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Abstract. Research of  -stable distributions is especially important nowadays, because 

they often occur in the analysis of financial data and information flows along computer 

networks. It has been found that financial data are often leptokurtic with a heavy-tailed 

distributions; many authors, e.g., Rachev, Mittnik (2000), Kabasinskas et al. (2012), 

Sakalauskas et al. (2013) have proved that the most often used normal distribution is not 

the most suitable way to analysis economic indicators and suggested to replace it with 

more general, for example, stable distributions. Since Rachev, Mittnik (2000), 

Kabasinskas et al. (2012), Sakalauskas et al. (2013) have estimated one-dimensional  -

stable distributions a problem arises how to estimate multidimensional data. Maximum 

likelihood method for the estimation of multivariate  -stable distributions by using EM 

algorithm is presented in this work. Integrals included in the expressions of the estimates 

have been calculated using the Gaussian and Gauss-Laguerre quadrature formulas. The 

constructed model can be used in stock market data analysis. 

Keywords: Gaussian and  -stable model, EM algorithm, Likelihood ratio test, 

Quadrature formulas. 

 

1 Introduction 
 

Stochastic processes can be modeled, estimated and predicted by probabilistic 

statistical methods, using the data that describes the course of the process. A 

number of empirical studies confirm that real commercial data are often 

characterized by skewness, kurtosis and heavy-tail (Janicki, Weron, 1993; 

Rachev, Mittnik, 2000; Samorodnitsky, Taqqu, 1994; etc.). Therefore, a well-

known normal distribution does not always fit – for example, returns of stocks 

or risk factors are badly fitted by the normal distribution (Kabasinskas et al., 

2009; Belovas et al., 2006). In this case, normal distributions are replaced with 

more general, for example, stable distributions, which allow to model both 

leptokurtic and asymmetric (Fielitz, Smith, 1972; Rachev, Mittnik, 2000; 

Kabasinskas et al., 2012; Sakalauskas et al., 2013). So stable distributions are 

the most often used in business and economics data analysis. Following to some 

experts,  the  -stable  distribution  offers  a  reasonable  improvement  if  not  

509



the best choice among the alternative distributions that have been proposed in 

the literature over the past four decades (e.g., Bertocchi  et al., 2005; 

Hoechstoetter et al., 2005). However, a practical application of stable 

distributions is limited by the fact that their distribution and density functions 

are not expressed through elementary functions, except for a few special cases 

(Janicki, Weron, 1993; Rachev, Mittnik, 2000; Belovas et al., 2006). By the 

way, stable distributions have infinite variance (except for the normal case, 

when parameter of stability 2 ). In this work the stable multivariate 

variables expression through normal multivariate vector with random variance, 

changing by a particular stable law, are used for the simulation. 

Although the estimation of parameters of multivariate stable distributions has 

been discussed long time ago, the problem is not solved to the end yet (Press, 

1972; Rachev, Xin, 1993; Nolan, 1998; Davydov, Paulauskas, 1999; Kring et 

al., 2009; Ogata, 2013). Maximum likelihood approach for the estimation of 

multivariate  -stable distribution by using EM algorithm is presented in this 

work. 

In one-dimension case, random stable value is described by four parameters: 

stability  2;0 , skewness  1;1 , scale 0  and position 
1 . 

Stable parameter   is the most important, which is essential for characterizing 

financial data, and parameter of scale   can be also used to measure risk. 

Random variables, that are stable for a fixed number of random elements with 

respect to the composition, are called  -stable. 

In one-dimension case, it is known that 21 sss  , where: 

1s  – random stable variable with skewness parameter 1  and shape 

parameter 11  ; 

2s  – another random stable variable, independent of 1s , with skewness 

parameter 0  and shape parameter 2 ; 

s  – random stable variable with skewness parameter 0  and shape 

parameter 21    (Rachev, Mittnik, 1993; Samorodnitsky, Taqqu, 1994; 

Ravishanker, Qiou, 1999). 

While applying this method, it is usually chosen that 2s  be a random variable, 

which is normally distributed, i.e., 
2

1


   and 22  . Random stable variable 

when 11   and 1  is called stable subordinator, and always obtains only 

positive values (Rachev, Mittnik, 1993; Ravishanker, Qiou, 1999). 

This approach produces multidimensional random vector with dependent 

components, in which the heavy tailed data can be modeled (Nolan, 2007; 

Sakalauskas, Vaičiulytė, 2014). In this way, the multivariate stable symmetric 

vector can be expressed through normally distributed random vector, and  -

stable variables (Ravishanker, Qiou, 1999; Rachev, Mittnik, 1993): 
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,21 ssX    (1) 

where 

1s  – subordinator with parameter  , 

2s  – random vector, distributed by d-variate normal law  ,0N , 

  – random vector of mean. 

 

2 Estimators of maximum likelihood approach 
 

Maximum likelihood (ML) approach allows us to obtain the values of parameter 

sets of model, which maximize the likelihood function for fixed independent 

uniformly distributed model data sample (Sakalauskas, 2010; Kabasinskas et al., 

2009; Ravishanker, Qiou, 1999). The higher the size is the higher is probability 

to obtain estimators, which will almost not differ from the actual parameter 

values. 

Let’s consider probability density of random vector created according to (1). 

Indeed, the density of the multivariate vector  sN ,  is as follows: 
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Let us write down the probability density of  -stable subordinator (Rachev, 

Mittnik, 2000; Bogdan et al., 2009): 
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where, 0s , and 
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Thus, probability density of random vector under given parameters  ,,  is 

expressed as bivariate integral 
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Let’s consider the sample  KXXXX ,,, 21   consisting of independent d -

variate stable vectors. The likelihood function by virtue of (5) is 
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Denote 

 .2 iii yUsz 



   (7) 

 

The log-likelihood function now is as follows 
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where 
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Maximum likelihood estimators of multivariate  -stable distribution 

parameters ,  for a given and fixed   are calculated by equating the 

likelihood function derivatives of optimized parameters to zero and solving the 

system of received equations: 
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Let us denote the derivatives 
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(12) 

Differentiating integrals by the parameters these derivatives are obtained: 
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The derivatives of log-likelihood function we can denote in this way: 
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Estimators of parameters satisfy equations of the fixed-point method: 
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The shape parameter   estimate is obtained by solving the minimization 

problem of one-dimensional likelihood function:  

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XL . 

Golden section search method can be applied to the minimization. 

 

3 Quadrature formulas 
 

Integrals included in the expressions of the estimates can be calculated by 

integral calculation subprograms in mathematical systems MathCad, Maple and 

etc., or using the Gaussian and Gauss-Laguerre quadrature formulas (Ehrich, 

2002; Stoer, Bulirsch, 2002; Kovvali, 2012; Casio Computer co., 2015). 

Gauss-Laguerre quadrature formulas: 
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where  ixf  – integrated function, n – number of nodes, ix  – integration nodes, 

i  – fixed weights. 

Gaussian quadrature formulas: 
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where  if   – integrated function, m – number of nodes, i  – integration 

nodes, i  – fixed weights. 

   

4 Computer modeling 
 

Maximum likelihood parameters estimation by EM algorithm is an iterative 

process needing to choose initial values and perform a certain number of 

iterations while values in adjacent steps differ insignificantly. In order to test the 

behaviour of created algorithm, the experiments were made with financial 

statements – Total Current Assets, Total Assets, Total Current Liabilities, Total 

Liabilities – of 124 companies in the USA. According to the much shorter 

computing time (error of the likelihood function is only in the sixth sign), 

integrals were calculated using the Gaussian (22) and Gauss-Laguerre (21) 

quadrature formulas. 

In this experiment, data consisted of 124  fourth-dimensional vectors with these 

sampling means and sampling covariances matrix: 
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We have developed an algorithm, where alpha is minimized in each iteration. 

Fig. 1 shows that likelihood function is unimodal. Therefore, it can be applied to 

the minimization by the golden section search method. 
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Fig. 1. Likelihood function dependence on alpha 
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Total 100 iterations by the described EM algorithm were performed. Fig. 2 

shows the obtained parameters of  -stable law in dependence on the number of 

iterations. We see that the value of the likelihood function and the parameters 

estimates in a few iterations converge to the values, calculated with MathCad 

minimization subprogram. 
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Fig. 2. Parameters dependence on the number of iterations 

 

 

Further were generated 100K  four-dimensional random  -stable law values 

with obtained parameters estimates and was performed a likelihood ratio test: 

o Parameters of the model were estimated by maximum likelihood method 

using practical data. 

o Then were generated a new sample by stable model whose parameters 

correspond to obtained estimates. 
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o Further were calculated the empirical likelihood function and the 

likelihood function values of this sample, derived from practical data, empirical 

probability. If this probability is in the interval 









2
1,

2


, this is not a 

reason to reject the hypothesis about the data matching to the analyzed 

probability model, in a given case, to the  -stable law with reliability  . 

o Thus, the empirical probability of the test with financial balance data was 

21.47 % (see, Fig. 3). 

 

100 200 300 400
0

0.5

1

likelihood function

test

likelihood function

em
p

ir
ic

al
 p

ro
b

ab
il

it
y

 
Fig. 3. Likelihood function test 

 

Conclusions 
 

1. The maximum likelihood method for the multivariate  -stable distribution 

was created in this work, which allows to estimate parameters of this 

distributions using EM algorithm. 

2.  -stable distribution parameters estimators obtained by numerical 

simulation method are statistically adequate, because after a certain number 

of iterations, values of likelihood function and parameters convergent to the 

maximum likelihood values.  

3. It was shown that this method realizes log-likelihood function golden section 

search, implementing it with EM algorithm.  

4. This algorithm was applied for creation of model of balance data of USA 

companies. And it can be used creating financial models in stock market data 

analysis. Also algorithm can be used to test the systems of stochastic type and 

to solve other statistical tasks by using EM algorithm. 
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