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Abstract. In the paper, an universality theorem on the approximation of analytic functions by
generalized discrete shifts of zeta functions of Hecke-eigen cusp forms is obtained. These shifts
are defined by using the function having continuous derivative satisfying certain natural growth
conditions and, on positive integers, uniformly distributed modulo 1.
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1 Introduction

In [18], S.M. Voronin discovered the universality property of the Riemann zeta-function
ζ(s), s = σ + it, on the approximation of a wide class of analytic functions by shifts
ζ(s + iτ), τ ∈ R. Later, it turned out that some other zeta and L-functions also are
universal in the Voronin sense, among them, zeta-functions of certain cusp forms. We
recall their definition.

Let

SL(2,Z)
def
=

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
be the full modular group. The function F (z) is called a holomorphic cusp form of
weight κ for SL(2,Z) if F (z) is holomorphic for Im z > 0, for all

(
a b
c d

)
∈ SL(2,Z),

satisfies the functional equation

F

(
az + b

cz + d

)
= (cz + d)κF (z),
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and, at infinity, has the Fourier series expansion

F (z) =

∞∑
m=1

c(m)e2πimz.

We assume additionally that the cusp form F (z) is a normalized Hecke-eigen cusp form,
i.e., is an eigen form of all Hecke operators

TmF (z) = mκ−1
∑
a,d>0
ad=m

1

dκ

∑
b (mod d)

F

(
az + b

d

)
, m ∈ N.

Then it is known that the Fourier coefficients c(m) 6= 0. Therefore, after normalization,
we can assume that c(1) = 1.

The zeta-function ζ(s, F ) associated to a normalized Hecke-eigen cusp form F (z) of
weight κ is defined, for σ > (κ+ 1/2, by the Dirichlet series

ζ(s, F ) =

∞∑
m=1

c(m)

ms

and can be analytically continued to an entire function. Moreover, as the Riemann zeta-
function, the function ζ(s, F ), for σ > (κ + 1)/2, has the Euler product expansion over
primes

ζ(s, F ) =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1
,

where α(p) and β(p) are conjugate complex numbers satisfying α(p) + β(p) = c(p).
The universality of ζ(s, F ) was obtained in [7]. Let DF = {s ∈ C: κ/2 < σ <

(κ + 1)/2}. Denote by KF the class of compact subsets of the strip DF with connected
complements and by H0(K), K ∈ KF , the class of continuous non-vanishing functions
on K that are analytic in the interior of K. Let measA stand for the Lebesgue measure
of a measurable set A ⊂ R. Then the main theorem of [7] is of the following form.

Theorem 1. Suppose that K ∈ KF and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s+ iτ, F )− f(s)
∣∣ < ε

}
> 0.

Generalizations of Theorem 1 were given in [8] and [6].
The discrete version of universality for zeta-functions was proposed by A. Reich.

In [16], he obtained a discrete universality theorem for Dedekind zeta-functions. In his
theorem, τ takes values from the arithmetic progression {kh: k ∈ N0 = N∪{0}}, where
h > 0 is a fixed number. The first discrete universality theorem for ζ(s, F ) attached to
a new form F (z), under a certain arithmetical hypothesis for the number h, was proved
in [9]. In [10], this hypothesis was removed, and the following statement was obtained.
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Extension of the discrete universality theorem 963

Theorem 2. Let #A denote the cardinality of a set A. Suppose that K ∈ KF , f(s) ∈
H0(K), and h > 0 is an arbitrary fixed number. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣ζ(s+ ikh, F )− f(s)
∣∣ < ε

}
> 0.

There exists a problem to prove analogues of Theorem 2 for the sets different from the
progression {kh: k ∈ N0}. The first attempt in this direction, in the case of the Riemann
zeta-function, was made in [2], where the arithmetical progression was replaced by the
set {kαh: k ∈ N0} with a fixed α, 0 < α < 1. An analogue of the theorem from [2]
for the function ζ(s, F ) was given in [5]. Ł. Pańkowski investigating the joint universality
of Dirichlet L-functions extended [15] the theorem of [2] for all non-integers α > 0 and
more general sets of the type {hkα logβ k}, where

β =

{
R if α 6∈ Z,
(−∞, 0] ∪ (1,∞) if α ∈ N.

The aim of this paper is to prove a discrete universality theorem for the function ζ(s, F )
when τ in ζ(s+ iτ, F ) runs over some general sequence of real numbers.

For the definition of a class of sequences for τ , we will use the notion of uniform
distribution modulo 1. Let {u} denote the fractional part of u ∈ R, and let χI be the
indicator function of the set I . We remind that a sequence {xk: k ∈ N} ⊂ R is called
uniformly distributed modulo 1 if, for every interval I = [a, b) ⊂ [0, 1),

lim
n→∞

1

n

n∑
k=1

χI
(
{xk}

)
= b− a.

Let k0 ∈ N. We say that a function ϕ ∈ U(k0) if the following hypotheses are
satisfied:

(i) ϕ(t) is a real-valued positive increasing function on [k0 − 1/2,∞).
(ii) ϕ(t) has a continuous derivative ϕ′(t) on [k0 − 1/2,∞) satisfying the estimate

ϕ(2t) max
t6u62t

1

ϕ′(u)
� t.

(iii) A sequence {aϕ(k): k > k0} ⊂ R with every a ∈ R\{0} is uniformly distributed
modulo 1.

For example, the function ϕ(t) = t logα t with 0 < α < 1 is an element of the class U(2)
because the sequence {ak logα k} is uniformly distributed modulo 1 [3, Exercise 3.14].
On the other hand, this sequence does not belong to the set of sequences of [15].

Theorem 3. Suppose that ϕ ∈ U(k0). Let K ∈ KF and f(s) ∈ H0(K). Then, for every
ε > 0,

lim inf
N→∞

1

N − k0 + 1
#
{
k0 6 k 6 N : sup

s∈K

∣∣ζ(s+ iϕ(k), F
)
− f(s)

∣∣ < ε
}
> 0.
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It is known [11,12] that universality theorems have a modified form. Thus, Theorem 3
can be stated in the following form.

Theorem 4. Suppose that ϕ ∈ U(k0). Let K ∈ KF and f(s) ∈ H0(K). Then the limit

lim
N→∞

1

N − k0 + 1
#
{
k0 6 k 6 N : sup

s∈K

∣∣ζ(s+ iϕ(k), F
)
− f(s)

∣∣ < ε
}
> 0

exists for all but at most countably many ε > 0.

2 Auxiliary results

For the proof of universality for the function ζ(s, F ), we will use the probabilistic ap-
proach. Denote by B(X) the Borel σ-field of the space X . Let Pn, n ∈ N, and P be the
probability measures on (X,B(X)). We remind that Pn, as n → ∞, converges weakly
to P if, for every real continuous bounded function g on X ,

lim
n→∞

∫
X

g dPn =

∫
X

g dP.

Denote by H(DF ) the space of analytic functions on DF endowed with the topology of
uniform convergence on compacta. The proof of universality theorems is based on the
weak convergence for

PN,F (A)
def
=

1

N−k0+1
#
{
k06k6N : ζ

(
s+iϕ(k), F

)
∈A
}
, A∈B

(
H(DF )

)
,

as N →∞.
For the statement of a limit theorem for PN,F , we need some notation. Let P be the

set of all prime numbers, and let γ denote the unit circle on the complex plane. Define the
set

Ω =
∏
p∈P

γp,

where γp = γ for all p ∈ P. With the product topology and pointwise multiplication,
the infinite-dimensional torus Ω is a compact topological Abelian group, therefore, on
(Ω,B(Ω)), the probability Haar measure mH can be defined. This gives the probability
space (Ω,B(Ω),mH). Denote by ω(p) the projection of an element ω ∈ Ω to the
coordinate space γp, p ∈ P, and, on the probability space (Ω,B(Ω),mH), define the
H(DF )-valued random element ζ(s, ω, F ) by the formula

ζ(s, ω, F ) =
∏
p∈P

(
1− α(p)ω(p)

ps

)−1(
1− β(p)ω(p)

ps

)−1
.

Let Pζ,F stand for the distribution of ζ(s, ω, F ), i.e.,

Pζ,F (A) = mH

{
ω ∈ Ω: ζ(s, ω, F ) ∈ A

}
, A ∈ B

(
H(DF )

)
.

Now we state the main result of this section.

https://www.mii.vu.lt/NA
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Theorem 5. Suppose that ϕ ∈ U(k0). Then PN,F converges weakly to Pζ,F as N →∞.
Moreover, the support of Pζ,F is the set SF = {g ∈ H(DF ): g(s) 6= 0 or g(s) ≡ 0}.

We divide the proof of Theorem 5 into several lemmas. We start with the Weyl
criterion.

Lemma 1. A sequence {xk: k ∈ N} ⊂ R is uniformly distributed modulo 1 if and only
if, for all m ∈ Z \ {0},

lim
n→∞

1

n

n∑
k=1

e2πimxk = 0.

Proof of the lemma can be found, for example, in [3].
For A ∈ B(Ω), define

QN (A) =
1

N − k0 + 1
#
{
k0 6 k 6 N :

(
p−iϕ(k): p ∈ P

)
∈ A

}
.

Lemma 2. Suppose that ϕ ∈ U(k0). Then QN converges weakly to the Haar measure
mH as N →∞.

Proof. We apply the Fourier transform method. It is well known that the dual group of Ω
is isomorphic to the group

D = ⊕
p
Zp,

where Zp = Z for all p ∈ P. An element k = {kp: kp ∈ Z, p ∈ P} of D, where only
a finite number of integers kp are distinct from zero, acts on Ω by

ω → ωk =
∏′

p∈P
ωkp(p),

where the sign “ ′ ” means that only a finite number of integers kp are distinct from zero.
Hence, the characters are of the form ∏′

p∈P
ωkp(p),

therefore, the Fourier transform gN (k) of QN is given by the formula

gN (k) =

∫
Ω

∏′

p∈P
ωkp(p) dQN .

Thus, by the definition of QN ,

gN (k) =
1

N − k0 + 1

N∑
k=k0

∏′

p∈P
p−ikpϕ(k)

=
1

N − k0 + 1

N∑
k=k0

exp

{
−iϕ(k)

∑′

p∈P
kp log p

}
. (1)

Nonlinear Anal. Model. Control, 23(6):961–973
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Obviously,
gN (0) = 1. (2)

Since the set {log p: p ∈ P} is linearly independent over the field of rational numbers
Q, we have that

∑′
p∈P kp log p 6= 0 for k 6= 0. Therefore, since ϕ ∈ U(k0), in the case

k 6= 0, the sequence {
ϕ(k)

2π

∑′

p∈P
kp log p: k > k0

}
is uniformly distributed modulo 1. Thus, by Lemma 1 withm = −1 and (1), we find that,
for k 6= 0,

lim
N→∞

gN (k) = 0.

This and (2) show that gN (k), as N →∞, converges to the Fourier transform of the Haar
measure mH , and the lemma is a consequence of a continuity theorem for probability
measures on compact groups.

Lemma 2 implies a limit theorem in the space of analytic functions for a certain abso-
lutely convergent Dirichlet series. This theorem is very important for proving Theorem 5,
therefore, we give its precise statement.

We extend the functions ω(p), p ∈ P, to the set N by

ω(m) =
∏
pl|m
pl+1-m

ωl(p), m ∈ N.

Let θ > 1/2 be a fixed number. For m,n ∈ N, define the series

ζn(s, F ) =

∞∑
m=1

c(m)vn(m)

ms
and ζn(s, ω, F ) =

∞∑
m=1

c(m)ω(m)vn(m)

ms
,

where

vn(m) = exp

{
−
(
m

n

)θ}
.

Then, the latter series are absolutely convergent for σ > κ/2. Let the function un,F : Ω →
H(DF ) be given by the formula un,F (ω) = ζn(s, ω, F ). Since the series for ζn(s, ω, F )
is absolutely convergent for σ > κ/2, the function un,F is continuous, thus, it is (B(Ω),
B(H(DF )))-measurable. Hence, P̂n,F = mHu

−1
n,F , where

P̂n,F (A) = mHu
−1
n,F (A) = mH

(
u−1n,FA

)
, A ∈ B

(
H(DF )

)
,

is a probability measure on (H(DF ),B(H(DF ))). For A ∈ B(H(DF )), define

PN,n,F (A) =
1

N − k0 + 1
#
{
k0 6 k 6 N : ζn

(
s+ iϕ(k), F

)
∈ A

}
.

https://www.mii.vu.lt/NA
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The above remarks, Lemma 2, and Theorem 5.1 of [1] lead to

Lemma 3. Suppose that ϕ ∈ U(k0). Then PN,n,F converges weakly to P̂n,F as
N →∞.

Our next aim is to prove that PN,F , asN →∞, converges weakly to the limit measure
PF of P̂n,F as n → ∞. For this, we need some mean square results for the function
ζ(s, F ).

Lemma 4. Suppose that ϕ ∈ U(k0), and σ, κ/2 < σ < (κ+ 1)/2, is fixed. Then, for all
τ ∈ R,

T∫
k0−1/2

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt� T

(
1 + |τ |

)
.

Proof. It is well known that, for fixed σ, κ/2 < σ < (κ+ 1)/2,

T∫
0

∣∣ζ(σ + it, F )
∣∣2 dt� T. (3)

LetX > 1. Since the function ϕ(t) is increasing and continuously differentiable, we have
that

2X∫
X

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt

=

2X∫
X

1

ϕ′(t)

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 d

(
ϕ(t)

)

� max
X6t62X

1

ϕ′(t)

2X∫
X

d

( |τ |+ϕ(t)∫
0

∣∣ζ(σ + iu, F )
∣∣2 du

)
. (4)

By estimate (3),
|τ |+ϕ(t)∫

0

∣∣ζ(σ + iu, F )
∣∣2 du� |τ |+ ϕ(t).

Since ϕ ∈ U(k0), the latter estimate together with (4) shows that

2X∫
X

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt�

(
|τ |+ ϕ(2X)

)
max

X6t62X

1

ϕ′(t)

� X
(
1 + |τ |

)
.

Now, taking X = 2−k−1T and summing over k, gives the lemma.

Nonlinear Anal. Model. Control, 23(6):961–973
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Lemma 4 together with Gallagher’s lemma, which connects the continuous and dis-
crete mean squares of some functions, allows to estimate the discrete mean square

IN (σ, t, F ) =

N∑
k=k0

∣∣ζ(σ + it+ iϕ(k), F
)∣∣2.

For convenience, we state Gallagher’s lemma, see [14, Lemma 1.4].

Lemma 5. Suppose that T0, T > δ > 0 are real numbers, and T 6= ∅ is a finite set in the
interval [T0 + δ/2, T0 + T − δ/2]. Define

Nδ(x) =
∑
t∈T
|t−x|<δ

1.

Let S(x) be a complex-valued continuous function on [T0, T + T0] having a continuous
derivative on (T0, T + T0). Then

∑
t∈T

N−1δ (t)
∣∣S(t)

∣∣2 6
1

δ

T0+T∫
T0

∣∣S(x)
∣∣2 dx+

( T0+T∫
T0

∣∣S(x)
∣∣2 dx

T0+T∫
T0

∣∣S′(x)
∣∣2 dx

)1/2

.

Lemma 6. Suppose that ϕ ∈ U(k0), and σ, κ/2 < σ < (κ + 1)/2, is fixed. Then, for
t ∈ R,

IN (σ, t, F )� N
(
1 + |t|

)
.

Proof. An application of the Cauchy integral formula and Lemma 4 gives, for κ/2 < σ <
(κ+ 1)/2, the bound

N+1/2∫
k0−1/2

∣∣ζ ′(σ + it+ iϕ(t), F
)∣∣2 dt� N

(
1 + |t|

)
. (5)

Actually, in view of the Cauchy integral formula,

ζ ′
(
σ + it+ iϕ(τ), F

)
=

1

2πi

∫
L

ζ(z + it+ iϕ(τ), F )

(z − σ)2
dz,

where L is the circle with a center σ lying in D. Then∣∣ζ ′(σ + it+ iϕ(τ), F
)∣∣2 =

1

4π2

∣∣∣∣ ∫
L

ζ(z + it+ iϕ(τ), F )

(z − σ)2
dz

∣∣∣∣2
�
∫
L

|dz|
|z − σ|4

∫
L

∣∣ζ(z + it+ iϕ(τ), F
)∣∣2 |dz|

�
∫
L

∣∣ζ(z + it+ iϕ(τ), F
)∣∣2 |dz|.

https://www.mii.vu.lt/NA
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Hence, in view of Lemma 4,

N+1/2∫
k0−1/2

∣∣ζ ′(σ + it+ iϕ(τ), F
)∣∣2 dτ

�
∫
L

|dz|
N+1/2∫
k0−1/2

∣∣ζ(Re z + i Im z + it+ iϕ(τ), F
)∣∣2 dτ

� N
(
1 + |t|

)
.

We apply Lemma 5 with T = {k: k ∈ N, k0 6 k 6 N}, T0 = k0 − 1/2, T =
N − k0 + 1, and δ = 1. Then, clearly, Nδ(x) = 1, and, in view of Lemma 5 with
S(τ) = ζ(σ + it+ iϕ(τ), F ), we have

IN (σ, t, F )

�
N+1/2∫
k0−1/2

∣∣ζ(σ + it+ iϕ(τ), F
)∣∣2 dτ

+

( N+1/2∫
k0−1/2

∣∣ζ(σ + it+ iϕ(τ), F
)∣∣2 dτ

N+1/2∫
k0−1/2

∣∣ζ ′(σ + it+ iϕ(τ), F
)∣∣2 dτ

)1/2

.

This, Lemma 4, and estimate (5) prove the lemma.

Now we are ready to approximate ζ(s, F ) by ζn(s, F ) in the mean. For g1, g2 ∈
H(DF ), let

ρ(g1, g2) =

∞∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
,

where {Kl: l ∈ N} ⊂ DF is a sequence of compact subsets such that

DF =

∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for l ∈ N, and if K ⊂ DF is a compact subset, then K ⊂ Kl for some
l ∈ N. Then ρ is the metric in H(DF ) inducing its topology of uniform convergence on
compacta.

Lemma 7. Suppose that ϕ ∈ U(k0). Then

lim
n→∞

lim sup
N→∞

1

N − k0 + 1

N∑
k=k0

ρ
(
ζ
(
s+ iϕ(k), F

)
, ζn

(
s+ iϕ(k), F

))
= 0.

Nonlinear Anal. Model. Control, 23(6):961–973
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Proof. Let θ > 1/2 be from the definition of vn(m), and

ln(s) =
s

θ
Γ

(
s

θ

)
ns,

where Γ(s) is the Euler gamma-function. Then the function ζn(s, F ) has the representa-
tion [7]

ζn(s, F ) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s+ z, F )ln(z)
dz

z
, σ >

κ

2
.

Let K be an arbitrary compact subset of D. Then, using the above integral representation
and the residue theorem, we find that

1

N − k0 + 1

N∑
k=k0

sup
s∈K

∣∣ζ(s+ iϕ(k), F
)
− ζn

(
s+ iϕ(k), F

)∣∣
�

∞∫
−∞

∣∣ln(σ̂ + iτ)
∣∣( 1

N − k0 + 1

N∑
k=k0

∣∣ζ(σ + it+ iτ + iϕ(k), F
)∣∣)dτ, (6)

where σ̂ < 0, κ/2 < σ < (κ + 1)/2, and t is bounded by a constant depending on K.
Now an application of Lemma 6 and (6) implies the equality

lim
n→∞

lim sup
N→∞

1

N − k0 + 1

N∑
k=k0

sup
s∈K

∣∣ζ(s+ iϕ(k)
)
− ζn

(
s+ iϕ(k)

)∣∣ = 0.

This and the definition of the metric ρ prove the lemma.

Proof of Theorem 5. Let θN be a random variable defined on a certain probability space
with the measure µ and having the distribution

µ
{
θN = ϕ(k)

}
=

1

N − k0 + 1
, k = k0, . . . , N.

Consider the H(DF )-valued random element

XN,n,F = XN,n,F (s) = ζn(s+ iθN , F ).

We recall that P̂n,F is the limit measure in Lemma 3. Then, in view of Lemma 3,

XN,n,F
D−→

N→∞
X̂n,F , (7)

where D→ means the convergence in distribution, and X̂n,F is the H(DF )-valued random
element with distribution P̂n,F . Using the absolute convergence of the series for ζn(s, F )
and (7), we prove by using the method of [4] that the family of probability measures

https://www.mii.vu.lt/NA
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{P̂n,F : n ∈ N} is tight. Hence, by Theorem 6.1 of [1], it is relatively compact. Therefore,
each subsequence of {P̂n,F } contains a subsequence {P̂nr,F }, which converges weakly
to a certain probability measure PF on (H(DF ),B(H(DF ))) as r →∞. Thus

X̂nr,F
D−→

r→∞
PF . (8)

On the probability space of the random variable θN , define the H(DF )-valued random
element

XN,F = XN,F (s) = ζ(s+ iθN , F ).

Then the application of Lemma 7 shows that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
(
ρ(XN,F , XN,n,F ) > ε

)
= lim
n→∞

lim sup
N→∞

1

N − k0 + 1

×#
{
k0 6 k 6 N : ρ

(
ζ
(
s+ iϕ(k), F

)
, ζn
(
s+ iϕ(k), F

))
> ε
}

6 lim
n→∞

lim sup
N→∞

1

(N − k0 + 1)ε

N∑
k=k0

ρ
(
ζ
(
s+ iϕ(k), F

)
, ζn
(
s+ iϕ(k), F

))
= 0.

From this, (7), (8), and Theorem 4.2 of [1] it follows that

XN,F
D−→

N→∞
PF . (9)

This means that PN,F converges weakly to PF as N →∞. On the other hand, (9) shows
that the measure PF is independent of the sequence {P̂nr,F }. Since the family {P̂n,F } is
relatively compact, hence we have, by Theorem 2.3 of [1], that

X̂n,F
D−→

n→∞
PF ,

or equivalently, P̂n,F converges weakly to PF as n→∞.
It remains to identity the measure PF . For this, usually, elements of the ergodic theory

are applied. However, we use a very simple observation. It is known [7, 17] that

1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ, F ) ∈ A

}
, A ∈ B

(
H(DF )

)
,

as T → ∞, converges weakly to the limit measure PF of P̂n,F and that PF = Pζ,F .
Moreover, the support of Pζ,F is the set SF . Therefore, PN,F also converges weakly to
Pζ,F as N →∞.

3 Proofs of universality theorems

Proof of Theorem 3. Define

Gε =

{
g ∈ H(D): sup

s∈K

∣∣g(s)− ep(s)
∣∣ < ε

2

}
,

Nonlinear Anal. Model. Control, 23(6):961–973
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where p(s) is a polynomial. By Theorem 5, the function ep(s) is an element of the support
of the measure Pζ,F . Therefore,

Pζ,F (Gε) > 0. (10)

By Theorem 5 and the equivalent of weak convergence of probability measures in terms
of open sets [1, Thm. 2.1],

lim inf
N→∞

PN,F (Gε) > Pζ,F (Gε).

This, the definitions of PN,F and Gε, and (10) show that

lim inf
N→∞

1

N − k0 + 1
#

{
k0 6 k 6 N : sup

s∈K

∣∣ζ(s+ iϕ(k), F
)
− f(s)

∣∣ < ε

2

}
> 0. (11)

By the Mergelyan theorem on the approximation of analytic functions by polynomials
[13], we can choose the polynomial p(s) to satisfy the inequality

sup
s∈K

∣∣f(s)− ep(s)
∣∣ < ε

2
. (12)

This inequality together with (11) proves Theorem 3.

Proof of Theorem 4. Define the set

Ĝε =
{
g ∈ H(D): sup

s∈K

∣∣g(s)− f(s)
∣∣ < ε

}
.

Then we have that the boundary ∂Ĝε of Ĝε is the set{
g ∈ H(D): sup

s∈K

∣∣g(s)− f(s)
∣∣ = ε

}
.

Hence, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for ε1 6= ε2. Therefore, the set Ĝε is a continuity set of
the measure Pζ,F for all but at most countably many ε > 0. Using Theorem 5 and the
equivalent of weak convergence of probability measures in terms of continuity sets [1,
Thm. 2.1], we obtain that

lim
N→∞

PN,F (Ĝε) = Pζ,F (Ĝε) (13)

for all but at most countably many ε > 0. In view of (12), if g ∈ Gε, then g ∈ Ĝε. Thus,
Gε ⊂ Ĝε. Therefore, in virtue of (10), Pζ,F (Ĝε) > 0. Combining this with (13) and the
definitions of PN,F and Ĝε proves Theorem 4.

https://www.mii.vu.lt/NA
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