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Abstract. Knowledge of agents associated to particles of quantum system has been mod-
elled in the paper. Also analysis of formulas and satisfiability in the model have been done.
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Introduction

Logic of correlated knowledge (LCK) has been introduced by Alexandru Baltag and
Sonja Smets in [1]. LCK is an epistemic logic enriched by observational capabilities
of agents. Applications of the epistemic logic cover fields such as distributed systems,
merging of knowledge bases, robotics or network security in computer science and
artificial intelligence. By adding observational capabilities to agents, logic of corre-
lated knowledge can be applied to reason about systems where knowledge correlate
between spatially distributed parts of the system. This includes any social system,
quantum system, distributed information system, traffic light system or any other
system where knowledge is correlated.

Quantum system may consist of one or more elementary particles. Associating
agent to each particle, we get multi-agent system, where agents can perform obser-
vations and get results. Allowing communication between agents, correlations such
as quantum entanglement can be extracted. This can not be done by traditional
epistemic logic or logic of distributed knowledge.

We start by defining some basics of logic of correlated knowledge in Section 1.
Then we describe some principles of quantum mechanics in Section 2, such as su-
perposition and quantum entanglement. And we finalize by modelling knowledge of
quantum system using logic of correlated knowledge in Section 3.

1 Logic of correlated knowledge

Consider a set N = {a1, a2, . . . , an} of agents or locations. Each agent can perform its
local observations. Given sets Oa1

, . . . , Oan
of possible observations for each agent,

a joint observation is a tuple of observations o = (oa)a∈N ∈ Oa1
× · · · × Oan

or
o = (oa)a∈I ∈ OI , where OI := ×a∈IOa and I ⊆ N . Joint observations together with
results r ∈ R make new atomic formulas or.
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Definition 1 [Syntax of logic of correlated knowledge]. The language of logic
of correlated knowledge has the following syntax:

A := p | or | ¬A | A ∨B | A ∧B | A→ B | KIA

where p is any atomic proposition, o = (oa)a∈I ∈ OI , r ∈ R, and I ⊆ N .

States (configurations) of the system are functions s : Oa1
× · · · × Oan

→ R or
sI : OI → R, where I ⊆ N and a set of results R is in the structure (R,Σ) together
with an abstract operation Σ : P(R) → R of composing results. For every joint
observation e ∈ OI , the local state sI is defined as:

sI
(

(ea)a∈I

)

:= Σ
{

s(o) : o ∈ Oa1
× · · · ×Oan

such that oa = ea for all a ∈ I
}

.

If s and t are two possible states of the system and a group of agents I can make
exactly the same observations in these two states (sI = tI), then these states are

observationally equivalent to I, and it is written as s
I∼ t. A model of logic of

correlated knowledge is a multi-modal Kripke model [4], where the relations between
states mean observational equivalence.

Definition 2 [Model of logic of correlated knowledge]. For a set of states S,

a family of binary relations { I∼}I⊆N ⊆ S × S and a function of interpretations V :
S → (P → {true, false}), where P is a set of atomic propositions, a model of logic

of correlated knowledge is a multi-modal Kripke model (S, { I∼}I⊆N , V ) with some
epistemic conditions [1].

The satisfaction relation |= for formula or is defined as: M, s |= or iff sI(o) = r.

2 Quantum mechanics

2.1 Superposition

Quantum superposition is a fundamental principle of quantum mechanics. It says
that an elementary particle, such as an electron, exists partly in all its theoretically
possible states simultaneously. But when measured or observed, it gives a result
corresponding to only one of the possible configurations.An example of a directly
observable effect of superposition is a spin state of an electron. Electron spin can be
modelled as a unit three-dimensional vector associated with the particle, representing
an axis of rotation.

We fix an electron’s position in space. In order to prepare an electron in a partic-
ular direction, the electron is surrounded in a powerful magnetic field. The magnetic
field forces the electron’s spin to end up in the desired direction after a certain amount
of time. Suppose that an electron has been prepared in some unknown direction and
we want to be able to measure the electron’s spin. We could again surround the
electron with a known magnetic field. What actually happens is that one photon is
emitted or no photon is emitted by the electron. If a photon is emitted, then its
associated frequency corresponds to the amount of energy that would be radiated if
the electron had been prepared in the North – down position. Note that the actual
result – that is, one photon emitted or no photon emitted – doesn’t depend on either
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Applications of logic of correlated knowledge to quantum mechanics 3

the prepared angle or the detection angle. In fact, the outcomes of any experiment
are probabilistic. This probability depends on the angle. Qualitively, the smaller the
angle (between prepared and detection states) the less likely that a photon is emitted.
So, information about the prepared angle can be statistically recovered from repeated
experiments, but to re-iterate, only one of two outcomes can occur per detection.

The state of the electron can be represented as spin up |↑〉 and spin down |↓〉 or
equivalently |0〉 and |1〉 in Dirac’s ket notation. These two states are known as basis
states in which a qubit may be measured [2]. The qubit is a linear combination of
two basis states |ψ〉 = α|0〉 + β|1〉, where α and β are probability amplitudes and
α, β ∈ C (set of complex numbers). When we measure this qubit, the probability
of outcome |0〉 is |α|2 and the probability of outcome |1〉 is |β|2. If we have two
qubits, the state of the system is defined by linear combination of four basis states
|ψ〉 = α1|00〉 + α2|01〉 + α3|10〉 + α4|11〉 (the probability of outcome |00〉 is |α1|2,
the probability of outcome |01〉 is |α2|2, etc.). Because the absolute squares of the
amplitudes equate to probabilities, it follows that sum of probabilities must be equal
to 1.

2.2 Quantum entanglement

Quantum entanglement is a special connection between pairs or groups of quantum
systems. Like the quantum states of individual particles, the state of an entangled
system is defined as a sum, or superposition, of basis states. Consider two systems
A and B, with respective basis states {|0〉A, |1〉A} for A, and {|0〉B, |1〉B} for B. The
following is an entangled Bell state:

1√
2

(

|0〉A|1〉B − |1〉A|0〉B
)

.

Suppose Alice is an observer for system A, and Bob is an observer for system B. If in
the entangled state given above Alice makes a measurement, there are two possible
outcomes, occurring with equal probability [5]:

• Alice measures 0, and the state of the system collapses to |0〉A|1〉B. Any subse-
quent measurement performed by Bob, will always return 1.

• Alice measures 1, and the state of the system collapses to |1〉A|0〉B. Any subse-
quent measurement performed by Bob will always return 0.

Entanglement is broken when the entangled particles decohere through interaction
with the environment, for example, when a measurement is made [6]. Thus, system
B has been altered by Alice performing a local measurement on system A. This
remains true even if the systems A and B are spatially separated.

3 Logic of correlated knowledge and quantum mechanics

Suppose our quantum system consists of two elementary particles (electrons), which
are spatially separated. To each particle we associate one agent. Thus our set of
agents is N = {A,B}. Possible observations for agent A are OA = {0, 1}, and
possible observations for agent B are OB = {0, 1}. The result set R is interpreted as

Liet. matem. rink. Proc. LMS, Ser. A, 59, 2018, 1–6.
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s1
S1((0,0)) = 1

S1((0,1)) = 0

S1((1,0)) = 0

S1((1,1)) = 0
{A}, {B}, 

{A, B}

s2S2((0,0)) = 0

S2((0,1)) = 1

S2((1,0)) = 0

S2((1,1)) = 0

{A}, {B}, 

{A, B}

s3

{A}, {B}, 

{A, B}

S3((0,0)) = 0

S3((0,1)) = 0

S3((1,0)) = 1

S3((1,1)) = 0

s4

{A}, {B}, 

{A, B}

S4((0,0)) = 0

S4((0,1)) = 0

S4((1,0)) = 0

S4((1,1)) = 1

s5

{A}, {B}, 

{A, B}

S5((0,0)) = 0,5

S5((0,1)) = 0,5

S5((1,0)) = 0

S5((1,1)) = 0

s6

{A}, {B}, 

{A, B}

s7

{A}, {B}, 

{A, B}

s8

{A}, {B}, 

{A, B}

s9

{A}, {B}, 

{A, B}

s10

{A}, {B}, 

{A, B}

{A}

{B}

{A}

{B}

{B}

{A}

{B}

{A}

{B}

{A}

{A}

{B}

{B}

{B}

{B}

{A}

{A}

{A}

{B}

{A}

{A}, {B}

{B}

{A}
S6((0,0)) = 0,5

S6((0,1)) = 0

S6((1,0)) = 0,5

S6((1,1)) = 0

S7((0,0)) = 0,5

S7((0,1)) = 0

S7((1,0)) = 0

S7((1,1)) = 0,5

S8((0,0)) = 0

S8((0,1)) = 0,5

S8((1,0)) = 0,5

S8((1,1)) = 0

S9((0,0)) = 0

S9((0,1)) = 0,5

S9((1,0)) = 0

S9((1,1)) = 0,5

S10((0,0)) = 0

S10((0,1)) = 0

S10((1,0)) = 0,5

S10((1,1)) = 0,5

Fig. 1. Model of logic of correlated knowledge (R = {0, 0.5, 1}).

the probabilities of the outcomes for the local observations of the agents and for the
joint observations of the group of agents. We model knowledge of agents, having result
set R = {0, 0.5, 1}. For simplicity wider range of probabilities are not included as well
as negative probabilities. We consider addition as operation Σ of result composition.
As mentioned before in the section of quantum mechanics the sum of all probabilities
of any state must be equal to 1.

Having result set R = {0, 0.5, 1} our two-qubit system can be in ten possible states
in the model of logic of correlated knowledge (Fig. 1), where states are defined by
functions si : OA ×OB → R (i ∈ {1, . . . , 10}).

Suppose real state of the world is s1. In this situation agent A after local observa-
tion gets 0 with probability 1 (100%), and never gets 1. In the state s2 he gets same
observational results with same probabilities as in s1. Despite the fact that global
states s1 and s2 are different, agent A does not distinguish them and does’nt know
that real state is s1. Thus we have equivalence relation {A} between states s1 and s2.

Considering knowledge of agent A and agent B, we can analyze some formulas
and their satisfiability:

• s1 |= (0A)
1. Agent A after local observation gets 0 with probability 1. This is

true at state s1.

• s1 |= KA(0A)
1. Agent A knows that after local observation he gets 0 with

probability 1. This is true at state s1.
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• s1 6|= KA(0B)
1. Agent A knows that after local observation agent B gets 0 with

probability 1. This is incorrect because actually agent A does’nt know what
agent B gets after local observation. Also we can notice that agent B gets 0
with probability 1 at state s1 but agent A does’nt know this.

• s1 |= ¬KA(0B)
1. Agent A does’nt know what agent B gets after local observa-

tion. This is true at state s1.

• s1 |= KA((0B)
0 ∨ (0B)

0.5 ∨ (0B)
1). Agent A knows that after local observation

agent B gets 0 with probability 0, 0.5 or 1. This is true at state s1.

• s1 |= KAKB((1B)
0 ∨ (1B)

0.5 ∨ (1B)
1). Agent A knows that agent B knows that

after local observation agent B gets 1 with probability 0, 0.5 or 1. This is true
at state s1.

• s8 |= KA((0A)
0.5 ∧ (1A)

0.5) ∧KB((0B)
0.5 ∧ (1B)

0.5). Agent A knows that after
local observation he gets 0 with probability 0.5 and he gets 1 with probability
0.5. Also agent B knows that after local observation he gets 0 with probability
0.5 and he gets 1 with probability 0.5. This is true at state s8. This state is
also known as Bell state. Pooling together all information of both agents (and
closing under logical inference) does not lead us to Bell state where two particles
are entangled. Joint observation of both agents needs to be done, to extract the
correlation of knowledge.

• s8 |= K{A,B}((0A, 1B)
0.5∧ (1A, 0B)

0.5). Group of agents {A,B} know that after
joint observation they get (0A, 1B) with probability 0.5 and they get (1A, 0B)
with probability 0.5. This is true at state s8. The correlation between knowledge
of agents associated to entangled particles has been extracted.

Logic of correlated knowledge allows us to model knowledge of agents, associated to
quantum systems. Also using Gentzen type sequent calculus GS-LCK presented in [3],
logical inference about such knowledge can be done. Having premises satisfiable at
some set of models, conclusions can be checked if they also true in these models.

Conclusions

Associating agents to particles of quantum systems, allows us to model knowledge of
agents and extract states of quantum entanglement, using logic of correlated knowl-
edge. This can not be done by traditional epistemic logics. Pooling together all
information of agents to one place and closing under logical inference does not lead us
to correlation of knowledge. Observational capabilities of agents expands the range
of applications of family of epistemic logics and possibly captures deeper knowledge
of the group of agents.
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REZIUMĖ

Koreliatyvių žinių logikos taikymas kvantinėje mechanikoje
H. Giedra, R. Alonderis

Straipsnyje pateikiamas agentų, susietų su kvantinės sistemos dalelėmis, žinių modeliavimas. Taip
pat buvo atlikta formulių ir jų įvykdomumo modelyje analizė.

Raktiniai žodžiai: koreliatyvių žinių logika, kvantinė sistema, agentas.
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