
contribution is the same for both neutrino counterterms:

m3δm3ξ ¼ m4δm4ξ ¼ Δξ: ð63Þ
This is one of the features of the GN model: the single
sterile neutrino leads to the single value of the Yukawa
coupling y to the first Higgs doublet in the Higgs basis.
This single value is coupled to the VEV, hence only the
single value Δ, related to the VEV shift δv, is possible for
the neutrino mass counterterms in this setup.
The alternative tadpole scheme, or the FJ scheme [31],

consistently omits this gauge dependence from the mass
renormalization constants by identifying the bare masses
with the proper VEV. Following this scheme, we modify the
definition of the mass counterterms to include this tadpole
contribution in Eq. (51). This definition now exactly cancels
the gauge dependent contribution as can be seen from
Eq. (63). The factor Δ gives the same contribution for the
mass counterterms as if we would add the contribution of
diagrams with tadpoles connected to the propagators as in
[18]. The fact that the procedures of [31]works for the seesaw
neutrinos just in the same way as with the Dirac particles is
explained by the fact that only the Dirac mass [∼m3m4 from
Eq. (38)] is directly related to the VEV. The other crosscheck
is that the result of Eq. (63), using Eq. (45), gives

δMξ ¼ 0; ð64Þ
or in other words, the Majorana mass term M, does not
acquire gauge dependence in any of these schemes. This
again confirms the statement that the Majorana mass term of
the sterile part of the neutrino does not affect the application
of the FJ scheme for mass counterterms for the neutrinos.
Hence using the FJ scheme is straightforwardly applicable in
the GN model.
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APPENDIX A: PARAMETRIZATIONS,
ASSUMPTIONS, AND RELATIONS

Here we collect all parameters and relations used in our 1
loop calculations. The assumption that some bare param-
eter p0 is real, is reflected in the renormalized theory in the
sense of Eq. (13). In the FORMCALC output for one loop
corrections for masses, we implement this assumption by
the replacement rule p† → p, for p0 ∈ R.

1. Scalar sector and the SM relations

The assumptions of CP conservation of the Higgs
potential give:

m2
0ij; λ0k ∈ R; i; j ¼ 1; 2; k ¼ 1;…; 7: ðA1Þ

The minimum conditions are

m2
11 ¼ −

1

2
λ1v2 and m2

12 ¼
1

2
λ6v2: ðA2Þ

The Higgs basis is given by:

H1¼
 

χþ0W
1ffiffi
2

p ðvþhþ iχZÞ

!
; H2¼

 
Hþ

0

1ffiffi
2

p ðHþ iAÞ

!
: ðA3Þ

The mixing matrix for scalars is only between h and H:

Oϕ ¼
�

cα sα
−sα cα

�
; ϕmass

i ¼ Oϕ
ijϕ

Higgs
j ;

ϕHiggs
i ¼ ðh;HÞi; ðA4Þ

where sα, cα are sine and cosine functions of the mixing
angle α.
The relations of the electroweak sector are

s2W ≡ 2sWcW; mZ ¼ gev
s2W

; mW ¼ mZcW; ðA5Þ

where sW and cW are sine and cosine functions of
Weinberg angle.

2. Yukawa sector

As the first thing after generating the FEYNARTS model
file we make the replacements Eqs. (53) and (54):

X3
j¼1

UijY1
j → ð0; 0;−ic34y; s34yÞj;

X3
j¼1

UijY2
j → ð0; d;−ic34d0; s34d0Þj: ðA6Þ
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The parametrization of Yukawa couplings are summa-
rized as:

V1jY1
j ¼ 0; V2jY1

j ¼ 0; V3jY1
j ¼ y0;

V1jY2
j ¼ 0; V2jY2

j ¼ d0; V2jY2
j ¼ d00;

d0; y0 ∈ R; d00 ∈ C; ðA7Þ
where the neutrino mixing matrix is

U ¼ U34V ¼ U34UβO12UαO13O23 ðA8Þ
with the relations

νF0i ¼ ðn0e; n0μ; n0τ; N0Þi; νmass
0i ¼ U�

ijν
F
0j: ðA9Þ

The parametrization of the mixing matrix can be written as:

s20ijþc20ij¼ 1; s0ij;c0ij;σ0;ρ0 ∈R;

OAB
ij ¼ 1ij for i;j≠A;B;

OAB
AB ¼−OAB

BA ¼ s0AB; OAB
AA ¼OAB

BB ¼ c0AB;

Uσ
ij¼ eiσ0 for i¼ j¼ 1; Uσ

ij¼ 1ij for i;j≠ 1;

Uρ
ij¼ eiρ0 for i¼ j¼ 2; Uρ

ij¼ 1ij for i;j≠ 2;

U34
34¼ i ·U34

43¼ i · s034; U34
33¼−i ·U34

44¼−i ·c034;

U34
ij ¼ 1ij for i;j≠ 3;4: ðA10Þ

The seesaw mechanism is realized with:

M0 ¼ m04 −m03; y20v
2
0 ¼ 2m03m04; ðA11Þ

s2034 ¼
m03

m04 þm03

and c2034 ¼
m04

m04 þm03

: ðA12Þ

APPENDIX B: ARRIVING AT EQ. (59)

Here we show some intermediate steps for arriving at the
gauge parameter ξW dependent term for the δm3 counter-
term shown in Eq. (59). We start from Eq. (58):

1

2
ðΓχþ

ν3ν3 þ Γχþ
ν†
3
ν†
3

Þ þm3ΣW
ν3ν

†
3

þm3Σ
χþ
ν3ν

†
3

: ðB1Þ

Let us first look at the loop with the Goldstone
boson Γχþ

ν3ν3ðm2
3Þ. We set up the model file in FEYNARTS

following the steps in Sec. VA. After generating diagrams
with FeynArts, creating an amplitude with FORMCALC,
implementing the parametrization that is summarised in
Appendix A by the replacement rules, the standard
Mathematica “Simplify” command should give:

Γχþ
ν3ν3ðm2

3Þ ¼
− ffiffiffiffiffiffiffiffiffiffiffiffi

m3m4
p

4
ffiffiffi
2

p
π2ðm3 þm4Þv

½−m2
τY1�

τ c13c23B0ðm2
3; m

2
WξW;m

3
τÞ þm2

μY1�
μ c13s23B0ðm2

3; m
2
WξW;m

3
μÞ

þm2
eY1�

e s13B0ðm2
3; m

2
WξW;m

3
eÞ�: ðB2Þ

Expressing Y1 from Eqs. (53) and (54) gives:

Γχþ
ν3ν3ðm2

3Þ ¼
−y ffiffiffiffiffiffiffiffiffiffiffiffi

m3m4
p

4
ffiffiffi
2

p
π2ðm3 þm4Þv

½m2
τc213c

2
23B0ðm2

3; m
2
WξW;m

3
τÞ

þm2
μc213s

2
23B0ðm2

3; m
2
WξW;m

3
μÞ þm2

es213B0ðm2
3; m

2
WξW;m

3
eÞ�: ðB3Þ

Now we can express v in terms of Eq. (A5) and y in terms of Eq. (42) to get:

Γχþ
ν3ν3ðm2

3Þ ¼
−g2em3m4

4π2ðm3 þm4Þm2
Zs

2
2W

½m2
τc213c

2
23B0ðm2

3; m
2
WξW;m

3
τÞ

þm2
μc213s

2
23B0ðm2

3; m
2
WξW;m

3
μÞ þm2

es213B0ðm2
3; m

2
WξW;m

3
eÞ�: ðB4Þ

The result for Γχþ
ν†
3
ν†
3

is the same, as it should be, since ν3 is a Majorana fermion and the couplings can be taken real for the one

loop correction, hence we can write:

1

2
ðΓχþ

ν3ν3 þ Γχþ
ν†
3
ν†
3

Þ ¼ −g2em3m4

4π2ðm3 þm4Þm2
Zs

2
2W

× ½m2
τc213c

2
23B0ðm2

3; m
2
WξW;m

3
τÞ

þm2
μc213s

2
23B0ðm2

3; m
2
WξW;m

3
μÞ þm2

es213B0ðm2
3; m

2
WξW;m

3
eÞ�: ðB5Þ
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We follow exactly the same steps for Σχþ
ν3ν

†
3

to get:

g2em4

8π2ðm3þm4Þm2
Zs

2
2W

½m2
3c

2
13c

2
23B0ðm2

3;m
2
WξW;m

2
τÞþm2

3c
2
13s

2
23B0ðm2

3;m
2
WξW;m

2
μÞþm2

3s
2
13B0ðm2

3;m
2
WξW;m

2
eÞ

þm2
τc213c

2
23B0ðm2

3;m
2
WξW;m

2
τÞþm2

μc213s
2
23B0ðm2

3;m
2
WξW;m

2
μÞþm2

es213B0ðm2
3;m

2
WξW;m

2
eÞ

þm2
3c

2
13c

2
23B1ðm2

3;m
2
WξW;m

2
τÞþm2

3c
2
13s

2
23B1ðm2

3;m
2
WξW;m

2
μÞþm2

3s
2
13B1ðm2

3;m
2
WξW;m

2
eÞ

þm2
τc213c

2
23B1ðm2

3;m
2
WξW;m

2
τÞþm2

μc213s
2
23B1ðm2

3;m
2
WξW;m

2
μÞþm2

es213B1ðm2
3;m

2
WξW;m

2
eÞ�: ðB6Þ

The loop with the W boson ΣW
ν3ν

†
3

will have gauge invariant contributions from the transverse polarization of the W boson.

These can be dropped out from the expression by formally differentiating and integrating with respect to ξW in
Mathematica. Then every step for simplifying the expression is the same as before with the result:

g2em4

8π2ðm3 þm4Þm2
Zs

2
2W

½−m2
3c

2
13c

2
23B0ðm2

3; m
2
WξW;m

2
τÞ −m2

3c
2
13s

2
23B0ðm2

3; m
2
WξW;m

2
μÞ −m2

3s
2
13B0ðm2

3; m
2
WξW;m

2
eÞ

þm2
τc213c

2
23B0ðm2

3; m
2
WξW;m

2
τÞ þm2

μc213s
2
23B0ðm2

3; m
2
WξW;m

2
μÞ þm2

es213B0ðm2
3; m

2
WξW;m

2
eÞ

−m2
3c

2
13c

2
23B1ðm2

3; m
2
WξW;m

2
τÞ −m2

3c
2
13s

2
23B1ðm2

3; m
2
WξW;m

2
μÞ −m2

3s
2
13B1ðm2

3; m
2
WξW;m

2
eÞ

−m2
τc213c

2
23B1ðm2

3; m
2
WξW;m

2
τÞ −m2

μc213s
2
23B1ðm2

3; m
2
WξW;m

2
μÞ −m2

es213B1ðm2
3; m

2
WξW;m

2
eÞ

þ c213c
2
23A0ðm2

WξWÞ þ c213s
2
23A0ðm2

WξWÞ þ s213A0ðm2
WξWÞ�: ðB7Þ

Comparing Eq. (B7) with Eq. (B6) we notice that the first, third and fourth lines of both expressions cancel and the second
line of both equations is the same. Trigonometric functions near the A0 integrals in Eq. (B7) sum to one. The sum of
Eqs. (B7) and (B6) multiplied by m3 then gives

g2em4m3

4π2ðm3 þm4Þm2
Zs

2
2W

½m2
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2
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2
WξW;m

2
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es213B0ðm2
3; m

2
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2
eÞ�

þ g2em4m3
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2
2W

A0ðm2
WξWÞ: ðB8Þ

The second line cancels with the contribution of the Goldstone loop from Eq. (B5) giving exactly Eq. (59).
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