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1. Introduction

As usual, let s denote a complex variable with σ and t its real and imaginary parts

respectively.

A generalised prime system P is a sequence of positive reals p1, p2, . . . satisfying

1 < p1 ≤ p2 ≤ · · · ≤ pn ≤ . . .
and for which pn →∞ as n→∞. The numbers of the form

pk11 p
k2
2 · · · pkmm

where m ∈ N and k1, . . . , km ∈ N0 constitute the so called system N of generalised

integers or Beurling integers. Here and henceforth N0 = N ∪ {0}. This system

generalises the notion of prime numbers and the natural numbers obtained from

them. Such systems (along with the attached zeta functions) were first introduced

by Beurling [1] and have been studied by numerous authors since then (see, for

instance, the papers by Diamond [4], Diamond, Montgomery and Vorhauer [5],

Fainleib [6], Hall [7,8], Hilberdink and Lapidus [9], Landau [10], Stankus [15] and

Zhang [20,21,22]).

First define the counting functions πP(x) and NP(x) by

πP(x) =
∑

p≤x, p∈P

1, (1.1)

NP(x) =
∑

n≤x, n∈N

1. (1.2)

1
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Here, as elsewhere in the paper, we write
∑
p∈P to mean a sum over all the gener-

alised primes, counting multiplicities. Similarly for
∑
n∈N . Much of the research on

this subject has been about connecting the asymptotic behaviour of the generalised

prime counting function (1.1) and of the generalised integer counting function (1.2)

as x → ∞. In this paper we are interested in the following question. Given the

asymptotic behaviour of πP(x), what can be said about the behaviour of NP(x)?

Let li(x) be the logarithmic integral defined by

li(x) = lim
ε→0+

(∫ 1−ε

0

+

∫ x

1+ε

)
dt

log t
.

In 1949 Nyman [14] showed that

πP(x) = li(x) + O

(
x

(log x)A

)
(∀A) ⇐⇒ NP(x) = ax+ O

(
x

(log x)A

)
(∀A).

In 1960 Bredikhin [2] proved that if

πP(x) =
bx

log x
+O

(
x

(log x)1+ε

)
for some b > 0 and ε > 0, then

NP(x) = Cx(log x)b−1 +O

(
x(log x)b−1

(log log x)ε1

)
, (1.3)

where ε1 = min(1, ε) and C > 0 is a constant.

In 1961 Malliavin [11] showed that

πP(x) = li(x) + O
(
xe−c2(log x)β

)
(1.4)

for some β ∈ (0, 1) and c2 > 0, implies

NP(x) = ax+ O
(
xe−c1(log x)α

)
(1.5)

for α = β
2+β and some a, c1 > 0. Diamond ([3], 1970) improved this to α = β

1+β ,

and furthermore, Diamond’s result contains log x log log x instead of log x in the

exponent of (1.5).

In 2008 Hilberdink and Lapidus [9] showed that if

πP(x) = li(x) +O (xα)

for some α ∈ (1/2, 1), then there exist positive constants C and δ such that

NP(x) = Cx+O
(
xe−δ

√
log x log log x

)
. (1.6)

In this paper we consider the asymptotic distribution of generalised integers

assuming

πP(x) = b li(x) + O(xα)

for some b > 0 and α ∈ (1/2, 1).
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In Section 2 we define the Beurling zeta-function, state our results (Theorem

1 and Corollary 2) and give sufficient background to understand them. Section 3

is devoted to auxiliary statements needed to prove the theorem and corollary in

Section 4.

2. The Beurling Zeta-Function and the Main Result

In this section we formulate our theorem. To do this, several notations and results

are needed.

With the generalised prime system P we associate a zeta function, which we

refer to as a Beurling zeta-function and define formally by the Euler product

ζP(s) =
∏
p∈P

1

1− p−s . (2.1)

This infinite product may be formally multiplied out to give the Dirichlet series

ζP(s) =
∑
n∈N

1

ns
.

Note that when P is the set of rational primes, and hence N is the set of natural

numbers, ζP coincides with the classical Riemann zeta function. All the classical

functions (when N = N) are written without any index: ζ(s),Λ(n).

We shall see below that the following function plays a special role. Let b > 0

(from now on b is fixed and denotes the same number unless otherwise stated). Set

the function

Z(s) = s−1((s− 1)ζ(s))b,

where Z(s) is defined on any simply connected domain which does not contain a

zero of ζ(s) and does not contain the point s = 0. We shall always suppose that

this domain includes the real half-line [1,+∞). We can then choose the principal

value of the complex logarithm, so that Z(1) = 1.

By Tenenbaum [16, p. 182] we know, that the function Z(s) is holomorphic in

the disc |s− 1| < 1, and can be represented there by the Taylor series

Z(s) =

∞∑
j=0

1

j!
γj(b)(s− 1)j (2.2)

where the coefficients γj(b) for all ε > 0 satisfy the upper bound

1

j!
γj(b)�b,ε (1 + ε)j .

It could be that ζP(s) has no meromorphic continuation to a neighbourhood of

s = 1. Because of that we will use an auxiliary function

G(s) = ζP(s)ζ(s)−b (σ > 1).
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Assuming that

πP(x) = b li(x) +O (xα) (2.3)

for some α ∈ (1/2, 1), we can continue G(s) analytically to the neighbourhoud of

s = 1 (see Lemma 7 below). Hence, for k ∈ N0, we can set

λk =
1

Γ(b− k)

∑
h+j=k
h,j∈N0

1

h!j!
G(h)(1)γj(b), (2.4)

where the γj(b) are the coefficients appearing in formula (2.2).

Our aim is to prove the following theorem.

Theorem 1. Let N be a non-negative integer, b > 0, and α ∈ (1/2, 1). Then the

formula (2.3) implies that

NP(x) = x(log x)b−1

{
N∑
k=0

λk
(log x)k

+ O (RN (x))

}
(2.5)

with

RN (x) = e−c6
√

log x log log x +

(
c4N + 1

log x

)N+1

.

The positive constants c4, c6 and the implicit constant in the Landau symbol depend

at most on b and α. The coefficients λk are defined by formula (2.4).

We prove this theorem in Section 4. The following corollary easily follows from

Theorem 1. Its proof is given at the end of Section 4.

Corollary 2. Let b ∈ N and α ∈ (1/2, 1). If

πP(x) = b li(x) +O (xα) ,

then we obtain

NP(x) = x(log x)b−1

{
P

(
1

log x

)
+ O

(
e−c6

√
log x log log x

)}
,

where P is a polynomial of degree at most b− 1, c6 > 0 is a constant which depends

at most on b and α.

Theorem 1 can be compared to the results of Bredikhin (formula (1.3)),

Hilberdink and Lapidus (formula (1.6)) and Tenenbaum [16, §5.3].

We note that the coefficients λk depend on the behaviour of the Beurling zeta-

function and its derivatives near s = 1. Even though we assume quite a strong

condition on the distribution of generalised primes, the problem of finding coeffi-

cients in asymptotic expansion in terms of log x of generalised integers is rather

computational in nature and this appears to prohibit one from obtaining more ex-

plicit results.

However, a particular case when P is the subset of rational primes has been

investigated considerably. For example, the classical result of asymptotic behaviour
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of the sums of multiplicative functions on primes and on integers was derived by

Wirsing [19] in 1961.

For the interest of the reader we show some results towards the calculation of

the constant λ0 when P is a set of prime numbers from arithmetic progression.

Let gd,a(n) = 0 if n has a prime divisor p satisfying p 6≡ a(mod d) and gd,a(n) = 1

otherwise (note that gd,a(1) = 1). We let

N(x; d, a) =
∑
n≤x

gd,a(n).

Note that by abuse of notation for this example we write N(x; d, a) instead of NP(x)

to emphasize the parameters d and a from our particular set P. From Moree and

Cazaran [13, Theorem 6] together with the prime number theorem for arithmetic

progressions, it follows that there exist constants Cd,a, Cd,a(1), Cd,a(2), . . . such that

for each integer m ≥ 0 we have

N(x; d, a) =
Cd,ax

(log x)1−1/ϕ(d)

1 +

m∑
j=1

Cd,a(j)

(log x)j
+ O

(
1

(log x)m+1

) ,

where the implied constant may depend onm, a, d and Cd,a ≥ 0. Moree [12] obtained

the following expression of the above constants.

C3,1 =

√
2

3
5
4

∞∏
n=1

(
L(2n, χ−3)

(1− 3−2n)ζ(2n)

) 1

2n+1

= 0.301 · · · , C3,2 =
2

3πC3,1
= 0.704 · · · .

He used these evaluations to prove, for example, that N(x; 3, 2) ≥ N(x; 3, 1) for

every x, not only sufficiently large one. This amazing result holds because of the

phenomenon called Chebysev’s bias, for which “more often” π(x; 3, 2) > π(x; 3, 1)

than the other way around, even though π(x; 3, 2) and π(x; 3, 1) are asymptotically

equal due to the prime number theorem for arithmetic progressions.

3. Auxiliary Statements

Given a positive parameter r, we designate by Hankel contour the path in the

complex plane continuing from −∞ along the real line (arbitrary close, but below

it) to −r, counterclockwise around a circle of radius r centered at 0, back to −r on

the real line, and back to −∞ along the real line (arbitrary close, but above it).

Lemma 3. For each x > 1, let H(x) denote the part of the Hankel contour situated

in the half-plane σ > −x. Then we have uniformly for z ∈ C

1

2πi

∫
H(x)

s−zes ds =
1

Γ(z)
+ O

(
47|z| Γ(1 + |z|) e−

1
2x
)
.

The proof can be found in [16, p. 184].
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Lemma 4. (Stirling’s formula) Let δ > 0. Then there is c = c(δ), such that∣∣∣log Γ(s)−
(

(s− 1/2) log s− s+ log
√

2π
)∣∣∣ < c

|s|
for −π+ δ ≤ arg s ≤ π− δ, s 6= 0. Here we take the principal part of the logarithm.

For a proof refer to [17, p. 151].

Lemma 5. (Perron’s formula) Let

F (s) =

∞∑
n=1

ann
−s

be a Dirichlet series with abscissa of convergence σc and

A(x) =
∑
n≤x

an (x ≥ 0)

be the summatory function of its coefficients. Then, for κ > max(0, σc) and x ≥ 1,

we have ∫ x

0

A(t) dt =
1

2πi

∫ κ+i∞

κ−i∞
F (s)xs+1 ds

s(s+ 1)
.

For the proof see [16, p. 134].

Lemma 6. For some positive constant A the region

σ ≥ 1−A(log t)−
2
3 (log log t)−

1
3 (t ≥ 3)

is free of zeros of the function ζ(s) and in this region

1

ζ(s)
� (log t)

2
3 (log log t)

1
3 (t→∞).

The proof can be found in [18, p. 135].

Throughout this paper, we shall use the weighted counting function

ψP(x) =
∑

pk≤x,k∈N

log p =
∑

n≤x,n∈N

ΛP(n).

Here ΛP denotes the (generalised) von Mangoldt function, defined for n in the

multiset N by ΛP(n) = log p if n = pm for some p ∈ P and m ∈ N, and ΛP(n) = 0

otherwise. The formal Euler product (2.1) gives

−ζ
′
P(s)

ζP(s)
=
∑
n∈N

ΛP(n)

ns
=: φP(s). (3.1)

The counting functions NP(x) and ψP(x) are related to ζP(s) and φP(s) via

ζP(s) = s

∫ ∞
1

NP(x)

xs+1
dx and φP(s) = s

∫ ∞
1

ψP(x)

xs+1
dx.
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As a result, it is often more convenient to work with ψP(x), rather than πP(x).

Note that for α ∈ [ 1
2 , 1), b > 0, the statements

πP(x) = b li(x) + O
(
xα+ε

)
(∀ε > 0) and ψP(x) = bx+ O

(
xα+ε

)
(∀ε > 0),

are equivalent. Thus, let us assume that ψP(x) = bx + O (xα) for α ∈ (0, 1) and

prove the theorem with this condition. In fact, one can use this assumption instead

of more classical (2.3) with α ∈ (1/2, 1) in the formulation of Theorem 1. Denote

R(α) =

{
s ∈ C : σ ≥ max

(
1− A

(log|t|) 2
3 (log log|t|) 1

3

, α

)
, |t| ≥ 3

}
⋃{

s ∈ C : σ ≥ max

(
1− A

(log 3)
2
3 (log log 3)

1
3

, α

)
, |t| ≤ 3

}
, (3.2)

where α ∈ (0, 1), A is a positive constant from Lemma 6. We can assume that

A < 1.

Lemma 7. Suppose that for some α ∈ (0, 1) and b > 0, we have

ψP(x) = bx+ O(xα). (3.3)

Then G(s) = ζP(s)ζ(s)−b has an analytic continuation to the region R(α), which

is defined above.

Proof. By the lemma’s assumption (3.3) and by the Dirichlet series representa-

tion (3.1) we see that the function
ζ′P
ζP

(s) is analytic in the half plane σ > 1. Thus,

for σ > 1, we have

G(s) =
ζP(s)

ζ(s)b
= exp

(∫ s

2

f(u) du+ log
ζP(2)

ζ(2)b

)
,

where

f(s) =
ζ ′P
ζP

(s)− b ζ
′

ζ
(s).

To prove the lemma it is enough to show that f(s) is analytic in the region R(α).

We write f(s) as

f(s) =
ζ ′P
ζP

(s) + b ζ(s)−
(
b
ζ ′

ζ
(s) + b ζ(s)

)
. (3.4)

The sum in the parentheses of (3.4) is analytic in the region R(α). It follows from

the facts that the function ζ(s) is analytic in the whole plane, except for a simple

pole at s = 1, with residue 1 and ζ(s) does not have any zeros in the region R(α)

(see Lemma 6 above and [18], p. 389).

Further,

ζ ′P
ζP

(s) + b ζ(s) = −φP(s) + b ζ(s).



October 31, 2018 15:29 WSPC/INSTRUCTION FILE BeurlingNumbers
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Now we show that φP(s) has the analytic continuation to {s ∈ C : σ > α} except

for a simple pole at s = 1 with residue b. By our assumption ψP(x) = bx + r(x),

where r(x) = O(xα). Thus

φP(s) = s

∫ ∞
1

bx+ r(x)

xs+1
dx =

bs

s− 1
+

∫ ∞
1

r(x)

xs+1
dx.

The latter integral converges for σ > α and represents an analytic function in this

half-plane. It follows that −φP(s) + b ζ(s) is holomorphic for σ > α. Hence, the

function f(s) is analytic in the region R(α). This proves Lemma 7.

Put ε(t) = A(1− α) log log|t|
log|t| for |t| ≥ 3, where A is a constant from Lemma 6.

Lemma 8. For sufficiently large |t| we have

|ζP(σ + it)| ≤ |t| 2b
log log|t| , (3.5)

where σ ∈ [1− ε(t), 3/2).

Proof. The proof is essentially identical to that leading up to (2.6) of Theorem

2.2 of Hilberdink and Lapidus paper [9]. The minor difference is that in assuming

(3.3) we generalize the case b = 1 discussed in [9]. Thus our φP(s) is basically bφ(s),

where φ(s) is the equivalent function corresponding to the system for which b = 1.

The estimate (3.5) is explicitly written only for σ = 1 − ε(t) in [9], but, following

their argument, holds for σ ∈ [1− ε(t), 1). If σ ∈ [1, 3/2) we have to slightly modify

the end of the proof in [9], leading to a better upper bound of the logarithm

log|ζP(σ + it)| ≤ b
∫ 2

σ

|t| 1−y1−α − 1

1− y dy + O(1)

= b

∫ 1−σ

−1

|t| u
1−α − 1

u
du+ O(1)

= b

∫ 1

σ−1

1− |t|− v
1−α

v
dv + O(1)

≤ b
∫ 1

0

1− |t|− v
1−α

v
dv + O(1)

= b

∫ log|t|
1−α

0

1− e−x

x
dx+ O(1)

= O(log log|t|).

Thus,

|ζP(σ + it)| ≤ exp (c7 log log|t|) ≤ exp

(
2b log|t|
log log|t|

)
,

for σ ∈ [1, 3/2) and sufficiently large |t|, which is our claim.
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4. Proofs of the Theorem 1 and Corollary 2

For the proof we use the Selberg-Delange method, see Chapter II.5 in Tenen-

baum [16].

For a beginning of the proof of Theorem 1 define the domain D by deleting the

real segment (α, 1] from the region R(α), where R(α) is defined by (3.2).

Let κ = 1 + 1
log x . Let T > exp(e6b) (where b is from the equality (2.3)) be a

parameter whose value will be determined later. Then Perron formula (Lemma 5)

allows us to write∫ x

1

NP(t) dt =
1

2πi

∫ κ+i∞

κ−i∞
ζP(s)xs+1 ds

s(s+ 1)
(4.1)

=:
1

2πi

∫ κ+iT

κ−iT
ζP(s)xs+1 ds

s(s+ 1)
+ E(T ) =: I0 + E(T ).

Next we change the path of the integration in the integral I0. Put ε(t) = A(1 −
α) log log|t|

log|t| for |t| ≥ 3, where A is a constant from Lemma 6. It is worth noting

that α < 1 − ε(t) < 1. The residue theorem allows us to deform the segment of

integration [κ− iT, κ+ iT ] into some path joining the end-points κ− iT, κ+ iT and

contained entirely in D. We choose the path symmetrically with respect to the real

axis (see Fig. 1 below). Its upper part is made up of: the truncated Hankel contour

Γ, surrounding the point s = 1, with radius r = 1
2 log x , and linear part joining 1− r

to 1− ε(3); the vertical segment [1− ε(3), 1− ε(3) + 3i]; the curve

Υ :

{
s : σ = 1− ε(t) = 1−A(1− α)

log log|t|
log|t| , t ∈ [3, T ]

}
;

and the horizontal segment [1− ε(T ) + iT, κ+ iT ].

The contour is entirely contained in D since

A(1− α)
log log|t|

log|t| <
A

(log|t|) 2
3 (log log|t|) 1

3

for |t| ≥ 3, which implies that 1− ε(t) is in the region R(α) for all |t| ≤ T .

We shall see that the main contribution arises from the integral over the trun-

cated Hankel contour Γ. We denote this integral by I1:

I1 =
1

2πi

∫
Γ

ζP(s)xs+1

s(s+ 1)
ds.

Let the notation
∫

[s1,s2]
mean an integral over the interval starting at s1 and ending

at s2. Then the other parts of the path are denoted as follows.

I2 =
1

2πi

∫
[1−ε(3),1−ε(3)+3i]

ζP(s)xs+1

s(s+ 1)
ds+

1

2πi

∫
[1−ε(3)−3i,1−ε(3)]

ζP(s)xs+1

s(s+ 1)
ds.

I3 =
1

2πi

∫
Υ∪Ῡ

ζP(s)xs+1

s(s+ 1)
ds, (4.2)
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−T

t

||

σ1 κ||

|

|T

3

r
Γ

1− ε(3) + 3i
b

|

|

|

|

|

0

|

|

|

α

|

|

|

b

−3

Fig. 1. Deformation of the segment [κ− iT, κ+ iT ]

where Ῡ denotes the part of our integration contour (see Fig. 1) which is symmetric

to the curve Υ with respect to the real axis.

I4 =
1

2πi

∫
[1−ε(T )+iT,κ+iT ]

ζP(s)xs+1

s(s+ 1)
ds+

1

2πi

∫
[κ−iT,1−ε(T )−iT ]

ζP(s)xs+1

s(s+ 1)
ds.

Using these notations (see Fig. 1) we have I0 = I1 + I2 + I3 + I4. Then in view

of the formula (4.1) we get∫ x

1

NP(t) dt = I1 + I2 + I3 + I4 + E(T ).

Next we will show that it is possible to choose T = T (x) such that I2 + I3 +

I4 + E(T )� x2e−c1
√

log x log log x. Appealing to Lemma 8, we see immediately that

E(T )�
∫ ∞
T

t
2b

log log tx2

t2
dt� x2

∫ ∞
T

t
2b

log log T −2 dt� x2T
2b

log log T −1.

This upper bound is equally valid for the integral I4 since

I4 �
∫ 1+ 1

log x

1−ε(T )

T
2b

log log T x2

T 2
dσ � x2T

2b
log log T −1.

The integral I2 is

I2 � x2−ε(3).
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Finally, to get the upper bound for the integral I3 we choose a number k0 > exp(e5b)

such that Lemma 8 is valid for all |t| ≥ k0. Splitting the integral (4.2), we have

I3(x) := O (I31(x)) + O (I32(x)) , (4.3)

where

I31(x) : =

∫ k0

3

|ζP(1− ε(t) + it)|x2−ε(k0)

t2
dt = O

(
x2−ε(k0)

)
,

I32(x) : =

∫ T

k0

|ζP(1− ε(t) + it)|x2−ε(t)

t2
dt

= O

(
x2

∫ T

k0

exp

{
2b log t

log log t
− 2 log t−A(1− α)

log log t log x

log t

}
dt

)

= O

(
x2

∫ log T

log k0

exp

{
−1

2
u−A(1− α)

log u log x

u

}
du

)
.

Let η > 0 and split up the latter integral into two parts with ranges[
log k0, η

√
log x log log x

]
and

[
η
√

log x log log x, log T
]
. For u ≤ η

√
log x log log x,

we have

log u log x

u
≥ 1

2η

√
log x log log x,

since (log u)/u decreases with u for u ≥ e. Hence∫ log T

log k0

exp

{
−1

2
u−A(1− α)

log u log x

u

}
du

≤ e−
A(1−α)

2η

√
log x log log x

∫ η
√

log x log log x

log k0

e−
u
2 du+

∫ log T

η
√

log x log log x

e−
u
2 du

= O
(

e−
A(1−α)

2η

√
log x log log x

)
+ O

(
e−

η
2

√
log x log log x

)
= O

(
e−η

′√log x log log x
)
,

for some η′ > 0. In fact, the optimal choice is obtained by taking η such that

η = A(1−α)
η ; i.e., η =

√
A(1− α), which gives η′ = 1

2

√
A(1− α). Hence (4.3)

becomes

I3(x) = O
(
x2e−

1
2

√
A(1−α) log x log log x

)
.

Selecting T = exp
(

1
2 log x log log x

)
for x > exp(e12b), leads us to the main formula∫ x

1

NP(t) dt = I1(x) + O
(
x2e−c1

√
log x log log x

)
, (4.4)

with

I1(x) =
1

2πi

∫
Γ

ζP(s)
xs+1

s(s+ 1)
ds,

where Γ is the truncated Hankel contour.
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Here and for the rest of the proof we make the convention that all constants,

explicit (c1, c2, c3, c4, . . .) or implicit, depend at most on b and α.

It remains to study the main term I1(x) of (4.4). Clearly, I1(x) is an infinitely

differentiable function of x on R+, and in particular we have

I ′1(x) =
1

2πi

∫
Γ

ζP(s)xs
ds

s
, I ′′1 (x) =

1

2πi

∫
Γ

ζP(s)xs−1 ds.

Recall that Z(s) = s−1((s−1)ζ(s))b. For s ∈ D (where D is defined in the begining

of Section 4) we then can write

ζP(s) = s G(s)Z(s)(s− 1)−b.

From this and the result of Lemma 7, for s ∈ Γ,

ζP(s)� |s− 1|−b.

Since r = 1/(2 log x), it follows that

I ′′1 (x)�
∫

Γ

(
1

2 log x

)−b
xs−1 ds� (log x)b. (4.5)

As both G(s) and Z(s) are holomorphic in the open set containing the disk |s−1| <
1− ε(3), so is their product, which can be represented there by the Taylor series

G(s)Z(s) =

∞∑
k=0

gk(b)(s− 1)k

with

gk(b) =
1

k!

∑
h+j=k
h,j∈N0

(
k

j

)
G(h)(1)γj(b) = Γ(b− k)λk.

In addition, since G(s)Z(s) is O(1) in the disk |s− 1| < 1− ε(3), Cauchy’s formula

implies that

gk(b)� (1− ε(3))−k (x→ +∞).

Observing that Γ is contained in the disk |s− 1| ≤ 1− ε(3), we can write for s ∈ Γ

and N ≥ 0,

G(s)Z(s) =

N∑
k=0

gk(b)(s− 1)k + O

(( |s− 1|
1− ε(3)

)N+1
)
.

Therefore

I ′1(x) =

N∑
k=0

gk(b)
1

2πi

∫
Γ

xs(s− 1)k−b ds+ O((1− ε(3))−N−1B(x)) (4.6)
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with

B(x) =

∫
Γ

|xs(s− 1)N+1−b| |ds|

�
∫ 1−r

1−ε(3)

(1− σ)N+1−bxσ dσ + xr+1rN+2−b.

Using the change of variable t = (1− σ) log x, we obtain

B(x)� x(log x)b−2−N

(∫ ∞
1
2

tN+1−be−t dt+ 2−N

)

� x(log x)b−2−N

(∫ 1

1
2

(
1

2

)1−b

e−1/2 dt+

∫ ∞
1

tN+1+be−t dt+ 2−N

)

� x(log x)b−2−NΓ(N + b+ 2)� x(log x)b−1

(
N + 1

log x

)N+1

. (4.7)

To estimate the integral which appears in (4.6), we change the variable s to w by

the relation w = (s− 1) log x. Then, with the notation of Lemma 3 and the use of

Stirling’s formula (Lemma 4), we get

1

2πi

∫
Γ

xs(s− 1)k−b ds =
x

2πi
(log x)b−1−k

∫
H(ε(3) log x)

wk−bew dw

= x(log x)b−1−k
{

1

Γ(b− k)
+ O

(
47b−kΓ(|b− k|+ 1) e−

ε(3)
2 log x

)}
= x(log x)b−1−k

{
1

Γ(b− k)
+ O

(
(c2k + 1)kx−ε(3)/2

)}
.

Thus for the main term of (4.6) we have

N∑
k=0

gk(b)
1

2πi

∫
Γ

xs(s− 1)k−b ds = x(log x)b−1

{
N∑
k=0

λk
(log x)k

+ O(EN )

}
(4.8)

with

EN = x−
ε(3)
2

N∑
k=0

|gk(b)|
(
c2k + 1

log x

)k

� x−
ε(3)
2

N∑
k=0

(1− ε(3))
−k
(
c2k + 1

log x

)k
� x−

ε(3)
2

(
c3N + 1

log x

)N
�
(
c3N + 1

log x

)N+1

.
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Upon substituting (4.7), (4.8) and the latter EN expression in (4.6), it follows that

I ′1(x) = x(log x)b−1

{
N∑
k=0

λk
(log x)k

+ O

(
c4N + 1

log x

)N+1
}
. (4.9)

We next show that I ′1(x) is a suitable approximation for NP(x). The proof of

Theorem 1 will be finished after the following lemma.

Lemma 9. NP(x) = I ′1(x) + O
(
xe−c5

√
log x log log x

)
.

Proof. We follow the argument in [9] and use their notation N1(x) =∫ x
1
NP(t) dt. Since NP(x) is increasing, we have for every 0 < h < x,

N1(x)−N1(x− h)

h
≤ NP(x) ≤ N1(x+ h)−N1(x)

h
.

Remember that by (4.4)

N1(x) = I1(x) + O
(
x2e−c1

√
log x log log x

)
.

Insert this into the above inequality and use the estimate

I1(x+ h)− I1(x) = hI ′1(x) + h2

∫ 1

0

(1− t)I ′′1 (x+ th) dt

= hI ′1(x) + O
(
h2(log x)b

)
,

implied by (4.5). Choosing

h = xe−
1
2 c1
√

log x log log x,

we obtain

NP(x) = I ′1(x) + O
(
xe−c5

√
log x log log x

)
, (4.10)

as required.

Theorem 1 follows by combining (4.9) and (4.10).

The proof of Corollary 2 is as follows. By formula (2.4) we have λk = 0 whenever

k ≥ b. We can hence choose N so as to minimise the error term in (2.5). By choosing

N = [
√

log x/c4] in Theorem 1, we get the desired result.
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