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THESIS AT A GLANCE

THE AIM OF THE STUDY

To develop and test methodologies for a comprehensive Ki67 labeling index with an intra-tumor
heterogeneity assessment based on digital immunohistochemistry methods.

To develop a
methodology
for ensuring
and improving
the accuracy of
the approach
for digital
image analysis
in breast
cancer Ki67
IHC.

To develop a
methodology
for
comprehensive
Ki67 LI
quantification
with
heterogeneity
assessment and
hot spot
detection,
perform
analytical
validation in a
breast cancer
patient cohort.

A comparison
of the visual
estimation of
Ki67 LI, a
digital image
analysis result
and reference
values
obtained with
a stereology in
TMA of breast
cancer tissue.

The WSI DIA-
generated
data were

subsampled by
hexagonal
tiling, and
spatial
distribution
parameters
were
calculated

We achieved a DIA
misclassification rate
of 5-7%, as opposed
to that of 11-18% for
the VE-median-based

prediction.

The degree of
proliferation
measured by various
automated Ki67 LI
indicators was
associated with higher
histological grade/
more aggressive types
of breast cancer. The
manual hotspots of
Ki67 LI were
associated and
comparable with the
Pareto hotspot
median Ki67 LI.

Ki67 LI obtained by digital
image analysis outperforms
visual estimates, taking
manual stereological counts
as a reference value. An
accurate Ki67 LI estimation
can be achieved by DIA
which is based on proper
validation, calibration, and
measurement error
correction procedures
guided by quantified bias
from reference values.

A systematic subsampling
of DIA-generated data into
hexagonal tiles would
enable a comprehensive
Ki67LI analysis that would
reflect the aspects of intra-
tumor heterogeneity and
could serve as a
methodology for improving
digital
immunohistochemistry.
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To optimize
breast cancer
tissue
sampling
requirements
to represent
Ki67 LI taking
its intra-
tumor
heterogeneit
y into
account.

P

To evaluate
the
prognostic
value of the
comprehensi
ve Ki67 LI
estimation
method in a
breast
cancer
patient
cohort.

The hexagons in
the HexT were
chosen to
simulate virtual
TMA cores/ fields
of view in
conventional
microscopy, with
Ki67LI established
by DIA. The
sampling
simulations were
carried out for
different
heterogeneity
levels.

The Ki67 LI
indicators,
extracted from
WSI DIA-
generated data,
were subsampled
using hexagonal
tiles and
compared with
the data of overall
patient survival.

To achieve low error
rates, 8 TMA cores or
4000 nuclei are
required when the
heterogeneity levels
are unknown.
Respectively, 5-6
cores/3 000 nuclei or
11-12 cores/7 000
nuclei are required in
the subgroups of
homogeneous and
heterogeneous
tumors.

All visual and DIA-
generated indicators
of the level of Ki67
expression provided
significant cutoff
values as single
predictors of OS.
Only the bimodality
indicators (Ashman’s
D) were independent
predictors of OS in
the context of
hormone receptor
and HER2 status.

Hexagonal tiling data
provide a useful model
for establishing tissue
sampling requirements

for biomarker studies and

visual estimations, which
depend on intra-tissue
heterogeneity and must

be determined on a

peruse basis.

The spatial heterogeneity
indicators (the bimodality
status in particular) of
proliferative tumor
activity, measured by the
DIA of Ki67 IHC
expression and analyzed
using the HexT approach,
can serve as an
independent, prognostic
indicator of OS in breast
cancer patients and
outperform the
prognostic power of the
level of proliferative
activity.



LIST OF ABBREVIATIONS

WSI Whole slide image

HS Hotspot

LI Labeling index

Ki67 LI Ki67 Labeling index

DIA Digital image analysis

TMA Tissue micro array

TMAs Tissue micro arrays

VE Visual evaluation

RV Reference value

IHC Immunohistochemistry

TN Triple negative

HER2 Human epidermal growth factor receptor 2
FISH Fluorescence in situ hybridization
ER Estrogen receptors

PgR Progesterone receptors

GEP Gene expression profiling

HexT Hexagonal tiling

ROI Region of interest

oS Overall survival

BC Breast cancer

ASCO/CAP  American Society of Clinical Oncology/College of
American Pathologists

LIS Laboratory information system
DCIS Ductal carcinoma in situ

2D Two-dimensional space

CE Coefficient of error

HexN Numbers of hexagons

HR Hormone receptors
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INTRODUCTION

Clinical Relevance of the Study

Breast cancer is the most common cancer in women both in the developed
and developing countries. It is estimated that worldwide, over 464 000
women died in 2013 due to breast cancer, and 1.8 million incident cases
were reported [1]. The incidence rates vary greatly worldwide from 19.3 for
100 000 women in Eastern Africa to 89.7 for 100 000 women in Western
Europe. In most of the developing regions, the incidence rates are below 40
for 100 000 [2]. Breast cancer survival rates vary considerably, ranging from
80% or over in North America, Sweden and Japan, to around 60% in
middle-income countries and below 40% in low-income countries [2]. The
low survival rates in the less-developed countries can be explained mainly
by the lack of early detection programs, resulting in a high proportion of
women presenting with late-stage diseases, and by the lack of adequate
diagnosis and treatment facilities.

Improvements in survival can therefore be expected from early detection
and adjuvant chemotherapy treatment. Mammographic screening strategies
result in the early diagnosis of breast cancer and a 25-30% decrease in
breast cancer mortality in women over the age of 50 years, [3] but these
strategies preferentially detect slowly growing and more well-differentiated
tumors that inherently have a better prognosis and miss the fast-growing,
aggressive tumors, which often present themselves as so-called interval
cancers [4, 5]. Adjuvant chemotherapy and hormonal treatment have been
shown to improve survival in patients with breast cancer but have potentially
serious side effects and are expensive [6]. Therefore, when treating patients
with hormone-sensitive primary breast cancer, the question of whether the
patient requires chemotherapy additionally to endocrine treatment is crucial.
Adjuvant treatment should only be given to the patients that require good
prognostic factors to indicate high risk and additional factors to predict
response to treatment [6].

Traditional prognostic factors, such as lymph node metastasis status, and
tumor characteristics, like size or histological type, are not sufficient.
Additional predictive and prognostic factors are needed to clarify the
indication for adjuvant treatment, and a great number of them have been
identified for breast cancer. Many of these factors are directly (cell cycle
regulators [7]) or indirectly (growth factors [8-10] or angiogenesis [11])
related to cell proliferation.



Gene expression profiling (GEP) techniques open new opportunities in
breast cancer prognostication and patient stratification. Molecular multigene
assays are based on the identification of a set of genes (gene signature) that
can be used to identify tumors with specific biological or clinical features.
This allows to stratify relevant patient groups into low- and high-risk
prognostic subgroups, calculate a recurrence score to estimate the risk of
distant recurrence and guide further treatment. The only test that was
acknowledged by the majority (80.5%) of the 14™ st. Gallen (2015) panelists
as providing reliable prognostic information on the benefits of additional
adjuvant chemotherapy was the Oncotype DX [12]. This approach is a
reverse-transcriptase-polymerase-chain-reaction assay of 21 prospectively
selected genes, including the markers of proliferation, invasion, her2,
estrogen and a group of reference genes [13]. More importantly, the largest
proportion of genes used in this test are related to the cell proliferation cycle
(Ki67, Survivin, MYBL2, CCNBL, STK15). Therefore, the high cost of
multigene assays has motivated many researchers to search for alternative
risk assessment models based on immunohistochemical biomarker
expression [14-17].

Treatment decisions for breast cancer are significantly influenced by
tumor subtype, which is defined by the expression of the estrogen receptor
(ER), progesterone receptor (PGR), human epidermal growth factor receptor
2 (HER2) and the proliferation marker Ki67 [18]. The Ki67
immunohistochemistry (IHC) is a widely used method to the estimate cell
proliferation rate in tumor cells. A visual assessment of Ki67 IHC,
commonly used in current clinical practice, has serious limitations due to a
low reproducibility among the pathologists of intermediate Ki67 labeling
index (Ki67LI) evaluation, where it is crucial for making clinical decisions
[19-23]. A misinterpretation of the ki67 labeling index may result in a lost
opportunity for patients to receive chemotherapy or may result in patients
being over-treated. Therefore, standardization efforts have led to
recommendations focused on a high number of cells, in a range from 500 to
2 000, needed to reach accurate visual estimations [24]. Furthermore, intra-
tumoral heterogeneity is an inherent feature for this biomarker in breast
cancer. Thus, counting Ki67LI in areas containing the largest proportion of
positive tumor nuclei, named “hotspots” (HS), is considered to be essential
in clinical practice. However, proper hotspot definitions have never been
introduced and standardized by international recommendations — the optimal
Ki67LI cutoff values for making clinical decisions also vary greatly (14%,



20%, 20-29%, <10%, 20-30%) year by year [12, 24-26]. Furthermore, the
American Society of Clinical Oncology (ASCO) have published clinical
practice guidelines (2016) on breast cancer [18] wherein it is recommended
that the Ki67 labelling index, determined by immunohistochemistry, should
not be used to guide choice on adjuvant chemotherapy with an intermediate
quality of evidence base and moderate strength of recommendation. Since
manual estimations are highly complicated by these factors that reduce the
prognostic value of Ki67LI, novel, more comprehensive and reproducible
Ki67LI estimation methodologies need to be considered, explored and
applied in clinical practice.

The most unique and significant benefit for pathology practice and
research can be expected from digital image analysis (DIA) applications.
This opens new perspectives for pathology to serve the needs of
personalized medicine by providing more accurate and reproducible
measurements for tissue-based diagnosis, prognosis and prediction [27, 28].
Microscopic images, used in pathology, contain rich, multi-parametric data
that can be retrieved by scanning and processing the images by numerous
methods available to visualize tissues and cells as well as scan and process
the images while generating rich, multi-parametric data [28].

Digitalized Ki67 immunohistochemistry has been explored broadly by
applying various image analysis methods in the past several years.
Automated Ki67LI estimation in breast cancer has been shown to be
reproducible [22] and consistent with visual evaluations made by
pathologists  [29-32], suggesting the DIA’s applicability for Ki67LI
assessment in clinical practice. However, it has been also shown that the
concordance between visual estimation and DIA is effected by tumor
heterogeneity [31], which, unfortunately, is complicated to measure and has
no standardization in breast cancer pathology. While some studies were
focused on optimal tumor cell segmentation and automated Ki67LI
estimations, others have proposed automated methods to detect the hotspots
of Ki67LI [33-37]. However, the analytical and, most importantly, clinical
validation of DIA were out of scope in these studies, which hinders the
implementation of DIA approaches in clinical practice.



Aim of the Study

To develop and test the methodologies of a comprehensive Ki67 labeling
index with intra-tumor heterogeneity assessment based on digital
immunohistochemistry methods.

Study Objectives

1. To develop a methodology for ensuring and improving the accuracy of
the digital image analysis approach in breast cancer Ki67
immunohistochemistry.

2. To develop a methodology for comprehensive Ki67 LI quantification
with heterogeneity assessment and hotspot detection; to perform
analytical validation in a breast cancer patient cohort.

3. To optimize breast cancer tissue sampling requirements to represent Ki67
LI, taking its intra-tumor heterogeneity into account.

4. To evaluate the prognostic value of the comprehensive Ki67 LI
estimation method in a breast cancer patient cohort.

Statements to be Defended

1. Ki67 LI, obtained by DIA, enables a higher measurement accuracy than
that of the visual estimates by pathologists and provides criterion
standard with subsequent image analysis calibration and measurement
error correction.

2. The intra-tumor heterogeneity of proliferative tumor activity, estimated
by systematic subsampling of DIA data by hexagonal tiling, can serve as
an independent prognostic indicator of OS in breast cancer patients that
outperforms the prognostic power of the level of proliferative activity.



Scientific Novelty of the Study

This study covers several novel aspects:

1. A methodology for improving the accuracy of digital image analysis,
based on analytical assay validation principles, was proposed for IHC.
The validation and calibration procedures were based on a direct criterion
standard obtained by stereology grid-count reference values.

2. A novel methodology for comprehensive tissue biomarker estimation,
based on a hexagonal tiling of DIA data, was proposed, developed and
tested for the use case of Ki67LI. This method enriched the biomarker
measurement with spatial aspects of intra-tumor expression with
analytically relevant indicators. Similar methods of image segmentation
into subregions have been applied in pathology research as well as in the
areas of geography and ecology. However, hexagonal grid-based spatial
analytics were first developed and applied for digital microscopy image
analysis tasks. More importantly, this approach was further elaborated to
propose the concept of the “Pareto hotspot” representing a median
biomarker expression level in the 20% of the “hottest” tumor area.

3. The heterogeneity of breast cancer proliferative activity is a well-
recognized phenomenon that hampers the potential prognostic value of
Ki67LI. Our approach allowed to compute the intratumor heterogeneity
indicators which, for the first time, were found to outperform the
“conventional” Ki67LI proliferation level indicators in multivariate
prognostic modeling of the patient OS. These findings potentially
strengthen the evidence base of clinical recommendations for applying
Ki67LI obtained by immunohistochemistry for guiding adjuvant
chemotherapy, which was eliminated by ASCO guidelines [18].

4. The hexagonal tiling simulation was utilized to establish tissue sampling
requirements for the IHC biomarker measurement with regard to the
individual biomarker intratumor heterogeneity characteristics. Previous
studies exploited physical tissue sampling, which was the major
limitation in performing repetitive sampling of the tissue and to achieve
comprehensive statistical modeling.
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1. REVIEW OF LITERATURE

1.1 Background
1.1.1 Molecular Subtypes of Breast Cancer

Breast cancer is a heterogeneous disease featuring distinct histological,
molecular phenotypes and clinical characteristics. Historically, it has been
classified based on clinic-pathological features, such as tumor spread, size
and grade. However, these classifications are insufficiently accurate; better
predictors of high risk and treatment response are needed to reflect the
diverse biological and clinical heterogeneity of breast cancer [6, 38]. In
recent times, global gene expression profiling (GEP) studies using
unsupervised clustering techniques have provided molecular classification
system and identified distinct clusters or intrinsic subtypes based on the
quantitative expression of several genes (transcriptome profiles) [39, 40].
Perou et al. have characterized variations in gene expression patterns in a set
of 65 surgical specimens of human breast tumors from 42 different
individuals, using complementary DNA microarrays representing 8 102
human genes. These patterns provided a distinctive molecular portrait of
each tumor and proved that breast cancer at the transcriptome level is not a
single disease [39]. Despite the fact that each individual tumor features a
unique GEP related to its specific biological features and genetic
abnormalities, tumors clustered together to produce distinct reproducible
classes based on transcriptomic profiles with common overlapping features
[38]. In a particular study [39], two main clusters were identified and
appeared to be related to ER expression. The ER positive cluster was
enriched with ER, ER-related genes and other genes characteristic of the
luminal epithelial cells, and this class was termed as “luminal” to indicate its
molecular similarity to them. The other major class contained ER negative
tumors and showed three distinct subclasses termed “HER2 positive,”
“basal-like” and “normal breast-like.” The HER2 subgroup was
characterized by an overexpression of HER2 and other genes pertaining to
the HER2 amplicon. The basal-like class was largely characterized by the
lack of expression of ER and HER2 and by positive expression of genes
characteristic of basal-like cells of the breast and by high proliferative
activity. The normal breast-like class displayed a triple-negative phenotype
but did not cluster with the basal-like centroid and was characterized by
expression profiles similar to those found in normal breast tissue.
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Subsequent studies have also reported an association between these subtypes
and patient outcome and that these classes are associated with distinct
biological pathways, making them potential candidates for targeted therapy
[41].

However, a gene expression array analysis is not always feasible to
obtain in routine practice. Thus, a simplified classification of subtypes
defined by clinic-pathological criteria has been proposed by Cheang et al.
[42]. In 2011, during the 12™ St. Gallen International Breast Cancer
Conference, this approach was adopted by expert panel to the classification
of patients for therapeutic purposes based on the recognition of intrinsic
biological subtypes within the breast cancer spectrum [25]. For practical
purposes, these subtypes were approximated using clinic-pathological rather
than gene expression array criteria [25]. This approach uses the estrogen and
progesterone receptor status obtained by immunohistochemistry, the
detection of overexpression and/or amplification of the human epidermal
growth factor receptor 2 (HER2) oncogene, and Ki67 labeling index, as the
means of identifying tumor subtypes (Table 1). In general, systemic therapy
recommendations follow the subtype classification. Thus, the “Luminal A”
disease generally requires only endocrine therapy, which also forms part of
the treatment of the “Luminal B” subtype. Chemotherapy is considered
indicated for most patients with “Luminal B,” “Human Epidermal growth
factor Receptor 2 (HER2) positive,” and “Triple negative (ductal)” disease,
with the addition of trastuzumab in the “HER2 positive” disease [25].
Hence, this classification requires the availability of reliable and
comprehensive measurements of ER, PgR, HER2 and Ki67 LI
immunohistochemistry.

12



Table 1. Surrogate definitions of intrinsic subtypes of breast cancer [25,
42-45].

Intrinsic subtype Clinicopathologic definition

Luminal A ER and/or PgR positive, HER2 negative, Ki67

low (range varies *)

Luminal B ER and/or PgR positive, HER2 negative, Ki67
(HER2 negative) high

Luminal B ER and/or PgR positive, HER2 over-expressed
(HER2 positive) or amplified, any Ki67

HER? positive HER?2 over-expressed or amplified, ER and
(non-luminal) PgR absent

‘Basal-like’ ‘Triple negative (ductal)’, ER and PgR absent,

HER?2 negative

*Ki67 cut-off value varies among different recommendations.

Optimal clinical decision-making and appropriate patient identification for
adjuvant breast cancer therapies are based on both prognostic and predictive
tumor markers [46]. Tumor proliferation is an essential element of cancer
progression, and mitosis counting has the most reproducible and
independent prognostic value [6]. However, the mitotic index, which is the
most established form of proliferation assessment, has limitations, as the
duration of the mitotic phase can vary, especially in aneuploid tumors. Thus,
the number of mitoses is not linearly correlated with the rate of proliferation
[6]. Therefore, cell-cycle-associated biomarkers, such as cyclin D1, cyclin E,
Ki67, p21, have been considered as prognostic factors [47]. Ki67 LI
correlates with mitotic index [48, 49] and has emerged as the marker of
choice with both prognostic and treatment predictive value in breast cancer
[50-52].

Ki67 is a nuclear non-histone protein first identified by Gerdes et al. in
the early 1980s at the University of Kiel, Germany [53]. Ki67 was found to
be universally expressed among proliferating cells in many sites and absent
in resting cells, making it a potential marker for evaluating the growth
fraction of normal and neoplastic human cell populations [53-55]. An
antibody with applicability in paraffin-embedded tissue was eventually
developed and named MIB-1 for the Ki67 gene MKI67 [56], Figure 1.

13
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Figure 1. A sample of invasive ductal breast carcinoma tissue stained by
Ki67 (MIB-1) immunohistochemistry.

The blue color indicates a counterstain (hematoxylin) that reflects Ki67
negative nuclei. The brown chromogen stains reflect positive nuclei for the
Ki67 antibody.

1.2 Issues of Ki67 Labeling Index Scoring and Interpretation

1.2.1 Guidelines

Ki67 is assessed in pathology routine practice using immunohistochemistry.
In 2011, the International Breast Cancer Working Group [24] published
recommendations for the assessment of Ki67 LI in breast cancer. However,
still no global guideline, with both reproducibility and objective
standardization, has been established for Ki67 LI assessment in breast
tumors. The different cut-off values have been proposed for Ki67 LI, which
thereby severely limit its clinical utility. The 12™ St. Gallen International
Breast Cancer Conference (2011) suggested a 14% cut-off to distinguish
Luminal A and Luminal B tumors [25]. In 2013, this value was questioned
by the St. Gallen panel, and an increase in the cut-off value to 20% was
discussed [26]. In 2015, one group of the 14" St. Gallen panelists proposed a
Ki67 level of at least 20-29% as cut-off for luminal-B cancer. Another
group pointed out that the Ki67 level in luminal A subtype breast cancers is
likely to be <10% [12]. A recent meta-analysis of 85 studies (in 32 825
patients) showed that the staining levels of 10%—-20% have been the most
common to dichotomize the patient populations [57]. Nevertheless, without
a standardization of methodology, these cut-offs have limited value outside

14



of the studies from which they were derived and the centers that performed
them [31].

1.2.2 The Assessment of the Ki67 Labeling Index

A visual assessment is now a method of choice for Ki67 LI evaluation in the
majority of pathology laboratories and institutions. According to the
International Breast Cancer Working Group recommendations for the
assessment of Ki67 LI in breast cancer [24], scoring should be based on
counting of at least 500 malignant invasive cells and preferably at least 1000
cells. These numbers for manual counts are relatively high to achieve in
daily practice and are laborious. Therefore, many pathologists trust quick
estimation “at a glance” or have their own techniques to quickly count the
proportion of positive and negative nuclei in the tissue. In addition, there is
no consensus about whether the Ki67 LI should be calculated as the
percentage of Ki67-positive tumor cells in the whole tissue section or in the
areas containing the largest proportion of positive tumor nuclei, commonly
named “hot spots” [24, 58]. Additionally, various levels of spatial
heterogeneity are the common feature of breast carcinomas [59-62], which
burdens the evaluation of the biomarker expression in IHC slides.

A conventional interpretation of immunohistochemistry is based on
human visual ability to identify tissue structures and to produce semi-
quantitative estimates. This process might lack reproducibility and affect the
Ki67 LI [24]. While this approach is sufficient for simple routine diagnostic
tasks, it does not meet the expectations of personalized breast cancer
therapies. Visual assessment has limitations, such as high inter- and intra-
user variability and relatively poor reproducibility of intermediate Ki67 LI
values where it is crucial for making clinical decisions [19-23]. A
misinterpretation of the Ki67 labeling index may lead to an inappropriate
management of the patient and lost opportunities to receive relevant
treatment. Therefore, the innovative and comprehensive measurement
methods of immunohistochemistry need to be established and explored in
the context of clinical outcome data.

The digitalization of histology glass slides opened new perspectives in
digital image analysis, which allowed to overcome the limitations of semi-
quantitative estimations. The applications of digital image analysis are very
broad in a field of pathology and cover automated mitotic counts [63-65],
the estimations of immunohistochemically labeled cells in various tumors
[66-72], tissue area quantification [73-76], lymphoid cell counts [77-82],
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automated metastasis detection [83, 84] and are even utilized in scanned
fluorescence in situ hybridization (FISH) images [85]. In breast cancer,
digital image analysis has been successfully applied for an automated
quantification of HER2 [68] and hormone receptors [69]. However, the
largest amount of studies performed in the several past years have been
focused on an automated Ki67 LI estimation. In a recent study, Zhong et al.
[31] compared visual Ki67 LI estimates assessed by five breast pathologists
and automated digital image analysis. All cases were classified into three
groups by VE values (<10%, 11%-30% and >30% Ki67 LI) and Ki67 LI
was evaluated in WSI and hotspot areas. The authors reported a perfect
agreement between VE and DIA of Ki67 LI in the whole cohort of G2-G3,
ER positive/HER2 negative cases. Average score and hotspot score methods
both demonstrated perfect concordance between VE and DIA of Ki67 LI
The concordance was relatively lower in intermediate Ki67 LI group (11%-—
30%) compared with high (>30%) Ki67 LI groups according to both
methods. Gudlaugsson et al. [22] compared the reproducibility and
prognostic value of different Ki67 LI measurement methods in 237 T1,2 NO
MO breast cancer patient cohort without adjuvant systemic treatment. Ki67
LI assessment methods for the comparison included: a subjective “quick-
scan rapid estimate” by two pathologists, ocular-square-guided counts in the
hotspot with the subjectively highest Ki67 expression, computerized point-
grid-sampling interactive morphometry (CIM) and automated digital image
analysis (DIA). The authors concluded that Ki67 LI by DIA, but not
subjective counts, was reproducible and prognostically strong.

The automated digital image analysis is a highly sensitive method that
directly depends on calibration procedures. The training sets must include
high numbers of varying morphology cases and the whole procedure must
be performed in several steps, containing testing sets and error corrections.
Consequently, the algorithms must be validated based on analytical methods
and, most perfectly, clinical validation should follow the whole workflow.
However, the validation is either missed in previous studies or the reference
values are chosen to be semi-quantitative, such as human visual estimations,
which are biased. This validation strategy is a paradox, because digital
image analysis is usually used to score complex biomarkers, as it is more
reproducible and objective than manual evaluation, which cannot be used as
a “golden standard” to analytically validate DIA tools [86].
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1.2.3 Heterogeneity

Intra-tumor heterogeneity describes the observation that different tumor
cellscan show distinct morphological and phenotypic profiles, such as
cellular morphology, gene expression (including the expression of cell
surface markers, growth factor and hormonal receptors), metabolism,
motility and angiogenic, proliferative, immunogenic and metastatic potential
[87]. With rare exceptions, spontaneous tumors originate from a single cell.
However, at the time of clinical diagnosis, the majority of human tumors
display various levels of heterogeneity. To a substantial extent, this
heterogeneity might be attributed to morphological and epigenetic plasticity,
but there is also strong evidence for the co-existence of genetically divergent
tumor cell clones within tumors [87, 88].

The intra-tumor heterogeneity has long been recognized as a feature of
some breast carcinomas in the context of IHC biomarker expression (Figure
2), microscopic and/or molecular characteristics [59-62, 69, 89-95] and
represents a major challenge for the design of effective therapies. The lack
of information about variability within the tumor, or between tumors with
the same score, blinds clinicians to a potential readout that could represent
the “biology,” eventually responsible for non-effective responses to
therapy. It is intuitive that different cell populations within or between
tumors could contribute to clinical refraction to therapy and thereby affect
patient outcomes [96]. The concept of tumor heterogeneity leading to
drug resistance was debated as early as the 1950s as the “Greenstein
Hypothesis” and has become part of cancer biology doctrine [97]. In more
recent times, as more targeted therapies are being developed, the issue of
tumor heterogeneity has re-emerged as a factor significant to clinical
strategy. Thus, there is an increasing need for clinical and pathological
evaluations of tumor heterogeneity that would be aligned with an
improved understanding of cancer biology [96].
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Figure 2. An example of ductal breast carcinoma with a heterogenous
expression of Ki67 immunohistochemistry.

1. Tumor area with a heterogenous Ki67 L1. 2. Higher magnification of low
proliferative area. 3,4 Higher magnification of the same tumor areas
containing larger proportion of Ki67 IHC positive tumor cells.

There are several areas in breast cancer pathology where heterogeneity
plays an important role and an accurate measure of biomarker expression is
needed. It is suggested that HER2 immunohistochemistry can have a
marked intra-tumor heterogeneity [98] and approximately 30% (ranging
from 11% to 40%) of breast tumors exhibit heterogeneous HER2
amplification [91, 99-103]. Genomic heterogeneity refers to the coexistence
of more than one population of tumor cells with distinct HER2 amplification
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characteristics within the same tumor [104] and it affects the management of
breast cancer patients [105]. It is reported that breast cancer patients with the
HER?2 heterogeneity had reduced disease-free survival [103] and influenced
the effectiveness of specific therapy in metastatic HER2 positive breast
cancer [106]. While great efforts were made to define the genetic HER2
heterogeneity [101, 104, 107-110], the definitions for heterogenous HER2
expression in immunohistochemistry are still lacking. Hormone receptor
(ER, PR) IHC staining variations within the same tumor have been also
recognized in a number of previous studies [98, 111-113]. The current
guidelines of the American Society of Clinical Oncology/College of
American Pathologists (ASCO/CAP) recommend to use a 1% cut-off of
tumor cell positivity to classify a tumor as ER expressing and select patients
for endocrine therapy [44]. However, this approach ignores and does not
consider intra-tumor heterogeneity, which limits the classification of ER
positive/ ER negative tumors when distinct populations of tumor cells are
unequally distributed within invasive tumor area [114, 115]. Moreover,
about a half of patients with ER-positive disease fail to respond to endocrine
therapy, and approximately 25% of women with early-stage breast cancer
will develop distant metastases [69, 116, 117]. Recently, Lindstrom et al.
investigated a large series (n = 1780) of breast cancer patients and showed
that intra-tumor heterogeneity of ER is an independent long-term
prognosticator with potential to change clinical management, especially for
patients with luminal A tumors [69].

Spatial tumor heterogeneity also impacts traditional
immunohistochemical Ki67 LI analysis and causes discordant reads between
pathologists. Shui R. et al. indicated that the biological heterogeneity of
Ki67 staining is an important reason of the low inter-observer
reproducibility, especially of intermediate Ki67 labeling index values in
which most cut-offs are located for making clinical decisions [118]. While
the genomic basis of tumor heterogeneity could be easily determined by
applying expensive molecular profiling techniques, such as next generation
sequencing [119], defining an intra-tumor heterogeneity in the 2D space of a
microscopic section is a challenging task. The determination of
heterogeneity in conventional immunohistochemistry may be complicated,
because each tumor has a specific histological pattern, various levels of
biomarker expression, and defining heterogeneity is a very subjective task
by itself. Consequently, proper definitions and standardization techniques of
hotspot detection and heterogeneity indicators need to be established.
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1.2.4 Hotspots of Biomarker Expression

A lot of research within the use of hotspots and different automatic methods
for defining and detecting HS has been carried out in the several past years.
One of the most recent studies, published by Saha et al. [34] in 2017,
described an application of deep structured learning approach for the HS
detection in Ki67 IHC slides and found high accuracy and reproducibility
rates of the developed method. However, the reference values were based on
subjective visual estimations, and this study did not suggest any HS
definition criteria. In contrast, Lindberg et al. [36] tried to use objective
criteria for HS definitions and developed a methodology for an automated
detection of Ki67 LI hotspots by visualizing them in a heatmap that was
based on the percentage of Ki67 positive nuclei calculated in small circular
regions. The authors further analyzed the DIA output by each pixel and
defined a hotspot as the largest continuous area with the relative maximum
pixel value in the heatmap. The region area for hotspots was incrementally
increased or decreased to fit the minimum requirement of 400 cells. This
study proposed an alternative methodology to detect and define the HS,
which guides the pathologist to quickly find the HS.

The use of clusters analysis for finding potential hotspots is also quite
common in recent research papers. Some studies [33, 120] have applied
clustering methods for detecting hotspots in neuroendocrine tumors of
gastrointestinal tract and high-grade gliomas. In another study [33], a hybrid
clustering method, referred to as a Seedlink, was developed. The study has
shown that a strong improvement of inter-pathologist agreement was
obtained when Seedlink-aided selections were considered. Heindl A et al.
[121] investigated the clinical relevance of the spatial heterogeneity of
immune infiltration in ER-positive breast cancer. The authors successfully
applied a spatial clustering analysis method to identify tumor regions with
statistically significant groups of immune cells by looking at each feature
(immune cell) within the context of the neighboring features [121].

Spatial statistics derived from dividing images into regular regions were
also applied to detect the hotspots of biomarker expression. Mostly
rectangular shaped grids were used to sample tissue areas. Gudlaugsson et
al. [22] described a tool based on grid structure to identify the HS of Ki67 LI
in breast cancer. Squares were selectively placed on the regions with
subjectively high numbers of positive nuclei, and Ki67 LI was counted by
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DIA inside each square. They found that the Ki67 scores of semi-automated
hotspots yielded reproducible and prognostically significant results.
However, this method directly depends on the manual selections of HS area,
and the Ki67 scores were based on the area but not on the number of nuclei
as it should be due to the possible variation in density of cells. Other studies
have applied automated methods to segment images into rectangular tiles.
Thakur et al. [15] investigated the proliferatvive activity of the hotspots of
breast cancer by applying a rectangular grid with a requirement of at least
500 cells in each tile. The results showed that the Ki67 LI, obtained in a HS
area, which was defined as top 5 tiles containing the highest Ki67 positive
cell ratio, predicts Oncotype DX prognostic groups with high accuracy. In
one study [37], an additional adaptive Y4 step shifting and multiple analyses
for each image were utilized. However, the DIA validation procedures were
out of scope in the latter studies. Furthermore, the rectangular shape of the
tiles is not the best choice, as the hotspots are usually very complex in shape
and rectangles may not cover these areas completely.

Despite the variety of conventional and advanced machine learning
technologies used for tumor cell quantification, no agreed HS definitions or
parameters for heterogeneity indicators have been achieved in breast cancer
Ki67 immunohistochemistry. Furthermore, the detection of hotspots by
either visual or digital methods can be complicated by the nature of the
tumor tissue: hotspots may vary greatly in size, shape and contrast.
However, breast cancer treatment decisions are based on relatively low Ki67
LI cutoff values, which raises the need for accurate Ki67 LI measurements
in pathology practice. The results of this work enabled to comprehensively
measure Ki67 LI in breast cancer immunohistochemistry, detect hotspots
and, most importantly, to define the degree of spatial heterogeneity in the
two-dimensional space of an individual tumor, which was an impossible task
before now. The proposed method could potentially serve as a decision-
support system in pathology practice for more robust and more accurate
Ki67 LI estimation and, most importantly, for better patient stratification to
achieve the best treatment effect. Findings described in this thesis are an
essential contribution toward a better understanding of how to measure
spatial tumor heterogeneity in immunohistochemistry slides of various
biomarkers and possibly discover new and less expensive prognostic factors.
The novel hexagonal tiling methodology was also utilized for defining breast
cancer sampling requirements for research studies and for clinical practice in
routine pathology. The experiments were based on powerful statistical
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modeling, and the level of intratumoral heterogeneity was taken into
account. The practical application of these findings is important when
considering the efficacy of tissue microarray construction for biomarker
investigation experiments or helping to optimize visual estimations for
pathologists.
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2. MATERIALS AND METHODS

This section gives a brief overview of the main methods used within
framework of this thesis. More specific detailed information is provided in
publications, respectively (Study I — IV, [28, 122-124]). The experiments
were performed on different patient cohorts. Separate parts of the study were
approved by the Lithuanian Bioethics Committee and Nottingham Research
Ethics Committee 2 under the title “Development of a molecular genetic
classification of breast cancer.” The patients’ consents to participate in the
study were obtained. All statistical analyses were performed by using SAS
9.3 software, Microsoft Excel software (Microsoft, Redmond, Washington,
US) and OpenOffice Calc software (Oracle, Redwood City, California, US).
The statistical significance level was set at P <0.05.

2.1 Patient Cohorts

For the first part of this work (Study I), 164 tissue micro array (TMA) Ki67
IHC images of Imm diameter tissue cores from female patients with
invasive ductal carcinoma of the breast were used. The patients were treated
at the Oncology Institute of Vilnius University and investigated at the
National Center of Pathology, during the period of 2007-2009.

The second part of this work (Study II) included whole slide images from
302 patients with invasive breast carcinoma who had been treated by
surgical excision at the National Cancer Institute (Lithuania) during 2013—
2014. Patient characteristics are provided in Table 2. The same patient
cohort was later used for virtual TMA simulation experiment (Study III)

Table 2. Patient and tumor characteristics of the second study population

Characteristics Number
Age (median, min.—max.) 60 years, 24—88 years
Histological type

Invasive ductal/no special type 271 (89.7%)

Other types 31 (10.3%)

n=302

Subtype

HR positive 189 (62.6%)
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HER positive * 55 (18.2%)

Triple negative 55 (18.2%)
n=299%%*
Axillary nodal stage
0 171 (56.6%)
1 83 (27.5%)
2 28 (9.3%)
3 9 (2.9%)
n=291%**
Histological grade
1 21 (7%)
2 123 (41%)
3 157 (52%)
n:301 skkeosksk

* Includes 33 HR (hormone receptors) positive cases.
** A subtype was not established in 3 cases

*#* An N stage was not established in 11 cases

*#%% A histological grade was not established in 1 case

In the last part of this thesis (Study IV) 152 cases from the Nottingham-
Tenovus Primary Breast Carcinoma Series, aged 70 years or less, presenting
with primary operable (stages I, II, and Illa) invasive breast carcinomas
between 1986 and 1998 were used. This is a well-characterized consecutive
series of patients who were uniformly treated according to locally agreed
clinical protocols [124-126]. Detailed patient characteristics are summarized
in Table 3. The mean duration of follow-up after the surgery was 143.4 =
71.4 months (range 5 to 248 months, median 156). Seventy-nine patients
died during the follow-up period. This patient cohort was used in the
framework of the international project entitled “A Comprehensive
Biomarker  Intratumour  Heterogeneity = Evaluation by  Digital
Immunohistochemistry Image Analysis” which was funded by European
Social Fund under operational programme for human resources development
for 2007-2013 priority 3 “Strengthening Capacities of Researchers” measure
VP1-3.1-SMM-07-K ,.Support to Research Activities of Scientists and Other
Researcher (Global Grant)”. Professor lan O Ellis provided histological
slides and pathology report data (patient age, tumor histological type, grade,
estrogen and progesterone receptor scoring, HER2 (verified by a HER2
FISH test in IHC 2+ cases) and Ki67) of 152 patients. Breast pathologist and
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researchers from Nottingham participated in digital image analysis
experiments which are described in study I'V.

Table 3. Patient and tumor characteristics of the IV study population

Characteristics Number
Age group

Age <55 years 85 (56%)

Age >55 years 67 (44%)
Histological type

Invasive ductal/no special type 104 (68%)

Other types 48 (32%)
Subtype

HR positive 101 (68%)

HER positive * 22 (15%)

Triple negative 26 (17%)

n=149**

Axillary nodal stage

1 78 (51%)

2 58 (38%)

3 16 (11%)
Axillary lymph node status

Negative 78 (51%)

Positive 74 (49%)
Histological grade

1 9 (6%)

2 52 (34%)

3 91 (60%)
Nottingham Prognostic Index

Good 31 (21%)

Moderate 81 (53%)

Poor 40 (26%)
Endocrine Therapy (n = 145) 81 (56%)
Chemotherapy (n = 151) 28 (19%)

* Includes 10 HR positive cases.
** A subtype was not established in 3 cases
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2.2 Tissue Preparation and Image Acquisition

For experiments described in studies I-I11, paraffin sections were cut at 3 pm
thickness and immunohistochemistry for Ki67 was performed with a
multimer-technology based detection system, ultraView Universal DAB
(Ventana, Tucson, AZ, USA), Figure 3. The Ki67 antibody (clone MIB-1;
DAKO, Glostrup, DK) was applied at a 1:200 dilution for 32 minutes,
followed by the Ventana BenchMark XT automated immunostainer
(Ventana) standard Cell Conditioner 1 (CCl1, a proprietary buffer) at 95°C
for 64 minutes. Finally, the sections were developed in DAB at 37°C for
eight minutes, counterstained with Mayer’s hematoxylin and mounted [28].
Whole slide tissue preparation and IHC staining protocol used in study IV is
previously described in [127]. Digital images were captured using the
Aperio Scan-Scope XT Slide Scanner (Aperio Technologies, Vista, CA,
USA) under 20x objective magnification (0.5 pm resolution).

For the first study tissue, micro arrays (TMAs) were constructed by
punching one millimeter diameter cores from invasive tumor areas which
were randomly selected by the pathologist. Detailed technique of tissue
microarray construction is described in [128]. One TMA core per patient
was used for the study. Other studies were performed on full-face tissue
sections.

F——={ 100pm

Figure 3. Examples of Ki67 immunohistochemistry in three cases of ductal
breast carcinoma with a variable degree of proliferation
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2.3 Digital Image Analysis

DIA was performed by using 2 image analysis software platforms: for
studies I-III Aperio Genie and Nuclear v9 algorithms were applied and
HALO™ Classifier Module/CytoNuclear v1.4 algorithm (Indica Labs, NM,
USA) for study IV was used. The software enables automated recognition
of the tumor tissue and cell segmentation in scanned images, Figure 4. The
classifier was trained by the pathologist to detect tumor areas while
eliminating fibrous and inflammatory stromal compartments. The nuclear
analysis modes were calibrated to enumerate Ki67-positive and -negative
tumor nuclear profiles in the breast cancer tissue. In the first study [28],
several calibration cycles of the DIA (named DIA-0, 1 and 2, resulting in the
percentage of Ki67-positive tumor cells - Ki67- DIA-0, 1 and 2,
respectively) were performed to improve the accuracy of the tool by
adjusting the settings of the Nuclear algorithm. Ki67-DIA-0 was obtained by
the default Aperio settings for the Nuclear algorithm, Ki67-DIA-1 - by
“subjective” visual assessment of the quality of the DIA results on the
computer monitor; Ki67-DIA-2 was fine-tuned based on the quantitative
bias established by statistical analyses comparing the Ki67-DIA-1 to
reference values (RV) (Ki67-Count) [28]. In study IV, the ductal carcinoma
in situ (DCIS) component was excluded by manual annotations. The quality
of the automated tumor and stroma segmentation and Ki67 positivity
threshold by the DIA was monitored by visual inspection [124].
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Figure 4. Examples of breast cancer Ki67 immunohistochemistry analyzed
by DIA algorithms

Pictures 1, 4 show the scanned Ki67 IHC without analysis at different
magnification levels; Pictures 2 and 5 illustrate the automated detection of
tumor (red) and stroma (green) by previously calibrated HALO classifier
algorithm, Pictures 3 and 6 depict the final DIA result by segmenting Ki67-
positive (brown) and negative (blue) tumor nuclear profiles in classified
tumor areas.

2.3 Design of the Study and Statistical Methods

As the main purpose of this work was complex, various techniques were
used, and the whole work was divided into several parts as follows.

2.3.1 Study I
Digital Image Analysis: Calibration, Quantification and Validation

In this study, digital image analysis tool validation procedure was performed
by comparing K167 LI obtained by DIA with a reference data. The reference
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value was generated by manually marking Ki67-positive and negative tumor
cell profiles, using a stereological method for 2D object enumeration
implemented by the Stereology module (ADCIS, Caen, France) with a test
grid of systematically sampled frames overlaid on a TMA image (Figure 5).
Frame size of 125 pixels and spacing of 250 pixels was chosen. The fraction
of Ki67 positive tumor cell profiles was calculated as 100*Ki67-positive
nuclear profiles / (Ki67-positive nuclear profiles + Ki67-negative nuclear
profiles). A visual assessment for the Ki67 LI on the same images as used
for DIA was performed by five pathologists independently and provided
semi-quantitative values (Ki67-VE-1, 2, 3, 4 and 5) expressed as the
percentage of Ki67-positive tumor cell profiles. To test the degree of
uncertainty of the reference value, inter-observer variation was estimated
based on Ki67-Count values produced by three observers (Ki67-Count-1, 2
and 3) independently in a subset (n = 30) of the TMA images. Since the
inter- observer variability was found to be negligible, the RV in the whole
series (n = 164) were established by one-observer marking (Ki67-Count),
splitting the job among four observers in approximately equal proportions
[28].

The accuracy of the DIA and VE with regard to the RV was estimated by
one-way ANOVA (Duncan multiple range test was applied for pairwise
comparisons), a Pearson correlation, single and multiple linear regression
analyses as well as an orthogonal linear regression based on principal
component analysis. Agreement between individual measurements was also
estimated based on 95% confidence intervals calculated from the RV CE
and visualized by Bland and Altman plots [129, 130]. Dependence of RV
(n=30) and VE (n=164) inter-observer variation on the magnitude of
measurement was visualized by plots of corresponding standard deviations
against the mean values of the measurements.
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Figure 5. Test grid of frames from the stereology module overlaid on the
TMA spot image

The left and bottom lines of a frame are “forbidden” — the nuclear profiles
intersecting them are not marked. The short line marks (orange for Ki67
positive, green for Ki67 negative tumor cell nuclear profiles) are produced
manually by the pathologist. Total numbers and Ki67 LI are computed by
stereology software at the end of the procedure [28].

2.3.2 Study I

Spatial and Multiparametric Analysis: Heterogeneity Measurements,
Image Segmentation by a Hexagonal Grid

In this study, a methodology for comprehensive Ki67 labeling index
estimation in breast cancer tissue samples stained for Ki67 IHC was
developed. It is based on the systematic subsampling of digital image
analysis-generated data/images into smaller areas (hexagons), thereby
enabling the computation of texture and distribution indicators for Ki67 LI
intra-tissue variability. Each WSI image was subsampled by hexagons of
825pixel size, which corresponds to 0.75 mm circular diameter and 0.4421

mm? area. Hexagonal tiling (HexT) was generated to fit the area of the
region of interest (ROI) in an image, and the individual nuclei extracted by
DIA were assigned to an appropriate hexagon based on their coordinates.
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Hexagons containing no nuclear profiles by DIA were regarded as missing
data; hexagons containing fewer than 100 nuclear profiles were regarded as
insufficiently sampled. A minimum requirement of 20 informative hexagons
per tumor was applied in further analyses. Local Ki67 LI was calculated for
each hexagon. DIA results represented by Ki67-negative and Ki67-positive
tumor cell nuclei with their X and Y coordinates in the WSI were partitioned
into HexT, from which intra-tumor variance indicators (Haralicks’ texture
parameters such as heterogeneity, entropy, dissimilarity, energy,
homogeneity) were computed. The HexT data was also used for automated
detection and quantitative evaluation of Ki67 LI hotspots that were based on
the upper quintile of the HexT data. This indicates approximately 20% of the
tumor tissue area revealing the highest biomarker expression and was
conceptualized as the “Pareto hotspot.” A visual representation of the of
tumor analysis performed by the HexT approach and compared to
pathologist visual estimation is presented in Figure 6.

Human reading:

15; 15;
30; 14;

20

Machine reading:

3..038312:7;21;9; ...
.39;10;15;23;9;...;
.39;6;5;13;12;25;...

12.06%

Figure 6. An improvised comparison of a visual and computerized
estimation of Ki67 LI
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The upper image shows a random area selection for a Ki67 LI estimation
made by the pathologist. The lower image illustrates a systemic subsampling
of the scanned IHC image and reveals the full area coverage by digital
analysis software for an accurate Ki67LI estimation.

The automated Ki67 LI hot spot detection was validated by a visual
review. Three pathologists independently reviewed 50 randomly selected
WSI at low magnification and drew as many as 3 freeform annotations to
delineate the Ki67 hotspots in the tumor tissue, if present. An inter-observer
agreement of the visual hotspot detection was evaluated. The hotspot
annotations from each observer were compared to the corresponding HexT
data [122].

Summary statistics and distribution analyses were performed with
significance tests based on a paired t-test, one-way ANOVA and Duncan’s
multiple range test for pairwise comparisons. A Fisher’s exact test was used
to estimate significant associations in non-parametric statistics. Inter-
observer agreement was tested by kappa statistics. Pearson correlations and
single and multiple linear regression analyses were performed to test
pairwise linear relationships. A factor analysis was performed using the
factoring method of principal component analysis. A cluster analysis was
performed using the K-means algorithm [122].

2.3.3 Study III

Hexagonal Tiling Simulation for Optimizing Breast Cancer Tissue
Sampling Requirements for Ki67LI Representation

A hexagonal tiling approach [122] was exploited to create a tissue
sampling simulation model and test the precision of the construction of
tissue microarrays and breast cancer tissue sampling, taking intra-tumoral
heterogeneity into account. The hexagons in the HexT were chosen to
simulate virtual TMA cores (or corresponding fields of view in conventional
microscopy) with numbers of Ki67 positive and negative cells established by
DIA. The patient cohort was chosen to be the same as described in paper I,
[122], (n=297).

The coordinates of positive and negative nuclei extracted by the DIA
were distributed into a dense HexT overlaid on each WSI. The HexT was
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randomly positioned within the invasive tumor area, Figure 7. Local Ki67 LI
was calculated for each hexagon to construct co-occurrence matrix used to
compute Haralick texture parameters. The individual hexagons, with local
Ki67 LI, were subsequently used as TMA cores for the random sampling
simulations (Figure 7) and approximately resembled a TMA core of 0.75

mm circular diameter and 0.44 mm? area. The tumors were dichotomized
into homogeneous and heterogeneous groups based on the median entropy
value obtained by the HexT methodology. The sampling simulations were
carried out for all three tumor classes: all/mixed, homogeneous and
heterogeneous.

Two different methods were used to simulate the impact of the number of
hexagons/TMA cores on the precision of the sampling to represent the Ki67
LI reported by the DIA of the entire region of interest (ROI). First, the
practice of the “physical” construction of TMA, in which a set of cores are
sampled only once, was simulated by randomly sampling a subset of
hexagons once. Single linear regression analysis was used to compare the
data in a single random selection.

Second, an error analysis was conducted by simulating many samplings
of TMA subsets with hexagon numbers (HexN) of sizes HexN = (1, 2, ...,
15) per case. Each subset is sampled from the set of hexagonal tiles without
replacement, but all hexagons are replaced before sampling a new subset.
From the resulting sampling distribution, error measurements and other
statistics can be inferred. Here, the simulations were used to infer the
coefficient of error (CE) of Ki67 LI predictions using subsets differing in the
number of virtual cores. The interpretations of error analysis results are
made according to a putative CE value of 10% for accessible results for
practical applications.

Both experiments were grouped by tumor heterogeneity and repeated for
HexN = (1,2, ...,15) with hexagons resembling a 0.75 mm diameter TMA
core and the simulations were performed with 50 000 iterations [123].
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Figure 7. The hexagonal tiling of digital image analysis data for tissue
subsampling simulations

Left: Ductal breast carcinoma stained by Ki67 IHC. Overlay showing high
resolution tissue before and after digital image analysis. Right: Tumor with
results of overlaid hexagonal grid for TMA simulation. Ki67 LI indicated by
fill color. Light gray is low Ki67 LI with darker brown showing larger Ki67
LI Red hexagons illustrate one possible subsampled set of four hexagons
(HexN=4).

2.3.4 Study IV

Prognostic Value: The Comprehensive Ki67 LI for Predicting the
Overall Survival of the Patients

The hexagonal tiling method [122] for the computation of intra-tissue
heterogeneity parameters was tested on a different patient cohort
(Nottingham, UK) with the patients’ overall survival (OS) data available.
HALO™ Classifier Module and CytoNuclear v1.4 algorithms were
manually calibrated for the best tumor tissue recognition and cell
segmentation. The HexT data (represented by the local Ki67% values and
their coordinates in the WSI) were used to compute texture and distribution
indicators as well as the “Pareto hotspots” for individual tumors. Four
observers independently reviewed all WSI at low magnification and
annotated up to three freeform areas to delineate the Ki67 hotspots in the
tumor tissue within the invasive tumor component, if present. An inter-
observer agreement of the visual hotspot detection was evaluated. Each
observer provided a semi-quantitative score of Ki67% in the tumor tissue
represented by average Ki67% and hotspot Ki67%, if detected. The final
Ki67% score was calculated by substituting the average Ki67% by a hotspot
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Ki67%, if established. The final Ki67% scores of the individual observers
were averaged for further analyses (Ki67 Obs Mean). All results were then
compared to patients’ OS data.

Summary statistics and distribution analyses were performed with
significance tests based on the paired sample t-test, one-way ANOVA with a
Bonferoni test for pairwise comparisons. Chi-squared and Fisher’s exact
tests were used to estimate significant associations in non-parametric
statistics. The inter-observer agreement was tested with kappa statistics. A
factor analysis was performed using the factoring method of principal
component analysis. Product-limit estimates were used to summarize overall
survival data, and a log rank test was used for comparing OS distributions. A
cox proportional hazards analysis was used to develop a multiple variable
model to predict time to death. Continuous variables were dichotomized to
predict OS using the web-based tool “Cutoff Finder” [131].
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3. RESULTS

3.1 Study I

Digital Image Analysis: Calibration, Quantification and Validation

The Characteristics and Measurement Uncertainty of the Reference Value
Dataset

Summary statistics of the reference value (n = 30), obtained by marking the
tumor cell profiles in the test grid by three independent observers, are
presented in Table 4. No significant variance between the three Ki67-
Counts was revealed by one-way ANOVA (F = 0.08, P = 0.9217), while
strong pairwise correlation among the values was found: r = 0.98, r=0.98, r
= 0.97 (P <0.0001). Similarly, the total number of nuclear profiles marked
did not differ significantly and strong pairwise correlation among the values
was found: r=0.94, r=0.98, r = 0.98 (P <0.0001).

Table 4. Summary statistics of the reference values produced by
independent observers’ markings (n = 30)

Variable Median Mean Std dev Std error Min Max
Ki67-Count-1 21.7  28.6 20.4 3.7 0.3 72.6
Ki67-Count-2 24 29.9 19.5 3.6 0.6 69.7
Ki67-Count-3 23 28.7 18.6 3.4 1.2 69.4
Ki67-Count- 24 29.3 19.4 3.5 0.6 67.4
median

Ki67-Count- 234  29.1 19.4 3.5 0.7 66.8
mean

Total profiles 331 425.7  273.7 50 85 1,098
Observer 1

Total profiles 509 590.7 385.4 70.4 143 1,863
Observer 2

Total profiles 471.5 547.2 331.9 60.6 146 1,544
Observer 3

Ki67-VE-1 10 18.3 15.3 2.8 5 70
Ki67-VE-2 30 40.2 29.4 5.4 2 95
Ki67-VE-3 375 414 27.7 5.1 1 90
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Ki67-VE-4 20 30.2 23 4.2 4 80

Ki67-VE-5 22.5 31 24.1 4.4 1 90
Ki67-VE- 22.5 32.5 25 4.6 2 90
median

Ki67-VE-mean 234 322 23.2 4.2 6.2 80
Ki67-DIA-0 16.1 19.9 12.5 2.3 2.1 50
Ki67-DIA-1 18.5 24.8 159 2.9 1.6 65.5
Ki67-DIA-2 22.8 29.1 15.7 2.9 9.1 68.4

Note: Along with the results of cell markings, other measurements (visual
assessments and DIA) are presented for a reference.

Uncertainty introduced by variance among the three observers counts to
produce Ki67-Count for each individual spot was low: for the 30 spots,
mean standard deviation and mean standard error were 2.6% and 1.5%,
respectively. The agreement within the same confidence interval among all
three measurements was 69%; whereas the pairwise agreement varied from
83% to 86%. The uncertainty of the RV generated was therefore considered
satisfactory. The RV for the whole image dataset (n = 164) were based on a
single observer count per spot (Ki67-Count). Yet, the subsampling
uncertainty was further taken into account in the accuracy estimates.

A Comparison of Image Analysis Results and Visual Estimates to the
Reference Values

Summary statistics of the RV, DIA and VE variables (n = 164) are presented
in Table 5. One-way ANOVA revealed significant variance explained by the
measurement method overall (P <0.0001). Pairwise comparisons revealed no
significant bias among the Ki67-Count and Ki67-VE-2 and Ki67-VE-3
estimates or Ki67-VE-5, Ki67-VE-median and Ki67-DIA-2. Meanwhile,
Ki67- DIA-0, Ki67-DIA-1, Ki67-VE-1 and Ki67-VE-4 produced
significantly lower values.

Pairwise correlations were highly significant (P <0.0001). Remarkably,
correlation between Ki67-Count and Ki67-DIA-0, 1 and 2 improved which
each calibration cycle from r = 0.928 to r = 0.949. Notably, Ki67-Count
correlated with the Ki67-VE-median strongest (r = 0.930), in comparison to
the correlations with the individual VE measurements.
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Single linear regression analyses for the DIA and VE results as
dependent variables and the RV as explanatory variables produced highly
significant (P <0.0001) models in all cases. Remarkably, the determination
coefficients (R-square) improved with each calibration cycle of the Ki67-
DIA-0, 1, and 2 from 0.86 to 0.89 and 0.90. Notably, R-square for the VE-
median (0.86) was the highest amongst the individual VE but reached only
that of the Ki67-DIA-0.

Table 5. Summary statistics of the reference values produced by three
observers with the corresponding data of visual estimates and digital image
analysis (n = 164)

Variable Median Mean Std dev  Std Min Max
error
Ki67-Count 35.0 40.2 25.3 2.0 0.6 98.1
Ki67-DIA-2 30.1 36.5 20.2 1.6 6.4 93.0
Ki67-DIA-1 24.1 31.1 21.1 1.6 1.5 90.5
Ki67-DIA-0 20.4 25.9 18.1 1.4 2.1 85.7
Visual 30 37.2 27.4 2.1 2 95
median
Visual mean 284 36.2 25.6 2.0 2.2 96.4
Ki67-VE-1 15 24.3 23.6 1.8 5 95
Ki67-VE-2 40 43.4 29.6 2.3 2 98
Ki67-VE-3 37.5 44.1 30.0 2.3 2 98
Ki67-VE-4 22 31.6 24.3 1.9 1 95
Ki67-VE-5 30 37.7 27.7 2.2 1 100
Total profiles 2,372 2,658.7 1,3904 108.6 464 7,452
observer *

Total profiles 2,150.5 2,293.2  796.8 62.2 752 4,302
DIA-2
Total profiles 1,920.5 2,022.7  670.1 523 1,012 3,788
DIA-1
Total profiles 4,203.5 4,385.0 1,420.2 1109 1,640 7,939
DIA-0

*Total nuclear profiles observer counts are multiplied by four in this table to
be comparable to the DIA total profile numbers (the box grid used for the
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observer count covers fourth of the image area). DIA, digital image analysis;
VE, visual estimate.

The correspondence between the Ki67-DIA-2 and the RV was also tested,
taking into account the uncertainty of the RV related to the subsampling of
the tissue by the test grid. The confidence interval for the RV was calculated
and the Ki67-DIA-2 values were tested for fitting the confidence interval.
The R-square of the model was 0.90, the accuracy factor was 0.82.
Interpretation of the plot and the slope tilt from the ellipse axis revealed a
bias: an underestimation of the Ki67-Count by the Ki67-DIA-2 was
observed at the higher end of the RV scale, as well as an overestimation at
the low end.

The Prediction of the Reference Values by an Inverse Regression and
Measurement Error Correction

Ki67-DIA-2 enabled fair accuracy and outperformed the 5 VE
measurements, both individual and the median. Yet, the measurement bias
for the Ki67-DIA-2 was established and enabled a measurement error
correction procedure to be used to predict the ground truth in real life with
maximum accuracy. Inverse regression analyses were performed to retrieve
the correction criteria (Table 6). To avoid the potential impact of some non-
linearity that was noted and to derive the most useful inverse regression
model for an accurate prediction of the ground truth in the interval of
clinical importance, a regression model Ki67-DIA-2 < 40 was produced,
based on the observations with Ki67-Count values less than 40% (n = 92). In
addition to the single regression models, multiple regression models with
inclusion of both Ki67-DIA-2 and Ki67-VE-Median gave slightly higher R-
square value (0.91) than the Ki67-DIA-2 alone (0.90). Therefore, the DIA
approach with the calibration of the algorithm settings-based quantified bias
enabled for a most accurate measurement of the Ki67 LI, while the VE of
five pathologists were consistent but gave little added value in terms of
accuracy, as compared to the automated DIA measurement.
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Table 6. Single and multiple linear inverse regression models for predicting
reference values as a dependent variable (n = 164, P <0.0001 for all models
and slope estimates)

Variable R® Intercept Intercept Slope Slope
estimate P estimate standardized

estimate

Single

regression

models:

Ki67-DIA-2 0.90 -3.1183 0.0165 1.1878 0.9494

Ki67-DIA- 0.75 -4.3913 0.0085 1.1472 0.8688

2<40*

Ki67-DIA-1 0.89 5.0453 <0.0001 1.1309 0.9447
Ki67-DIA-0 0.86 6.8232 <0.0001 1.2916 0.9278
K67-VE- 0.86 8.3195 <0.0001 0.8572 0.9302
median

Multiple

regression 091 -0.3245 0.8096

model

Ki67-DIA-2 0.8068 0.6448

K67-VE- 0.2985 0.3239
median

*Ki67-DIA-2 < 40 - represents a regression model for Ki67-DIA-2 with
only Ki67-Count less than 40% cases included in the analysis (n = 92). DIA,
digital image analysis; VE, visual estimate.

The Effect of the Prediction and Measurement Error Correction on Ki67
Dichotomization Accuracy

The effect of VE and DIA inverse regression models to predict the RV on
the accuracy of patient dichotomization at RV cut-offs of clinical importance
(>10, 15 and 20%) was also tested (see [28] for detailed information). A
total misclassification rate at different cut-offs varied from 11 to 18% for the
VE-based and 5 to 9% for the DIA-based prediction, respectively. In
summary, the DIA-based prediction of the RV enabled the classification
error rate half of that of the VE- based prediction, it was less than 10% at all
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cut-offs tested, and could be further improved by the attempts at
measurement error correction.

3.2 Study II

Spatial and Multiparametric Analysis: Heterogeneity Measurements,
Image Segmentation by a Hexagonal Grid

Correlation of the Data from the Overall Image Analysis of WSI, from HexT
and from Pathology Reports

The Ki67 LI calculated by the WSI DIA and the median Ki67 LI obtained
from the HexT (HexSize825) data revealed perfect correlation (r = 0.9967, p
< 0.0001) without any significant bias detectable by linear regression with

the Hex median as the dependent variable (r2 = 0.997, model p < 0.0001,
intercept = —0.46808, slope = 1.02341). The pathology report for Ki67 LI

could be predicted from the WSI DIA Ki67 LI with some bias (r2 = 0.754,
model p < 0.0001, intercept = —4.16059, slope = 1.21154).

The degree of proliferation measured by various Ki67 LI indicators was
associated with higher histological grade and more aggressive types of
breast cancer. More importantly, grade 3 tumors revealed less entropy than
grade 1 or 2 tumors (p = 0.0104). This finding was also reflected by relevant
ANOVA results where G3 tumors, presented with lower entropy values had
compared to the G1 and G2 tumors (p < 0.05). It can be interpreted that
high-grade tumors are more spatially homogenous with respect to their
proliferative activity. The bimodality indicators did not reveal any
significant clinic-pathological associations or relations to Ki67 LI values.

Factor Analysis of the Ki67 Indicators

Factor analysis was performed on 297 patients with a complete set of data
obtained from the DIA of WSI and from the HexT analysis. Ki67 LI from
pathology reports was also included in the data set. The rotated factor
pattern of the 4 factors was extracted with eigenvalues of 5.8, 5.1, 2.3, and
1.9, respectively. Factor 1 was characterized by strong loading of the
majority of the Haralick texture parameters; the strongest positive loading
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was with the entropy indicator, and factor 1 was therefore named the entropy
factor. Factor 2 was characterized by positive loading of the Ki67 LI
indicators from WSI, HexT, the pathology report, and it was therefore
named the proliferation factor. Similarly, factor 3 was named the bimodality
factor, while factor 4 was termed the cellularity factor, based on the data
obtained from both the WSI DIA and HexT data.

In summary, the factor and cluster analyses present evidence for two
linearly independent features with respect to the intra-tumor heterogeneity of
proliferative activity as measured by Ki67 expression. The first is based on
entropy and other texture indicators, and the other is based on bimodality
indicators.

Automated Hotspot Detection and Measurement. The Concept of the Pareto
Hotspot

The DIA data, when subsampled into the hexagonal tiles, provided an
opportunity to analyze the Ki67 LI distribution in the context of the 2D
space of the tumor tissue. Furthermore, the tumor areas with high proportion
of positive cells can be specifically highlighted to reveal hotspots of Ki67
expression. The Pareto principle (also known as the 80-20 rule) was applied,
which states that for many events, approximately 80% of the effects come
from 20% of the causes. We propose the concept of a Pareto hotspot,
represented by the upper quintile of the biomarker expression in the tissue.
This approach enabled us to highlight the most prominent areas of
biomarker expression in the tumor tissue by overlaying the Hex with the
fifth quintile of Ki67 LI on the tumor tissue image, forming the Pareto web
(an example is presented Figure 8). This visualization approach does not
depend on any assumptions about tumor heterogeneity, as the approximately
20% of the tumor tissue with the highest biomarker expression levels would
be marked in all cases. Nevertheless, the relevance of the Pareto web must
be appreciated in the context of the heterogeneity metrics for the individual
tumor.
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Figure 8. A visual representation of tumor analysis performed by the
Hexagonal tiling approach

The hexagon grid is overlaid on the original WSI of Ki67 IHC to reflect
subsampling of the DIA-generated data. The magnified hexagons illustrate
side-to-side the details of the original (left) and DIA markup (right) images.
The hexagon colors represent different ranks of the Pareto web, highlighting
the upper fifth quintile of the HexT Ki67 LI distribution (for increased detail,
yellow Hex represent the 80-90" percentile; orange Hex represent the 90—
95" percentile; red Hex represent the 95-100" percentile).
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The Validation of HexT Data Based on Hotspot Detection by a Visual
Review of the WSI

Hotspots were identified in 20, 21 and 23 tumors by three pathologists
after a visual investigation of 50 WSI. The agreement between the observers
(taken pairwise) in detecting at least 1 hotspot was estimated by kappa
coefficients of 0.55, 0.63, and 0.85. Consequently, the hotspots were
identified in 27, 22, or 15 tumors by 1, 2 or all 3 observers, respectively. An
analysis of the actual areas and hotspot overlaps, outlined by all 3 observers
in the 15 tumors (as above), revealed that on average, hotspots represented
4.8% of the tumor area (range, 0.6 to 17.0 %). Meanwhile, on average,
26.0% of the hotspot areas coincided for all 3 observers (range: 1.7 to
70.8%). Pairwise comparisons revealed hotspot area overlaps of 42.0, 43.8
and 50.1%.

The hotspot annotations provided by the 3 individual observers revealed
significantly higher Ki67 LI values by a paired t-test (mean differences of
8.4%, 8.7%, and 10.1%; p < 0.0009, p < 0.0008, and p < 0.0003,
respectively) compared to the remaining area of the same tumors. The mean
differences in the hotspot Ki67 LI between the observers were not
significant. The mean hotspot Ki67 LI from all 3 observers was not
significantly different (p = 0.0675) from the Ki67 LI 90" percentile (the
median of the Pareto hotspot).

3.3 Study III

Hexagonal Tiling Simulation for Optimizing Breast Cancer Tissue
Sampling Requirements for Representing Ki67LI

To achieve a R2

random selection of at least four, three and twelve cores were required in the

= 0.95 value in the single linear regression models, a

mixed, homogeneous and heterogeneous tumors, respectively.

The mean coefficient of error for Ki67 LI estimates are plotted for
increasing TMA core numbers in the tumor subgroups (Figure 9). To
achieve the CE of 10%, 8 cores 0.75 mm in diameter were required in the
mixed group of tumors. Respectively, 5-6 or 11-12 cores were required in
the subgroups of homogeneous and heterogeneous tumors.

To achieve a CE of 10%, approximately 4 000 nuclei were required in the
mixed group of tumors, as depicted in Figure 10. For the subgroups of

44



homogeneous and heterogeneous tumors to reach the same error, 3 000 and
7 000 nuclei were necessary, respectively.
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Figure 9. Error results as function of tissue area evaluated

The resampling procedure was simulated for each individual tumor case
using 50 000 iterations for each count of hexagons (HexN). The analysis
results are split by the tumor heterogeneity level. Error measurement
(Coefficient of error) is expressed by mean of all cases.

0.4

—— All/Mixed
---- Homogeneous
— = Heterogeneous

CEnucei
0.2
I

0.1
|
|
|
|
|

0.0

T T
0 2000 4000 6000 8000 10000
Nuclei Count

Figure 10. Error results as a function of nuclei counted

The coefficient of error plotted as a function of nuclei count. See text for
transformation of TMA by the core number to nuclei count. The analysis
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results are split by the tumor heterogeneity level. Error measurement
(Coefficient of error) is expressed by a mean of all cases.

3.4 Study IV

Prognostic Value: The Comprehensive Ki67 LI for Predicting the
Overall Survival of the Patients

Hotspot Detection by a Visual Review of the WSI

Four observers reviewed 152 WSI, and at least one hotspot was identified in
37, 67, 32 and 27 tumors by each investigator, respectively. The agreement
between the observers (taken pairwise) in detecting at least one hotspot was
estimated by kappa coefficients ranging from 0.20 to 0.50. An analysis of
the actual areas and hotspot overlaps, outlined by 2 or more observers in the
46 tumors, revealed that, on average, 24.4, 13.9, and 4.4% of the hotspot
areas coincided between the 2, 3, and all 4 observers, respectively. The
tumors with hotspots detected by at least two observers were characterized
by higher entropy (p < 0.03), higher correlation (p < 0.05) and lower energy
(p < 0.02) values but did not differ with regard to the other Haralick or
bimodality indicators.

A Factor Analysis of the Comprehensive Ki67 Indicators

A factor analysis was performed on 152 patients with a complete set of DIA
HexT data along with selected pathology data. The rotated factor pattern of
the 5 factors, extracted with eigenvalues of 8.8, 4.2, 2.8, 1.8, and 1.3,
respectively (Figure 11). Factor 1 was characterized by positive and very
similar loadings of the various Ki67% indicators and was best interpreted as
the “proliferation” factor. Factor 2 was characterized by strong positive
loadings of the Haralick indicators of “disordered texture” (contrast,
dissimilarity, entropy) and negative loadings of energy and homogeneity.
Factor 3 was characterized by positive loadings of reflective of tumor
sample size evaluated by DIA and pathology report along with the NPI.
Factor 4 was represented by both bimodality indicators, while factor 5 was
characterized by the correlation parameter and cellularity of the tumor.
Associations of the tumor Ki67 indicators and the factor scores with relevant
tumor characteristics were explored by ANOVA. In particular, the
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histological grade (G) was associated with higher factor 1 (p < 0.0001) and
factor 3 (p < 0.0001) scores as well the corresponding primary variables.
Factor 2, 4, and 5 scores did not reveal any significant associations.
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Figure 11. The rotated factor pattern of the comprehensive Ki67 indicators
and pathology data

The factor loadings of the comprehensive Ki67 indicators and pathology
data (tumor size and Nottingham Prognostic Index) are plotted.
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The Predictors of the Overall Survival of the Patients

Several multivariable models were developed to account simultaneously for
the comprehensive Ki67 indicators and other characteristics of the tumors to
predict OS (Table 7). Model Nos. 1 and 2 revealed an independent
prognostic value of worse OS for Ki67 bimodality indicators (Ashman’s D
or factor 4 scores) in the context of HR and HER2 positivity. Remarkably,
neither chemotherapy, nor none of the Ki67 indicators of the level of
proliferative activity (Ki67 LI, Ki67 Obs Mean, Ki67 WSI or Ki67 HexT
Mean, median, percentiles) could be verified as significant independent
predictors of OS in this dataset.

Table 7. Cox multivariate regression models for predicting the overall
survival of the patients

Hazard ratio 95% confidence limits P value

Model no. 1

(n=147) 0.0048
HR positive 0.662 (0.504, 0.869) 0.0030
Ashman’s D 1.320 (1.035, 1.685) 0.0254

Model no. 2

(n=147) 0.0008
HR positive 0.645 (0.489, 0.851) 0.0019
HER2 positive 2.178 (1.016, 4.669) 0.0455
Factor 4 1.592 (1.186, 2.186) 0.0020

Model no. 3

(n=141) 0.0030
HR positive 0.501 (0.359, 0.700) 0.0001
HER2 positive 2.800 (1.248, 6.279) 0.0125
Ashman’s D 1.322 (1.030, 1.724) 0.0288
Chemotherapy 0.384 (1.184, 0.801) 0.1107

The Ki67 indicators and factor scores were dichotomized using the web-
based tool “Cutoff Finder” [131] and were analyzed using Kaplan—Meier
estimates and log rank tests (Figure 12). Many indicators allowed for a
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significant dichotomization of the patients into the prognostic subgroups.
The bimodality of Ki67 intratumor expression, represented by factor 4
scores (p = 0.0081) and Ashman’s D (p = 0.0017), provided significant cut-
off values for predicting OS. The level of proliferative activity, represented
by a broad range of indicators (factor 1 scores, Ki67 HexT Mean, median,
percentiles, Ki67 LI, Ki67 Obs Mean, positive cell density) served as a
significant single predictor as well.
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Figure 12. Cut-off values for the Ki67 indicators as single predictors of
overall survival
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DISCUSSION

This study reveals several aspects that are crucial for improving the
prognostic value of the Ki67 proliferative tumor activity index, which plays
an important role in personalized therapy decisions. First, the accuracy of
the Ki67 labeling index, obtained by digital image analysis, is higher than
that of pathologists’ visual estimates and could be further improved by the
measurement error correction procedures. More importantly, image analysis
algorithms were calibrated by comparing results with reference dataset
obtained by stereological counts. Second, the intra-tumor heterogeneity of
proliferative tumor activity could be visualized by hexagonal tiling approach
in the whole slide image along with automated detection and quantitative
evaluation of Ki67LI hotspots. Additionally, the HexT approach was
utilized to optimize tissue sampling requirements for breast cancer tissue to
represent Ki67 LI taking its intra-tumor heterogeneity into account. Finally,
the spatial heterogeneity indicators of proliferative tumor activity, measured
by DIA of Ki67 IHC expression and analyzed by the HexT approach, can
serve as an independent prognostic indicator of OS in breast cancer patients
and outperform the prognostic power of the level of proliferative activity.

Digital image analysis and its application to digitalized
immunohistochemistry slides has become a rapidly developing approach in a
field of pathology research. The greatest benefit of DIA lies in the rich,
multi-parametric, tissue-related data that can be retrieved by processing
high-resolution scanned microscopy images. DIA enables the higher
analysis capacity from IHC slides than could ever be achieved by manual
counts. For instance, a huge number of cells were analyzed in various
experiments within these thesis: a total of 36 million cells with an overall

2

tumor area of 15 000 mm~ and 13 million cells in the tumor area of 6 000

mm? were evaluated in experiments described in study II and study IV,
respectively. In study II, 121 000 tumor cell profiles were analyzed per IHC
slide on average, with a range from 11 000 to 419 000 cells. From this point
of view, the retrieval of only one indicator (such as Ki67 LI) in WSI from
each tumor section can be regarded as a substantial underutilization of the
data.

Digital image analysis not only brings a higher analysis capacity,
reproducibility and accuracy compared to manual counts, but it can also
serve as an additional tool for individual risk prediction for the patients. An
automated scoring of immunohistochemistry reveals stronger prognostic
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stratification of patients compared to visual evaluation [132]. A recent paper
revealed that micro-architectural features established by DIA can indicate a
different metastatic potential of various types of breast carcinoma [133].
Stdlhammar G et al. indicated that the DIA of Ki67 LI estimation
outperformed manual mitotic counts, the visual estimation of Ki67 LI as
well as other markers of cell proliferation, and added significant prognostic
information [32]. Furthermore, an automated scoring of Ki67 contribute
significantly to the multigene models that predict the risk of recurrence in
breast cancer with high accuracy and sensitivity [15].

Despite the broad DIA application to improve immunohistochemistry
interpretation, the validation procedures of DIA algorithms are not
frequently used. The major disadvantage of DIA experiments described in
some research papers is that a pathology report data or subjective visual
estimations are chosen to be as a criterion standard. The DIA quality and
accuracy needs to be assured before the implementation into clinical
practice, much like the sources of variation must be clarified. In the first part
of this work (Study I) [28], the aspects of analytical validation procedure,
accuracy and quantification of the measurement bias were addressed. We
aimed to develop a DIA validation and calibration methodology for
automated K167 LI estimation by comparison to the Ki67 LI obtained on the
same images by stereological counts as the most appropriate ‘“gold
standard.” Results showed that visual assessment made by two pathologists
produced significantly lower values and the median of visual assessment by
five pathologists did not reach the accuracy obtained by the calibrated DIA
tool. We also tested the potential clinical impact of the accuracy achieved by
applying DIA- and VE-based predictions of Ki67 LI to dichotomize patients
by frequently used cut off values at 10%, 15% and 20% and found that DIA
enabled the classification error rate two times lower than that of the visual
assessment. These findings are an additional evidence that single visual
estimations, or “eyeballing,” cannot be used as a reliable measurement or as
a reference values for DIA wvalidation purposes when the -clinical
requirements for biomarker quantification accuracy are needed.
Furthermore, our results support the notion that inter-observer concordance
of VE is relatively low, especially in intermediate Ki67 LI group, which is
the most important for making clinical decisions, as found by Ruohong et al.
[118].

In this experiment (Study I), we have also found that the global bias of
the DIA became not significant only after the second (quantitative)
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calibration step and revealed an improvement in the prediction of the DIA
outputs with each calibration step. Consequently, it induces that the initial
step in DIA experiments and/or implementation into laboratory information
system (LIS) should be the validation process of a selected DIA tool. The
measurement accuracy can be further improved by estimating the
measurement bias from the criterion standard and by adjusting the DIA tools
accordingly.

In the second part of this work (Study II), a methodology for measuring
spatial distribution and texture parameters in tumor sections stained for Ki67
IHC are described. As expected, the technique that is based on the
systematic subsampling of scanned IHC slide into the hexagonal tiles and
enabled to compute Ki67 LI intra-tumor variability parameters. The
approach provides numerous benefits. First, multiple measurements of the
IHC marker enable the application of distribution statistics from a single
DIA run. Secondly, data of biomarker expression in 2D space enable the
calculation of texture indicators in the region of interest that reflect the
global measure of intra-tumor heterogeneity; these indicators, along with the
distribution statistics, can be used for inter-tumor comparisons and the
stratification of the tumors into homogeneous and heterogeneous categories.
In similar studies, the heterogeneity assessments were made by comparing
different samples taken from the same tumor. For this purpose, physical
TMA sampling based techniques are used to measure the discordance of
biomarker expression between several regions (TMA cores) in the tumor
[98, 134, 135]. While some differences of IHC staining pattern could be
identified  within the tumor in TMA  Dbased studies, the
confirmed heterogeneity levels of the ER, PgR, HER2 expression are
uncommon (<10% of cases) when using this method [134]. The major
disadvantage of a TMA-based technique is that it directly depends on tissue
sampling and does not reflect the diversity of the whole tumor tissue.

Similarly to this thesis, digital image analysis applications for
heterogeneity detection have been described by Potts et al. [96], who
investigated the breast cancer  heterogeneity of  HER2
immunohistochemistry. The authors applied diversity indices used in field in
the ecological sciences to evaluate cell-level and tumor-level heterogeneity
in HER2 THC tissue sections, which were analyzed by DIA. A heterogeneity
heat-map for visualizing individual tumor heterogeneity and HER?2
expression levels was developed. More importantly, they recognized that the
number of sampled regions might be insufficient to make determinations of
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tumor level heterogeneity; thus, the use of a methodology that samples the
entire tumor sample on a slide may be required for this type of analysis. The
hexagonal tiling approach, which was developed during this work, is a
methodology that relies on systematic subsampling of automated DIA-
generated data by regular polygons in arrays to measure and visualize the
spatial intra-tumor texture/heterogeneity of IHC biomarker expression in
whole slide image. We must note that the various percentile ranges obtained
from the HexT distribution statistics may prove to be more biologically
relevant and clinically useful indicators of tumor proliferative activity than a
simple Ki67 LI average, especially in heterogeneous cases (the Pareto
hotspot is one possible automated indicator that mimics the current clinical
practice of Ki67 LI evaluation in hotspots). Furthermore, an automated
highlighting of potential hotspots on the WSI (e.g., with a Pareto web) can
serve as a decision-support and quality assurance tool.

In study II, multivariate analyses extracted 4 major factors of intra-tumor
variance, defined as entropy, proliferation, bimodality, and cellularity. These
factor scores were further used in cluster analysis, which outlined the
subcategories of heterogeneous tumors with predominant entropy,
bimodality, or both at different levels of proliferative activity. However, a
stratification of the tumors into homogeneous and heterogeneous groups
would require evidence-based definitions, preferably ones that reflect
clinical outcomes. While formal definitions for bimodality do exist (for
instance, if Ashman’s D is more than 2), a bottom-up approach, based on the
percentile distribution of the real data, could be also considered. For
example, the tumors could be classified as heterogeneous if their entropy
and/or bimodality indicators were in the upper quartile of the distribution.

The clinical utility of Ki67 IHC as a prognostic and predictive factor is
obscured by both the lack of standardized measurement/sampling
methodologies and the absence of hotspot definitions, which might be
potentially achieved by DIA applications. Christgen et al. have investigated
the impact of ROI size on Ki67 quantification by computer-assisted image
analysis in breast cancer. After manual identification of the highly
proliferative areas on WSI, they gradually increased the ROI size by
expanding freeform annotations, based on the number of cells detected by
the image analysis in the ROI, and showed that the median Ki67 index
decreased from 55 to 15% by increasing the size of the ROI. This indicated a
significant misclassification between low- and high-proliferative tumors
dependent on the size the selected ROI. While manual Ki67 counts remain
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the standard in clinical diagnostics, the authors proposed that the automated
image analysis may be included as an optional add-on in selected cases and
may help to standardize and document the hotspot size. In our experiments
(studies II and IV), hotspots of Ki67L1 were manually annotated by three
pathologists and inter-observer agreement of the visual hotspot detection
was evaluated and then compared to the corresponding HexT data. Results
revealed a relatively low agreement in visual detection of at least one
hotspot: kappa values ranging from 0.2 to 0.5 in study II (n = 50) and 0.55 to
0.85 in study IV (n = 152). Moreover, the size and shape of the hotspots and
their spatial overlap varied greatly between the cases and observers. Similar
results of high inter-observer variability in determining the HS and Ki67 LI
calculations were found in some other studies [19, 22, 118, 136]. In our
experiment, the HS detected by pathologists were associated with Hex
containing higher Ki67 LI values and were comparable with the Pareto
hotspot median Ki67 LI.

Regarding the matter of unstandardized Ki67 IHC tissue evaluation and
TMAs construction requirements, the principles of hexagonal tiling was
utilized for multiple virtual simulations of tissue sampling. The extraction of
Haralicks spatial parameters allowed to take tissue heterogeneity into
account. We must note that the Haralick entropy threshold value is not
clearly defined. Therefore, the optimal method to split the dataset it into
equal parts by median was chosen. The results were very surprising and
revealed different numbers of TMA cores needed depending on tumor
heterogeneity: to achieve a coefficient error of 10%, 5-6 cores for
homogeneous cases, 11-12 cores for heterogeneous cases, in mixed tumor
population 8 TMA cores were required. These results are not in line with
previous studies where, most commonly, the recommended number of TMA
cores varied from 1 to 4 [137-140]. The discordance of the results may be
explained by the differences in sampling iterations. Previous studies were
mainly based on physical tissue sampling [139-143] or DIA experiments
with artificial TMA cores [138, 144, 145]; however, the sampling was
limited by relatively low numbers of repetitions (usually single random
sampling). One the other hand, the experiment described in study III was
modeled to virtually subsample scanned whole slide images 50 000 times
with each TMA core number, which enabled to compute statistically strong
error estimates. Additionally, this experiment provides evidence for
minimum cell counting requirements to achieve robust KI67 LI
measurements. The current clinical guidelines on the minimal number of
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cells to be counted are quite arbitrary, mostly set in the range of 500 and
2000 tumor cells [24]. However, to achieve adequate precision, at least 1000
cells are recommended, while 500 cells would be acceptable as the absolute
minimum [24]. Importantly, our findings reveal that to achieve 10% CE,
approximately 4 000 nuclei must be counted when the intratumor
heterogeneity is mixed/ unknown. These cell counts are rather large to
accomplish in clinical practice for all breast carcinomas but could be
feasible for cases considered as “grey zones,” e.g., in the range of Ki67 LI
10-30% [12], which would require more precise measurements.

In this study, a novel hotspot detection method based on measuring a
stable proportion of the tumor tissue at the high end of the range (90"
percentile) and conceptualized as the “Pareto hotspot” is proposed. This
method has many advantages when compared with other studies, which have
been carried out to detect the hotspots of Ki67 LI immunohistochemistry in
breast cancer and other tumors. While some investigators have employed
tissue texture and density based metrics [96, 146], others have proposed
automated algorithms for detecting the hotspots of biomarker expression
[15, 22, 33, 34, 36, 37, 120]. Nevertheless, methodologies related to manual
counts [35], multiple visual estimations with an application of diversity
statistics [69] or based on tissue microarray construction [134, 135] are still
used to assess the heterogeneity of biomarker expression. The potential of
spatial statistics derived from regular grids are broadly used in other fields
that are closely related to spatial modeling (for example, geography or
ecology) and has been shown to be the most efficient way for mapping
spatial variation. In medical research, a rectangular grid is most commonly
used due to its relative mathematical simplicity. Gudlaugsson et al. [22]
described a tool based on grid structure to identify the HS of Ki67 LI in
breast cancer. The squares were selectively placed on the regions with
subjectively high numbers of positive nuclei, and Ki67 LI was counted by
DIA inside each square. They found that Ki67 scores of semi-automated
hotspots yielded reproducible and prognostically significant results.
However, this method directly depends on the manual selections of the HS
area, and the Ki67 scores were based on the area but not on the number of
nuclei — as it should be due to the possible variation in the density of cells.
Other studies have also used image segmentation techniques by
automatically applying rectangular grids [15] [37]. In a recent paper [15],
Ki67 LI values obtained by DIA from rectangular grids were used to predict
the Oncotype DX risk categories of patients in their breast cancer patient
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cohort (ER/PgR-positive, HER2-negative, lymph node-negative, stages I to
II). It was found that high Ki67 indices were significantly correlated with a
higher Oncotype DX risk-of-recurrence group. The Ki67 index was the
major contributor to a machine learning model which, when trained solely
on clinico-pathological data and Ki67 scores, identified Oncotype DX high-
and low-risk patients with 97% accuracy, 98% sensitivity and 80%
specificity [15]. The latter experiments are partly similar to HexT approach
for HS detection, as it is based on image segmentation into equal regions. In
contrast, HexT exploits hexagonal tiles, which allows for almost perfect
WSI segmentation and provides a better coverage of the HS area, which is
usually complex and irregular in terms of shape, whereas the rectangular or
circular grid shape has a side-effect that the tissue located at the corners of
the frames will never be sampled. The use of hexagons does not suffer from
this: the dense HexT ensures that all parts of the tissue are considered with
the same probability. Additionally, the Pareto principle measures equal
tumor tissue proportion and could be easily modified to another range or
rules, depending on the purpose of the study. This simple approach is less
sensitive to hotspot shape and size (for instance, a small and irregular HS
might be missed by measuring Ki67 LI in top 5 square tiles containing at
least 500 tumor cells) and allows to avoid tissue or staining artefacts, as it
could be easily identified by reviewing analysis output. In general, an
employment of DIA technologies for automated HS detection may be useful
in several aspects: a) it could be used to standardize the size, shape,
temperature, gradient and other characteristics of the hotspots and create
proper HS definitions; b) the pathologists’ daily work could be optimized by
only reviewing automatically highlighted HS areas and the estimates instead
of spending time on counting cells and trying to detect the hidden hotspots
in the whole tissue sample; ¢) it could help to achieve a high reproducibility
and objectivity in HS measurements; d) the goal of better patient
stratification for individualized therapy might be reached.

The HexT experiment (Study II) was designed to prove the principle
rather than to test the clinical utility of the HexT approach, and patient
follow-up was not available in the current data set. To overcome this
limitation, study IV [124] was designed, and the previously described HexT
principle was applied with another DIA algorithm on a breast cancer patient
cohort containing long-term follow-ups and survival data. In study IV [124],
a broad set of Ki67 IHC parameters, representing the level of proliferation,
the pattern of distribution in the tissue, bimodality and texture indicators
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were tested in prognostic models along with conventional clinico-pathologic
characteristics of the breast cancer patients. All visual and machine-
generated indicators of the level of Ki67 expression in this study provided
significant cut-off values as single predictors of OS. However, only
bimodality indicators (Ashman’s D, in particular) served as the independent
OS predictors in the context of HR and HER2 status and outperformed the
prognostic power of the level of proliferative activity [124]. This finding
was unexpected, but it may have a practical impact. Due to the biological
cancer tissue variation, it is challenging to achieve a consensus for Ki67LI
clinically valid cut-offs and to ensure the analytic accuracy of IHC testing
where high a precision of quantification is required. The DIA-based
approaches and its derivate parameters, such as bimodality or other
heterogeneity indicators, may prove to be robust and less sensitive to these
variations. Our data suggest that the variability of intra-tumor proliferative
activity may be a fundamental feature of tumor aggressiveness affecting the
final outcome of the disease, even more important than the average level of
proliferation in tumor tissue. At least it is an independent factor of the
disease behavior.

The whole work contains several limitations. In study I, the guidelines
for analytical test validation were not strictly followed, since the subject
(IHC image) is different from the analytical test samples used in medicine.
Firstly, the criterion standard was established by one observer markings,
splitting the job (whole series n = 164) among four observers in
approximately equal proportions. Since the inter-observer variability was
found to be negligible in the testing set (n = 30), it was considered to further
rely on one observer’s counts. Second, the repeatability of the tests was not
tested, as it would require time-consuming efforts to repeat the stereological
count manually, and it was not the main focus to investigate the intra-
observer agreement of stereological counts. Third, the DIA prediction
accuracy was not validated on an independent dataset, since it requires
another set of criterion standard data. In a hexagonal tiling experiment
(Study II), relatively large surgical excision samples of breast cancer tissue
were used, and the approach was not tested on core needle biopsy material.
It remains to be investigated if small core biopsy samples are sufficient for
texture statistics due to the potential lack of tumor tissue in relation to the
applied Hex size. Additionally, the DCIS component was not excluded in
our analyses. Although we did not find evidence that DCIS could
significantly impact hotspot detection in our study, a clinical study design
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would require manual or automated exclusion of DCIS. Despite these
limitations, the validation step opens better perspectives to use automated
DIA tools to investigate the tissue heterogeneity and clinical utility aspects
of Ki67 and other IHC biomarker expression.

In general, the results of this thesis suggest that adequate accuracy levels
of Ki67 LI measurements can hardly be achieved by manual counts and
highlight the importance of high-capacity, computer-based IHC
measurement techniques to improve the efficiency of testing. In addition,
automated hotspot or tumor heterogeneity detection with standard
definitions by DIA would provide another advantage compared to the visual
evaluation by conventional microscopy or inspection of whole slide images.
Most importantly, this work is an additional evidence that automated Ki67
LI and its heterogeneity indicators could potentially guide the clinical
choices for breast cancer treatment.

CONCLUSIONS

1. A methodology for ensuring and improving the accuracy of the digital
image analysis approach in breast cancer Ki67 immunohistochemistry
was developed. Ki67 LI obtained by digital image analysis outperforms
visual estimates, taking manual stereological counts as a reference value,
and could be further improved by the measurement error correction
attempts. Automated Ki67 LI allows to dichotomize patients at reference
value cut-offs of clinical importance (>10, 15 and 20%) at a two-times
lower misclassification rate compared to that of the visual assessment
consensus of five pathologists.

2. The hexagonal tiling approach, based on the systematic subsampling of
DIA-generated data into a HexT array, enables the computation of
texture and spatial distribution indicators for Ki67 LI intra-tumor
variability. Breast cancer cases could be dichotomized into homogenous
and heterogenous with Ki67 LI based on these indicators. The HexT
approach allowed to visualize Ki67 LI intra-tissue heterogeneity in the
whole slide image along with an automated detection and quantitative
evaluation of Ki67 hotspots, which were based on the upper quintile of
the HexT data, conceptualized as the “Pareto hotspot.” Furthermore, this
approach can potentially be applied to numerous different IHC markers
and tissues as an effective way of reflecting intra-tissue heterogeneity for
decision support and quality assurance.
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. Hexagonal tiling data provide a useful model for establishing tissue
sampling requirements for biomarker studies and visual estimations,
which depend on intra-tissue heterogeneity and must be determined on a
peruse basis.

. The spatial heterogeneity indicators (the bimodality status in particular)
of proliferative tumor activity, measured by the DIA of Ki67 IHC
expression and analyzed by the HexT approach, can serve as an
independent prognostic indicator of OS in breast cancer patients and
outperform the prognostic power of the level of proliferative activity.

PRACTICAL RECOMMENDATIONS

. Analytical validation procedures, based on appropriate reference data,
should be used for digital image analysis algorithms in research and
diagnostic testing.

. The heterogeneity indicators of a biomarker expression should be taken
into account for Ki67 LI estimation. To achieve low error estimates,
when evaluating Ki67 LI by cell counting, approximately 4,000 nuclei
must be evaluated if the intratumor heterogeneity is unknown. In breast
cancer cases of the lower proliferative activity (Ki67 LI<20%), a larger
sampling is required to achieve the same error rates as for the highly
proliferative tumors.

. Tissue heterogeneity impact should be taken into account for selection of
an optimal number of TMA cores for biomarker research studies: for
Ki67 LI in breast cancer, the number of 5—-6 TMA cores is sufficient for a
homogeneous expression in the tissue, 8 cores for tumors with mixed
heterogeneity and at least 11 cores for heterogeneous tumors.
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FUTURE PERSPECTIVES

Implementing Digital Image Analysis into Clinical Practice

The biggest advantage and clinical utility of the DIA tools is that they could
be implemented in laboratory information systems and could serve as
decision-support tools for pathologists. Since the DIA algorithms are
analytically/clinically validated and tested, they can be further introduced
into LIS, which would be the final goal of this study. Besides the fact that
this process was out of scope in this particular thesis, it is in progress in the
National Center of Pathology (Vilnius, Lithuania), and a pilot study has
been already run. The initial results indicated that the implementation
process should be coordinated with pathologists by clarifying their
expectations and informing them that a digital analysis will never replace
human interaction but could assist and significantly reduce the amount of
work.

Heterogeneity Definitions and Clinical Validation

The proposed hexagonal tiling approach enables multiple definitions of
hotspots besides the Pareto principle; however, they were not investigated in
the scope of the present study, since the HS definitions, as well as the
various spatial heterogeneity parameters, would be best elaborated in the
context of clinical outcome data. The DIA-generated spatial heterogeneity
parameters can be computed with DIA-based data; however, the
stratification of the tumors into homogeneous and heterogeneous groups
would require evidence-based definitions — preferably ones that reflect
clinical outcomes. The next steps of this study will include the mentioned
tasks by expanding patient cohorts, collecting survival data and investigating
the prognostic value of DIA-generated parameters.

The Applicability of the Hexagonal Tiling Approach

The hexagonal tiling approach was tested on the Ki67
immunohistochemistry of breast cancer cases. However, it could be easily
adapted for other purposes or tissues. Neuroendocrine tumors of the
gastrointestinal tract might be among the candidates, where automated and
comprehensive Ki67 LI estimations would serve to facilitate laborious

62



manual attempts to measure the relatively low Ki67 LI. The cut-off values
for clinical decisions are 1%, 3% and 20%, which is sometimes almost
impossible to measure with only visual estimations. DIA approaches and the
detection of hidden hotspots could facilitate this task and provide a better
stratification of the patients. Regarding breast cancer, only a small amount
of studies were made in investigating hormone receptor (ER/PR) or HER2
heterogeneity parameters in the context of patient survival data. This task
could also be possibly covered by applying heterogeneity measurement
methods, which are developed in this study. Nevertheless, the initial
analytical validation, based on accurate reference value construction, of the
DIA algorithms must be applied prior to this as well as any other
experiments.
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4. SANTRAUKA LIETUVIU KALBA

4.1 Jvadas

Darbo aktualumas

Krities vézys yra labiausiai paplitgs piktybinis susirgimas tarp motery
visame pasaulyje: 2013 metais diagnozuota 1,8 mlin. naujy kriities vézio
atvejy, dél Sios priezasties per minétg laikotarpi mir¢ 464 000 motery [1, 2].
Iigyvenamumo rodikliai varijuoja nuo 80 % Siaurés Amerikoje, Japonijoje,
Svedijoje iki 40 % besivystan¢iose 3alyse [2]. Siy rodikliy gerinimas gali
buti pasiektas taikant ankstyvos diagnostikos programas arba adjuvanting
chemoterapija, kuri derinant su hormoniniu gydymu yra labai efektyvi,
taciau pasizymi potencialiai pavojingais Salutiniais reiSkiniais ir yra brangi
[6]. D¢l Sios priezasties gydant hormony receptoriams pozityvius krities
navikus yra itin svarbu nuspresti, ar papildomai yra reikalinga adjuvantiné
chemoterapija, | kurios skyrimo indikacijas yra jtraukti patikimi
prognostiniai  faktoriai aukStai rizikai identifikuoti [6]. Tradiciniai
prognostiniai faktoriai, tokie kaip morfologiniai naviko bruozai ar
metastaziy limfmazgiuose statusas, yra nepakankami, todél pastaraisiais
metais buvo rasta daug naujy kriities vézio prognostiniy ir predikciniy
zymeny, kuriy dauguma yra susij¢ su naviko lasteliy ciklo reguliacija ir
proliferacija [7-10].

Krities naviky gydymo taktikos pasirinkimas priklauso nuo naviko
potipio, kuris yra apibréziamas remiantis imunohistochemine estrogeny
receptoriy (ER), progesterono receptoriy (PgR) raiska, zmogaus epitelio
augimo faktoriaus 2 (HER2) statusu ir Ki67 proliferacinio indekso (Ki67 PI)
vertémis navikiniame audinyje. Luminaliniai A navikai yra gydomi vien tik
endokrinine terapija, kuri yra ir luminalinio B potipio gydymo strategijos
dalis. Papildomai chemoterapija yra taikoma daugumai pacienciy, serganciy
luminaliniu B, HER2 teigiamu arba trigubai neigiamu krities véziu [25].
Pagrindiné skirtis tarp luminaliniy A ir luminaliniy B naviky yra Ki67
proliferacinis aktyvumas, kurio ribinés vertés yra Zemos ir jvairiose
rekomendacijose varijuoja nuo 14 % iki 30 % [12, 24-26]. Norint taikyti
minétg klasifikacija yra biitinas patikimas ir i§samus ER, PgR, HER?2 ir Ki67
PI imunohistocheminiy reakcijy vertinimas, kuris yra ypac svarbus priimant
tinkama klinikinj sprendima ir parenkant gydymo strategija.

Ki67 yra placiai naudojamas imunohistocheminis zymuo, skirtas
proliferuojanciy lasteliy daliai tiriamajame audinyje nustatyti. Vizualus Ki67
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proliferacinio indekso vertinimas yra pirmo pasirinkimo metodas kasdienéje
praktikoje.  Taciau, literatiros duomenimis, vizualaus vertinimo
atkartojamumas tarp skirtingy patology yra Zemas, ypac turint omeny
ribines, kliniSkai svarbiausias vertes nuo 10 % iki 20 % [118]. Klaidingas
Ki67 proliferacinio indekso jvertinimas gali lemti netinkamai pasirinkta
krities naviky gydymo taktika. Dél Sios priezasties vizualaus vertinimo
rekomendacijose yra nurodoma vertinti skai¢iuojant didelius kiekius
(maziausiai 500—1 000) naviko lasteliy branduoliy [24]. Taciau tokie skaiciai
yra per aukSti rankiniam vertinimui ir sunkiai jgyvendinami rutininiame
darbe. Daugelis patology renkasi subjektyvy vizualy vertinimg arba taiko
individualius metodus, pagreitinancius proliferacinio indekso jvertinima.
Iprastiné imunohistocheminiy preparaty interpretacija yra pagrista Zmogaus
vizualiu sugeb¢jimu identifikuoti audiniy strukttiras ir atlikti pusiau
kiekybinius vertinimus. Sis procesas pasizymi zemu atkartojamumu ir gali
reik§mingai paveikti galutinj Ki67 proliferacinio indekso vertinima tiriant
navika [24]. Nors §is metodas yra pakankamas jprastiems diagnostiniams
tikslams pasiekti, jis gali buti netinkamas priimant personalizuoto gydymo
sprendimus.

Intranavikinis Ki67 zymens raiSkos heterogeniskumas — labai budingas
krities naviky bruozas [59-62], kuris néra placiai tyrinétas ir potencialiai yra
viena i§ pagrindiniy neefektyvios terapijos priezasCiy [96]. Proliferacinio
indekso vertinimas yra rekomenduojamas tuose naviko plotuose, kuriuose
zymens raiSka yra rySkiausia. Vis délto néra vienos nuomonés, ar Ki67 PI
turéty buti apskaiCiuojamas kaip Ki67 teigiamy naviko lasteliy procentas
visame invazyvaus naviko plote, ar tik vadinamuosiuose ,karStuosiuose
taskuose® [24, 58]. Pabréztina, kad dabartinése gairése ,karStyjy tasky“
apibrézimai ir imunohistocheminiy Zymeny intranavikinio heterogeniskumo
nustatymas néra standartizuoti. Ankstesni literatiiros duomenys apie
intranavikinio heterogeniSkumo nustatyma ir apskaiciavima histologiniuose
preparatuose yra riboti. Ki67 proliferacinio indekso ribinés vertés kasmet
Zymiai varijuoja (14 %, 20 %, 20-29 %, < 10 %, 20-30 %) [12, 24-26].
2016 metais Amerikos klinikinés onkologijos draugija (angl. ASCO) isleido
klinikinés praktikos gaires [18], kuriose yra nurodoma, kad dél vidutinio
jrodymy lygio Ki67 proliferacinis indeksas neturéty biiti taikomas kaip
atrankos kriterijus skiriant adjuvanting chemoterapija. Kadangi vizualus
vertinimas yra sudétingesnis dél minéty faktoriy, kurie sumazina Ki67 PI
prognosting vert¢, naujy, iSsamiy ir patikimy vertinimo metodologijy
paieska yra labai aktuali.
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Klinikiniuose tyrimuose skaitmeninés vaizdo analizés metody taikymas
tampa vis daznesne alternatyva vizualiam vertinimui. Literatiiros
duomenimis, automatizuotas Ki67 proliferacinio aktyvumo vertinimas
pasizymi aukS$tu atkartojamumu ir potencialiai galéty biiti pritaikytas
kasdienéje praktikoje [27]. Taciau intranavikinis Ki67 zymens raiSkos
heterogeniSkumo nustatymas néra standartizuotas ir tai yra pagrindiné prasto
atitikimo tarp vizualaus ir automatizuoto vertinimo priezastis [31].
Ankstesniuose skaitmeninés vaizdo analizés taikymo darbuose buvo
gilinamasi i optimaly naviko lasteliy segmentavimg ir automatizuota Zymeny
karStyjy tasky aptikima [33-37] iSvengiant vaizdo analizés algoritmy
analitinés ir klinikinés validacijos. Dél S$ios priezasties automatizuoto
imunohistocheminiy zymeny vertinimo ir skaitmeninés vaizdo analizés
pritaikomumas kasdienéje praktikoje vis dar yra ribotas.

4.1.1 Darbo tikslas

Sukurti metodologija, uztikrinancig kriities naviky Ki67 proliferacinio
indekso vertinimo tikslumg, ir jvertinti $io indekso intranavikinio
heterogeniskumo lygj audinyje, naudojant skaitmening vaizdo analizg.

4.1.2 Darbo uzdaviniai

1. Sukurti metodologija, uztikrinanc¢ia skaitmeninés vaizdo analizés
algoritmy tiksluma Ki67 proliferacinio indekso vertinimui kriities naviky
imunohistocheminiuose preparatuose.

2. Sukurti metodologija i§samiam Ki67 proliferacinio indekso skai¢iavimui,
jo heterogeniskumo nustatymui ir karStyjy tasky aptikimui, atlikti
analiting naujy metody validacija pacienc¢iy, serganciy krities véziu,
imtyje.

3. Nustatyti imunohistocheminiy Ki67 kriities naviky preparaty vertinimo ir
audiniy mikrogardeliy méginiy €émimo parametrus, atsizvelgiant i
intranavikinj Ki67 proliferacinio indekso heterogeniskumo lygj audinyje.

4. Ivertinti naujo Ki67 proliferacinio indekso skai¢iavimo metodo
prognosting verte pacienciy, serganiy krities piktybiniais navikais,
imtyje.
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4.1.3 Ginamieji teiginiai

. Remiantis palyginimu su pamatine Ki67 PI verte, teigtina, kad
kalibruotais skaitmeninés vaizdo analizés metodais nustatyto Ki67
proliferacinio indekso tikslumas yra didesnis nei patologo vizualaus
vertinimo atveju.

. Kruties naviky Ki67 proliferacinio aktyvumo  intranavikinis
heterogeniSkumas, nustatytas segmentuojant skaitmeninés vaizdo
analizés duomenis | SeSiakampes gardeles, yra nepriklausomas
prognostinis kriities véziu serganciy pacienciy bendro iSgyvenamumo
rodiklis ir pasizymi stipresne prognostine verte nei vien proliferacinio
aktyvumo lygis.

4.1.4 Tyrimo naujumas

. Analitine  skaitmeninés  vaizdo  analizés  validacija. ~ ApraSoma
imunohistocheminiy preparaty skaitmeninés vaizdo analizés tikslumo
gerinimo metodologija pagrjsta analitinés validacijos procediiromis,
kurios atliktos remiantis pamatinémis vertémis, apskai¢iuotomis taikant
stereologijos principus. Ankstesnése panaSiose studijose analitinés
validacijos procediiros arba nebuvo atlickamos, arba pamatinémis
vertémis buvo pasirenkami subjektyvaus vertinimo rezultatai.

. Sesiakampiy gardeliy principas. Sukurta nauja imunohistocheminiy
zymeny vertinimo ir erdviniy parametry nustatymo metodologija,
pagrijsta SeSiakampiy gardeliy principu ir iSbandyta Ki67 proliferacinio
indekso matavimuose. Skenuoty preparaty segmentavimo j SeSiakampes
gardeles principas anks¢iau nebuvo taikytas patologijoje. Metodika taip
pat pritaikyta imunohistocheminiy Zymeny karstiesiems taSkams aptikti.

. Heterogeniskumo parametry nustatymas. Darbe pristatomi nauji ir
standartizuoti metodai, skirti intranavikiniam Ki67 PI heterogeniSkumui
kiekybiskai jvertinti ir erdvinés tekstiiros parametrams apskaiciuoti.
Siame darbe pirmg karta nustatyta, kad skaitmeninés vaizdo analizés
metodais apskaiciuoty iSvestiniy heterogeniskumo parametry prognostiné
verté yra didesné nei jprastiniy Ki67 PI matavimo metodologijy. Si
iSvada gali potencialiai sustiprinti Ki67 PI prognosting vertg.

. Ki67 vizualaus vertinimo ir audiniy mikrogardeliy eksperimenty
kriterijai. Se$iakampiy gardeliy principas buvo pritaikytas Ki67 PI
vizualaus vertinimo bei audiniy mikrogardeliy eksperimenty éminiy
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kriterijams nustatyti, atsizvelgiant | intranavikinj heterogeniSkuma.
Eksperimentai atlikti remiantis i$samiu statistiniu modeliavimu ir
daugybiniais pakartojimais. Pabréztina, kad ankstesni pana$iis tyrimai
buvo paremti fiziniu audiniy méginiy émimu, kuris buvo pagrindinis
apribojimas patikimam statistiniam modeliavimui atlikti.

4.2 Metodai

Siame skyrelyje trumpai aptariami tik pagrindiniai metodai, taikyti
disertaciniame darbe. Detalesné informacija yra pateikta ankstesnése
publikacijose (Etapai I-IV [28, 122-124]). Darbe naudotos trys skirtingos
krities piktybiniais navikais sergan¢iy pacien¢iy imtys. Atskiros darbo dalys
buvo patvirtintos Lietuvos bioetikos komiteto ir Notingamo mokslo
tiriamyjy darby etikos komiteto. Pacienciy sutikimas dalyvauti tyrime buvo
gautas. Statistiné analizé atlikta naudojant SAS 9.3, Microsoft Excel
(Microsoft, Redmondas, VaSingtono valstija, JAV) ir OpenOffice Calc
(Oracle, Redvud Sitis, Kalifornijos valstija, JAV) programinés jrangos
paketus. Statistinio reikSmingumo lygmuo buvo naudotas ties p < 0,05
reik§mémis.

Pacienciy imtys

1. 164 pacienciy audiniy mikrogardeliy histologiniai preparatai, dazyti Ki67
imunohistocheminiu zymeniu. Pacientés gydytos 2007-2009 metais
Nacionaliniame vézio institute, Vilniuje. Tyrime naudota pacienciy
klinikiné ir histologinio atsakymo informacija. (Imtis naudota 1-am
uzdaviniui jgyvendinti.)

2. 302 pacienciy audiniy viso pjiivio histologiniai preparatai, dazyti Ki67
imunohistocheminiu zymeniu. Pacientés gydytos 2013-2014 metais
Nacionaliniame vézio institute, Vilniuje. Tyrime naudota pacienciy
klinikiné ir histologinio atsakymo informacija. (Imtis naudota 2-am ir 3-
iam uzdaviniams jgyvendinti.)

3. 152 pacienciy audiniy viso pjuvio histologiniai preparatai, dazyti Ki67
imunohistocheminiu zymeniu. Pacientés gydytos 1986—1998 metais
histologinio atsakymo informacija bei iS§gyvenamumo duomenys. (Imtis
naudota 4-am uzdaviniui jgyvendinti.)
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Audiniy paruo$imas

Formaline fiksuoti ir parafinuoti kriities naviky audinio preparatai buvo
panaudoti ruoSiant 3 pm storio histologinius pjlvius tolesniam
imunohistocheminiam dazymui. Imunohistocheminés reakcijos atliktos
naudojant monokloninius Ki67 antikiinus (klonas MIB-1; DAKO,
Glostrupas, DK). Detaliis imunohistocheminio dazymo apraSymai yra
pateikti ankstesnése publikacijose [28, 124]. Histologiniai preparatai buvo
skenuoti Aperio Scan-Scope XT Slide skeneriu (Aperio Technologies, Vista,
Kalifornijos valstija, JAV) taikant 20x padidinima (0,5 pm rezoliucija).

Pirmajame etape audiniy mikrogardeliy konstrukcijai buvo panaudoti 1
mm skersmens kriities navikinio audinio stulpeliai, kurie buvo atsitiktinai
pasirinkti patologo. I$ kiekvienos pacientés buvo panaudota po vieng TMA
stulpelj. Audiniy mikrogardeliy konstrukcijos eksperimentas yra placiau
aprasytas [128]. Kituose Sio darbo etapuose (II-1V) buvo naudojami viso
pjuvio histologiniai preparatai.

Skaitmeniné vaizdo analizé

Skaitmeniné vaizdo analizé buvo atlikta naudojant dvi skirtingas
programinés jrangos platformas: I-III etapuose taikyti Aperio Genie and
Nuclear v9 algoritmai, IV etape skaitmenizuoti histologiniai preparatai
analizuoti HALO™ audiniy klasifikavimo moduliu ir CytoNuclear vI.4
algoritmu (Indica Labs, Naujosios Meksikos valstija, JAV). Naudojant
programingés jrangos algoritmus buvo atliktas automatizuotas naviko ploto
atpazinimas ir kiekybiné naviko lasteliy branduoliy profiliy analizé. Audinio
klasifikavimo moduliai buvo kalibruoti invazyviy navikiniy kompleksy
aptikimui, eliminuojant stromos, uzdegimo ir kitus audinio plotus, turin¢ius
artefakty. Naviko lasteliy analizé atlikta automatizuotu budu kiekybiskai
klasifikuojant lasteliy branduoliy profilius i turinfius neigiama ir teigiama
Ki67 imunohistocheming raiska. I etape atlikti keli vaizdo analizés algoritmy
kalibracijos zingsniai: 1. Baziniai nustatymai, 2. Nustatymai pagal
subjektyvy analizés rezultaty kokybés vertinimg, 3. Modifikuojant
branduoliy atpazinimo algoritma pagal statistinj paklaidos vertinima, gauta
lyginant antro algoritmo modifikacijos Zzingsnio duomenis su pamatinémis
Ki67 vertémis.
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I etapas. Skaitmeniné vaizdo analizé: kalibracija, kiekybiné analizé ir
validacija

Pamatiniy Ki67 proliferacinio indekso veréiy generavimg rankiniu biidu
atliko 3 patologai Zzymédami ir skai¢iuodami teigiamus ir neigiamus naviko
lasteliy profilius taikant stereologinj tinklelj. Skaitmeniné skenuoty
preparaty analizé atlikta taikant Aperio Genie, Nuclear v9 algoritmus.
Skaitmeninés vaizdo analizés algoritmy kalibracija atlikta trimis etapais
(1. Baziniai nustatymai, 2. Intuityvi kalibracija pagal vizualy vertinima,
3. Programinés jrangos nustatymy koregavimas pagal statistinés analizés
rezultatus, gautus antrojo kalibracijos etapo analizés rezultatus lyginant su
pamatine verte). Automatizuoto Ki67 proliferacinio indekso (trijy
kalibracijos etapy) vertés ir vizualaus (5 patology) vertinimo vidurkis bei
atskiros individualiy vertintojy Ki67 PI vertés palygintos su pamatine Ki67
PI wverte. Palyginimui naudoti koreliacijos, tiesinés regresijos ir
vienfaktorinés dispersinés analizés ANOVA modeliai. Duomeny
palyginimui poromis taikytas Duncano daugialypio lyginimo testas.

IT etapas. Erdviné ir multiparametriné analizé: heterogeniskumo
matavimai, SeSiakampiy gardeliy taikymas

Skenuoti Ki67 imunohistocheminiai kriities naviky preparatai segmentuoti |
lygius regionus taikant SeSiakampiy gardeliy principa. Atlikta skaitmeniné
skenuoty preparaty analizé Aperio Genie, Nuclear v9 algoritmais ir Ki67
proliferacinis indeksas apskaiCiuotas kiekvienoje SeSiakampéje gardeléje bei
visame invazyvaus naviko plote. Naudojant Siuos duomenis ir ,,bendrosios
masés matrica” (angl. Co-occurrence matrix) apskaiciuoti proliferacinio
indekso heterogeniSkumo parametrai. Atliktas automatizuoto proliferacinio
indekso karS$tyjy tasky aptikimas, remiantis virSutiniu segmentavimo
rezultaty kvintiliu, kuris buvo pavadintas Pareto karStuoju taSku.
Automatizuoto Ki67 vertinimo rezultatai palyginti su klinikiniais
duomenimis ir vizualiu patologo vertinimu. Atlikta faktoriné duomeny
analize.
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111 etapas. Sesiakampiy gardeliy principo pritaikymas Ki67 PI
vizualaus vertinimo ir audiniy mikrogardeliy eksperimenty éminiy
kriterijy nustatymui

Siame etape buvo atliktas skenuoty Ki67 imunohistocheminio dazymo
krities naviky preparaty segmentavimas j SeSiakampes gardeles ir pritaikytas
virtualiam audiniy mikrogardeliy konstrukcijos eksperimentui. Remiantis
skaitmeninés vaizdo analizés rezultatais Ki67 PI reikSmés jvertintos
skirtinguose SeSiakampiy gardeliy ,virtualiy audiniy mikrogardeliy*
rinkiniuose (N = 1, ..., 15) ir palygintos su Ki67 Pl vertémis visame
konkretaus atvejo plote. Procediira pakartota po 50 000 karty kiekviename
,.virtualiy audiniy mikrogardeliy* rinkinyje ir kiekvienu tiriamuoju atveju (N
= 297). Norint palyginti rezultatus, vizualaus vertinimo kriterijy bei audiniy
mikrogardeliy konstrukcijos parametry nustatymui apskaiCiuotos klaidos
koeficiento reikSmés. Tokiu budu jvertinama, kokia yra audinio kiekio jtaka
galutiniam Ki67 PI vertinimui. Tiriamieji atvejai ir eksperimentai suskirstyti
1 atskiras grupes pagal zymens raiSkos heterogeniskumo lygi audinyje,
naudojant II etape aprasyta metodologija.

IV etapas. Klinikiné validacija: automatizuoty Ki67 PI parametry
palyginimas su pacienciy bendro isgyvenamumo duomenimis

Automatizuoto kruties naviky Ki67 proliferacinio indekso ir jo
heterogeniSkumo nustatymo metodologija iStestuota kriities naviky imtyje
(Notingamas, Jungtiné Karalysté), turin¢ioje ilgamecio stebéjimo rezultatus.
Skaitmeniné skenuoty preparaty analizé atlikta taikant HALO™ Classifier
Module/CytoNuclear v1.4 algoritmus, kurie buvo kalibruoti patikimam
naviko struktiiry atpazinimui ir kiekybiniam naviko Iasteliy branduoliy
vertinimui. Sesiakampiy gardeliy principas buvo pritaikytas erdvinés naviko
tekstiros  matavimui, heterogeniSkumo parametry nustatymui ir
automatizuotam Ki67 PI karsStyjy tasky aptikimui. Ki67 PI vertinimo
rezultatai palyginti su pacienciy iSgyvenamumo duomenimis taikant Coxo
multiparametrinés regresijos analize ir Kaplano—Meierio iSgyvenamumo
kreives (nuolatiniai kintamieji buvo dichotomizuoti naudojant vieSos
prieigos irankij ,,Cutoff Finder* [131]). Atlikta faktoriné duomeny analizé.
Kiekybiniams duomenims palyginti naudota multifaktorinés variacijos

72



analizé ANOVA (palyginimui poromis — Bonferoni testas).

4.3 Rezultatai

I etapas. Skaitmeniné vaizdo analizé: kalibracija, kiekybiné analizé ir
validacija

Vidutiné apskaiciuota pamatiné Ki67 proliferacinio indekso verté — 40,2 +
25,3 %, lyginant su vizualaus 5 patology vertinimo mediana ir kalibruoto
skaitmeninés vaizdo analizés algoritmo rezultatu, atitinkamai 37,2 + 27,4 %
ir 36,5 £ 20,2 %. Vizualaus 5 patology vertinimo mediana ir kalibruoto
skaitmeninés vaizdo analizés algoritmo rezultato koreliacijos koeficienty
reikSmés, lyginant su pamatinémis Ki67 PI vertémis, atitinkamai 0,930 ir
0,949 (p < 0,0001). Tiesinés regresijos modeliy rezultatai (pamating Ki67 PI
verte laikant nepriklausomu kintamuoju): vizualaus 5 patology vertinimo
mediana — R?= 0,86 (p < 0,0001), kalibruoto skaitmeninés vaizdo analizés
algoritmo rezultatas — R*= 0,9 (p < 0,0001). Pacienciy dichotomizavimo i
kliniSkai svarbias grupes ties ribinémis vertémis > 10 %, > 15 %, > 20 %
tikslumas (klaidingai suklasifikuoty atvejy dalis), lyginant su pamatinémis
Ki67 PI vertémis: a) naudojant vizualaus 5 patology vertinimo mediang —
11 %, 14 %, 18 %; b) naudojant kalibruoto skaitmeninés vaizdo analizés
algoritmo Ki67 PI rezultata — 7 %, 9 %, 7 %.

IT etapas. Erdviné ir multiparametriné analizé: heterogeniskumo
matavimai, SeSiakampiy gardeliy taikymas

Gauta ideali koreliacija (r = 0,9967, p < 0,0001) tarp Ki67 PIL,
automatizuotai apskaiCiuoto visame histologiniame pjiivyje, ir Ki67 PI
medianos SeSiakampése gardelése. AukStesnis Ki67 Pl asocijuotas su
auksStesniu naviko diferenciacijos laipsniu (p < 0,0001); aukstesnés Ki67 PI
entropijos reikSmés yra budingos aukS$tesnio diferenciacijos laipsnio
navikams (p < 0,0001). Faktorinés analizés metu iSskirti 4 svarbus faktoriai:
1. HeterogeniSkumo faktorius, 2. Proliferacijos faktorius, 3. BimodaliSkumo
faktorius, 4. Lastelingumo faktorius. Ki67 PI Pareto karStyjy tasky plote,
kuris persidengia su manualiniu zZyméjimu, buvo statistiSkai reikSmingai
didesnis nei likusiame naviko plote (7 testas: vidutiniai skirtumai 5,8 %, 5,8
% ir 6,7 %; p < 0,0003, p < 0,0002 ir p < 0,0001). Trijy vertintojy Ki67 PI
vidurkis karsStuosiuose taskuose reikSmingai nesiskyré (p = 0,0675) nuo
Pareto kars$tojo tasko jvertinimo (90-o0jo procentilio).
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111 etapas. Sesiakampiy gardeliy principo pritaikymas Ki67 PI
vizualaus vertinimo ir audiniy mikrogardeliy eksperimenty éminiy
kriterijy nustatymui

Optimaltis audiniy éminiy ir Ki67 PI vertinimo parametrai varijuoja
priklausomai nuo audinio heterogeniskumo lygio. Norint pasiekti 10 %
klaidos koeficiento verte yra reikalinga naudoti 8 TMA stulpelius nezinomo
heterogeniSkumo navikams; homogeniskiems navikams — 5 TMA stulpelius;
heterogeniSskiems navikams — 11 TMA stulpeliy. Norint pasiekti 10 %
klaidos koeficiento verte reikalinga jvertinti 4 000 naviko lasteliy branduoliy
vizualiam Ki67 PI nustatymui, kai intranavikinio heterogeniskumo lygis yra
nezinomas. Vertinant atvejus, kai Ki67 PI yra Zemas (< 20 %), yra
reikalingas didesnis éminiy / lgsteliy skaiCius, norint pasiekti ta pacia
paklaidos tikimybe, kaip ir auksto Ki67 PI naviky atveju.

IV etapas. Klinikiné validacija: automatizuoty Ki67 PI parametry
palyginimas su pacienciy bendro isgyvenamumo duomenimis

Vidutinis pacienciy steb¢jimo laikas — 143,4 + 71,4 ménesio, 79 i§ 152
pacien¢iy miré. Trijuose Coxo regresijos modeliuose vienas i
automatizuotu  biidu  apskaiCiuoty  heterogeniSkumo indikatoriy
(bimodaliskumo parametras) buvo identifikuotas kaip nepriklausomas
blogos pacieniy prognozés veiksnys. N¢& vienas i§ Ki67 proliferacinio
aktyvumo parametry (apskaiciuoty tiek rankiniu, tiek automatizuotu biudu)
nebuvo identifikuotas kaip nepriklausomas veiksnys, prognozuojantis
bendro pacienciy i§gyvenamumo rodiklius. Faktorinés analizés metu iSskirti
5 faktoriai, i§ kuriy svarbiausi yra 1. Proliferacijos faktorius,
2. Heterogeniskumo faktorius ir 4.BimodaliSkumo faktorius. Multifaktorinés
variacijos analizés (ANOVA) duomenimis, aukS$tesnis 1 faktorius
asocijuotas su aukStesniu diferenciacijos laipsniu (p < 0,0001). Trigubai
neigiami navikai pasizyméjo aukStesnémis 1 faktoriaus reik§mémis nei
hormony receptoriams pozityvi grupé.
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4.4 Rezultaty aptarimas

Doktorantiiros studijy metu atlikty tyrimy rezultatai atskleidzia keleta
aspekty, kurie yra svarbis siekiant pagerinti kriities naviky gydymo taktikai
pasirinkti naudojamo Ki67 proliferacinio indekso prognosting verte.
Nustatyta, kad automatizuoto Ki67 proliferacinio indekso vertinimo
tikslumas yra didesnis nei patology vizualaus vertinimo atveju. Pabréztina,
kad vaizdo analizés algoritmai buvo kalibruojami kaip pamatines vertes
naudojant Ki67 PI jvercius, gautus atlikus neSaliskus skai¢iavimus pagal
stereologijos taisykles. Antra, proliferacinio naviko aktyvumo erdvinis
heterogeniskumas gali biiti pamatuotas ir vizualizuotas taikant SeSiakampiy
gardeliy principa, kurj taip pat jmanoma pritaikyti biozymeny raiskos
karstyjy tasky aptikimui ir jy kiekybiniam jvertinimui. Be to, SeSiakampiy
gardeliy metodas buvo pritaikytas ir audiniy mikrogardeliy eksperimenty
reikalavimy optimizavimui, atsizvelgiant | krities vézio Ki67 PI
heterogeniSkuma. Kriities naviky proliferacinio aktyvumo erdvinio
heterogeniskumo rodikliai, iSmatuoti taikant skaitmening vaizdo analize ir
SeSiakampes gardeles, gali buti nepriklausomas kintamasis, prognozuojantis
pacienciy bendro iSgyvenamumo rodiklius ir pranokstantis vien tik
proliferacinio aktyvumo jvercius.

Vaizdo analizés metody taikymas skaitmenizuoty imunohistocheminiy
preparaty vertinimui yra sparciai besivystantis ir tobuléjantis procesas
patologijos tyrimy srityje. DidZiausias skaitmeninés vaizdo analizés
privalumas — dideli audinio informacijos kiekiai, kurie gali buti lengvai
iSgaunami analizuojant aukstos raiSkos skenuotus histologinius preparatus.
Automatizuotos analizés pajégumas yra gerokai didesnis nei rankinio
preparaty vertinimo. Pavyzdziui, S§iame tyrime buvo iSanalizuota 36 mln.
lasteliy bendrame 15 000 mm? naviko plote bei 13 mln. lasteliy 6 000 mm’
naviko plote, atitinkamai eksperimentuose, aprasytuose II ir IV tyrimuose.
Antrojo tyrimo metu viename histologiniame preparate vidutiniskai jvertinta
121 000 navikiniy lgsteliy profiliy. Remiantis $iuo pozitiriu vienintelio
indikatoriaus (t.y. Ki67 PI) apskaiiavimas galéty buti laikomas
nepakankamu duomeny panaudojimu. Skaitmeninei vaizdy analizei yra
budingas ne vien tik didesnis tikslumas, atkartojamumas ir pajégumas,
taciau automatizuotas imunohistocheminiy preparaty vertinimas pasizZymi ir
aukstesne prognostine verte lyginant su vizualiu vertinimu [132]. Remiantis
naviky mikroskopinés architekttiros pozymiais, apskaiciuotais skaitmeninés
vaizdy analizés metodais, jmanoma stratifikuoti kruties navikus j turin¢ius

75



skirtinga metastatinj potencialg [133]. G. Stailhammaras su bendraautoriais
apraSo eksperimenta, kurio metu skaitmenizuotas Ki67 PI vertinimas
pranoko rankinj mitoziy skaiciavimg ir Ki67 Pl nustatymg jprastiniais
metodais bei turéjo papildomos prognostinés informacijos [32]. Be to,
automatizuoto Ki67 PI vertinimo rezultatai reikSmingai koreliuoja su
molekuliniy modeliy, pasizyminciy itin aukstu ligos recidyvo prognozavimo
jautrumu ir specifiSkumu, rezultatais [15].

Nepaisant sparciai  tobuléjan¢ios programinés jrangos, skirtos
skaitmeninei histologiniy preparaty analizei, minéti algoritmai yra beveik
netaikomi kasdienéje patologijos praktikoje. Validacijos procediiry
netikslumai yra didziausias ankstesniy eksperimenty, tyrinéjusiy vaizdo
analizés algoritmy pritaikomuma, trikumas. Ankstesniuose darbuose
algoritmy validacija arba nebiidavo atliekama, arba pamatinémis vertémis
buvo pasirenkami subjektyvaus vertinimo rezultatai, kurie negali buti
taikomi kaip ,tiesos kriterijus“. Sio darbo pirmajame etape buvo atlikta
iSsami skaitmeninés vaizdo analizés algoritmy kalibracija ir sukurtas
vadinamasis ,,aukso standartas®, paremtas stereologijos taisyklémis ir
rankiniu naviko lasteliy profiliy skai¢iavimu. Siame etape nustatyta, kad 5
patology atlikto vizualaus Ki67 PI vertinimo vidurkis nepasieké tikslumo
lygio, gauto taikant kalibruota skaitmeninés vaizdo analizés algoritma. Taip
pat buvo apskaiCiuotas vizualaus ir automatizuoto vertinimo tikslumas
skirstant pacientes j kliniskai svarbias grupes pagal dazniausiai naudojamas
Ki67 PI ribines vertes (10 %, 15 % ir 20 %). Eksperimento metu nustatyta,
kad paklaidos tikimybé yra du kartus didesné, jei yra naudojamas patologo
vertinimas. Sis rezultatas buvo i§ dalies netikétas, tadiau tai yra papildomi
jrodymai, kad vizualus pusiau kiekybinis imunohistocheminiy Ki67
preparaty vertinimas negali biti naudojamas kaip patikimas matavimas,
vertés, atliekant skaitmeninés vaizdo analizés algoritmy validavimg. Siame
eksperimente taip pat nustatyta, kad skaitmeninés vaizdo analizés kokybe
ger¢jo po kiekvieno kalibracijos zingsnio, o geriausias rezultatas buvo
pasiektas statistiSkai iSanalizavus algoritmy paklaidas. Remiantis S$iais
rezultatais galima teigti, kad pirmas zingsnis skaitmeninés vaizdo analizés
eksperimentuose turéty biti kruopsti algoritmy validacija, naudojant
pamatines vertes, apskaiciuotas neSaliskais vertinimo metodais.

Doktorantiiros studijy metu buvo sukurtas naujas ir paZangus
automatizuotas metodas, skirtas erdvinei biologiniy zymeny teksttrai ir
heterogeniSkumui histologiniuose preparatuose nustatyti ir jvertinti.
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Metodika yra pagrjsta sisteminiu skenuoty preparaty skaitmeninés vaizdo
analizés rezultaty padalijimu j lygias SeSiakampes gardeles. Kaip ir tikétasi,
taikant §] metoda buvo nustatyti naviko erdvinés tekstiiros parametrai ir
jiems suteiktos skaitinés reikSmés, kurios véliau kartu su pasiskirstymo
duomenimis gali btiti panaudotos atvejy palyginimui ir naviky stratifikacijai
1 skirtingo heterogeniSkumo grupes. Ankstesniuose panasiuose tyrimuose
naviky erdvinio heterogeniSkumo nustatymas buvo atliktas lyginant
méginius, paimtus i§ to paties naviko skirtingy regiony. DaZniausiai buvo
naudojami fiziniai audiniy mikrogardeliy (TMA) méginiai, kuriuose lyginti
tiriamojo biologinio Zymens rai$kos skirtumai tarp TMA stulpeliy, paimty i$
to paties naviko [98, 134, 135]. Nors, Siy eksperimenty duomenimis, tam
tikri navikinio audinio variacijos skirtumai gali buti identifikuoti, taciau
heterogeniSska ER, PgR, HER?2 raiSka buvo aptinkama nedaznai (< 10 %
atvejy) [134]. Pagrindinis TMA metodo trikumas nustatant biologiniy
zymeny heterogeniSkumg yra tiesioginé rezultaty priklausomybé nuo
audiniy éminiy skaiciaus ir viso eksperimento strukttiros. Daznai per mazas
TMA éminiy kiekis neatspindi viso navikinio audinio jvairovés ir gerokai
apriboja heterogeniskumo tyrimus tokio tipo eksperimentuose.

Skaitmeninés vaizdo analizés metody taikymas intranavikiniam
heterogeniSkumo lygiui jvertinti néra naujas. S. J. Pottsas kartu su
bendraautoriais pritaiké ekologijos moksly srityje naudojamus variacijos
rodiklius  kraties  naviky  imunohistocheminés = HER2  raiskos
heterogeniSkumo nustatymui histologiniuose preparatuose, i§ anksto
pasirinktuose regionuose [96]. Tyrimo metu, naudojant skaitmeninés vaizdo
analizés rezultatus, buvo sukurtas virtualus zemélapis, parodantis HER2
ekspresijos lygi skirtingose naviko vietose. Tyrimo iSvadose autoriai
pabrézia, kad, norint tiksliai nustatyti erdving variacija, analizéje naudoty
regiony skaicius gali buti nepakankamas. Tokie tyrimai turéty buti atlikti
naudojant viso pjuvio histologinius preparatus, kuriuose bty analizuojamas
visas naviko plotas, o ne smulkiis jo fragmentai. Pabréztina, kad rengiant
disertacija sukurta SeSiakampiy gardeliy metodika yra paremta sisteminiu
skaitmeninés vaizdo analizés rezultaty segmentavimu ir naviko erdvinés
tekstliros parametry nustatymu visame atlikto pjuvio histologiniame
preparate. Suklasifikavus Sios analizés metu gautus rezultatus (Ki67 PI
atskiruose SeSiakampiuose) j skirtingus intervalus, gautus duomenis galima
buty panaudoti naujy, kompleksiniy ir potencialiai biologiSkai
reik§mingesniy indikatoriy kiirimui nei vien Ki67 proliferacinio indekso
verteés.
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Siame darbe yra apraSomas naujas ir pranaSus metodas, skirtas
bioZzymeny imunohistocheminés raiSkos karStiesiems taSkams aptikti. Jis
paremtas stabilios naviko dalies (90-ojo procentilio) vertinimu ir pavadintas
Pareto kar$tuoju taSku. Literatiiros duomenimis, skaitmeninés vaizdo
analizés algoritmai yra placiai taikomi biozymeny raiSkos karStiesiems
taskams aptikti audiniuose [15, 22, 33, 34, 36, 37, 120]. Nepaisant to, dalyje
ankstesniy eksperimenty vis dar yra taikomi metodai, paremti rankiniu
skai¢iavimu [35], daugybiniu vizualiu vertinimu [69] arba audiniy
mikrogardeliy konstrukcijos principy taikymu [134, 135]. Kitose mokslo
srityse (ekologijoje, geografijoje) erdvinés pavirsiaus tekstiros matavimams
yra pladiai taikomi statistiniai metodai, paremti tiriamojo objekto
segmentavimu j smulkesnius lygius fragmentus. Medicinos srities mokslo
tiriamuosiuose darbuose Siam tikslui dazniausiai yra naudojamos
sta¢iakampio formos gardelés [15, 22, 37]. Pavyzdziui, E. Gudlaugssonas su
bendraautoriais [22] apraso metoda, skirta Ki67 PI karStiesiems taskams
aptikti krtties navikuose, selektyviai pasirenkant keturkampio formos laukus
su vizualiai didziausia Ki67 teigiamy Iasteliy dalimi ir juose atlickant
skaitmening vaizdo analize. Tyrimo metu nustatyta, kad tokiu bidu
apskaiciuotos Ki67 PI vertés pasizymi aukStu atkartojamumu ir yra
prognostiskai reik§mingos. Vis délto toks metodas tiesiogiai priklauso nuo
rankiniu biidu pasirinkty analizés ploty, o rezultatai gauti neatsizvelgus i}
galimg skirtingg lasteliy tankj navike. Sie eksperimentai i§ dalies yra
panasis ] doktorantiiros studijy metu atliktus darbus, nes histologiniai
preparatai buvo virtualiai segmentuojami j lygius smulkesnius regionus.
Taciau SeSiakampiy gardeliy principas, kuris anks¢iau dar niekada nebuvo
pritaikytas histologiniy preparaty segmentavimui, pasizymi beveik idealiu
viso naviko ploto padengimu ir yra nepriklausomas nuo nereguliarios bei
kompleksiskos karStojo taSko formos ir dydzio. Naudojant staiakampes
gardeles, audinyje lieka nepadengty regiony (ypa¢ audinio kraStuose), o
SeSiakampiy gardeliy principas uztikrina, kad yra vienoda tikimybe
pasirinkti bet kurj audinio regiong. Pabréztina, kad taikant Pareto principa
yra vertinama stabili naviko lasteliy dalis (20 % auksc¢iausig Ki67 PI verte
turiniy SeSiakampiy gardeliy), tadiau Sios taisyklés gali buti lengvai
modifikuojamos, priklausomai nuo eksperimento struktiiros ir tiksly.
Apibendrinant galima teigti, kad skaitmeninés vaizdo analizés taikymas
karStajam taskui aptikti gali biiti naudingas dél keliy priezasCiy: a) tai gali
biuti panaudota standartizuoto karStojo taSko apibrézimui kurti, aprasant jy
forma, dydi, ,temperatiirg“ ir kitas savybes, b) objektyviam ir aukstu
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atkartojamumu pasizymin¢iam karStojo taSko aptikimui, c) taikant $ia
metodika yra jmanoma iSrySkinti naviko vietas (SeSiakampiy gardeliy
grupes), kuriose Ki67 imunohistocheminé raiSka yra ryskiausia, tokiu btidu
palengvinant kasdienj patologo darba identifikuojant sunkiai randamus
karStuosius  taskus tiriamajame audinyje, d) pacienciy atrankos
individualizuotai terapijai gerinti.

Darbo metu nustatyta, kad skirtingy vertintojy sutarimas aptinkant
karStuosius Ki67 PI taskus audinyje yra gana prastas. Il ir IV etapuose
karstieji taskai buvo apibrézti ir jvertinti trijy patology. Lyginant tarp
skirtingy vertintojy, sutarimas aptinkant bent vieng karstaji taska audinyje
varijavo priklausomai nuo vertintojy pory (kapa koeficientai nuo 0,2 iki 0,5
Il etapo metu (n = 50) ir nuo 0,55 iki 0,85 IV etapo metu (n = 152)).
Vertinant kar$tojo tasko dydzio ir formos persidengima tarp skirtingy
patology, erdviné variacija buvo gauta labai ryski. Kaip ir tikétasi, Sie
duomenys atitinka nurodytus literatiroje [19, 22, 118, 136] ir akcentuoja
biologiniy zymeny raiSkos karsStyjy tasky apibrézimo standartizavimo
svarba. Siame darbe patology aptikty karityjy tasky jver¢iai buvo panasis j
esancCius SeSiakampése gardelése, turinCiose aukstesne Ki67 PI vertg, ir buvo
lyginti su Pareto karStojo tasko jver¢io mediana.

Atlikus faktoring SeSiakampiy gardeliy segmentavimo duomeny
(iSvestiniy  heterogeniSkumo parametry) analiz¢ buvo iSrySkinti 4
pagrindiniai  faktoriai: entropijos, proliferacijos, bimodaliskumo ir
lastelingumo. Sie faktoriai véliau buvo panaudoti klasteringje analizéje,
kurioje i8rySkéjo heterogenisky naviky potipiai su dominuojancia entropija,
bimodaliSkumu ir skirtingomis proliferacinio indekso vertémis. Taciau
siekiant tiksliau stratifikuoti navikus j homogeniskus ir heterogeniskus yra
bitini jrodymais pagrjsti apibrézimai, kurie idealiu atveju biity paremti
pacienciy i§gyvenamumo duomeny analize.

Sesiakampiy gardeliy segmentavimo principas buvo pritaikytas Ki67
imunohistocheminio vertinimo standartizacijos pagerinimui ir reikalavimy
TMA eksperimentams nustatymui, atliekant daugybinius virtualiy TMA
gardeliy modeliavimo eksperimentus. Rezultatai suskirstyti atsizvelgiant j
audinio heterogenidkumo lygj. Sio eksperimento metu buvo gauti nauji ir
dalinai prieStaringi literatiros duomenims rezultatai. Nustatyta, kad
optimaliis preparaty vertinimo parametrai priklauso nuo tiriamojo Zymens
raiskos heterogeniskumo lygio audinyje. Sio tyrimo metu nustatyta, kad
patikimam TMA eksperimenty modeliavimui yra reikalingi didesni audiniy
éminiy kiekiai, nei yra apraSoma literatiiroje. 5—6 audiniy mikrogardeliy
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stulpeliai yra butini, kai Zymens raiSka — homogeniSka, 11 stulpeliy —
heterogeniSkiems navikams ir 8 stulpeliai, kai heterogeniSkumo lygis yra
nezinomas. Ankstesniuose panaSiuose darbuose rekomenduojamas TMA
stulpeliy skai¢ius varijuoja nuo 1 iki 4. Tokie rySkiis nesutapimai tarp
literatiiros ir Sio eksperimento duomeny gali biiti paaiSkinami labai mazu
pakartojimy dazniu ankstesniuose eksperimentuose, kurie dazniausiai yra
paremti vienu atsitiktinio modelio sukiirimu. Tai ir yra pagrindiné priezastis,
apsunkinanti i§samy statistinj modeliavima. Sio eksperimento metu virtualus
audiniy mikrogardeliy modeliavimo eksperimentas buvo atliktas po 50 000
karty kiekvienu atveju, kiekviename skirtingame virtualiy TMA stulpeliy
rinkinyje. Pirma karta nustatyti vizualaus krities naviky Ki67
imunohistocheminio Zymens vertinimo parametrai, remiantis iS§samaus
statistinio modeliavimo rezultatais. Nustatyta, kad norint pasiekti maza
paklaidos tikimybe vizualiai vertinant Ki67 PI krities piktybiniuose
navikuose, kai heterogeniskumo lygis yra nezinomas, tikslinga jvertinti apie
4 000 naviko lasteliy branduoliy. Taip pat yra biitina skaiCiuoti daugiau
naviko lgsteliy branduoliy, kai Ki67 PI yra Zemas (< 20 %). Pagal dabartines
rekomendacijas minimalus Igsteliy skaiCius, biitinas vizualiam vertinimui,
yra 500—1 000 branduoliy [24]. Pabréztina, kad $io tyrimo metu nustatytas
minimalus Igsteliy kiekis virSija esamas rekomendacijas 2 kartus ir turéty
buti taikomas, kai intranavikinio heterogeniSkumo lygis yra nezinomas.
Tokie auksti lasteliy vertinimo reikalavimai, Zinoma, yra sunkiai jmanomi
kasdienéje praktikoje visais atvejais, taCiau potencialiai galéty buti taikomi,
kai yra reikalingas labai tikslus proliferacinio indekso vertinimas norint
priimti klinikinius sprendimus (10-30 % Ki67 PI intervale).

Pirma karta nustatyta, kad kriities naviky Ki67 PI erdvinio
heterogeniSkumo rodikliai, apskaiCiuoti taikant SeSiakampiy gardeliy
principa, pasizymi didesne prognostine verte nei konservatyvus naviky
proliferacinio aktyvumo vertinimas. Ketvirtajame doktorantiiros etape
automatizuota heterogeniSkumo matavimo metodologija buvo pritaikyta
krities naviky imciai, turinciai ilgamecio pacienciy stebé&jimo ir
i§gyvenamumo duomenis. Siame eksperimente buvo istirta jvairiy Ki67
proliferacinio indekso, audinio erdvinés tekstiiros, bimodaliSkumo parametry
ir vizualaus vertinimo duomeny prognostiné verté. Pabréztina, kad daugumai
kiekybiniy Ki67 automatizuoto ir vizualaus vertinimo parametry buvo
nustatytos statistiS$kai patikimos ribinés vertés stratifikuojant pacientes |
kliniSkai svarbias grupes. Taciau tik bimodaliskumo parametrai (Ashmano D
koeficientas) buvo identifikuoti kaip nepriklausomi bendro pacienciy
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iSgyvenamumo rodikliai hormony receptoriams ir HER2 pozityviuose
naviky subtipuose bei pranoko prognosting jprastiniy Ki67 Pl parametry
verte. Sis rezultatas buvo netikétas, ta¢iau gali turéti praktine reik§me. Dél
ryskios kriities naviky biologinés jvairovés ir audinio heterogeniskumo
variacijos yra problemiska apibrézti Ki67 PI ribines vertes ir uztikrinti tiksly
kiekybinj Ki67 imunohistocheminiy preparaty vertinimg. Skaitmeninés
vaizdo analizés metodais apskaiciuoti iSvestiniai Ki67 PI bimodaliskumo
parametrai, tikétina, yra maziau jautriis Siems veiksniams. Sio tyrimo
rezultatai jrodo, kad intranavikinio proliferacinio aktyvumo variacijos
rodikliai gali buti svarbesnis ligos agresyvumo rodiklis, lemiantis
individualig prognoze, nei vien Ki67 PI vertinimas.

Apibendrinant pasakytina, kad Sios disertacijos rezultatai patvirtina, jog
aukStas Ki67 imunohistocheminio vertinimo tikslumas yra sunkiai
pasiekiamas jprastiniais vizualaus vertinimo metodais. Pabréztina
informaciniy technologijy svarba Ki6 PI vertinimo efektyvumui gerinti,
apskaiciuojant standartizuotus heterogeniSkumo parametrus ir automatizuotu
budu aptinkant karStuosius Zymens raiSkos taskus viso pjuvio
histologiniuose preparatuose. ISvestiniai audinio erdvinés tekstiiros
parametrai, apskaiciuoti skaitmeninés vaizdo analizés metodais, gali biti
potencialiai naudojami pasirenkant kriities naviky gydymo taktika ateityje.

4.4 Darbo testinumas
Skaitmeninés vaizdo analizés jdiegimas j klinikine praktikg

Reali skaitmeninés vaizdo analizés jrankiy klinikiné nauda gali biiti pasiekta
idiegus juos i patologijos laboratorijy informacines sistemas ir naudojant
kaip sprendimy palaikymo jrankius patology kasdienéje praktikoje. Tai ir
buty pagrindinis $ioje disertacijoje aprasomy eksperimenty tikslas.
Nepaisant to, kad vaizdo analizés algoritmy integracija nebuvo Sio
disertacinio darbo uzdavinys, Valstybiniame patologijos centre (Vilnius,
Lietuva) jau yra atlikti bandomieji eksperimentai, kuriy metu validuotas
vaizdo analizés algoritmas buvo jdiegtas i informacing laboratorijos sistema
ir pritaikytas rutininiam Ki67 PI vertinimui kriities navikuose.

Heterogeniskumo apibrézimai ir klinikiné validacija

Taikant Siame darbe apraSyta SeSiakampiy gardeliy principa yra jmanoma
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modeliuvoti keleta skirtingy biozymeny karStyjy taSky apibrézimy, kurie
Siame darbe nebuvo nagrinéti. Geriausias btidas validuoti §iuos skaitmeninés
vaizdo analizés metodais pagristus apibrézimus yra palyginti juos su
pacienciy iSgyvenamumo duomenimis ir nustatyti jy prognosting reikSme.
Biozymeny raiskos erdvinio heterogeniSkumo parametrus galima
apskaiCiuoti remiantis skaitmeninés analizé€s rezultatais, taciau naviky
stratifikavimas | homogeniskus ir heterogeniskus taip pat turi biiti pagristas
i§vestiniy vaizdo analizés parametry prognostinés vertés jvertinimas pleciant
tiriamyjy pacienciy grupes ir renkant iSgyvenamumo duomenis.

Sesiakampiy gardeliy principo pritaikomumas

Sesiakampiy gardeliy metodas buvo iSbandytas krities naviky Ki67
imunohistocheminiuose preparatuose, taciau jj galima lengvai pritaikyti ir
kitiems tikslams ar audiniams. Automatizuotas Ki67 PI vertinimas galéty
palengvinti kruopsty proliferacinio indekso vertinimag virSkinamojo trakto
neuroendokrininiuose navikuose, kai ribinés vertés labai zemos (1 %, 3 % ir
20 %), o vizualus vertinimas yra labai apsunkintas. Skaitmeniné vaizdo
analize ir kar$tyjy tasSky aptikimas galéty palengvinti §ig uzduotj ir uztikrinti
geresnj pacienciy skirstymga i kliniskai reikSmingas grupes.

Kita sritis, kurioje skaitmeninés vaizdo analizés algoritmai galéty biiti
s¢kmingai pritaikyti, yra estrogeny, progesterono ir HER2 receptoriy
vertinimas kraties navikuose. Literatiros duomenimis, automatizuotas
heterogeniSkumo nustatymas minétuose biologiniuose Zymenyse buvo labai
retai taikomas. Siame darbe apradyti metodai galéty biti lengvai pritaikyti
minétai uzduoc€iai atlikti, prie§ tai jgyvendinus iSsamia naujai sukurty
skaitmeninés vaizdo analizés algoritmy validacija.

4.5 I§vados

1. Sukurta metodologija, uZztikrinanti ir pagerinanti skaitmeninés vaizdo
analizés algoritmy Ki67 proliferacinio indekso vertinimo tiksluma.
Krities naviky Ki67 proliferacinio aktyvumo indeksas, nustatytas
skaitmeninés vaizdo analizés metodais, pranoksta vizualy patologo
vertinima, lyginant su pamatine verte, apskai¢iuota taikant stereologinius
metodus. Skirstant kriities karcinomomis sergancias pacientes i terapiniu
poziiiriu svarbias grupes (Ki67 PI > 10, 15 ir 20 %) paklaidos tikimybé
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yra 2 kartus mazesné remiantis automatizuoto Ki67 proliferacinio
indekso matavimo vertémis nei taikant vizualy 5 patology Ki67
proliferacinio indekso vertinimo vidurkj. Vaizdo analizés algoritmai gali
biti toliau sékmingai tobulinami, matuojant jy paklaida ir analizuojant
galimas sistemines neatitikimy prieZastis.

. Sukurta tikslaus Ki67 PI vertinimo metodologija, paremta SeSiakampiy
gardeliy segmentavimo principu. Siuo metodu yra jmanoma pamatuoti ir
vizualizuoti Ki67 proliferacinio aktyvumo indekso erdving tekstiirg
navike bei apskaiciuoti Zymens raiskos intranavikinio heterogeniSskumo
parametrus, skaitmeninés vaizdo analizés metodais analizuotuose Ki67
imunohistocheminiuose preparatuose. ISvestiniai heterogeniSkumo
parametrai gali buti pritaikyti kriities naviky dichotomizavimui j turincius
homogeniska ir heterogeniska Ki67 imunohistochemine raiska. Sis
principas buvo panaudotas automatizuotam Ki67 PI karStyjy tasky
aptikimui, kuris yra kiekybiSkai apskai¢iuojamas remiantis virSutiniu
segmentavimo rezultaty kvintiliu ir pavadintas Pareto karStuoju tasku.
Sesiakampiy gardeliy metodas taip pat pasizymi lengvu pritaikomumu
kitose patologijos srityse tiriant jvairius imunohistocheminius Zymenis ar
audinius, siekiant nustatyti jy raiSkos heterogeniskuma arba atlikti
kokybés kontrolés procediras.

. Optimaliis audiniy mikrogardeliy meéginiy émimo ir / arba preparaty
vertinimo parametrai priklauso nuo tiriamojo Zzymens raiSkos
heterogeniSkumo lygio audinyje. Mokslo tiriamosiose studijose
nurodoma, kad Ki67 imunohistocheminio Zymens tyrimuose,
atlickamuose su krities piktybiniy naviky audiniais, 5-6 audiniy
mikrogardeliy stulpeliai yra bitini, kai Zymens raiSka — homogeniska, 11
stulpeliy — heterogeniskiems navikams ir 8 stulpeliai, kai
heterogeniSkumo lygis yra nezinomas. Norint pasiekti maza paklaidos
tikimybe vizualiai vertinant Ki67 proliferacinj aktyvuma kriities
piktybiniuose navikuose, kai heterogeniskumo lygis yra neZinomas,
tikslinga jvertinti apie 4 000 naviko lasteliy branduoliy. Vertinant
atvejus, kai Ki67 PI yra Zemas (< 20 %), yra reikalingas didesnis éminiy /
lasteliy skai€ius, norint pasiekti ta pacig paklaidos tikimybe, kaip ir
auksSto Ki67 PI navikuose.

. Erdvinio naviky proliferacinio aktyvumo heterogeniSkumo parametrai
(ypac¢ bimodaliskumo statusas), apskaiciuoti taikant skaitmening vaizdo
analize ir SeSiakampiy gardeliy segmentavimo principa, gali buti
naudojami kaip nepriklausomi prognostiniai faktoriai, apibiidinantys
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kriities piktybiniais navikais serganciy pacienciy bendro iSgyvenamumo
rodiklius ir pranokstantys prognosting Ki67 proliferacinio aktyvumo
reikSme.

4.6 Publikacijy sarasas
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Abstract

Introduction: Immunohistochemical Ki67 labelling index (Ki67 LI) reflects proliferative activity and is a potential
prognostic/predictive marker of breast cancer. However, its clinical utility is hindered by the lack of standardized
measurement methodologies. Besides tissue heterogeneity aspects, the key element of methodology remains
accurate estimation of Ki67-stained/counterstained tumour cell profiles. We aimed to develop a methodology to
ensure and improve accuracy of the digital image analysis (DIA) approach.

Methods: Tissue microarrays (one 1-mm spot per patient, n = 164) from invasive ductal breast carcinoma were
stained for Ki67 and scanned. Criterion standard (Ki67-Count) was obtained by counting positive and negative
tumour cell profiles using a stereology grid overlaid on a spot image. DIA was performed with Aperio Genie/Nuclear
algorithms. A bias was estimated by ANOVA, correlation and regression analyses. Calibration steps of the DIA by
adjusting the algorithm settings were performed: first, by subjective DIA quality assessment (DIA-1), and second, to
compensate the bias established (DIA-2). Visual estimate (Ki67-VE) on the same images was performed by five
pathologists independently.

Results: ANOVA revealed significant underestimation bias (P < 0.05) for DIA-0, DIA-1 and two pathologists’ VE, while
DIA-2, VE-median and three other VEs were within the same range. Regression analyses revealed best accuracy for the
DIA-2 (R-square = 0.90) exceeding that of VE-median, individual VEs and other DIA settings. Bidirectional bias for the
DIA-2 with overestimation at low, and underestimation at high ends of the scale was detected. Measurement error
correction by inverse regression was applied to improve DIA-2-based prediction of the Ki67-Count, in particular
for the clinically relevant interval of Ki67-Count < 40%. Potential clinical impact of the prediction was tested by
dichotomising the cases at the cut-off values of 10, 15, and 20%. Misclassification rate of 5-7% was achieved,
compared to that of 11-18% for the VE-median-based prediction.

Conclusions: Our experiments provide methodology to achieve accurate Ki67-LI estimation by DIA, based on
proper validation, calibration, and measurement error correction procedures, guided by quantified bias from reference
values obtained by stereology grid count. This basic validation step is an important prerequisite for high-throughput
automated DIA applications to investigate tissue heterogeneity and clinical utility aspects of Ki67 and other
immunohistochemistry (IHC) biomarkers.
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Introduction

Rapid development of digital pathology technologies, en-
abling high-resolution scanning of microscopy slides,
brings great efficiencies in data storage, transfer and
usage in research, clinical practice and education [1-3].
The most unique and significant benefit for pathology
practice and research can be expected from digital image
analysis (DIA) applications, opening new perspectives for
pathology to serve the needs of personalized medicine, by
providing more accurate and reproducible measurements
for tissue-based diagnosis, prognosis and prediction [4,5].
Microscopic images, used in pathology, contain an enor-
mous amount of data that can be retrieved by numerous
methods available to visualise tissue, cell and molecular
components, scan and process the images, generating rich
multi-parametric data of broad dynamic range. In a
broader context of biology, the quest for quantitative mi-
croscopy, with support of bio-image informatics, raises
the perspective that the days of manually chosen “repre-
sentative” images are numbered and such images will be
replaced by quantitative measures based on the underlying
image data [6]. Similarly, pathology is becoming a quanti-
tative or analytical discipline and has to adopt both bene-
fits and obligations that come together [7].

The most immediate benefits of DIA come with in-
creased capacity, precision and accuracy, compared to vis-
ual evaluation or counting, used in pathology diagnosis
and research. While the capacity and precision (reproduci-
bility and repeatability) aspects are rather obvious, the con-
cept of accuracy (objectivity, correspondence to ground
truth, criterion standard or reference values) is less familiar
to anatomic pathologists and is frequently confused with
the reproducibility aspect. This is probably due to the fact
that anatomic pathology has been a qualitative and semi-
quantitative discipline for many years, while pathology
diagnosis itself was seen as the ground truth in medicine.
Therefore, reproducibility rather than accuracy of path-
ology diagnosis or evaluation was mostly the focus. On the
other hand, targeted therapies should be validated against
and along with specific biomarker tests, leading to the de-
velopment of standard testing procedures and clinically
validated cut-off values. The validated tests and therapies
are considered clinically useful; however, usefulness should
not become a substitute for accuracy or objectivity [8].

Standardization of DIA for optimal use in pathology
involves many aspects - from tissue processing, sam-
pling, staining, scanning, to DIA settings and proper test
validation requirements, as extensively reviewed [8,9].
Although no studies have performed a full scale investi-
gation of every aspect of the DIA process, the combined
evidence shows that DIA is able to reproduce data at an
acceptable level, with no more variability than manual
assessment using conventional microscopy. Meanwhile,
validation of DIA has been performed by comparing
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digital results with manual estimates, either quantitative
or semi-quantitative, or by comparing DIA with another
form of criterion standard, for example, fluorescence in
situ hybridization, or by comparing DIA with clinical
(often prognostic) information [9].

Although these validation approaches are common
and useful, a criterion standard in these studies is still
indirect and may be subject to its own bias. Ideally, to
validate and calibrate the DIA tools one should seek the
most direct reference values (RV) that answer the same
question as the algorithm is intended to do [7]. This
means that the same feature in the same image has to be
measured by an independent and most possibly objective
way; therefore, stereologically sound methods have to be
re-introduced to serve the validation and quality assur-
ance of DIA tools; in other words, the DIA tools have to
produce stereologically valid results [7,9].

Most useful DIA applications in pathology can be ex-
pected today in the area of immunohistochemistry (IHC),
a widely-used and relatively inexpensive technology, enab-
ling a broad spectrum of tissue-based biomarkers for per-
sonalized therapies; therefore, raising requirements for
IHC quantification and accuracy. Not surprisingly, many
DIA studies have been targeting IHC markers in breast
cancer and other pioneering areas of personalized therap-
ies. As an example, a paradox of an outstanding issue of
the cell proliferation marker Ki67 in breast (and other)
cancers can be recognized: it is regarded as an important
prognostic and predictive factor; however, its clinical util-
ity is hindered by the absence of harmonized methodology
of the test [10,11]. Besides the need for accurate enumer-
ation of the proportion of Ki67-positive tumour cell pro-
files (Ki67 labelling index - Ki67 LI), the issue is further
complicated by marked intra-tumour heterogeneity of
Ki67 expression in many cases, therefore, demanding
standardized sampling of the tissue for the analysis. Al-
though DIA is welcomed, current clinical recommenda-
tion asks pathologist to score at least 1,000 cells while 500
cells would be acceptable as the absolute minimum [11].

Gudlaugsson et al. [12] have recently compared the re-
producibility and prognosis prediction accuracy of differ-
ent techniques for measurement of Ki67 LI in breast
cancer. Two pathologists performed global subjective
impression assessment of Ki67 positivity by rapidly scan-
ning/estimating the percentage of Ki67-positive nuclear
profiles. Secondly, accurate subjective counts were per-
formed by first identifying hot-spots of Ki67 expression
on a whole section at low magnification; in the hot-spot
with the subjectively highest Ki67 expression, the Ki67
LI was assessed by two pathologists independently. The
third method involved computerized interactive mor-
phometric (CIM) assessment to overcome selection bias.
Finally, the DIA was performed on 2 to 10 square areas
with the subjectively estimated highest Ki67 LI. The
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authors concluded that Ki67 LI by DIA, but not subject-
ive counts, was reproducible and prognostically strong.
The CIM was also highly reproducible between the two
pathologists, but no direct (image-based) comparison of
the CIM and DIA was stated in this report.

We concur with the notions that validation of DIA
tools is a multi-step process to consider all potential
sources of variation. Presuming that pre- and analytical
IHC variation needs to be dealt with by routine quality
assurance processes, the DIA methods add unique pro-
cesses of slide scanning, region of interest selection, object
segmentation, characterization, enumeration and evalu-
ation. Yet, it is hardly possible to properly address all as-
pects in one study. With the aim to develop a sound DIA
validation and calibration methodology, we designed our
experiment to test and improve the accuracy of Ki67 LI
estimation by automated DIA on preselected tissue micro-
array (TMA) Ki67 IHC images, with the ground truth ob-
tained by counting tumour cell profiles using a stereology
test grid of systematically sampled frames. We therefore
minimized the impact of the tissue heterogeneity and IHC
variability, aspects to be addressed separately. In addition,
we evaluated the accuracy of visual assessment (impres-
sion) of five pathologists on the same images, to simulate
the widely used practices to test DIA results against visual
estimates or their averaged values.

Materials and methods

Population

This study was performed on TMA images from 164 fe-
male patients with an invasive ductal carcinoma of the
breast, treated at the Oncology Institute of Vilnius Univer-
sity and investigated at the National Center of Pathology,
during the period of 2007 to 2009. The study was approved
by the Lithuanian Bioethics Committee. The patients’ con-
sent to participate in the study was obtained.

Tissue preparation
The TMAs were constructed, stained and scanned as de-
scribed previously [13]. Briefly, one millimetre-diameter
cores were punched from tumour areas randomly se-
lected by the pathologist and paraffin sections were cut
at 3 um-thickness.

Immunohistochemistry (IHC)

IHC for Ki67 was performed with a multimer-technology
based detection system, ultraView Universal DAB (Ventana,
Tucson, AZ, USA). The Ki67 antibody (clone MIB-1;
DAKO, Glostrup, DK) was applied at a 1:200 dilution for
32 minutes, followed by the Ventana BenchMark XT auto-
mated immunostainer (Ventana) standard Cell Conditioner
1 (CC1, a proprietary buffer) at 95°C for 64 minutes.
Finally, the sections were developed in DAB at 37°C
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for eight minutes, counterstained with Mayer’s hematoxylin
and mounted.

Image acquisition

Digital images were captured using the Aperio Scan-
Scope XT Slide Scanner (Aperio Technologies, Vista,
CA, USA) under 20x objective magnification (0.5 pm
resolution). One TMA spot image per patient was used
for the study.

Quantification with stereology test grid

RV were obtained by marking Ki67-positive and negative
tumour cell profiles, using a stereological method for 2D
object enumeration [14,15] implemented by the Stereol-
ogy module (ADCIS, Caen, France) with a test grid of
systematically sampled frames (frame size - 125 pixels,
spacing of frames - 250 pixels) overlaid on a spot image
in ImageScope (Aperio Technologies, USA), Figure 1.
The percentage of Ki67 positive tumour cell profiles estab-
lished by the test grid estimation (Ki67-Count) was calcu-
lated as 100*Ki67-positive nuclear profiles/(Ki67-positive
nuclear profiles + Ki67-negative nuclear profiles). To test
the degree of uncertainty of the RV, inter-observer vari-
ation was estimated based on Ki67-Count values produced
by three observers (Ki67-Count-1, 2 and 3) independently
in a subset (n=30) of the TMA images. Since the inter-
observer variability was found to be negligible (see Results),
the RV in the whole series (n=164) were established
by one-observer marking (Ki67-Count), splitting the
job among four observers in approximately equal pro-
portions. Estimated time to produce cell marks on the
frame grid was 30 minutes per one TMA spot image
on average but varied due to variable cellularity of the
tumour tissue. Also, the uncertainty of the RV was es-
timated through Coefficient Error (CE) computation,
according to the sampling theory [16]: this uncertainty
originates from the fact that the frame count is per-
formed on the subsampled tissue and is calculated as
CE= t.sqrt(Cg.(m/nz)) [17] with n being the number of
frames inside the tumour, m being the number of the
external sides of the set of frames in the tumour. For
the test grid (Figure 2) with a frame size of 125 pixels
and a frame spacing of 250 pixels, the value of the grid
factor Cg is 0.049. Otherwise, the value of the Student
factor t is 2 for a confidence of 95% and for an event
number greater than 30.

Visual evaluation (VE)

A global subjective impression for the Ki67 LI on the same
images was performed by five pathologists independently
and provided semi-quantitative values (Ki67-VE-1, 2, 3, 4
and 5) expressed as the percentage of Ki67-positive
tumour cell profiles. Counting was not included in the
procedure.
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Figure 1 Test grid of frames from the stereology module overlaid on the TMA spot image. The left and bottom lines of a frame are
“forbidden” - nuclear profiles intersecting them are not marked. The short line marks (orange for Ki67-positive, green for Ki67-negative tumour cell
nuclear profiles) are produced manually by an observer. Total numbers and Ki67 LI are computed by the software at the end of the procedure.

TMA, tissue microarray.

Digital Image Analysis

DIA was performed with Aperio Genie and Nuclear v9
algorithms enabling automated selection of the tumour
tissue (the Genie Classifier was trained to recognize
tumour tissue, stroma and background (glass), then
combined with the Nuclear algorithm). Several calibra-
tion cycles of the DIA (named DIA-0, 1 and 2, resulting

1

1¢b2
1 - %
4>

12 5
11

Figure 2 Tumour area (grey) and test grid of systematically
sampled frames (orange) (a =250 pixels, b = 125 pixels). For this
example, the number of frames is n=6 and the number of external
segments is m=14.
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in the percentage of Ki67-positive tumour cells - Ki67-
DIA-0, 1 and 2, respectively) were performed to improve
the accuracy of the tool by adjusting the settings of the
Nuclear algorithm (Table 1). Ki67-DIA-0 was obtained
by the default Aperio settings for the Nuclear algorithm,
Ki67-DIA-1 - by “subjective” visual assessment of the
quality of the DIA results on the computer monitor;
Ki67-DIA-2 was fine-tuned based on the quantitative
bias established by statistical analyses comparing the
Ki67-DIA-1 to RV (Ki67-Count). Highly automated cali-
bration cycles were achieved by developing software to in-
tegrate the DIA outputs and statistical analysis procedures.

Statistical analysis

Accuracy of the DIA and VE with regard to the RV was es-
timated by one-way ANOVA (Duncan multiple range test
was used for pairwise comparisons), Pearson correlation,
single and multiple linear regression analyses, as well as or-
thogonal linear regression based on principal component
analysis. Agreement between individual measurements was
also estimated based on 95% confidence intervals calcu-
lated from the RV CE and visualized by Bland and Altman
plots [18]. Dependence of RV (n=30) and VE (n=164)
inter-observer variation on the magnitude of measurement
was visualized by plots of corresponding standard devia-
tions against the mean values of the measurements. A vari-
able degree of right asymmetry (skewness from 0.5 to 1.6)
of the parameter distribution was noted; where appropri-
ate, statistical significance of the findings was verified,
using log-transformed data. Statistical significance level
was set at P <0.05. Statistical analyses were performed with



Laurinavicius et al. Breast Cancer Research 2014, 16:R35
http://breast-cancer-research.com/content/16/2/R35

Table 1 Nuclear algorithm settings for the DIA calibration
after the Genie classifier

Algorithm setting DIA-0 DIA-1 DIA-2
Averaging radius (1) 1 1 1
Curvature threshold 25 25 25
Segmentation type Cytoplasm Cytoplasm Cytoplasm
rejection rejection rejection
Threshold type Edge threshold  Edge threshold  Edge threshold
Lower intensity 0 0 0
threshold
Upper intensity 220 230 230
threshold
Min. nuclear 20 45 40
size ()
Max. nuclear 1,000,000 1,000 1,000
size (1)
Min, roundness 0.1 0.1 0.1
Min. compactness 0 0 0.2
Min. elongation 0.1 0.1 0.2
Remove light removes removes removes
objects no nuclei no nuclei no nuclei
Weak (1+) 210 210 229
threshold
Moderate (2+) 188 188 188
threshold
Strong (3+) 162 162 162
threshold
Black threshold 0 0 0
Edge trimming Weighted Weighted Weighted

DIA-0 (default), DIA-1 (subjective) and DIA-2 (based on quantified bias). Modified
settings are highlighted in bold.

SAS 9.3 software, Microsoft Excel software (Microsoft,
Redmond, Washington, USA) and OpenOffice Calc soft-
ware (Oracle, Redwood City, California, USA).

Results
Characteristics and measurement uncertainty of the
reference value dataset
Summary statistics of the RV (n = 30) obtained by three
independent observers’ marking of the tumour cell pro-
files in the test grid are presented in Table 2, along with
the results of other measurements in this dataset for refer-
ence. No significant variance between the three Ki67-Counts
was revealed by one-way ANOVA (F=0.08, P=09217),
while strong pairwise correlation among the values was
found: r=0.98, r=0.98, r=0.97 (P <0.0001). Similarly, the
total number of nuclear profiles marked did not differ signifi-
cantly, although Observer 1 tended to mark less; the total
number of nuclear profiles of Observer 1 correlated with
that of observers 2 and 3 at r = 0.94, while the latter two cor-
related at r = 0.98 (P <0.0001).

Uncertainty introduced by variance among the three
counts to produce Ki67-Count for each individual spot
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Table 2 Summary statistics of the reference values
produced by observers, visual estimates and image
analyses (n = 30)

Variable Median Mean Std dev Std error Min Max
Ki67-Count-1 217 286 204 37 03 726
Ki67-Count-2 24 299 195 36 06 697
Ki67-Count-3 23 287 186 34 12 694
Ki67-Count-median 24 293 194 35 06 674
Ki67-Count-mean 234 29.1 194 35 07 668
Total profiles 331 4257 2737 50 85 1,098
Observer 1

Total profiles 509 5907 3854 704 143 1,863
Observer 2

Total profiles 4715 5472 3319 60.6 146 1544
Observer 3

Ki67-VE-1 10 183 153 28 S 70
Ki67-VE-2 30 40.2 294 54 2 95
Ki67-VE-3 375 414 277 5.1 1 90
Ki67-VE-4 20 302 23 4.2 4 80
Ki67-VE-5 225 31 24.1 44 1 90
Ki67-VE-median 225 325 25 46 2 90
Ki67-VE-mean 234 322 232 42 62 80
Ki67-DIA-0 16.1 199 125 23 2.1 50
Ki67-DIA-1 185 248 159 29 16 655
Ki67-DIA-2 228 291 157 29 91 684

was low: for the 30 spots, mean standard deviation and
mean standard error were 2.6% and 1.5%, respectively.
Of note, the five visual estimates (Ki67-VE), summarized
for the same individual 30 spots, revealed much higher
uncertainty - mean standard deviation and mean stand-
ard error were 10.9% and 4.9%, respectively. Interest-
ingly, a scatter plot of the five VE’ standard deviations
against their means (n =164, Figure 3) uncovered non-
linear relationship reflecting higher variation in the mid-
dle of the means’ scale. Meanwhile, the positive linear
relationship between the standard deviations and the
means for the three observers of Ki67-Count was found
in the dataset available (n = 30, not shown).

Uncertainty caused by subsampling the tissue by the
test grid of frames was estimated by computation of CE
providing confidence intervals for each individual Ki67-
Count value. Overlap of the Ki67-Count confidence in-
tervals for all three and each pair of the three observers
was considered as agreement between the generated
Ki67 LI values (Figure 4). The agreement within the
same confidence interval among all three measurements
was 69%; whereas the pairwise agreement varied from
83 to 86%. The uncertainty of the RV generated was
therefore considered satisfactory. The RV for the whole
image dataset (n=164) were based on a single observer
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count per spot (Ki67-Count). Yet, the subsampling un-
certainty was further taken into account in the accuracy
estimates.

Accuracy of the image analysis and visual estimates with
regard to the reference values

Summary statistics of the RV, DIA and VE variables
(n =164) are presented in Table 3. One-way ANOVA
revealed significant variance explained by the measure-
ment method overall (Figure 5, P <0.0001). Pairwise

comparisons (Table 4) revealed no significant bias among
the Ki67-Count and Ki67-VE-2 and Ki67-VE-3 estimates
(Duncan grouping A) or Ki67-VE-5, Ki67-VE-median and
Ki67-DIA-2 (Duncan grouping B). Meanwhile, Ki67-
DIA-0, Ki67-DIA-1, Ki67-VE-1 and Ki67-VE-4 pro-
duced significantly lower values.

Pairwise correlations (Table 5) were highly significant
(P <0.0001). Remarkably, correlation between Ki67-Count
and Ki67-DIA-0, 1 and 2 improved which each calibration
cycle from r=0.928 to r=0.949. Notably, Ki67-Count

Ki67 Confidence Interval limits (95%)

Ki67-Count-1/Count-2/ Count-3
Figure 4 The ellipses computed from the limits of the confidence interval (Cl 95%) for the three independent Ki67 counts (n = 30).
Observer ellipses are almost superimposed: Ki67-Count-1 limit is the blue ellipse (centre x = 29%, y = 29%; major axis = 76%; minor axis = 6%;
tilt = 45.36°); Ki67-Count-2 limit is the orange ellipse (centre x = 27%, y = 29%; major axis = 68%; minor axis = 8%; tilt = 46.38°); Ki67-Count-3 limit
is the green ellipse (centre x = 29%, y = 29%; major axis = 70%; minor axis = 6%; tilt = 45.37°).
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Table 3 Summary statistics of the reference values
produced by three observers with the corresponding data

of visual estil and digital image analysis, n =164
Variable Median Mean Stddev Stderror Min Max
Ki67-Count 350 40.2 253 20 06 98.1
Ki67-DIA-2 30.1 365 202 16 64 930
Ki67-DIA-1 241 311 211 16 15 90.5
Ki67-DIA-0 204 259 18.1 14 21 85.7
Visual median 30 372 274 21 2 95
Visual mean 284 36.2 256 20 22 %4
Ki67-VE-1 15 243 236 18 5 9%
Ki67-VE-2 40 434 296 23 2 98
Ki67-VE-3 375 44.1 300 23 1 9
Ki67-VE-4 22 316 243 19 1 95
Ki67-VE-5 30 377 27.7 22 1 100
Total profiles 2372 26587 13904 1086 464 7452
observer*

Total profiles 21505 22932 796.8 62.2 752 4302
DIA-2

Total profiles 19205 20227 6701 523 1,012 3,788
DIA-1

Total profiles 42035 43850 14202 1109 1,640 7,939

DIA-0

*Total nuclear profiles observer counts are multiplied by four in this table to
be comparable to the DIA total profile numbers (the box grid used for the
observer count covers ne-fourth of the image area). DIA, digital image analysis;
VE, visual estimate.
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correlated with the Ki67-VE-median strongest (r = 0.930),
in comparison to the correlations with the individual VE
measurements.

Single linear regression analyses for the DIA and VE
results as dependent variables and the RV as explanatory
variables produced highly significant (P <0.0001) models
in all cases (Table 6). Remarkably, determination coeffi-
cients (R-square) improved with each calibration cycle of
the Ki67-DIA-0, 1, and 2 from 0.86 to 0.89 and 0.90.
Notably, R-square for the VE-median (0.86) was the
highest amongst the individual VE but reached only that
of the Ki67-DIA-0.

The correspondence between the Ki67-DIA-2 and the RV
was also tested, taking into account the uncertainty of the
RV related to the subsampling of the tissue by the test grid.
The confidence interval for the RV was calculated and the
Ki67-DIA-2 values were tested for fitting the confidence
interval (Figure 4). The R-square of the model was 0.90, the
accuracy factor was 0.82. Interpretation of the plot and the
slope tilt from the ellipse axis revealed a bias: underestima-
tion of the Ki67-Count by the Ki67-DIA-2 observed at the
higher end of the RV scale as well as overestimation at the
low end. Similarly, Bland and Altman plots (not shown)
reflected the same bidirectional bias dependent on the mag-
nitude of the measurement. Orthogonal linear regression
analysis for the DIA and RV was used to refine the accuracy
value reducing the intercept factor. In this case, the ratio of
the tilt of the regression line and the tilt of the ellipse axis
defining the accuracy factor was 0.92 (Figure 6).

Outliers of the Ki67-DIA-2 versus RV analyses were
inspected to explore potential reasons of the underesti-
mation. In general, the tumour tissue was highly cellular
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Table 4 Pairwise comparisons for the means of reference
values, visual estimates and digital image analysis
results, n=164

Duncan grouping* Mean Measurement
A 44.1 Ki67-VE-3
A 434 Ki67-VE-2
B A 402 Ki67-Count
B 37.7 Ki67-VE-5
B @ 372 Ki67-VE-mean
B C D 365 Ki67-DIA-2
€ 316 Ki67-VE-4
E D 311 Ki67-DIA-1
F E 259 Ki67-DIA-0
F 243 Ki67-VE-1

*Means with the same letter are not significantly different at P <0.05. DIA,
digital image analysis; VE, visual estimate.

in many cases resulting in overlapping nuclei and their
confluence and/or rejection by maximum size limit at
the DIA. Also, in some cases, tissue artefacts, an admix-
ture of stroma with lymphocytes and large ducts could
impact the DIA results. Further fine-tuning of the Nu-
clear algorithm settings was attempted without notable
success.

Prediction of the reference values by inverse regression
and measurement error correction

Ki67-DIA-2 enabled fair accuracy and outperformed the
5 VE measurements, both individual and the median.
Yet, the measurement bias for the Ki67-DIA-2 was
established and enabled a measurement error correction
procedure to be used to predict the ground truth in real
life with maximum accuracy. Inverse regression analyses
were performed to retrieve the correction criteria
(Table 7). To avoid the potential impact of some non-
linearity noted and to derive the most useful inverse re-
gression model for accurate prediction of the ground
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truth in the interval of clinical importance, a regression
model Ki67-DIA-2 <40 was produced, based on the ob-
servations with Ki67-Count values less than 40% (n = 92).

In addition to the single regression models, multiple
regression models with inclusion of both Ki67-DIA-2
and Ki67-VE-Median gave slightly higher R-square value
(0.91) than the Ki67-DIA-2 alone (0.90). Therefore, the
DIA approach with calibration of the algorithm settings
based quantified bias enabled most accurate measure-
ment of the Ki67 LI, while VE of five pathologists were
consistent but gave little added value in terms of accur-
acy, compared to the automated DIA measurement.

Effect of the prediction and measurement error
correction on Ki67 dichotomisation accuracy

The effect of VE and DIA inverse regression models to
predict the RV on accuracy of patient dichotomisation at
RV cutoffs of clinical importance (>10, 15 and 20%) was
tested (Table 8). The cutoffs used for these simulations
were the ones most commonly considered as clinically
relevant to test potential clinical impact of the measure-
ment methods involved in our study. While Ki67-VE-
median tended to underestimate the Ki67-Count-based
class at all cutoffs, especially at 20%, the Ki67-DIA-2
prediction overestimated the classes, especially at the
lower end (>10%) of the scale. Total misclassification
rate at different cutoffs varied from 11 to 18% for the
VE-based and 5 to 9% for the DIA-based prediction,
respectively.

The effect of measurement error correction for the
Ki67-DIA-2-based prediction of the RV was tested
with the values obtained by the inverse regression formula
Ki67-DIA-2-corrected = 1.1878*Ki67-DIA-2-3.1183 and,
to minimize potential non-linearity impact for the predic-
tion accuracy, by the formula Ki67-DIA-2-corrected <40 =
1.1472*Ki67-DIA-2 -4.3913 (Tables 7 and 8). The error
correction for both prediction models (especially, the
Ki67-DIA-2-corrected <40 model) decreased the DIA

Table 5 Pairwise correlations between the reference values, visual estimates and digital image analysis results

(Pearson’s coefficients, P <0.0001, n = 164)

Measurement  Ki67-count  Ki67-DIA-2  Ki67-DIA-1  Ki67-DIA-0  Visual median  Ki67-VE-1  Ki67-VE-2  Ki67-VE-3  Ki67-VE-4
Ki67-DIA-2 0.949

Ki67-DIA-1 0.945 0.989

Ki67-DIA-0 0928 0974 0976

Ki67-VE-median 0930 0.940 0.946 0927

Ki67-VE-1 0.861 0917 0921 0925 0.891

Ki67-VE-2 0.905 0.905 0915 0.886 0.955 0829

Ki67-VE-3 0921 0921 0931 0.900 0.969 0857 0972

Ki67-VE-4 0.887 0.894 0.895 0.884 0936 0.857 0.881 0.901

Ki67-VE-5 0.842 0.869 0872 0860 0916 0822 0.853 0872 0829

DIA, digital image analysis; VE, visual estimate.
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Table 6 Single linear regression models with reference values as explanatory variable (n = 164, P <0.0001 for all

models and slope estimates)

Variable R-square Intercept estimate
Ki67-DIA-2 090 5.9692
Ki67-DIA-1 089 -0.6389
Ki67-DIA-0 086 -0.9576
Ki67-VE-median 086 -3.3799
Ki67-VE-1 0.74 -8.1114
Ki67-VE-2 082 06733
Ki67-VE-3 085 0.1337
Ki67-VE-4 0.79 -2.7516
Ki67-VE-5 071 04763

DIA, digital image analysis; VE, visual estimate.

overestimation effect at the >10% cutoff. While total
misclassification rate at different cutoffs for Ki67-DIA-
2-corrected remained in the interval of 5 to 9%, the
Ki67-DIA-2-corrected <40-based prediction enabled
some improvement down to the misclassification rate
of 5 to 7%.

In summary, the DIA-based prediction of the RV en-
abled the classification error rate half of that of the VE-
based prediction, it was less than 10% at all cutoffs
tested, and could be further improved by the measure-
ment error correction attempts.

Discussion

Our experiment presents test validation, calibration and
measurement error correction methodology that can be
successfully applied to ensure and improve accuracy of
IHC Ki67 LI estimation by DIA. In essence, in our

Intercept P Slope estimate Slope standardized estimate
<0.0001 0.7588 09494
05324 0.7892 0.9447
03389 0.6667 09278
0.0242 1.0093 09316
<0.0001 0.8057 08514
0.7180 1.0616 0.9049
09382 1.0926 09210
0.0987 08545 0.8545
0.8294 09245 08422

approach we sought to adopt the principles of analytic
test validation for IHC DIA-based enumeration of Ki67
LI with quantification of the measurement bias by com-
parison to the Ki67 LI obtained on the same images by
stereological test grid count as most direct criterion
standard. Our first step of the DIA calibration (DIA-0 to
DIA-1) was achieved by visual (intuitive) quality assess-
ment of the DIA results on the computer monitor of se-
lected images, while the second (DIA-1 to DIA-2) was
based on quantified bias from the criterion standard.
Our results show that only after the second (quantita-
tive) calibration step, global bias of the DIA became not
significant, while regression analyses revealed gradual
improvement of the prediction of the DIA outputs with
the calibration steps. Although the calibrated DIA-2 re-
vealed the best accuracy achieved, exceeding that of the
VE, nonlinearity was noted with some overestimation

Ki67-DIA-2

Ki67-Count

Figure 6 Orthogonal linear regression analysis. Reference values as explanatory variable and the DIA-2 as dependent variable (yellow)
taking into account an ellipse of 95% confidence interval (orange) defined the sampling theory (n =164 n= 164, P <0.0001, equation of the

line: y =0.877x +0.012). DIA, digital image analysis.
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Table 7 Single and multiple linear inverse regression models to predict reference values as dependent variable

(n=164, P <0.0001 for all models and slope estimates)

Variable R-square Intercept estimate
Single regression models:

Ki67-DIA-2 0.90 -3.1183
Ki67-DIA-2 < 40* 0.75 -4.3913
Ki67-DIA-1 0.89 50453
Ki67-DIA-0 0.86 68232
Ki67-VE-median 0.86 83195
Muiltiple regression model 091 -0.3245

Ki67-DIA-2
Ki67-VE-median

Intercept P Slope estimate Slope standardized estimate
00165 11878 09494
0.0085 11472 0.8688
<0.0001 11309 09447
<0.0001 12916 09278
<0.0001 08572 09302
0.8096
0.8068 06448
0.2985 03239

*Ki67-DIA-2 < 40 - represents a regression model for Ki67-DIA-2 with only Ki67-Count less than 40% cases included in the analysis (n =92). DIA, digital image

analysis; VE, visual estimate.

bias on the low and underestimation bias at the high
end of the scale. We subsequently applied measurement
error correction procedures by inverse regression to fur-
ther enhance the DIA test applicability. Finally, we tested
potential clinical impact of the accuracy achieved by ap-
plying DIA- and VE-based predictions of Ki67 LI to
dichotomize patients (images) by frequently used cut off
values at 10, 15 and 20% and found that DIA (after
quantitative calibration and measurement error correc-
tion) enabled the classification error rate 2x less than
that of the VE.

In our study we did not strictly follow the guidelines
for analytical test validation [19] since the nature of the
subject and the criterion standard (IHC image) used are
still different from the analytical test samples used in

medicine. First, the uncertainty of our criterion standard
was tested by independent measurements by three ob-
servers on a subset (n=30) of images and was consid-
ered as satisfactory to further rely on one observer
counts. Nevertheless, the inter-observer comparison was
image-based but not cell-based, and we realize that hu-
man judgment/error is still involved when deciding on
individual tumour/non-tumour and positive/negative
cells even in this stereologically-based approach. Al-
though some uncertainty of our criterion standard has
to be taken into account, our data show that it is more
reliable than that of the VE consensus of several pathol-
ogists and, therefore, should be used for DIA validation
needs. Secondly, we have not tested the repeatability of
the tests: it would be beyond reasonable effort to repeat

Table 8 Effect of the inverse regression-based prediction and measurement error correction on Ki67 dichotomisation

accuracy at various reference value cutoffs (n =164)

Method Underestimated (%)
Ki-67 cutoff >10%

Ki67-VE-median 16/148 (11)
Ki67-DIA-2 0/148 (0)
Ki67-DIA-2 corrected 0/148 (0)
Ki67-DIA-2 corrected <40* 2/148 (1)
Ki-67 cutoff >15%

Ki67-VE-median 22/136 (16)
Ki67-DIA-2 2/136 (1)
Ki67-DIA-2 corrected 3/136 (2)
Ki67-DIA-2 corrected <40* 5/136 (4)

Ki-67 cutoff >20%

Ki67-VE-median 28/123 (23)

Ki67-DIA-2 2/123 (2)
Ki67-DIA-2 corrected 2/123 (2)
Ki67-DIA-2 corrected <40* 6/123 (5)

Overestimated (%) Total misclassified (%)

2/16 (13) 18(11)
12/16 (75) 12(7)
9/16 (56) 95
6/16 (38) 8(5)
1/28 (4) 23 (14)
13/28 (46) 1509
11/28 (46) 14(9)
6/28 (21) 11.(7)
1/41 (2) 29 (18)
9/41 (22) 1@
12/41 (29) 14.(9)
6/41 (15) 12(7)

*Ki67-DIA-2 < 40 - represents a regression model for Ki67-DIA-2 with only Ki67-Count less than 40% cases included in the analysis (n =92). DIA, digital image

analysis; VE, visual estimate.

110



Laurinavicius et al. Breast Cancer Research 2014, 16:R35
http://breast-cancer-research.com/content/16/2/R35

the stereological count manually and less important to
repeat (intra-observer) VE, since it was not our main
focus to investigate the VE accuracy and precision. The
repeatability of the DIA in strictly the same conditions is
expected to be perfect, the reproducibility of the DIA in-
volving all phases of the Ki67 LI test as well as its ro-
bustness to the IHC staining variation was beyond the
scope of this study. Third, we did not validate our DIA
prediction accuracy on an independent dataset, since it
requires another set of criterion standard data that is
planned as an output of our next experiment. Fourth,
the DIA validation tests in the present study are based
on summarized data per image (Ki67 LI), while more
rigid individual cell-based comparisons would provide
even more granular information on the performance of
the DIA tools.

Our approach uncovered a non-linear bias in the op-
posite directions depending on the magnitude of the
measurement of the Ki67-DIA-2, which could hardly be
documented by only the subjective assessment of the
DIA accuracy of selected images on a computer monitor.
To better understand why DIA-2 overestimated the Ki67
LI at the low and underestimated it at the high ends of
the scale, we compared absolute numbers of positive
and negative tumour cell profiles detected by the DIA-2
and box grid count (data not shown). We found that
with increasing both Ki67 LI and the total number of
cell profiles counted, DIA-2 tended to under-detect
tumour cells, while this effect was more notable for posi-
tive cells. To really explore the sources of the bidirec-
tional bias, one needs to design more sophisticated cell-
based quality assurance procedures which would also
allow testing the impact of cell density and other fea-
tures. From our data, we can speculate that increased
tumour cellularity with more cell profiles overlapping
may impact nuclear segmentation quality, while the im-
pact of the automated tumour tissue segmentation by
the Genie algorithm remains to be deciphered. In gen-
eral, this nonlinearity phenomenon seems to originate
from “subject-measurement” interaction, where the mea-
sured subject has variable characteristics (tumour cellu-
larity, density, texture, staining, section thickness and so
on) and a specific DIA algorithm may handle them with
variable success. This further highlights the complexity
of the automated DIA approaches and the need of ap-
propriate validation and quality assurance procedures.

Although the VE validation was not the main focus of
our study, we observed an interesting nonlinear depend-
ence of inter-observer variation on the magnitude of the
measurement: high standard deviations in the five VE
observers’ mean were noted in the middle of the Ki67 LI
scale. This finding is somewhat unexpected, but still
consistent with the observation that IHC biomarker dis-
tribution artefacts may be generated by subjective visual
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scoring [20]. Without going into extended speculations
on the potential sources of this variation, we see it as
additional evidence that individual VE or “eyeballing”
cannot serve as reliable measurement when there is in-
creased clinical demand for quantification accuracy. The
“consensus” or median VE of five pathologists ensured
better accuracy than individual VE; however, it did not
reach that of the calibrated DIA. Furthermore, besides
being less accurate, precise and practical for clinical use,
multi-observer VE should not be used as a criterion
standard method for the DIA validation purposes, be-
cause of its greater uncertainty level compared to that of
DIA or count-based methods.

The deepening gap between the potential clinical util-
ity of the Ki67 LI and availability of robust measurement
methodologies is reflected by the St Gallen 2013 consen-
sus [21]: while the cut off <14% remains in the definition
of the Luminal A-like tumours, a majority voted for the
threshold of >20% to define “high” Ki67 status. Further-
more, a concern about the possible under-treatment of
patients with luminal disease who might benefit from
chemotherapy, justifies use of a lower (local laboratory
specific) cut-off to define Ki-67 “high” or use of multi-
gene-expression assay results. This approach would po-
tentially require validation studies with clinical outcomes
while the measurement methods remain not standard-
ized. In the situation where one laboratory may serve
different oncology units, this would become even less
realistic. In addition, it is worth noting that there is a
fundamental issue in defining and reproducing Ki67 LI
cut-offs with the distribution pattern when the great ma-
jority of the hormone-receptor positive breast tumours
fall into the Ki67 KI interval between 10 to 20%. There-
fore, it is intrinsically difficult to meet the clinical de-
mand for accuracy without measurement methods of
established and controlled accuracy, preferably indicat-
ing confidence intervals for the values. Even more, com-
binatorial or multiple IHC biomarker systems may be
needed to achieve robust prognostic and predictive indi-
cators [13,22,23].

While manual techniques, including VE and counting,
have been shown to be poorly reproducible, even at the
level of decision on individual cells [24], the only viable
alternative to extract most accurate Ki67 LI by IHC test
is further sophistication and standardization of DIA
methodologies. They enable greater capacity which also
involves counting more cell profiles in more tissue sam-
ples, which in turn may lead to better accuracy at the
low end of the Ki67 LI scale [25]. The success of the
DIA in IHC quantification may be variable and depend
both on the DIA tools used and a study design. For
breast cancer Ki67 LI measurement, DIA has been
shown to be comparable to the VE but of less prognostic
value by one study [26] or better than VE, comparable
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to CIM and of stronger prognostic accuracy by another
[12]. Even if it is tempting (and useful) to validate a DIA
tool to predict specific clinical outcomes, we argue that
sound DIA measurement methods should be developed
and maintained by meeting the “basic needs” first to
quantify the measurement bias from affordable and most
objectively established criterion standard. As put by
Bland and Altman [18], “some lack of agreement be-
tween different methods of measurement is inevitable,
what matters is the amount by which methods disagree”.
We, therefore, position our experiment as the first step
in DIA validation process to ensure accurate estimation
of Ki67 LI in a selected tissue sample, with subsequent
steps to use automated DIA to address tissue heterogen-
eity and sampling issues as well as prediction of clinical
outcomes.

Conclusions

In general, we suggest that proper quantitative validation
and calibration methodologies can and have to be
employed to establish and ensure accuracy of Ki67 LI
measurement by DIA and digital IHC. The measurement
accuracy can be further improved by measurement error
correction based on the quantified bias, which in our
study allowed to decrease patient misclassification rate
by the Ki67 LI cut offs of 10, 15 and 20% down to 5 to
7%, compared to that of the VE consensus of five pathol-
ogists at 11 to 18%. This basic validation step also opens
better perspectives to use high-throughput automated DIA
tools to investigate tissue heterogeneity and clinical utility
aspects of Ki67 and other IHC biomarker expression.
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Abstract Digital image analysis (DIA) enables higher accu-
racy, reproducibility, and capacity to enumerate cell popula-
tions by immunohistochemistry; however, the most unique
benefits may be obtained by evaluating the spatial distribution
and intra-tissue variance of markers. The proliferative activity
of breast cancer tissue, estimated by the Ki67 labeling index
(Ki67 LI), is a prognostic and predictive biomarker requiring
robust measurement methodologies. We performed DIA on
whole-slide images (WSI) of 302 surgically removed Ki67-
stained breast cancer specimens; the tumour classifier algo-
rithm was used to automatically detect tumour tissue but was
not trained to distinguish between invasive and non-invasive
carcinoma cells. The WSI DIA-generated data were subsam-
pled by hexagonal tiling (HexT). Distribution and texture pa-
rameters were compared to conventional WSI DIA and pa-
thology report data. Factor analysis of the data set, including
total numbers of tumor cells, the Ki67 LI and Ki67
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distribution, and texture indicators, extracted 4 factors, identi-
fied as entropy, proliferation, bimodality, and cellularity. The
factor scores were further utilized in cluster analysis, outlining
subcategories of heterogeneous tumors with predominant en-
tropy, bimodality, or both at different levels of proliferative
activity. The methodology also allowed the visualization of
Ki67 LI heterogeneity in tumors and the automated detection
and quantitative evaluation of Ki67 hotspots, based on the
upper quintile of the HexT data, conceptualized as the
“Pareto hotspot”. We conclude that systematic subsampling
of DIA-generated data into HexT enables comprehensive
Ki67 LI analysis that reflects aspects of intra-tumor heteroge-
neity and may serve as a methodology to improve digital
immunohistochemistry in general.
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Abstract

Background: Gene expression studies have identified molecular subtypes of breast cancer with implications to
chemotherapy recommendations. For distinction of these types, a combination of immunohistochemistry (IHC)
markers, including proliferative activity of tumor cells, estimated by Ki67 labeling index is used. Clinical studies are
frequently based on IHC performed on tissue microarrays (TMA) with variable tissue sampling. This raises the need
for evidence-based sampling criteria for individual IHC biomarker studies. We present a novel tissue sampling
simulation model and demonstrate its application on Ki67 assessment in breast cancer tissue taking intratumoral
heterogeneity into account.

Methods: Whole slide images (WSI) of 297 breast cancer sections, immunohistochemically stained for Ki67, were
subjected to digital image analysis (DIA). Percentage of tumor cells stained for Ki67 was computed for hexagonal
tiles super-imposed on the WSI. From this, intratumoral Ki67 heterogeneity indicators (Haralick's entropy values)
were extracted and used to dichotomize the tumors into homogeneous and heterogeneous subsets. Simulations
with random selection of hexagons, equivalent to 0.75 mm circular diameter TMA cores, were performed. The
tissue sampling requirements were investigated in relation to tumor heterogeneity using linear regression and
extended error analysis.

Results: The sampling requirements were dependent on the heterogeneity of the biomarker expression. To achieve
a coefficient error of 10 %, 5-6 cores were needed for homogeneous cases, 11-12 cores for heterogeneous cases;
in mixed tumor population 8 TMA cores were required. Similarly, to achieve the same accuracy, approximately 4,000
nuclei must be counted when the intratumor heterogeneity is mixed/unknown. Tumors of low proliferative activity
would require larger sampling (10-12 TMA cores, or 6,250 nuclei) to achieve the same error measurement results as
for highly proliferative tumors.

Conclusions: Our data show that optimal tissue sampling for IHC biomarker evaluation is dependent on the
heterogeneity of the tissue under study and needs to be determined on a per use basis. We propose a method
that can be applied to determine the sampling strategy for specific biomarkers, tissues and study targets. In
addition, our findings highlight the benefit of high-capacity computer-based IHC measurement techniques to
improve accuracy of the testing.

Keywords: Tissue microarrays, TMA, Digital image analysis, Breast cancer, Ki67, Tumor heterogeneity, Tissue
sampling
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Background

Gene expression studies have identified distinct molecu-
lar subtypes of breast cancer (Luminal A, Luminal B,
HER2-enriched, basal-like and normal breast-like) with
markedly different behavior and prognosis [1]. Mean-
while, clinical practice of decision making largely relies
on the definition of Luminal A-like and Luminal B-like
disease, based on a combination of estrogen receptor
(ER), progesterone receptor (PgR) and Ki67 immunohis-
tochemistry (IHC) [2]. Proliferative activity of tumor
cells, estimated by Ki67 labeling index (Ki67 LI) is a key
indicator to support this stratification and provides
strong prognostic and predictive information on re-
sponse to chemotherapy [3]. Clinical utility of Ki67 LI is
hampered by the lack of robust measurement method-
ologies and widely acknowledged issue of intratumor
Ki67 heterogeneity expression. Consequently, it is hard
to achieve consensus on cut-off values to stratify the pa-
tients for therapeutic decisions [2]. Great effort has been
made to standardize the techniques for manual and
digital/automated Ki67 LI measurement, including cri-
teria for tissue sampling, hotspot detection, and digital
image analysis (DIA) tools [4-11].

Recently, Ki67 expression across distinct categories of
breast cancer specimens including whole slide surgical
specimens, needle core biopsies and tissue microarrays
(TMA) was investigated by Knutsvik et al. [1]. They
found significant differences of Ki67 LI estimates across
the different sample categories and suggested that
specimen-specific cut-off values should be applied for
practical use. While the recommendation is logical and
may compensate for the inherent differences of the tis-
sue sampling, its implementation requires better know-
ledge of measurement accuracy that can be achieved by
the techniques, in general. Additionally, Going [12] has
previously pointed out that the counting rules depend
on level of mitotic activity in tumors. This dependency
has not been investigated for tumors with varying Ki67
proliferation rates.

TMA has been often applied for discovery and clin-
ical studies of IHC biomarkers. Initially proposed by
Battifora [13], it enables multiple testing on numerous
tissue samples in a standardized, tissue-sparing, and high-
throughput manner by assembling small core biopsies
from morphologically representative areas of tissues onto
a single paraffin block [14]. The approach was further
refined into to a precise technique by Kononen [15]. One
inherent drawback of the TMA technique is related to the
limited fraction of the original sample included, raising
the need to achieve/be aware of adequate sampling re-
quirements [16]. Furthermore, TMA sampling require-
ments may vary depending on the target, lesion, tissue,
and the goal of investigation. Therefore, it is important to
determine the sampling parameters on a per-use basis.

118

Page 2 of 10

For instance, three cores of 0.6 mm diameter will have al-
most a similar area to one core of 1 mm diameter
(0.85 mm? versus 0.78 mm?), but provide different infor-
mation about the specimen as they are likely to represent
multiple areas [17, 18]. To address this issue, many studies
have been performed to determine the impact of size and
number of TMA cores [17, 19-28]. Most commonly, the
recommended number of TMA cores varied from one to
four with a diameter between 0.6 mm to 2 mm.

Determining optimal TMA sampling parameters by
physical sampling of the cores, is not only time-consuming,
but, more importantly, it limits the options of comprehen-
sive statistical modeling and decomposes the original tissue
sample to be used as the reference standard. To overcome
these limitations, the concept of a virtual TMA was ex-
plored by utilizing digital whole slide images (WSI) to
extract artificial TMA cores [25]. The approach has been
applied in several studies: Quintayo et al. [19] manually
marked core positions on a low magnification image
before acquiring images of the TMA cores at high mag-
nification; they also matched core positions between
H&E and IHC staining of the same tissue before the
acquired cores were subsequently assembled to a virtual
TMA of ductal carcinoma in situ. Pedersen et al. [28]
reported a similar procedure, but used random sam-
pling of six 1 mm diameter cores directly on 20x mag-
nification images of both H&E and IHC slides before
assembling the virtual TMA. The studies supported the
principle that assembling a set of virtual TMAs by
copying cores from digital images is a valuable ap-
proach in TMA-based tissue sampling modeling.

A methodology for comprehensive IHC evaluation with
appraisal of intratumoral heterogeneity aspects in WSIs of
Ki67-stained breast cancer tissue was recently proposed
[29]. It is based on systematic subsampling of DIA-
generated data into a hexagonal tiling (HexT) arrays and
enables computation of a comprehensive set of texture
and distribution indicators for Ki67 intratumoral variabil-
ity. While the primary aim of that study was to investigate
intratumoral heterogeneity of Ki67 expression, in the
current study we exploit the method for modeling tissue
sampling precision in homogeneous and heterogeneous
tumors dichotomized by spatial entropy of Ki67 expres-
sion: The hexagons in the HexT were chosen to simulate
virtual TMA cores (or corresponding fields of view in
conventional microscopy), with numbers of Ki67 positive
and negative cells established by DIA. Using the spatial
entropy extracted from the tiling as a spatial modeling of
the Ki67 expression the impact tissue and cell sample size
and tumor heterogeneity has on the accuracy of Ki67 LI
measurement becomes possible to investigate. We present
evidence that tumors with lower Ki67 LI as well as higher
spatial heterogeneity of Ki67 expression require relatively
larger sampling subsets to represent the global average of
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the biomarker expression in the tissue. Additionally, the
results support the notion, that tumors at the low end of
proliferation scale require higher cell counts [12].

Methods

Tissue and data

A data set consisting of primary breast cancer from 297
patients was used in this study. Details of the dataset are
reported in [29]. Briefly, 91 % of the tumors were inva-
sive ductal carcinoma of the breast (270/297). Tissue
samples were formalin-fixed, processed with standard
paraffin embedding techniques. IHC for Ki67 was per-
formed with antibody (clone MIB-1; DAKO, Glostrup,
DK) and multimer technology-based detection system
(ultraView Universal DAB, Ventana, Tucson, AZ, USA).
Digital WSIs were recorded using a ScanScope XT Slide
Scanner (Leica Aperio Technologies, Vista, CA, USA)
under 20x objective magnification (0.5-pm resolution)
and subsequently subjected to DIA by the Leica Aperio
Genie Classifier v.1/Nuclear v.9 algorithm. This tool was
previously calibrated based on tumor versus benign tis-
sue recognition and positive versus negative cells detec-
tion. DIA algorithm was previously validated using a
criterion standard achieved by stereological counting.
The research was approved by the Vilnius Regional Bio-
medical Research Ethics committee (reference number
NR.:40, date 2007-04-26). Additional informed consent
was not required for the use of archived material.

TMA simulation using hexagonal tiling

The HexT methodology forming the basis of automated
texture feature extraction is described in detail in [29].
Briefly, the coordinates of positive and negative nuclei
extracted by DIA were distributed into a dense HexT
overlaid on each WSI. The HexT was randomly posi-
tioned within the invasive tumor area (Fig. 1, Middle).
Hexagons containing no nuclear profiles by DIA were
regarded as missing data; hexagons containing fewer
than 100 nuclear profiles were regarded as insufficiently

Page 3 of 10

sampled. A minimum requirement of 30 informative
hexagons per tumor was applied. Local Ki67 LI was cal-
culated for each hexagon to construct co-occurrence
matrix used to compute Haralick texture parameters.

The individual hexagons, with local Ki67 LI, were sub-
sequently used as TMA cores for the random sampling
simulations (Fig. 1, Right) and resembled approximately
a TMA core of 0.75 mm circular diameter and 0.44 mm*
area. The tumors were dichotomized into homogeneous
and heterogeneous groups based on the median entropy
value obtained by the HexT methodology. The sampling
simulations were carried out for all three tumor classes:
all/mixed, homogeneous and heterogeneous.

In addition to giving insight about the minimum number
of required TMA cores, the simulations can be used to
infer error measurements according to how many nuclei
are assessed. By dichotomizing the simulated cores by the
number of nuclei contained, the error measurement can
additionally be investigated as function of the nuclei count.

The experimental models and statistical methods

The impact caused by varying core number was investi-
gated for a range of numbers feasible to punch out in
practice. The chosen set of core numbers investigated is
denoted HexN =(1, 2, ..., 15).

The practical evaluation of Ki67 LI scores from multiple
cores or tissue regions is not always based on individual
cell counts. Here we investigated the impact of three ways
of calculating the Ki67 LI from a set of subsampled virtual
cores: mean, median and by first summing total numbers
of positive and negative nuclei in the subsampled hexa-
gons, denoted sum. For a subsampled set H the Ki67 LI
by sum is simply:

HexN
3 Pos(hex;)
sum(H) = g = HeN
. Pos(hex;) +Z Neg(hex;),

where Pos and Neg are functions counting positive and
negative nuclei in a hexagon, respectively. Note that if

Fig. 1 Hexagonal tiling of digital image analysis data for tissue subsampling simulations. Left: Tumor marked by region of interest. Overlay
showing high resolution tissue. Middle: Tumor with results of DIA and the hexagonal grid for TMA simulation. Overlay showing high resolution
DIA results. Right: Hexagonal grid filtered according to nuclei count. Ki67 LI indicated by fill color. Light gray is low Ki67 LI with darker reds
showing larger Ki67 LI. Green hexagons illustrate one possible subsampled set of four hexagons
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TMA cores could sample the entire area of the tumors,
only the evaluation by “sum” would be equivalent to the
Ki67 LI determined by whole slide image analysis which
extracts all nuclei before calculating Ki67 ratio.

Two different methods were used to simulate the im-
pact of the number of hexagons/TMA cores on the preci-
sion of the sampling to represent the Ki67 LI reported by
the DIA of the entire region of interest (ROI). First, the
practice of “physical” TMA construction, in which a set of
cores is sampled only once, was simulated by randomly
sampling a subset of hexagons once. Single linear regres-
sion analysis was used to compare the data in a single
random selection.

Secondly, an error analysis was conducted by simulating
many samplings of TMA subsets with core numbers of
sizes HexN = (1, 2, ..., 15) per case. Each subset is sampled
from the set of hexagonal tiles without replacement, but
all hexagons are replaced before sampling a new subset.
From the resulting sampling distribution, error measure-
ments and other statistics can be inferred. Here, the simu-
lations were used to infer the coefficient of error (CE) of
Ki67 LI predictions using subsets differing in the number
of virtual cores. The CE was calculated as

Bias> + o (u- T)* +

0—2
72 - 72 g

CE =

where o is standard deviation, p is mean of Ki67 LI
inferred from the simulation distributions and T is the
Ki67 LI as determined by the DIA. The interpretations
of error analysis results are made according to a putative
CE value of 10 % for accessible results for practical
applications. The choice of this value is strongly influ-
enced by CE dependence on Ki67 LI heterogeneity levels
(Haralick entropy values). This dependence is illustrated
in additional plots available as Additional file 1.

Both experiments were grouped by tumor heterogeneity
and repeated for HexN = (1,2, ...,15) with hexagons resem-
bling a 0.75 mm diameter TMA core and the simulations
were performed with 50,000 iterations.

From the simulations error measurements according
to how many nuclei are assessed can be inferred as fol-
lows: for one tumor case 50,000 subsets of TMA cores
are sampled of size HexN = (1, 2, ..., 15). This yields a
total of 750,000 subsets which are effectively grouped by
HexN. By dichotomizing according to the number of
nuclei sampled in each subset into bins of 250 nuclei
(first bin [0;250), second bin [250;500) etc.), the error
measurement can additionally be investigated as func-
tion of the nuclei count. To make it clear if CE is calcu-
lated according to hexagon area or nuclei number, the
CE is denoted CE 4,e, and CEnycei respectively.

Previously, Going [12] pointed out that to achieve the
same relative error large cell counts are required for low
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mitotic activity tumors while high mitotic activity re-
quires more moderate cell counts. Specifically, it was
illustrated that the relationship between the relative
error in the mitotic activity can be approximated by

Relative Error = ﬁ = n %%, where n is number of

mitoses. Here we investigate if a similar relationship
exists between relative error measurements CE 4., and
CEnuctei @s function of the Ki67 proliferation activity
indicator by fitting CE as function of Ki67 to

CE = ax?.

This is done for each choice of HexN, for a set of bins
used for dichotomizing by nuclei count and for all three
classes of heterogeneity (all/mixed, homogeneous and
heterogeneous).

Statistical analysis was performed using R 3.1.2, GNU
GCC 5.2.1, Open Office 4.1.2 and SAS 9.4 software.

Results

Summary statistics

Extensive dataset summary statistics of the Ki67 indica-
tors, obtained by HexT methodology, are previously
reported [29]. Briefly, the global average of Ki67 LI
values (in percentages) estimated by DIA of the WSIs
was almost identical to the results obtained by HexT
(mean: 32.5 + 16.9 %, median 32.6 + 17.4 % and sum 32.7 +
17.3 %). Importantly, the HexT data provided a compre-
hensive set of intratissue variation indicators [29].

Single subsampling - linear regression analysis

Figure 2 illustrates the linear regression analysis results
(R? values) plotted by different types of Ki67 LI calcula-
tion methods (mean, median, and sum) and grouped by
heterogeneity. All R? values from linear regression ana-
lysis were at p < 0.0001 significance level. The R* values
for all cores are presented in Table 1. Linear regression
analysis (Fig. 2) reveals that R* values plotted for various
Ki67 LI measurement methods were nearly overlapping
in the subgroup of homogeneous tumors. For the het-
erogeneous tumors, mean and median were less repre-
sentative than the sum-based percentage. This bias was
mostly apparent with small sets of cores and diminished
when a larger number of cores were used.

To achieve R*=0.95 value in the regression models,
random selection of at least four, three and twelve cores
were required in the mixed, homogeneous and heteroge-
neous tumors, respectively.

Error analysis

The mean coefficient of error (CE) for Ki67 LI estimates,
calculated using the sum, is plotted for increasing TMA
core numbers in the tumor subgroups (Fig. 3). To achieve
the CE of 10 %, 8 cores of 0.75 mm diameter were
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required in the mixed group of tumors. Respectively, 5-6
or 11-12 cores were required in the subgroups of homo-
geneous and heterogeneous tumors.

To achieve a CE of 10 %, approximately 4,000 nuclei
were required in the mixed group of tumors as depicted
in Fig. 4. For the subgroups of homogeneous and hetero-
geneous tumors to reach the same error, 3,000 and 7,000
nuclei were necessary, respectively.

An inverse relationship between CE_Area and prolifera-
tion activity is clearly seen in Fig. 5 for any choice of TMA
count. Furthermore, Table 2 reveals that the fitted

parameter b is close to the value of 0.5 as reported in [12]
confirming the same dependence. The close-up around
the critical point of 10 % CE and 20 % Ki67 LI in Fig. 5
shows that for mixed tumor population to achieve the CE
of 10 %, approximately 10-11 TMA cores were required
at the level of 20 % Ki67 LI Respectively, 7-8 or 13-14
cores were required in the subgroups of homogeneous
and heterogeneous tumors.

Similarly, a high CE_Nuclei is also observed for low pro-
liferation rates as depicted in Fig. 6. which graphically con-
firms the need for counting more nuclei for low

Table 1 Linear regression analysis results for hexagon size = 825 pixels (=0.75 mm TMA core)

R? values
HexN All tumor cases Homogeneous cases Heterogeneous cases

Sum Mean Median Sum Mean Median Sum Mean Median
1 0827 0827 0827 0906 0.906 0906 06 06 06
2 0893 0.888 0.888 0929 0926 0926 0.749 0.733 0733
3 093 092 09 0.964 0955 0.947 081 0.79 0.731
4 0955 0952 0.945 0.969 0969 0965 0897 0879 0.866
5 0964 0958 0938 0972 0.969 0963 0926 0912 0.842
6 0.964 0957 0951 0975 0972 0.969 0916 0.895 0.886
7 0.964 0959 0952 0976 0.969 0969 0918 0913 0.883
8 0969 0958 095 0981 0977 0977 0916 0.882 0.845
9 0976 0971 0.966 0984 098 0981 0.944 0934 0.908
10 0978 0971 0962 0987 0983 098 0.947 0923 0.893
1l 0974 0.968 0.961 0.983 0978 0977 0936 092 0894
12 0977 0971 0968 0982 0976 0977 0.954 0941 0926
13 0982 0978 0.969 0.986 0.984 0.984 0965 095 0914
14 098 0975 0.969 0.986 0.984 0.984 0952 0938 0.907
15 0982 0977 0973 0.984 0983 0983 0.965 095 0933

In each data set Ki-67 LI was calculated by counting mean, median and sum of positive and negative cells. All linear regression analysis results were statistically

significant, p < 0.0001
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Fig. 3 Error results as function of tissue area evaluated. The resampling procedure was simulated for each individual tumor case using 50,000
iterations for each count of hexagons (HexN). Analysis results are split by tumor heterogeneity level. Error measurement (Coefficient of error) is
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proliferation tumors. Also here the fitting parameter b is
close to the value 0.5 reported [12], see Table 3. The close-
ups in Fig. 6 reveal that at the level of 20 % Ki67 LI, to
achieve the CE of 10 %, approximately 6,250 nuclei were
required in the mixed group of tumors. For the subgroups
of homogeneous and heterogeneous tumors to reach the
same error 5000 and 10,000 nuclei were necessary,
respectively.

Discussion

This study has exploited novel opportunities that digital
microscopy images offers for virtual TMA modeling
with incorporation of DIA results. Firstly, the virtual
TMAs were modeled after the HexT methodology
extracted both global texture information and local fea-
ture information from the WSI. Secondly, simulation of
the TMA cores using the HexT dataset enabled mul-
tiple random sampling iterations bypassing the digital

assembly of the virtual TMAs. This gave a much greater
flexibility in investigating a wider range of sampling meth-
odologies, parameters and error measurements. The added
benefits do not impose any new limitations: if cores are
needed for several stainings of the same tissue, cores can
be sampled at the exact location in different images by
applying mapping techniques similar to the ones reported
by Quintayo et al. [19].

Previously, a similar approach was tested by Heus et al.
[30], who utilized a dense grid of rectangular frames
instead of hexagons. From each subsampled frame, a core
was simulated by the largest circle contained within. This
has a side-effect that tissue located at the corners of the
frames will never be sampled; this effect is not independ-
ent of size of the simulated cores. The use of hexagons for
virtual core simulation does not suffer from this: the dense
HexT ensures that all parts of the tissue are considered
with the same probability. Sampling without replacement
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Fig. 4 Error results as a function of nuclei counted. The coefficient of error plotted as a function of nuclei count. See text for transformation of
TMA by core number to nuclei count. Analysis results are split by tumor heterogeneity level. Error measurement (Coefficient of error) is expressed
by mean of all cases
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Fig. 5 Coefficient of error by tissue area evaluated as a function of Ki67 LI in tumors of different heterogeneity level. CE_Area plotted as
depending on heterogeneity level with a separate curve for each HexN = (1

,....15). See Additional file 1 for curve fits

further ensures that the same area is not represented by
multiple cores in the subsets used in the simulations.

The analysis of core/cell sampling requirements in this
study was made possible to group according to Haralick
entropy texture feature extracted by the HexT method-
ology for each WSI. It must be noted that the Haralick en-
tropy threshold value is not clearly defined. Therefore, the
optimal method to split the dataset it into equal parts by
median was chosen. In a similar study, the variance of the
local Ki67 LI was used as entropy measurement, but with-
out a complete error analysis for the entire dataset [30].

Table 2 Fit parameters for relative error CE_Area fitted to
proliferation index for all three heterogeneity classes

Proliferation fit to relative error

HexN All/Mixed Homogenous Heterogeneous
a b a b a b

1 0.128 0.58 0.092 0684 0.168 0481
2 0.093 0.553 0.068 0647 0.119 0482
3 0.077 0.542 0.057 063 0.097 048
4 0.068 0533 0051 0614 0084 0478
5 0.062 0.527 0.046 0.604 0076 0477
6 0.057 0521 0043 0.595 0.069 0474
7 0.053 0516 0.04 0.587 0.064 0473
8 0.05 0512 0038 0579 0.06 0473
9 0.048 0507 0037 0572 0.057 0471
10 0.046 0.502 0.035 0.564 0.054 0469
" 0.044 0498 0.034 0.557 0.052 0469
12 0.042 0493 0033 0.549 0.05 0467
13 0.041 0489 0032 0543 0048 0463
14 0.04 0486 0031 0.538 0.047 0463
15 0.039 0482 0031 0531 0045 0464
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Combining Ki67 LI (or any other biomarker) from
several cores is often needed in TMA studies. This in-
troduces a risk of bias which involves assessing the num-
ber of positive and negative nuclei for the observed
cores before recalculating the Ki67 LI. We evaluated this
potential bias by comparing results from combined Ki67
LI from a set of simulated cores using the mean, the me-
dian and Ki67 LI calculated by using sum of nuclei in
the sampled hexagons. We found that when larger set of
cores were used, any bias with regard to the Ki67 LI cal-
culation methods was negligible (Table 1), while calcula-
tion of the combined Ki67 LI, by assessing the core data
first, is strongly advised where only a few TMA cores
are used from heterogeneous tumors (Fig. 2, right).

The practical TMA construction, where cores were ran-
domly chosen only once, was investigated using linear re-
gression. This allowed comparison of the hexagonal
simulation data to previous studies. For a tumor set with
mixed heterogeneity, we found a number of cores to
achieve R"2=0.95, to be four, in line with the previous
reports [17, 25, 26, 31]. For homogeneous tumors, the op-
timal number of cores was three, depending whether the
sum or mean calculations were used, respectively. A ra-
ther dramatic increase to the requirement of 12 cores was
found in the heterogeneous tumors.

The single sampling brings some eventuality, because
for each sampling, it is possible to obtain cores contain-
ing different tissue representation and thus biomarker
expression level. The error is particularly important
when considering tissue samples with varying degrees of
heterogeneity, as it influences the representativeness of
TMAs [27]. A number of studies have shown that more
cores will improve the agreement level and reduce the
limitations due to the heterogeneity in various types of
tumors and IHC biomarkers [25-27, 32, 33]. However,
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only the introduced method allows inference about the
relative error caused by different TMA sampling param-
eters in combination with tumor heterogeneity. Our re-
sults show that to obtain a CE of 10 % the necessary
number of cores in the dataset with mixed heterogeneity
is 8; five cores hold sufficient information for Ki67 LI
determination in homogeneous tumors, while heteroge-
neous tumors need at least 11-12 cores to be sampled.
In practical TMA applications, intratumoral hetero-
geneity of biomarker expression is usually unknown in
advance; therefore, a more conservative approach would

Table 3 Fit parameters for relative error CE_Nuclei fitted to
proliferation index for all three heterogeneity classes

Proliferation fit to relative error

Nuclei All/Mixed Homogenous Heterogeneous
bin a b a b a b
250 0171 0571 0137 0644 0209 0494
500 [OARNI 0.697 0.085 0815 0.178 0421
750 0.109 0573 0087 0658 0.148 0425
1000 0.102 0522 0081 0.595 0.132 0412
1250 0.094 0.509 0076 0.572 0117 0426
1500 0.087 0491 0072 0.544 0.105 043
1750 0.078 0516 0064 0575 0.096 0434
2000 0.072 0516 0058 058 009 0425
2250 0.069 0.504 0.056 0.567 0.086 0419
2500 0.067 0493 0055 0.547 0081 0426
3750 0.055 0487 0046 0538 0.068 0411
5000 0.049 0485 0.041 0.534 0.059 0422
6250 0.046 0494 0037 0539 0054 047
7500 0.044 0464 0.035 0.526 0.058 0356
10000 0039 0.507 0033 0532 0042 0543
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assume that all tumors in the study population are hetero-
geneous. On the other hand, Ki67 LI expression in breast
cancer tissue is known for its spatial heterogeneity and
may serve a reference standard for other biomarkers and
tumors. In that sense, our study reveals that 11-12 ran-
dom TMA cores of 0.75 mm diameter would sufficiently
represent IHC biomarker expression in heterogeneous
tumors. Our simulations also indicate that disagreements
between different studies of TMA core numbers may in
fact be due to unestablished differences in heterogeneity
aspects. In general, our findings support the notion that
heterogeneity information is crucial for optimizing TMA
studies. Ideally, the presented method could be used in
pilot studies to validate the optimal number of cores, or at
least heterogeneity should be investigated from a larger
set of cores, for instance by measuring a range of Ki67 LI
between several TMA cores taken from the tissue.

Our study also provides evidence for minimum cell
counting requirements to achieve robust Ki67 LI meas-
urement, especially with regard to the limited capacity
of manual counting procedures. Current clinical guide-
lines on the minimal number of cells to be counted are
quite arbitrary, mostly set in the range of 500 and 2000
tumor cells [9]. While small samples (e.g., needle core
biopsies) may allow counting all the invasive tumor
cells, it becomes impractical in larger samples. There-
fore, to achieve adequate precision, it is recommended
for the interpreting pathologist to score at least 1,000
cells, while 500 cells would be acceptable as the abso-
lute minimum [9]. Importantly, our findings reveal that
to achieve 10 % CE approximately 4,000 nuclei must be
counted when the intratumor heterogeneity is mixed/
unknown (Fig. 4). These cell counts are rather large to
accomplish in clinical practice for all breast carcin-
omas, but could be feasible for cases considered as
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“grey zone”, e.g. in the range of Ki67 LI 10-30 % [3]. A
visual scoring methodology proposed by Hida et al,
might be used as method of choice for “low” (Ki67 LI
<10 %) or “high” (Ki67 LI >30 %) proliferatively active
cases, leaving behind “grey zone” cases, which requires
more precise methodologies [34].

The inverse relationship between relative estimation
error and mitotic activity previously highlighted by Going
[12] was confirmed to also exist between each of the two
error estimates (CE4,eq» CEnycler) and the Ki67 LI prolifer-
ation activity indicator (Figs. 5 and 6). This dependency of
CE on Ki67 LI shows that tumor cases with low prolifera-
tion rate contribute most of the CE in Fig. 4 which is a set
of “mixed” proliferation rate. Consequently, when scoring
a single case with unknown Ki67 LI one may need to
evaluate a higher cell count or larger TMA sample to
ensure a 10 % CE at a specific grey zone. Specifically, the
tumors at the lower scale of proliferative activity (Ki67 LI
<20 %, Fig. 5, left) will for a mixed/unknown heterogen-
eity case require larger sampling (at least 10-11 TMA
cores) to achieve the same error measurement (10 %
CE 4eq) results as for highly proliferative tumors (4-6
TMA cores). Similarly, for cases with Ki67 LI<20 %
(Fig. 5, right) at least 6,250 nuclei are necessary (for 10 %
CEnuctei) As such, Figs. 5 and 6 may aid determining prac-
tical sampling requirements of individual cases for accept-
able CE at specific grey zones.

In general, the results of our study suggest that ad-
equate accuracy levels of Ki67 LI measurement can
hardly be achieved by manual counts and argue in favor
of DIA-based techniques to benefit from the high-
capacity methods. In addition, automated hotspot detec-
tion with standard definitions by DIA, which was out of
scope in the present study, would provide another
advantage compared to the visual evaluation by conven-
tional microscopy or inspection of WSIL

Conclusion

Several aspects raised in this study relate to the evalu-
ation of Ki67 immunohistochemistry in breast cancer in
clinical research and practice. Firstly, obtaining an opti-
mal number of TMA cores/cell number needed for bio-
marker research studies depends on the tissue, especially
its intratissue heterogeneity and level of expression. For
Ki67 LI in breast cancer, we found 5-6 cores sufficient
for homogeneous expression in the tissue, 8 cores for
tumors with mixed heterogeneity and at least 11 cores
for heterogeneous tumors. Secondly, our findings reveal
that to achieve low error estimates when evaluating by
cell counting, approximately 4,000 nuclei must be evalu-
ated when the intratumor heterogeneity is mixed/un-
known. In breast cancer cases of the lower proliferative
activity (Ki67 LI<20 %) larger sampling is required to
achieve the same error measurement results as for highly
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proliferative tumors. The presented data may aid in defin-
ing practical sampling requirements of individual cases
and specific grey zones.

The wide range of the number of cores/nuclei needed
supports the notion that optimal sampling requirements
must be determined on a peruse basis and that heterogen-
eity information must be assessed in the study. The
method presented can be applied for individual pilot study
measurements. In addition, our findings highlight the
importance of high-capacity computer-based IHC meas-
urement techniques to improve accuracy of the testing.

Additional files

Additional file 1: Fits curves of proliferation index to CE_Area and
CE_Nuclei (depending on heterogeneity levels). Graphs for CE plotted as
a function of Area (Hexes in case). (DOCX 12 mb)
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Abstract Proliferative activity, assessed by Ki67 immunohis-
tochemistry (IHC), is an established prognostic and predictive
biomarker of breast cancer (BC). However, it remains under-
utilized due to lack of standardized robust measurement meth-
odologies and significant intratumor heterogeneity of expres-
sion. A recently proposed methodology for IHC biomarker
assessment in whole slide images (WSI), based on systematic
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subsampling of tissue information extracted by digital image
analysis (DIA) into hexagonal tiling arrays, enables computa-
tion of a comprehensive set of Ki67 indicators, including
intratumor variability. In this study, the tiling methodology
was applied to assess Ki67 expression in WSI of 152 surgi-
cally removed Ki67-stained (on full-face sections) BC speci-
mens and to test which, if any, Ki67 indicators can predict
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