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Chapter 1

Introduction

1.1 Scope and relevance of the Problem

The problems considered in the thesis belong to the area of applied
probability known as Risk theory. The roots of Risk theory lie in Cramér-
Lundberg model (or classical risk model), which was introduced in 1903
by Swedish actuary Filip Lundberg [48]. Lundberg’s work was republished
by Harald Cramér in 1930 [18]. Cramér-Lundberg model is a continuous-
time real-valued stochastic process modelling the change of insurer’s capital
in time. This model has tree components: insurer’s intial capital, constant
premium inflow, and randomly stopped sum of i.i.d. claims. The cumulative
number of claims is modelled by Poisson process. A more general model
(known as renewal risk model) was proposed in 1957 by Sparre Andersen
[65]. In this model the cumulative number of claims is modelled by renewal
process. In 1988, Gerber [28] introduced discrete time risk model, which is
a discrete-time and integer-valued version of the aforementioned models.

The main quantity of interest in Risk theory is ruin probability, which
is a probability that insurer’s capital will be zero or negative at some time
in the future. Ruin probability is defined as a function of insurer’s initial
capital. In continuous time risk models, it is not easy to obtain analytical
formulas for the computation of ruin probability, and in many cases only
asymptotics and upper estimates of ruin probability can be realistically
computed. By contrary, in discrete time risk models the computation of
ruin probabilities is a lot easier task. This is usually done by obtaining
recursive relations between consecutive values of ruin probability. Recursive
calculation of ruin probabilities was first considered in [20] and [25].

Recent developments in Risk theory gave birth to more complex mod-
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Chapter 1. Introduction

els and risk measures. For instance, the inhomogeneous discrete time risk
models (i.e. models with not necessarily identically distributed claims) have
been extensively analyzed. However, to obtain formulas for the computa-
tion of ruin probabilities some claims’ non-homogeneity structure has to
be assumed. For example, models with cyclically distributed claims with
an arbitrary cycle length could be considered. Such models are also called
seasonal discrete time risk models. There exists practical motivation for
seasonal risk models in different spheres of insurance risks. In [7] the effect
of seasonality on fracture risk is found to be statistically significant. An-
other example of risk influenced by seasonality is dairy production loss risk,
as found in [22]. In this thesis, discrete time risk model with two seasons,
also called bi-seasonal model, is considered. Furthermore, it is also realistic
to consider models with claims’ independence assumption relaxed. Here we
introduce bi-seasonal discrete time risk model with dependent claims. The
algorithm for computing ruin probabilities is obtained for this model.

As for risk measures, in 1998 a new risk measure called Gerber-Shiu
expected discounted penalty function was introduced [29]. This function
captures the economic costs to the insurer at the time of ruin, accounting
for the force of interest as well. In this thesis, we derived an algorithm for
computing the values of Gerber-Shiu function in bi-seasonal discrete time
risk model.

1.2 Aim and objectives of research

The aim of this work is to create an algorithm for the calculation of risk
measures in inhomogeneous discrete time risk models with independent and
dependent claims. To do this, the following objectives are:

(i) to derive an algorithm for calculating the values of the particular case
of the Gerber-Shiu discounted penalty function in the bi-seasonal dis-
crete time risk model;

(ii) to create an algorithm for computing the values of the ruin probability
in the bi-seasonal discrete time risk model with dependent claims;

(iii) to describe the case when net profit condition is not satisfied in the
bi-seasonal discrete time risk model with dependent claims;

(iv) to illustrate the applicability and investigate the computational prop-
erties of the algorithms with numerical examples;
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1.3. Methodology of research

(v) to create methods for measuring approximation errors of the algo-
rithms.

1.3 Methodology of research

The main results of the thesis are proved using the classical methods of
probability theory and mathematical analysis, with an emphasis on discrete
differentiation.

1.4 Scientific novelty

• The results of the thesis extend the results obtained by Damarackas
and Šiaulys [19]. In this paper the calculation of ruin probability in
the bi-seasonal discrete time risk model was considered. Both more
general risk measure (Gerber-Shiu function) and more general model
are considered in the thesis. Bi-seasonal model with dependent claims
is introduced for the first time here in the dissertation.

• The recursive calculation of ruin probability in any kind of discrete
time risk model with dependent and differently distributed claims was
not considered in the scientific literature before.

• The new algorithm is derived for calculating Gerber-Shiu function
values which is both more computationally feasible and less prone to
numerical errors.

1.5 Approbation of dissertation results

The results of the thesis are presented in one international conference,
one national conference and seminar:

• Navickienė, Olga; Šiaulys, Jonas. Gerber-Shiu Discounted Penalty
Function for the Bi-seasonal Discrete Time Risk Model. The 10th
Tartu conference on Multivariate Statistics, 28 June - 1 July 2016,
Tartu, Estonia: abstracts. Tartu: University of Tartu Press, 2016.
ISBN: 9789949771530. p. 40.

• Navickienė, Olga; Šiaulys, Jonas. Gerber-Shiu Discounted Penalty
Function for the Bi-seasonal Discrete Time Risk Model with Indepen-
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dent Claims. The LVI Conference of Lithuanian Mathematical Soci-
ety, 20 June - 21 June 2016, Vilnius, Lithuania, at Vilnius Gediminas
Technical University.

• Navickienė, Olga. Recursive calculation of risk measures in discrete
time risk model with inhomogeneous claims. 25 September 2018. Sci-
entific seminar of Finance and Insurance Mathematics of Institute of
Mathematics of Faculty of Mathematics and Informatics of Vilnius
University.

1.6 Main publications

The thesis is prepared based on two publications, which are to be pub-
lished in journals indexed in Clarivate Analytics Web of Science in December
2018 and January 2019, respectively:

• Olga Navickienė, Jonas Sprindys, Jonas Šiaulys. Gerber-Shiu dis-
counted penalty function for the bi-seasonal discrete time risk model.
Informatica (accepted).

• Olga Navickienė, Jonas Sprindys, Jonas Šiaulys. Ruin prob-
ability for the bi-seasonal discrete time risk model with depen-
dent claims. Modern Stochastics: Theory and Applications,
https://doi.org/10.15559/18-VMSTA118.

1.7 Other publications

During the preparation of the thesis some other publications were issued
as well:

• Ewart, Jacqui; Leichteris, Edgaras; Mačiulis, Algimantas; McLean,
Hamish; Mikulskienė, Birutė; Paražinskaitė, Gintarė; Paunksnienė,
Žaneta; Pitrėnaitė-Žilėnienė, Birutė; Stasiukynas, Andrius; Žalėnienė,
Inga; de Lange, Michiel; Brunalas, Benas; Gudelytė, Laura;
Kalinauskas, Marius; Mačiulienė, Monika; Navickienė, Olga;
Skaržauskienė, Aelita; Stokaitė, Viktorija; Tamošiūnaitė, Rūta;
Tvaronavičienė, Agnė; Valys, Taurimas. Social Technologies and Col-
lective Intelligence: monograph. Vilnius: Mykolas Romeris Univer-
sity, 2015. 520 p.:. ISBN: 9789955197089.
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1.7. Other publications

• Gudelytė, Laura; Navickienė, Olga; Valentinaitė, Aistė. Overview
of Features and Issues in Designing Evaluation Indices for Social Phe-
nomena. Social technologies: research papers. Vilnius: Mykolas
Romeris University. ISSN: 2029-7564. 2014, 4(2), p. 401-413. [DOAJ;
Academic Search Research and Development (EBSCO); IndexCoper-
nicus]

• Gudelytė, Laura; Navickienė, Olga. Modelling of Systemic Risk
of Banking Sector. Social technologies: research papers. Vilnius:
Mykolas Romeris University. ISSN: 2029-7564. 2013, 3(2), p. 359-
371. [DOAJ; Academic Search Research and Developement (EBSCO);
IndexCopernicus] [M.kr.: 04S, 01P]

• Kosareva, Natalja; Krylovas, Aleksandras; Navickienė, Olga. Eco-
nomic and Social Phenomena Indicators Design Methodology Based
on Averaging Values of Dichotomous Operators. Whither our
economies – 2013: 3nd international scientific conference: conference
proceedings. Vilnius: Mykolas Romeris University. ISSN: 2029-8501.
2013, p. 35-42. [Business Source Corporate Plus]

• Navickienė, Olga; Krylovas, Aleksandras; Kosareva, Natalja. The
Construction of Test Reliability Statistical Criteria by a Computer
Simulation. Lietuvos matematikos rinkinys: Proceedings of the
Lithuanian Mathematical Society, Series A. Vilnius: Vilnius Univer-
sity Institute of Mathematics and Informatics. ISSN: 0132-2818. 2013,
T. 54, p. 37-42. [MathSciNet; MLA]

In addition, two more earlier issued publications are listed below:

• Markšaitis, Hamletas Vladislavas; Navickienė, Olga. Probabil-
ity Theory and Mathematical Statistics: educational publication.
Vilnius: Mykolas Romeris University, 2012. 184 p.:. ISBN:
9789955193920 (e-book).

• Markšaitis, Hamletas Vladislavas; Sajadian, Olga. Linear Algebra
and Mathematical Analysis Basics: educational publication. Vilnius:
Mykolas Romeris University, 2010. 147 p.:. ISBN: 9789955191889.
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1.8 Thesis structure

The scientific relevance, the aim and main objectives, the scientific nov-
elty and approved results of the thesis are presented in the Introduction.

In Chapter 2, a brief review of important results from the discrete Risk
theory is provided. Chapters 3 and 4 deal with the main results of the
thesis.

In Chapter 3, discrete time risk model with two seasons is considered.
In such model, the claims repeat with time periods of two units, i.e. claim
distributions coincide at all even instants and at all odd instants. We derive
a recursive algorithm for calculating the values of the particular case of the
Gerber-Shiu discounted penalty function. Theoretical results are illustrated
with the numerical examples.

In Chapter 4, we introduce discrete time risk model with two seasons and
dependent claims. A recursive algorithm is created for computing the values
of ruin probability. Theoretical results are illustrated with the numerical
examples as well.

Finally, in Chapter 5 a short summary of the results obtained is provided.
In the Appendices, the algorithms’ code in R language is provided which
was constructed for experimental needs.
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Chapter 2

Review on risk models

Risk theory is the area of applied probability which uses mathematical
models to describe an insurer’s vulnerability to ruin. In such models the
most interesting quantities are risk measures, such as the probability of ruin.

The roots of Risk theory lie in Cramér-Lundberg model (or classical
risk model), which was introduced in 1903 by Swedish actuary Filip Lund-
berg [48]. Lundberg’s work was republished by Harald Cramér in 1930 [18].
Cramér-Lundberg model is a continuous-time real-valued stochastic process
modelling the change of insurer’s capital in time. This model has tree com-
ponents: insurer’s intial capital, constant premium inflow, and randomly
stopped sum of i.i.d. claims. The cumulative number of claims is modelled
by Poisson process. A more general model (known as renewal risk model)
was proposed in 1957 by Sparre Andersen [65]. In this model the cumulative
number of claims is modelled by renewal process.

2.1 Renewal risk model

In this section, the components of renewal risk model are presented.

Definition 2.1.1. Let θ1, θ2, . . . be independent copies of nonnegative ran-
dom variable θ. Then the random walk

T0 = 0, Tn = θ1 + . . .+ θn, n ∈ N = {1, 2, . . .}

is said to be a renewal sequence and the counting process

Θ(t) = #{n ⩾ 1 : Tn ⩽ t}, t ⩾ 0,
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Chapter 2. Review on risk models

is the corresponding renewal counting process.

Definition 2.1.2. The aggregate claim amount process is a process defined
by

S(t) =

Θ(t)∑
i=1

Zi, t ⩾ 0,

where Z1, Z2, . . . are independent copies of nonnegative random variable Z,
and sequences {Zi, i ∈ N} and {θi, i ∈ N} are mutually independent.

Definition 2.1.3. The surplus process is a process defined by

Wu(t) = u+ ct− S(t), t ⩾ 0,

where u =Wu(0) is the initial surplus, c is premium payment rate, and S(t)
is the aggregate claim amount process.

In Figure 2.1 sample trajectory of the surplus process Wu(t) is depicted.

Figure 2.1: Behaviour of the surplus process Wu(t)

If the interclaim durations θ1, θ2, . . . are independent copies of an expo-
nentially distributed random variable θ, then the general renewal risk model
reduces to classical risk model. In this model, the renewal process Θ(t) is
Poisson process with parameter λ. This parameter is the same as the ex-
ponential distribution parameter of θ. In other words, in the classical risk
renewal model

P
(
Θ(t) = k

)
=

(λt)k

k!
e−λt, k ∈ N0, t > 0.
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2.2. Discrete-time risk model

If θ is a degenerate random variable with P(θ = 1) = 1, u ∈ N0, c =

1, Z ∈ N0, then renewal risk model reduces to the so-called discrete-time
risk model. In this model Θ(t) = ⌊t⌋ , t > 0. Discrete-time risk model was
first considered in 1988 by Gerber [28].

2.2 Discrete-time risk model

Definition 2.2.1. We say that the insurer’s surplus Wu varies according
to a (classical) discrete time risk model if

Wu(n) = u+ n−
n∑

i=1

Zi

for each n ∈ N0 = {0, 1, 2, . . .} and the following assumptions hold:
• the initial insurer’s surplus u ∈ N0,
• claim amounts {Z1, Z2, . . .} are independent copies of a nonnegative

integer-valued random variable Z.

In Figure 2.2 sample trajectory of the surplus process Wu(n) is depicted.

Figure 2.2: Behaviour of the surplus process Wu(n)

At each time moment n ∈ N, the trajectory of the surplus process Wu(n)

can either increase by one (if Zn = 0), stay at the same level (if Zn = 1), or
decrease by a ∈ N (if Zn = a + 1). If the trajectory of the surplus process
Wu(n) is above zero, then insurer works successfully, because at each time
moment there is enough capital to pay claims. However, sometimes the
trajectory of Wu(n) becomes such that Wu(Tu) ⩽ 0 at certain time moment
Tu. In this case, it is said that at the time moment Tu the ruin has occurred,
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Chapter 2. Review on risk models

because insurer does not have enough capital to cover claims.

Figure 2.3: Sample trajectory of W3(n) with ruin occurring at time moment T3

Time of ruin Tu and related critical characteristics are defined in the
next section. We remark only that these characteristics are defined for
more general renewal risk models as well. However, in this thesis we will
restrict ourselves only to the analysis of discrete time risk models, so the
definitions are provided only for such models.

2.3 Main characteristics

The main quantity of interest in Risk theory is ruin probability, which
is a probability that insurer’s capital will be zero or negative at some time
in the future.

Definition 2.3.1. Time of ruin is an extended random variable defined for
the discrete time risk model by

Tu =

min{n ⩾ 1 :Wu(n) ⩽ 0},

∞, if Wu(n) > 0 for all n ∈ N.

Definition 2.3.2. Ruin probability is defined by

ψ(u) = P(Tu <∞).

In continuous time risk models, it is not easy to obtain analytical formu-
las for the computation of ruin probability, and in many cases only asymp-
totics and upper estimates of ruin probability can be realistically computed.
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2.3. Main characteristics

By contrary, in discrete time risk models the computation of ruin probabili-
ties is a lot easier task. This is usually done by obtaining recursive relations
between consecutive values of ruin probability. Recursive calculation of ruin
probabilities was first considered in [20] and [25]. Since then, many differ-
ent methods for the calculation of ruin probabilities were developed. For
instance, in [23] the following recursive formulas for the classical discrete
time risk model are presented.
Theorem 2.3.1. Let the classical discrete time risk model be generated by
a nonnegative and integer valued random variable Z. If EZ < 1, then the
following recursive relations hold:

ψ(0) = EZ,

ψ(u) =
u−1∑
j=1

(1− FZ(j))ψ(u− j) +
∞∑
j=u

(1− FZ(j)), u = 1, 2, . . . ,

where FZ denotes the cumulative distribution function of Z.

If the expectation of claim random variable Z in classical discrete time
risk model is large (in such situation, it is said that Z does not satisfy the
net profit condition), then the ruin probability has a very simple behaviour,
as described in [54].

Theorem 2.3.2. Let the classical discrete time risk model be generated
by a nonnegative and integer valued random variable Z. If EZ ⩾ 1, then
ψ(u) = 1 for all u ∈ N0.

If we denote Zi = IiXi, i ∈ N in discrete time risk model, where Ii is an
indicator of claim occurrence and Xi ∈ N is the amount of claim, then the
discrete time risk model is equivalent to the following model

Wu(t) = u+ t−
Θ(t)∑
i=1

Xi, t ∈ N,

where Θ(t) = I1+I2+. . .+It. Here I1, I2, . . . is a sequence of i.i.d. Bernoulli
random variables.

By expressing model in such form, analytical formulas can be derived
for the calculation of ruin probability and related quantities. Examples of
such formulas are provided below. The first formula provided was derived
in Gerber [28].

15



Chapter 2. Review on risk models

Theorem 2.3.3. Let us denote q = P(Ii = 1) and µ = EX. Also, denote
Sk = X1+ . . .+Xk, k ∈ N, S0 = 0. Furthermore, the notation a(k) = k!

(
a
k

)
for the factorial powers of a is used. The ultimate ruin probability for the
discrete time risk model in the case qµ < 1 can be expressed as

ψ(0) = qµ,

ψ(u) = (1− qµ)
∞∑
k=1

1

k!

(
q

1− q

)k

E
[
(Sk − u)

(k)
+ (1− q)Sk−u

]
, u ∈ N.

Let φ(u) = 1 − ψ(u) be the corresponding survival probability, with
initial surplus u ∈ N0. Shiu [64] derived following formulas for φ(u), corre-
sponding to those in Theorem 2.3.3, by alternative methods. Also, Shiu [64]
defines ruin as the event that the surplus Wu(n) becomes strictly negative,
whereas in Gerber [28] the ruin is defined when the surplus Wu(n) being
non-positive for some n ∈ N.

Theorem 2.3.4. The survival probability for the discrete time risk model
can be expressed as

φ(0) =
1− qµ

1− q
,

φ(u) = φ(0)
∞∑
k=0

(
−q
1− q

)k

E

[(
u+ k − Sk

k

)
(1− q)Sk−u1+(u− Sk)

]
, u ∈ N,

where 1+(k) = 1 for k ∈ N0, and 0 otherwise.

2.4 Gerber-Shiu expected discounted penalty
function

Recent developments in Risk theory gave birth to more complex risk
measures. In 1998, a risk measure called Gerber-Shiu expected discounted
penalty function (or, shorter, Gerber-Shiu function) was introduced in [29].
This function captures the economic costs to the insurer at the time of ruin,
accounting for the force of interest as well.

Definition 2.4.1. Gerber-Shiu function for the discrete time risk model is
defined by

Ψδ,w(u) = E
(

e−δTu w
(
Wu(Tu − 1), |Wu(Tu)|

)
1I{Tu<∞})

)
,
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2.4. Gerber-Shiu expected discounted penalty function

where force of interest δ ⩾ 0, w(x, y) is an arbitrary function of two non-
negative arguments, and Tu denotes the time of ruin.

In the particular case when δ = 0 and w(x, y) = 1 for all nonnegative x
and y, the discounted penalty function is equal to the ruin probability.

As with the ruin probability, recursive methods are widely used to calcu-
late the values of Gerber-Shiu function in discrete time risk models. Below
we provide the formulas derived by Li and Garrido [37].

Theorem 2.4.1. Let the classical discrete time risk model be generated by
a nonnegative and integer-valued random variable Z with EZ < 1. Then
the values of function Ψδ,w can be calculated using the following formulas

Ψδ,w(0) = e−δ
∞∑
k=0

∞∑
l=0

ϱkw(k, l)P(Z = k + l + 1),

Ψδ,w(u) = e−δ
u−1∑
k=0

Ψδ,w(u− k)

∞∑
l=0

ϱl P(Z = k + l + 1)

+ e−δϱ−u
∞∑
k=u

ϱk
∞∑
l=0

w(k, l)P(Z = k + l + 1),

where ϱ ∈ (0, 1) is the root of equation

seδ =
∞∑
k=0

sk P(Z = k).

By arguments provided in [37], the solution to the equation above exists
and is unique for δ > 0.

Furthermore, denote by ψδ(u) = E
(
e−δTu1I{Tu<∞})

)
. Clearly, ψδ(u) is a

special case of Gerber-Shiu function when w(x, y) = 1. An application of
Theorem 2.4.1 gives a recursive formula for ψδ(u) in the corollary below.

Theorem 2.4.2. The function ψδ(u) in classical discrete time risk model
can be expressed as

ψδ(u) =
u−1∑
z=0

ψδ(u− z)g(z|0) +H(u), u ∈ N, (2.4.1)

where g(z|0) =
∞∑
x=0

e−δρxP(Z = x + z + 1), and H(u) = ψδ(0) −
u−1∑
z=0

g(z|0)

with
ψδ(0) = H(0) = e−δ−ρ

1−ρ .
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Chapter 2. Review on risk models

Li and Garrido [37] further show in the Theorem below that ψδ(u) can
be expressed as a compound geometric tail.

Theorem 2.4.3. The solution to equation (2.4.1) can be expressed as a
compound geometric sum

ψδ(u) =
β

1 + β

∞∑
n=1

(
1

1 + β

)n

L̄∗n(u− 1), u ∈ N0.

Here β is defined as 1/(1 + β) :=
∞∑
z=0

g(z|0) = e−δ−ρ
1−ρ . Furthermore, l(z) =

(1 + β)g(z|0), which is a proper probability mass function on N0. Also,
L̄(u) =

∞∑
z=u+1

l(z) is the tail probability of l, while L̄∗n is the n-th convolution

of L̄, with L̄(−1) = L̄∗n(−1) = 1.
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Chapter 3

Gerber-Shiu discounted
penalty function for the
bi-seasonal discrete time risk
model

In this chapter, we consider so called bi-seasonal discrete time risk model,
which is the direct generalization of the classical discrete time risk model
described in the Chapter 2. The rest part of the chapter is organized in
the following way: Section 3.2 deals with proofs of the main results; in
Section 3.3 we describe an algorithm for calculating values of Gerber-Shiu
function; next, in Section 3.4 we present a few numerical examples which
illustrate the applicability of our algorithm; in Section 3.5, some concluding
remarks and directions for future work are provided; finally, in Appendix A
the algorithm code in R language is provided.

3.1 Definitions and main results

Definition 3.1.1. We say that the insurer’s surplus Wu varies according
to the bi-seasonal risk model if

Wu(n) = u+ n−
n∑

i=1

Zi

for each n ∈ N0 = {0, 1, 2, . . .} and the following assumptions hold:
• the initial insurer’s surplus u ∈ N0,
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Chapter 3. Gerber-Shiu discounted penalty function for the bi-seasonal
discrete time risk model

• the random claim amounts {Z1, Z2, . . .} are nonnegative integer-valued
independent r.v.s,

• there exist r.v.s X and Y such that Z2k+1
d
=X, k ∈ N0, and Z2k

d
=Y ,

k ∈ N.

If X d
=Y , then the bi-seasonal discrete time risk model becomes the

classical discrete time risk model.
There exists practical motivation for the seasonal risk models in the

different spheres of insurance risks. In Bischoff-Ferrari et al. [7] the effect of
seasonality on a fracture risk is found to be statistically significant. Another
example of risk influenced by seasonality is dairy production loss risk, as
found by Deng et al. [22].

The Gerber-Shiu discounted penalty function Ψδ,w is one of the main
critical characteristics for the risk models of any types. According to the
definition presented in Gerber and Shiu [29] for the discrete time risk model

Ψδ,w(u) = E
(

e−δTu w
(
Wu(Tu − 1), |Wu(Tu)|

)
1I{Tu<∞})

)
,

where force of interest δ ⩾ 0, w(x, y) is an arbitrary function of two non-
negative arguments, and Tu denotes the time of ruin, i.e.

Tu =

min{n ⩾ 1 :Wu(n) ⩽ 0},

∞, if Wu(n) > 0 for all n ∈ N.

Function w has practical interpretations. For example, if w was inter-
preted as the benefit amount of reinsurance payable at the time of ruin,
then Ψδ,w(u) is the single premium of the reinsurance.

In the particular case considered in this paper when w(x, y) = 1 for
all nonnegative x and y, the discounted penalty function is equal to the
following expression

ψδ(u) = Ψδ,1(u) = E
(
e−δTu1I{Tu<∞})

)
.

If, in addition, force of interest δ = 0, then the Gerber-Shiu discounted
penalty function is equal to the ruin probability

ψ(u) = ψ0(u) = Ψ0,1(u) = P(Tu <∞).

After Gerber and Shiu [29] presented the concept of function named on
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their behalf various properties of this function were considered by many
authors. The main part of the known results on the Gerber-Shiu function
is related with the Sparre Andersen model and various generalizations of
this model. For instance, several cases of the Sparre Andersen model were
considered by Dickson and Qazvini [26], Landriault and Willmot [34], Li
and Garrido [38], Li and Sendova [41], Lin et al. [44], Schmidli [60], Willmot
and Dickson [69]. Properties of the Gerber-Shiu function in the risk renewal
models perturbed by diffusion were investigated by Chi et al. [15], Tsai and
Willmot [66], Tsai [67], Xu et al. [71], Zhang and Cheung [72], Zhang et
al. [75], Zhang et al. [76], Zhang et al. [77]. The Gerber-Shiu function of
the risk models with various special strategies were considered by Avram
et al. [3], Bratiichuk [9], Cheung and Liu [13], Cheung et al. [14], Dong
et al. [27], Lin and Pavlova [42], Lin and Sendova [43], Liu et al. [47],
Marciniak and Palmowski [51], Shi et al. [62], Shiraishi [63], Woo et al. [70],
Zhang et al. [73], Zhou et al. [78]. This function for the risk models with
various dependence structures or for risk models with investment strategies
was considered by Cheung et al. [12], Cossette et al. [17], Li and Lu [40],
Mihálýko and Mihálýko [53], Schmidli [61] among others.

In the above articles, the general risk renewal models of continuous time
were considered. In such a case, the defective renewal equation is the main
tool to obtain a suitable information about the exact values or the asymp-
totic behaviour of the Gerber-Shiu function. If we consider the discrete time
risk model, then the recursive relations between values of the Gerber-Shiu
function play role of the defective renewal equation. Various properties of
the Gerber-Shiu function in the discrete time risk models were considered
by Bao and Liu [4], Cheng et al. [11], Li and Wu [35], Li [36], Li and Gar-
rido [37], Li et al. [39], Liu et al. [45], Liu and Guo [46], Marceau [50],
Pavlova and Willmot [56]. For instance, in Li and Garrido [37], it is shown
that values of function Ψδ,w of the homogeneous discrete time risk model
can be calculated using the formulas provided in Chapter 2.

In this chapter, we consider the behaviour of the special case of Gerber-
Shiu penalty function for the bi-seasonal discrete time risk model which is
a particular case of nonhomogeneous discrete time risk models. We observe
that the definitions of Tu and Ψδ,w(u) are the same for both classical and
bi-seasonal discrete time risk models. However, the methods of Ψδ,w(u)

calculation in the bi-seasonal discrete time risk model are much more com-
plicated, since the claims are no longer identically distributed. For the
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continuous risk renewal models Tu and Ψδ,w(u) are defined similarly as in
discrete models. We do not provide exact definitions here in the continuous
case, since we consider only discrete time risk models.

Our results supplement the results of Castañer et al. [10], Răducan et
al. [57] and Răducan et al. [58]. We derive the specific recursive equality
for function ψδ. Using the derived formula we construct an algorithm to
calculate approximate values of this function. The running of the algorithm
is illustrated by several examples. The ideas from Bieliauskienė and Šiaulys
[6], Damarackas and Šiaulys [19], De Vylder and Goovaerts [20], Dickson
and Waters [25] were used to get the main results of this chapter.

We consider the bi-seasonal discrete time risk model generated by two
nonnegative, independent and integer valued random variables X and Y .
By

xk = P(X = k), yk = P(Y = k), qk = P(Q = k), k ∈ N0,

we denote the local probabilities of random variables X, Y and Q = X +Y

respectively. Distribution functions of these random variables we denote by
FX , FY and FQ, i.e.

FX(u) = P(X ⩽ u) =

⌊u⌋∑
k=0

xk,

FY (u) = P(Y ⩽ u) =

⌊u⌋∑
k=0

yk,

FQ(u) = P(Q ⩽ u) =

⌊u⌋∑
k=0

qk,

for each real u. The notation F is used for the tail of an arbitrary distribu-
tion function F , i.e. F (u) = 1− F (u) for each u ∈ R.

The following two assertions enable us to construct an algorithm for
calculating values of function ψδ(u) in the bi-seasonal discrete time risk
model.

Theorem 3.1.1. Let the bi-seasonal discrete time risk model be generated
by two nonnegative, independent and integer valued random variables X and
Y . If EX + EY < 2, then lim

u→∞
ψδ(u) = 0 for an arbitrary fixed δ ⩾ 0. In

addition, if max{EehX ,EehY } <∞ for some positive h, then
∞∑
l=0

ψδ(l) <∞

for each fixed δ ⩾ 0.
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Theorem 3.1.2. Let all the conditions of the Theorem 3.1.1 be satis-
fied. Furthermore, let δ > 0, and ψδ denote the Gerber-Shiu function with
w(x, y) = 1 for all nonnegative x and y. Also denote Sδ :=

∞∑
l=0

ψδ(l).

• If q0 = P(X + Y = 0) > 0, then

ψδ(n) = anψδ(0) + bnSδ + dn (3.1.1)

for each n ∈ N0, where an, bn, dn are three sequences of real numbers defined
recursively by the following equations:

a0 = 1, a1 = − 1

y0
, an =

1

q0

(
e2δan−2 −

n−1∑
i=1

qian−i − xn−1

)
, n ∈ {2, 3, . . .};

b0 = 0, b1 = −e2δ − 1

y0
,

bn =
1

q0

(
e2δbn−2 −

n−1∑
i=1

qibn−i − xn−1(e2δ − 1)
)
, n ∈ {2, 3, . . .};

d0 = 0, d1 =
eδEX + y0 + EY − 1

y0
,

dn =
1

q0

(
e2δdn−2 −

n−1∑
i=1

qidn−i + xn−1y0d1 − eδFX(n− 2)

−
n−2∑
i=0

xiF Y (n− 1− i)
)
, n ∈ {2, 3, . . .}.

• If x0 = P(X = 0) = 0 and y0 = P(Y = 0) ̸= 0, then

ψδ(n) = ãnψδ(0) + b̃nSδ + d̃n (3.1.2)

for each n ∈ N0, where ãn, b̃n, d̃n are three sequences of real numbers defined
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recursively by the following equations:

ã0 = 1, ã1 = − 1

y0
, ãn =

1

q1

(
e2δãn−1 −

n−1∑
i=1

qi+1ãn−i − xn

)
, n ∈ {2, 3, . . .};

b̃0 = 0, b̃1 = −e2δ − 1

y0
,

b̃n =
1

q1

(
e2δ b̃n−1 −

n−1∑
i=1

qi+1b̃n−i − xn(e2δ − 1)
)
, n ∈ {2, 3, . . .};

d̃0 = 0, d̃1 =
eδEX + y0 + EY − 1

y0
,

d̃n =
1

q1

(
e2δd̃n−1 −

n−1∑
i=1

qi+1d̃n−i + xny0d̃1 − eδFX(n− 1)

−
n−2∑
i=0

xi+1F Y (n− 1− i)
)
, n ∈ {2, 3, . . .}.

• If x0 ̸= 0 and y0 = 0, then

ψδ(n) = b̂nSδ + d̂n (3.1.3)

for each n ∈ N0, where b̂n, d̂n are two sequences of real numbers defined
recursively by the following equations:

b̂0 = −(e2δ − 1), b̂n =
1

q1

(
e2δ b̂n−1 −

n−1∑
i=1

qi+1b̂n−i

)
, n ∈ N;

d̂0 = eδEX + EY − 1,

d̂n =
1

q1

(
e2δd̂n−1 −

n−1∑
i=1

qi+1d̂n−i − eδFX(n− 1)−
n−1∑
i=0

xiF Y (n− i)
)
,

n ∈ N.

Remark 3.1.1. We observe that case x0 = y0 = 0 is impossible due to the
requirement E(X + Y ) < 2. This observations shows that all possible cases
of the discrete r.v.s X and Y are considered in the Theorem 3.1.2.

3.2 Proofs of the main results

Proof of Theorem 3.1.1. To prove the first proposition of the Theo-
rem, the Lemma below is used.
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Lemma 3.2.1. (see Theorem 2.3 of Damarackas and Šiaulys [19])
Let the bi-seasonal discrete time risk model be generated by two non-

negative, independent and integer valued random variables X and Y . If
EX + EY < 2, then lim

u→∞
ψ(u) = 0.

The statement of the Lemma 3.2.1 implies that lim
u→∞

ψδ(u) = 0 for an
arbitrary fixed δ ⩾ 0, because 0 ⩽ ψδ(u) ⩽ ψ(u) for all δ, u ⩾ 0.

To show that Gerber-Shiu function series converges, we will prove that
this function has an exponential upper bound under conditions of this The-
orem. To prove this, the Lemma below will be used.

Lemma 3.2.2. (see Lemma 1 by Andrulytė et al. [2])
Let η1, η2, . . . be independent r.v.s such that

sup
i∈N

E
(
ehηi

)
<∞ for some h > 0,

lim
u→∞

sup
i∈N

E
(
|ηi|1I{ηi⩽−u}

)
= 0,

lim sup
n→∞

1

n

n∑
i=1

Eηi < 0.

Then, there exist positive constants c1 and c2 such that

P
(

sup
k⩾1

k∑
i=1

ηi > u

)
⩽ c1e−c2u, u ⩾ 0.

Let us denote ηi = Zi − 1 for i ∈ N. The conditions of the Theorem
imply that all the requirements of the Lemma 3.2.2 are satisfied. Firstly,

sup
i∈N

E
(
ehηi

)
= max

{
E
(
eh(X−1)

)
,E
(
eh(Y−1)

)}
<∞.

Secondly,

lim
u→∞

sup
i∈N

E
(
|ηi|1I{ηi⩽−u}

)
= lim

u→∞
max

{
E
(
(1−X)1I{X⩽1−u}

)
,E
(
(1− Y )1I{Y ⩽1−u}

)}
= 0,

because for u > 1 events {X ⩽ 1− u} and {Y ⩽ 1− u} have zero probabil-
ity.
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Lastly, we can show that for n = 2k, k ∈ N,

1

n

n∑
i=1

Eηi =
nEX + nEY − 2n

2n
.

For n = 2k + 1, k ∈ N0, we have that

1

n

n∑
i=1

Eηi =
(n+ 1)EX + nEY − (2n+ 1)

2n+ 1
.

Therefore, it follows that

lim sup
n→∞

1

n

n∑
i=1

Eηi =
EX + EY − 2

2
< 0,

because EX + EY < 2 by the conditions of the Theorem.
Hence, according to the Lemma 3.2.2, we have

ψδ(u) ⩽ ψ(u) = P
(

sup
k⩾1

k∑
i=1

ηi > u

)
⩽ c1e−c2u, u ⩾ 0,

for some positive constants c1, c2.
Therefore, it follows immediately that

∞∑
l=0

ψδ(l) ⩽ c1

∞∑
l=0

e−c2l = c1

∞∑
l=0

(
1

ec2

)l

= c1
1

1− e−c2
<∞

for each fixed δ ⩾ 0. □

Proof of Theorem 3.1.2. Suppose that δ > 0 and u ∈ N0. According
to the definition of function ψδ we have

ψδ(u) =
∞∑

m=1

E
(
e−δm1I{Tu=m}

)
=

∞∑
m=1

e−δm P
( j∑

i=1

Zi < j + u for j ∈ {1, 2, . . . ,m− 1}

and
m∑
i=1

Zi ⩾ m+ u

)
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= e−δ P(Z1 ⩾ 1 + u) + e−2δ P(Z1 < 1 + u,Z1 + Z2 ⩾ 2 + u)

+
∞∑

m=3

e−δm P
( j∑

i=1

Zi < j + u for j ∈ {1, 2, . . . ,m− 1}

and
m∑
i=1

Zi ⩾ m+ u

)
.

Since X d
=Z1

d
=Z3

d
=Z5

d
= . . . and Y

d
=Z2

d
=Z4

d
=Z6

d
= . . . we get that

ψδ(u) = e−δ
∑

l⩾1+u

xl + e−2δ
∑
l⩽u

∑
k⩾2+u−l

xlyk

+
∞∑

m=3

e−δm P
(
Z1 ⩽ u,Z1 + Z2 ⩽ 1 + u,Z1 + Z2 +

j∑
i=3

Zi < j + u

for j ∈ {3, . . . ,m− 1} and Z1 + Z2 +

m∑
i=3

Zi ⩾ m+ u

)

= e−δFX(u) + e−2δ
u∑

l=0

xlF Y (1 + u− l)

+
u∑

l=0

1+u−l∑
k=0

xlyk

∞∑
m=3

e−δm P
( j∑

i=3

Zi < j + u− l − k

for j ∈ {3, . . . ,m− 1} and
m∑
i=3

Zi ⩾ m+ u− k − l

)

= e−δFX(u) + e−2δ
u∑

l=0

xlF Y (1 + u− l)

+ e−2δ
u∑

l=0

1+u−l∑
k=0

xlyk

∞∑
m=3

e−δ(m−2) P
( j∑

i=1

Zi < j + u− l − k

for j ∈ {1, . . . ,m− 3} and
m−2∑
i=1

Zi ⩾ m+ u− k − l

)

= e−δFX(u) + e−2δ
u∑

l=0

xlF Y (1 + u− l)

+ e−2δ
u∑

l=0

1+u−l∑
k=0

xlyk ψδ(u+ 2− k − l). (3.2.1)

For each m ∈ N0

qm = P(Q = m) =
m∑
k=0

xkym−k.
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Therefore the last sum in the equality (3.2.1) can be expressed by

1+u∑
l=0

1+u−l∑
k=0

xlyk ψδ(u+ 2− (k + l))− xu+1y0ψδ(1)

=

1+u∑
l=0

qlψδ(u+ 2− l)− xu+1y0ψδ(1)

=
u∑

l=0

qlψδ(u+ 2− l) + (qu+1 − xu+1y0)ψδ(1).

Substituting this expression into the equality (3.2.1) we obtain that

ψδ(u) = e−δFX(u) + e−2δ
u∑

l=0

xlF Y (1 + u− l)

+ e−2δ

(
u∑

l=0

qlψδ(u+ 2− l) + (qu+1 − xu+1y0)ψδ(1)

)
(3.2.2)

for each u ∈ N0.
By summing these last equalities from u = 0 to u = N ∈ N we get that

N∑
u=0

ψδ(u) = e−δ
N∑

u=0

FX(u) + e−2δ
N∑

u=0

u∑
l=0

xlF Y (1 + u− l)

+ e−2δ

(
N∑

u=0

u∑
l=0

qlψδ(u+ 2− l)

+ ψδ(1)

N∑
u=0

(qu+1 − xu+1y0)

)
(3.2.3)

We observe that

N∑
u=0

u∑
l=0

xlF Y (1 + u− l) =

N+1∑
u=1

F Y (u)FX(N + 1− u)

and, similarly,

N∑
u=0

u∑
l=0

qlψδ(u+ 2− l) =
N+2∑
u=2

ψδ(u)FQ(N + 2− u).
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Hence, it follows from the equality (3.2.3) that

N+2∑
u=0

ψδ(u)
(
1− e−2δFQ(N + 2− u)

)
= e−δ

N∑
u=0

FX(u)

+ e−2δ
N+1∑
u=1

F Y (u)FX(N + 1− u)

+ ψδ(N + 1) + ψδ(N + 2)

+ e−2δψδ(1)
N∑

u=0

(qu+1 − xu+1y0)

− e−2δ
(
ψδ(0)FQ(N + 2) + ψδ(1)FQ(N + 1)

)
(3.2.4)

for each N ∈ N.
Now we are in a position to let N → ∞. It is obvious that:

lim
N→∞

N∑
u=0

FX(u) = EX, lim
N→∞

FQ(N + 1) = lim
N→∞

FQ(N + 2) = 1, (3.2.5)

lim
N→∞

N∑
u=0

qu+1 = 1− q0, lim
N→∞

N+1∑
u=0

xu+1 = 1− x0.(3.2.6)

The Theorem 3.1.1 implies that

lim
N→∞

ψδ(N + 1) = lim
N→∞

ψδ(N + 2) = 0. (3.2.7)

Consider the second term in the right side of the equality (3.2.4). Obviously

lim
N→∞

N+1∑
u=1

F Y (u)FX(N + 1− u) ⩽
∞∑
u=1

F Y (u).

On the other hand, for an arbitrary M ∈ N

lim
N→∞

N+1∑
u=1

F Y (u)FX(N + 1− u) ⩾ lim
N→∞

FX(N + 1−M)
M∑
u=1

F Y (u)

=
M∑
u=1

F Y (u). (3.2.8)
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Consequently,

lim
N→∞

N+1∑
u=1

F Y (u)FX(N + 1− u) =
∞∑
u=1

F Y (u)

= y2 + 2y3 + 3y4 + . . .

= y0 + EY − 1. (3.2.9)

Only the left side of equality (3.2.4) is left for consideration. Due to the
Theorem 3.1.1

lim
N→∞

N+2∑
u=0

ψδ(u) = Sδ <∞.

In addition,

lim
N→∞

N+2∑
u=0

ψδ(u)FQ(N + 2− u) ⩽
∞∑
u=0

ψδ(u) = Sδ,

and, for an arbitrary chosen M ∈ N,

lim
N→∞

N+2∑
u=0

ψδ(u)FQ(N + 2− u) ⩾ lim
N→∞

FQ(N + 2−M)

M∑
u=0

ψδ(u).

Hence,

lim
N→∞

N+2∑
u=0

ψδ(u)
(
1− e−2δFQ(N + 2− u)

)
=
(
1− e−2δ

)
Sδ. (3.2.10)

Substituting all limiting relations (3.2.5)–(3.2.10) into the equality
(3.2.4) we get

(
1− e−2δ

)
Sδ = e−δEX + e−2δ(y0 + EY − 1)− e−2δψδ(1)y0 − e−2δψδ(0).

(3.2.11)
From this point we consider the three cases described in the formulation

of Theorem separately.
(I) If q0 > 0 then the equality (3.2.11) implies that

ψδ(1) = a1ψδ(0) + b1Sδ + d1

where a1, b1 and d1 are as defined in the formulation of the Theorem. So,
we have that the main equality (3.1.1) holds if n ∈ {0, 1}.

Now we need to prove this equality for all n ∈ N. For this we use an
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induction. Suppose that the equality (3.1.1) holds for all n ∈ {0, 1, . . . ,K}
for the defined sequences an, bn and dn.

The induction hypothesis and equality (3.2.2) with u = K − 1 imply
that

e2δψδ(K − 1) = e2δ
(
aK−1 ψδ(0) + bK−1 Sδ + dK−1

)
= eδFX(K − 1) +

K−1∑
l=0

xlF Y (K − l) + q0 ψδ(K + 1)

+
K−1∑
l=1

ql
(
aK+1−l ψδ(0) + bK+1−l Sδ + dK+1−l

)
+ (qK − xKy0)

(
a1ψδ(0) + b1Sδ + d1

)
.

Therefore,

q0 ψδ(K + 1) = ψδ(0)
(
e2δaK−1 −

K∑
l=1

qlaK+1−l + xKy0a1
)

+ Sδ

(
e2δbK−1 −

K∑
l=1

qlbK+1−l + xKy0b1
)

+

(
e2δdK−1 −

K∑
l=1

qldK+1−l + xKy0d1

− eδFX(K − 1)−
K−1∑
l=0

xlF Y (K − l)

)
,

or
ψδ(K + 1) = aK+1ψδ(0) + bK+1Sδ + dK+1

due to the definition of sequences an, bn and dn.
The induction principle implies that the equality (3.1.1) holds for all

n ∈ N0. The first part of the Theorem 3.1.2 is proved.
(II) If x0 = 0, y0 ̸= 0, then the equality (3.2.11) implies that

ψδ(1) = ã1ψδ(0) + b̃1Sδ + d̃1

where ã1, b̃1 and d̃1 are as defined in the formulation of the Theorem. So,
we have that the main equality (3.1.2) holds if n ∈ {0, 1}. Similarly as in
the case (I), we finish the proof using the induction method and equality
(3.2.2).
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(III) If x0 ̸= 0, y0 = 0, then equality (3.2.11) implies that

ψδ(0) = b̂0Sδ + d̂0

where b̂0 and d̂0 are as defined in the formulation of the Theorem. So, we
have that the main equality (3.1.3) holds if n = 0. Similarly as in the case
(I), we finish the proof using the induction method and equality (3.2.2).

Now Theorem 3.1.2 is proved. □

3.3 Algorithm for finding the values of
function ψδ

In this section, we describe an algorithm for calculating values of ψδ(u)

in the case of the bi-seasonal risk model. The algorithm was implemented
with R language, using increased numerical precision package Rmpfr. Our
algorithm is based on the formula (3.1.1) from the Theorem 3.1.2 and the
results of the Theorem 3.1.1. As usual, it is assumed that we have a positive
force of interest δ, and the bi-seasonal discrete time risk model is generated
by two nonnegative, integer-valued and differently distributed r.v.s X, Y
with local probabilities xk = P(X = k), yk = P(Y = k), k ∈ N0. Of course,
these two r.v.s should satisfy all the requirements of the Theorem 3.1.2.
Below we present the detailed, step by step algorithm for calculating ψδ(u),
u ∈ N0 in the case when x0y0 > 0. The other possible cases:{x0 = 0, y0 > 0},
and {x0 > 0, y0 = 0}, which were described in the Theorem 3.1.2, can be
considered similarly.

Step 1: Select N ∈ {10, 20, 30, ..., 100} and K ∈ {1, ..., 5}.
Step 2: Calculate coefficients an, bn, dn for all n ∈ {0, 1, ..., N} using

the formulas from the Theorem 3.1.2.
Step 3: Find ψ̂δ(0) and Ŝδ satisfying the following system of linear

equations aN−Kψ̂δ(0) + bN−K Ŝδ + dN−K = 0,

aN ψ̂δ(0) + bN Ŝδ + dN = 0.
(3.3.1)

• Due to the main formula (3.1.1) of the Theorem 3.1.2 the desired
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quantity ψδ(0) together with sum Sδ satisfy the following systemaN−Kψδ(0) + bN−KSδ + dN−K = ψδ(N −K),

aNψδ(0) + bNSδ + dN = ψδ(N).
(3.3.2)

• However, according to the Theorem 3.1.1 ψδ(N −K) and ψδ(N) are
close to the zero for sufficiently large N . We get system (3.3.1) from
(3.3.2) by changing values of ψδ(N −K) and ψδ(N) to zeroes.

Step 4: Test the error |ψδ(0)− ψ̂δ(0)|.

• Using the Cramer’s rule for both systems of linear equations (3.3.1),
(3.3.2) and the trivial estimate |ψδ(n)| ⩽ 1, n ∈ N0, we derive that

|ψδ(0)− ψ̂δ(0)| ⩽
e−δ
(
|bN−K |+ |bN |

)
|aN−KbN − bN−KaN |

.

• Numerical simulations have showed that the upper estimate of ψδ(0)

approximation error tends to 0 as N grows. This is consistent with
the behaviour of the approximation error itself. As for the parameter
K, its choice does not have the clear effect on the upper estimate of
ψδ(0) approximation error.

Step 5: If the size of error in the Step 4 is suitable, then pass to the
Step 6. If the size of error is not suitable, then return to the Step 1 choosing
different parameters N and K.

• We remark only that the sets provided in the Step 1 for choosing
these parameters are not strictly defined, and different sets can be
used successfully. However, choosing N much larger than 100 would
result in very large coefficients aN , bN and dN , and owing to that
some computational difficulties may arise. Besides that, in this case
computational speed would be reduced. And conversely, choosing N too
small would result in a big approximation error of ψδ(0) when changing
the system (3.3.2) to the (3.3.1), since ψδ(N) does not converge to zero
so quickly. As for the parameter K, it should be chosen to minimize
the upper estimate of ψδ(0) approximation error.

Step 6: Calculate ψδ(1) according to the formula (3.1.1) by supposing
that ψδ(0) = ψ̂δ(0) and Sδ = Ŝδ.
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Step 7: Calculate values of ψδ(u) for u ⩾ 2 while the algorithm works
correctly, applying either formula (3.1.1) from Theorem 3.1.2 or the main
recursive formula (3.2.2) from the proof of Theorem 3.1.2.

• By saying that the algorithm works correctly, we mean that its results
do not conflict with mathematical properties. Namely, ψδ(u) is a
function taking values between 0 and 1, nonincreasing with respect to
u and decreasing with respect to δ. However, sometimes algorithm
produces results that are not compatible with these properties. This
could happen due to the following reasons:
(i) In some particular cases of X, Y and δ, coefficients an, bn, dn,
n ∈ N0 in the main equality of the Theorem 3.1.2 are rapidly growing
and fluctuating. Consequently, it is quite difficult to get precise values
of these coefficients.
(ii) Also, computational errors could arise because by using the formula
(3.1.1) from the Theorem 3.1.2, we are calculating a ”small” quantity
ψδ(u) as a sum containing ”large” in absolute value summands.

Remark 3.3.1. Many ideas for constructing a recursive algorithm were
taken from Damarackas and Šiaulys [19]. In this chapter the infinite time
ruin probability, which is a special case of Gerber-Shiu function with δ = 0

and w(x, y) = 1, was considered. In this chapter we have extended the
results to the case δ > 0.

Remark 3.3.2. In Bieliauskienė and Šiaulys [6], analogous problem to ours
is considered. While we analyze a less general model than the one provided
in this paper, there are some advantages in our algorithm. Namely, our
approach of finding ψδ(0) is more efficient. The formula provided in the
Theorem 3 of [6] is applicable to all numerical examples of the Section
3.4 except the last one, which deals with random variables having infinite
support. But the problem with this formula is its combinatorial form, and
even for relatively simple distributions it is not easy to implement. The
computational speed is also reduced for the same reason. Furthermore, our
proposed algorithm is less prone to computational errors, because we do not
use multiple way recursion.
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3.4 Numerical examples

In this section, we present four numerical examples for calculating the
values of ψδ(u), u ∈ N0, in the bi-seasonal discrete time risk model. In all
examples we consider function ψδ with three different values of the interest
force δ ∈ {0; 0.01; 0.1}. Our algorithm does not allow to compute function
values for case δ = 0, so the algorithm and its ψδ(0) approximation error
upper estimate provided in Damarackas and Šiaulys [19] were used for this
case. Since the function ψδ(u) seems to decay exponentially, all the figures
are plotted in log scale (with base 10).

Example 3.4.1. Let us assume that the bi-seasonal discrete time risk model
is generated by the following independent random claim amounts X and Y

X 0 1 2

P 0.6 0.2 0.2
;
Y 0 1 2 3

P 0.5 0.2 0.2 0.1
.

In this example, both claim amounts are ”good” because
max{EX,EY } < 1, and all conditions of the Theorem 3.1.2 are sat-
isfied. Using the algorithm presented in the Section 3.3 we obtain values
of ψδ(u) for u ∈ {0, 1, ..., 15}. These values are presented in the Table 3.1
and values of logψδ(u) are shown in the Figure 3.1. The upper estimate of
ψδ(0) approximation error, described in the Step 4 of algorithm, is provided
in the parenthesis near value of δ. Results of this example are based on the
value of ψδ(0) which is obtained with N = 50 and K = 2.
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Table 3.1: Values of ψδ(u) in Example 3.4.1

u δ = 0 (< 0.000000001) δ = 0.01 (0.083494161) δ = 0.1 (0.000001786)

0 0.735808540 0.715289725 0.588111815

1 0.528382921 0.505099453 0.379732449

2 0.308008652 0.283691781 0.168950439

3 0.186932507 0.166883336 0.082819297

4 0.109425467 0.094115383 0.036822099

5 0.064774209 0.053789118 0.016949434

6 0.038352631 0.030752904 0.007818717

7 0.022665488 0.017539770 0.003572849

8 0.013406572 0.010015276 0.001640920

9 0.007928948 0.005717783 0.000753055

10 0.004688946 0.003263965 0.000345342

11 0.002773172 0.001863371 0.000158466

12 0.001639884 0.001063758 0.000072701

13 0.000970174 0.000607275 0.000033353

14 0.000573054 0.000346681 0.000015302

15 0.000340345 0.000197913 0.000007020

Figure 3.1: Values of logψδ(u) in Example 3.4.1

Example 3.4.2. Suppose now that the bi-seasonal discrete time risk model
is generated by r.v.s X and Y having the following distributions
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X 0 1

P 0.4 0.6
;
Y 0 1 2

P 0.1 0.6 0.3
.

We observe that EX < 1, EY ⩾ 1, but EX + EY < 2 in this case.
Consequently, the model is ”good” only on average and all conditions of the
Theorem 3.1.2 are satisfied. Using the algorithm from the Section 3.3, the
Table 3.2 is filled out with values of ψδ(u) for u ∈ {0, 1, ..., 15}. Results of
this example are based on the value of ψδ(0) which is obtained with N = 40

and K = 1. The values of logψδ(u) are also shown in Figure 3.2.

Table 3.2: Values of ψδ(u) in Examples 3.4.2

δ = 0 δ = 0.01 δ = 0.1
u (< 0.000000001) (0.006459348) (< 0.000000001)

0 0.850000000 0.826902130 0.697524567
1 0.500000000 0.455345718 0.274354439
2 0.250000000 0.207339723 0.075270358
3 0.125000000 0.094411255 0.020650757
4 0.062500010 0.042989761 0.005665627
5 0.031250000 0.019575203 0.001554390
6 0.015625000 0.008913485 0.000426454
7 0.007812502 0.004058717 0.000116999
8 0.003906251 0.001848120 0.000032099
9 0.001953125 0.000841533 0.000008807
10 0.000976563 0.000383189 0.000002416
11 0.000488281 0.000174483 0.000000663
12 0.000244141 0.000079450 0.000000182
13 0.000122070 0.000036177 0.000000050
14 0.000061035 0.000016473 0.000000014
15 0.000030518 0.000007501 0.000000004

Example 3.4.3. Let us consider the mirror reflection of the bi-seasonal
discrete time risk model from Example 3.4.2, i.e. the order of claims ap-
pearance is reversed.

From the obtained calculations we can easily see that when the positions
of claims are changed, the values of ψδ(u) are also changing. The numerical
values of ψδ(u) of this model are given in the Table 3.3 and logψδ(u) are
shown in the Figure 3.2 with N = 50 and K = 3.
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Figure 3.2: Values of logψδ(u) in Examples 3.4.2 and 3.4.3

Table 3.3: Values of ψδ(u) in Examples 3.4.3

δ = 0 δ = 0.01 δ = 0.1

u (< 0.000000001) (0.001104494) (< 0.000000001)

0 0.950000000 0.936126346 0.839178292

1 0.625000000 0.588031587 0.427209666

2 0.312500000 0.267757665 0.117206868

3 0.156250000 0.121922306 0.032156225

4 0.078125010 0.055516800 0.008822203

5 0.039062510 0.025279337 0.002420411

6 0.019531260 0.011510838 0.000664050

7 0.009765629 0.005241411 0.000182185

8 0.004882816 0.002386654 0.000049983

9 0.002441409 0.001086753 0.000013713

10 0.001220706 0.000494848 0.000003762

11 0.000610354 0.000225327 0.000001032

12 0.000305178 0.000102602 0.000000283

13 0.000152590 0.000046719 0.000000078

14 0.000076296 0.000021273 0.000000021

15 0.000038149 0.000009687 0.000000006

Example 3.4.4. Suppose that the bi-seasonal discrete time risk model
is generated by r.v.s X and Y , where X has Poisson distribution with
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parameter λ = 0.8 and Y has geometric distribution with parameter p = 0.7.
In this case, the model generators have infinite supports, but all require-

ments of the Theorem 3.1.2 are satisfied. So we can use the algorithm from
the Section 3.3 to calculate values of ψδ(u). These values are given in the
Table 3.4 and shown in the Figure 3.3. The results are obtained by choosing
N = 60 and K = 4 in the first step of the algorithm.

Table 3.4: Values of ψδ(u) in Example 3.4.4

u δ = 0 (< 0.000000001) δ = 0.01 (0.089541014) δ = 0.1 (0.000002568)

0 0.678504300 0.667146224 0.582922968

1 0.357239100 0.346815995 0.278446415

2 0.170682700 0.162951735 0.116632815

3 0.080801850 0.075772347 0.047817117

4 0.038827470 0.035788750 0.020007214

5 0.018862780 0.017104346 0.008536891

6 0.009203741 0.008213946 0.003676915

7 0.004496317 0.003949953 0.001588588

8 0.002197207 0.001900018 0.000686862

9 0.001073798 0.000913991 0.000297021

10 0.000524834 0.000439670 0.000128443

11 0.000256585 0.000211501 0.000055544

12 0.000125498 0.000101741 0.000024019

13 0.000061448 0.000048942 0.000010387

14 0.000030139 0.000023543 0.000004492

15 0.000014871 0.000011325 0.000001942
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Figure 3.3: Values of logψδ(u) in Example 3.4.4

3.5 Concluding remarks

In this chapter, the bi-seasonal discrete time risk model is considered.
We derived a recursive algorithm for calculating the values of a special
case of Gerber-Shiu discounted penalty function. Theoretical results are
illustrated by some numerical examples.

The results obtained in this chapter could be improved in the following
directions:

• Instead of taking w(x, y) = 1 in the Gerber-Shiu function, arbitrary
function w(x, y) could be taken. This would allow to reflect insurer’s
economic costs at the time of ruin in a more realistic way.

• Our results could be generalized to the models with more complex
structure of claims’ non-homogeneity. For instance, models with cycli-
cally distributed claims with an arbitrary cycle length could be con-
sidered. In this chapter, the model with cycle length equal to 2 is
considered.

• In the Step 4 of our presented algorithm, more subtle estimation of
ψδ(0) approximation error could be derived.

• In the bi-seasonal discrete time risk model, claims with distributions
satisfying max{EehX ,EehY } = ∞ for all positive h could be consid-
ered. The difficulty arises here because one of the limiting relations
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in the Theorem 3.1.1 does not hold anymore. Therefore an alternate
way of finding ψδ(0) and ψδ(1) should be derived.
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Chapter 4

Ruin probability for the
bi-seasonal discrete time risk
model with dependent claims

In this chapter, we consider the bi-seasonal discrete time risk model
with dependent claims. The aim of this chapter is to derive an algorithm
for computing the values of the ultimate ruin probability in the bi-seasonal
discrete time risk model with dependent claims. Theoretical results are
illustrated with numerical examples. The rest of the chapter is organized
as follows. In Section 4.1, we present our main results. In Section 4.2 the
proofs of the main results are given. Finally, in Section 4.3 we present some
examples, which show the applicability of our results.

4.1 Definitions and main results

Definition 4.1.1. We say that the insurer’s surplus Wu varies according
to the bi-seasonal risk model with dependent claims if

Wu(n) = u+ n−
n∑

i=1

Zi

for all n ∈ N0 = {0, 1, 2, . . .} and the following assumptions hold:
• the initial insurer’s surplus is u ∈ N0,
• there exists a random vector (X,Y ) such that (Z2k−1, Z2k)

d
=(X,Y ),

k ∈ N,
• the random vectors (Z2k−1, Z2k), k ∈ N, are independent,
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• the generating random vector (X,Y ) has the distribution defined by
the table below, where hij = P(X = i, Y = j), i, j ∈ N0:

0 1 2 3 . . .

0 h0,0 h0,1 h0,2 h0,3 . . .

1 h1,0 h1,1 h1,2 h1,3 . . .

2 h2,0 h2,1 h2,2 h2,3 . . .

. . . . . . . . . . . . . . . . . .

If X and Y are independent random variables, then the model reduces
to the one considered in Chapter 3 and [19]. If, in addition, X and Y are
identically distributed, then the bi-seasonal discrete time risk model with
dependent claims becomes the classical discrete time risk model.

The time of ruin and the ruin probability are the main extremal charac-
teristics of insurance risk models. In this chapter these quantities are defined
identically to the analogous quantities considered in Chapters 2 and 3.

In the case of the classical discrete time risk model, recursive procedures
for calculating exact values of ψ(u) are well known. These procedures and
related information can be found in [21], [24], [23], [25], [28], [29], [39], [64],
[68] among others.

The recursive calculation of ψ(u) is relatively simple in the classical
discrete time risk model because of the explicit formula for ψ(0). If the con-
secutive claim amounts Z1, Z2, . . . are no longer identically distributed or
independent, then the classical discrete time risk model becomes the inho-
mogeneous discrete time risk model. For all such models, the algorithms for
finding values of the ruin probabilities are much more complicated. Several
results related to the calculation of the ruin probabilities for inhomogeneous
renewal risk models can be found in [1], [4], [5], [6], [8], [10], [16], [19], [30],
[31], [32], [58], [57], [59] and [74].

Let us introduce some notation used in our results. By

xk = P(X = k) =
∞∑
j=0

hk,j ,

yk = P(Y = k) =

∞∑
j=0

hj,k,
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qk = P(Q = k) =

k∑
l=0

hl,k−l, k ∈ N0,

we denote the marginal distributions of the random variables X, Y and their
sum Q = X + Y , respectively. The distribution functions of these random
variables are denoted by FX , FY and FQ, i.e.

FX(u) = P(X ⩽ u) =

⌊u⌋∑
k=0

xk,

FY (u) = P(Y ⩽ u) =

⌊u⌋∑
k=0

yk,

FQ(u) = P(Q ⩽ u) =

⌊u⌋∑
k=0

qk

for all u ⩾ 0. As in Chapter 3, the notation F is used for the tail of an
arbitrary distribution function F .

Furthermore, the survival probability is denoted by φ(u) = 1−ψ(u) for
all u ∈ N0. It should be noted that our main results are formulated in terms
of the survival probability.

Theorem 4.1.1. Let the bi-seasonal discrete time risk model be generated
by the random vector (X,Y ), where X and Y are nonnegative and integer-
valued random variables such that EQ = EX + EY < 2. In this case

lim
u→∞

φ(u) = 1. (4.1.1)

• If q0 = h0,0 > 0, then

φ(0) = (2− EQ) lim
n→∞

bn+1 − bn
an − an+1

, (4.1.2)

φ(u) = auφ(0) + bu(2− EQ), u ∈ N0, (4.1.3)

where an and bn are two sequences of real numbers defined recursively by
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the equalities:

a0 = 1, a1 = − 1

y0
, an =

1

q0

(
an−2 −

n−1∑
i=1

qian−i + a1hn−1,0

)
,

n ∈ {2, 3, . . .};

b0 = 0, b1 =
1

y0
, bn =

1

q0

(
bn−2 −

n−1∑
i=1

qibn−i + b1hn−1,0

)
,

n ∈ {2, 3, . . .}.

• If q0 = 0 with x0 ̸= 0 and y0 = 0, then

φ(0) = 2− EQ,

φ(u) =
1

q1

(
φ(u− 1)−

u∑
k=2

qkφ(u− k + 1)
)
, u ∈ N.

• If q0 = 0 with x0 = 0 and y0 ̸= 0, then

φ(0) = 0,

φ(1) =
1

y0
(2− EQ),

φ(u) =
1

q1

(
φ(u− 1)−

u∑
k=2

qkφ(u− k + 1) + hu,0 φ(1)
)
, u ∈ {2, 3, . . .}.

Theorem 4.1.2. Let the bi-seasonal discrete time risk model be generated
by random vector (X,Y ), where X and Y are nonnegative and integer-
valued random variables such that the net profit condition is not satisfied,
i.e. EX + EY ⩾ 2.

If EX + EY > 2, then φ(u) = 0 for all u ∈ N0.
If EX + EY = 2, then we have the following possible subcases:

• φ(u) = 0, u ∈ N0, if q2 = h0,2 + h1,1 + h2,0 < 1;

• φ(0) = 0, φ(u) = 1, u ∈ N, if q2 = 1 and h2,0 = 0;

• φ(0) = φ(1) = 0, φ(u) = 1, u ∈ {2, 3, . . .}, if q2 = 1 and h2,0 > 0.
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4.2 Proofs of the main results

Proof of the Theorem 4.1.1. The proof partly follows the scheme of
the proofs given in [19]. Therefore, some of the details provided there are
omitted.

At the beginning of the proof consider the general case with EQ ⩾ 0. By
the total probability formula, we get the following basic recursive formula
for all u ∈ N0

φ(u) =

u+1∑
k=0

qkφ(u+ 2− k)− hu+1,0φ(1)

=
u+1∑
k=0

qu+1−kφ(k + 1)− hu+1,0φ(1). (4.2.1)

The obtained equality implies that

u∑
l=0

φ(l) =

u∑
l=0

l+1∑
k=0

ql+1−kφ(k + 1)− φ(1)

u∑
l=0

hl+1,0, u ∈ N0.

By rearranging the terms we obtain

u+2∑
k=0

φ(k)FQ(u+ 2− k) = φ(u+ 1) + φ(u+ 2)

− φ(1)
u+1∑
l=0

hl,0 − φ(0)FQ(u+ 2).

(4.2.2)

Sequence {φ(0), φ(1), φ(2), . . .} is nondecreasing and bounded. There-
fore, there exists limit φ(∞) = lim

u→∞
φ(k). By Silverman–Toeplitz theorem,

we obtain that

lim
u→∞

u+2∑
k=0

φ(k)FQ(u+ 2− k) = φ(∞)EQ. (4.2.3)

Below we give a detailed explanation about how the equality above is
derived. First, let us formulate Silverman–Toeplitz theorem.

Theorem 4.2.1. (Silverman–Toeplitz) Let {auk} be a matrix of complex
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numbers such that

sup
u

∞∑
k=0

|auk| <∞, lim
u→∞

∞∑
k=0

auk = 1, lim
u→∞

auk = 0, k ∈ N0.

Let {sk, k ∈ N0} be a convergent sequence of complex numbers. Also, denote
σu :=

∞∑
k=0

auksk, u ∈ N0. Then the following statement holds:

lim
k→∞

sk = s⇔ lim
u→∞

σu = s.

Let us take

sk = φ(k), auk =
FQ(u+ 2− k)

EQ
1I(k ⩽ u+ 2).

Then we can obtain that

sup
u

∞∑
k=0

|auk| =
1

EQ
sup
u

u+2∑
k=0

FQ(u+ 2− k) = 1,

lim
u→∞

∞∑
k=0

auk =
1

EQ
lim
u→∞

u+2∑
k=0

FQ(u+ 2− k) = 1,

lim
u→∞

auk =
1

EQ
lim
u→∞

FQ(u+ 2− k)1I(k ⩽ u+ 2) = 0, k ∈ N0.

Therefore, we can apply Silverman–Toeplitz theorem. Since lim
k→∞

sk =

φ(∞), we get that the relation (4.2.3) holds.
Inserting the relation (4.2.3) into the equality (4.2.2) and passing to the

limit as u→ ∞, we get that

(2− EQ)φ(∞) = y0φ(1) + φ(0). (4.2.4)

From now on until the end of the proof, let us restrict to the case EQ < 2.
Equality (4.1.1) is proved using the strong law of large numbers, and the
proof is identical to the first part of Theorem 2.3 proof in [19]. Namely,
according to the alternative definition of survival probability, we get that

φ(∞) = lim
u→∞

P
(

sup
n⩾1

ηn < u
)
, (4.2.5)
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where
ηn =

n∑
i=1

(Zi − 1).

It is evident that for even n (n = 2N)

ηn
n

=
η2N
2N

=
1

2

(
1

N

N−1∑
i=0

(Z2i+1 − 1) +
1

N

N∑
i=0

(Z2i − 1)

)
,

and for odd n (n = 2N + 1)

ηn
n

=
η2N+1

2N + 1
=

N + 1

2N + 1

1

N + 1

N∑
i=0

(Z2i+1 − 1) +
N

2N + 1

1

N

N∑
i=1

(Z2i − 1).

According to the strong law of large numbers, we have

ηn
n

−−−→
n→∞

1

2
(EX − 1 + EY − 1) =

ES − 2

2
.

It follows that
P
(

sup
m⩾n

∣∣∣ηm
m

+ µ
∣∣∣ < µ

2

)
−−−→
n→∞

1. (4.2.6)

with µ := (2− ES)/2 > 0.
Let now ε ∈ (0, 1/2) be temporally fixed. Due to (4.2.6),

P
(

sup
m⩾n

∣∣∣ηm
m

+ µ
∣∣∣ < µ

2

)
⩾ 1− ε

if n ⩾ N = N(ε). Consequently, for n ⩾ N ,

P
( ∞∩

m=n

{ηm ⩽ 0}
)

⩾ P
( ∞∩

m=n

{∣∣∣ηm
m

+ µ
∣∣∣ < µ

2

})
⩾ 1− ε.
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For an arbitrary positive u we have that

P
(

sup
n⩾1

ηn < u

)
⩾ P

(
sup
n⩾1

ηn ⩽ u

2

)
= P

({
N−1∩
n=1

{
ηn ⩽ u

2

}}
∩

{ ∞∩
n=N

{
ηn ⩽ u

2

}})

⩾ P

({
N−1∩
n=1

{
ηn ⩽ u

2

}})
+ P

({ ∞∩
n=N

{
ηn ⩽ 0

}})
− 1

⩾ P

({
N−1∩
n=1

{
ηn ⩽ u

2

}})
− ε,

where the second inequality follows from the well known identity P(A∩B) =

P(A) + P(B)− P(A ∪B) which holds for arbitrary events A, B.
This estimate and equality (4.2.5) imply that

lim inf
u→∞

φ(u) ⩾ 1− ε.

The desired equality (4.1.1) now follows due to the arbitrariness of ε ∈
(0, 1/2) in the last estimate.

Therefore, by the equalities (4.1.1) and (4.2.4), we get that

2− EQ = y0φ(1) + φ(0). (4.2.7)

Suppose now that q0 = h0,0 ̸= 0. Then the equality (4.1.3) can be de-
rived by induction using the main recursive relation (4.2.1), with induction
basis obtained from (4.2.7).

In the next part of the proof we obtain equality (4.1.2). This equality
can be derived in a way similar to the fourth and fifth part of Theorem 2.3
proof in [19].

Namely, let ε be a temporarily fixed positive number. Equality φ(∞) =

limu→∞ φ(u) = 1 implies that |φ(n + 1) − φ(n)| ⩽ ε if n ⩾ N = N(ε).
Hence, according to the recursion formula (4.1.3), we get:

|(an+1 − an)φ(0) + (bn+1 − bn)(2− EQ)| ⩽ ε, n ⩾ N.
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Let us temporarily suppose that

|an+1 − an| ⩾ 2, n ∈ N. (4.2.8)

In such case, ∣∣∣∣φ(0)− bn+1 − bn
an − an+1

(2− EQ)

∣∣∣∣ ⩽ ε

2
, n ⩾ N.

The arbitrariness of ε > 0 implies the desired equality (4.1.2). It remains
to prove (4.2.8).

Observe that the desired inequality (4.2.8) follows immediately from the
estimates below: a2m ⩾ a2(m−1) ⩾ 1, m ∈ N,

a2m+1 ⩽ a2m−1 ⩽ −1/y0, m ∈ N.
(4.2.9)

Indeed, if n is odd then n+ 1 is even, and by (4.2.9) we get

|an+1 − an| = an+1 − an ⩾ 1 + 1/y0 ⩾ 2.

If n is even then n+ 1 is odd, and similarly we have that

|an+1 − an| = an − an+1 ⩾ 1 + 1/y0 ⩾ 2.

Thus, for the validity of (4.1.2) it suffices to prove inequalities (4.2.9). For
this, we use induction. By the definition of sequence {an}, we have

a2 =
1

q0
(a0 − q1a1 + h1,0a1) =

1

q0

(
1 +

h1,0 + h0,1
y0

− h1,0
y0

)
=

1

q0

(
1 +

h0,1
y0

)
⩾ 1

q0
⩾ 1 = a0.

Similarly,

a3 − a1 =
1

q0
(a1 − q1a2 − q2a1 + h2,0a1 − q0a1)

=
1

q0

(
− 1

y0
(1− q2 − q0)− q1a2 −

h2,0
y0

)
⩽ 0.

Hence, estimates (4.2.9) hold for m = 1. Suppose that inequalities (4.2.9)
hold for all m ∈ {1, 2, . . . , l− 1}. Let us prove that both estimates are valid
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if m = l. By the definition of sequence {an} we have

a2l − a2(l−1) =
1

q0

(
a2(l−1) −

2l−1∑
i=1

qia2l−i −
h2l−1,0

y0
− q0a2(l−1)

)

=
1

q0

(
a2(l−1) −

l−1∑
j=1

q2ja2l−2j −
l∑

j=1

q2j−1a2l−2j+1

−
h2l−1,0

y0
− q0a2(l−1)

)
.

The induction hypothesis implies that

l−1∑
i=1

q2ja2l−2j ⩽ a2(l−1)

l−1∑
j=1

q2j ⩽ (1− q0)a2(l−1),

l∑
i=1

q2j−1a2l−2j+1 ⩽ a1

l∑
j=1

q2j−1 ⩽ a1q2l−1 ⩽ a1h2l−1,0 = −
h2l−1,0

y0
.

Therefore,

a2l−a2(l−1) ⩾
1

q0

(
a2(l−1)−(1−q0)a2(l−1)+

h2l−1,0

y0
−
h2l−1,0

y0
−q0a2(l−1)

)
= 0.

(4.2.10)
Similarly, we have

a2l+1−a2l−1 =
1

q0

(
a2l−1−

l−1∑
j=1

q2ja2l−2j+1−
l∑

j=1

q2j−1a2l−2j+2−
h2l,0
y0

−q0a2l−1

)
.

Using the induction hypothesis and the derived estimate (4.2.10) we get

l−1∑
j=1

q2ja2l−2j+1 ⩾ a2l−1

l∑
j=1

q2j ⩾ a2l−1(1− q0),

l∑
j=1

q2j−1a2l−2j+2 ⩾ 0.

Therefore,

a2l+1 − a2l−1 ⩽
1

q0

(
a2l−1 − a2l−1(1− q0)−

h2l,0
y0

− q0a2l−1

)
⩽ 0. (4.2.11)

Estimates (4.2.10) and (4.2.11) imply that inequalities (4.2.9) hold for m =
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l. The induction principle implies relation (4.2.9) for all m ∈ N. The proof
of equality (4.1.2) is completed.

It remains to consider the case where q0 = h0,0 = 0. Since EQ < 2, it
follows that q1 ̸= 0. Two subcases can be considered separately: x0 ̸= 0 and
y0 = 0, or x0 = 0 and y0 ̸= 0.

In the subcase where x0 ̸= 0 and y0 = 0, we get the formula for φ(0)
from (4.2.7). The formula for φ(u), u ∈ N, follows from (4.2.1) because

0 = y0 =

∞∑
k=0

hk,0

in the considered case.
If x0 = 0 and y0 ̸= 0, then we get φ(0) = 0 from (4.2.1). Then the

formula for φ(1) follows from (4.2.7), and the formula for φ(u) in the case
u ∈ {2, 3, . . .} can be derived from (4.2.1).

Theorem 4.1.1 is proved.

Proof of the Theorem 4.1.2. Let us consider the cases EQ > 2 and
EQ = 2 separately.

If EQ > 2, then equality (4.2.4) implies that φ(∞) = 0, since y0φ(1) +
φ(0) ⩾ 0. Therefore, we obtain that φ(u) = 0, u ∈ N0.

In the case EQ = 2, we can easily see from (4.2.4) that

y0φ(1) + φ(0) = 0. (4.2.12)

Therefore, φ(0) = 0. To calculate φ(u), u ∈ N, the subcases q2 < 1 and
q2 = 1 can be considered separately.

If q2 < 1 and q0 ̸= 0, then equality (4.2.12) implies that φ(1) = 0.
Further, substituting φ(0) = φ(1) = 0 into equality (4.2.1), we get that
q0φ(u) = 0 for each u ∈ {2, 3, . . .}. Therefore, in the case (EQ = 2, q2 <

1, q0 ̸= 0) we have that φ(u) = 0 for each u ∈ N0.
If q2 < 1, q1 ̸= 0 and q0 = 0, then, substituting φ(0) = 0 into equality

(4.2.1), we get that q1φ(u) = 0 for each u ∈ {1, 2, . . .}. Therefore, in the
case (EQ = 2, q2 < 1, q1 ̸= 0, q0 = 0) we also have that φ(u) = 0 for each
u ∈ N0.

Now let us consider the subcase q2 = h0,2 + h1,1 + h2,0 = 1. There are
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the following possible cases:

• If h2,0 > 0, then from the main recursive formula (4.2.1) we get φ(1) =
0.

• If h2,0 = 0, then obviously W1(n) ⩾ 1, n ∈ N, and therefore, φ(1) = 1.

For u ∈ {2, 3, . . .}, it is easy to show that Wu(n) ⩾ 1 for n ∈ N, and
therefore, φ(u) = 1 for such u.

Theorem 4.1.2 is proved.

4.3 Numerical examples

In this section, five numerical examples for the calculation of ruin proba-
bility ψ(u), u ∈ N0, are given. The first case deals with simple finite-support
distribution, the second case deals with the bivariate Poisson distribution,
and the last three cases deal with a Clayton copula. The use of copulas is
beneficial since it gives the possibility of modeling marginal distributions
and dependence between them separately. Furthermore, while the bivari-
ate Poisson distribution allows to model only positive dependence between
marginals, a Clayton copula enables to model negative dependence as well.

The numerical simulation procedure goes as follows. First, we can cal-
culate sufficiently many terms of the sequences au and bu from Theorem
4.1.1. Next, we can approximate ψ(0) by

ψN (0) = 1− (2− EQ)
bN+1 − bN
aN − aN+1

with large enough N ∈ N. In all the examples below, we take N = 20.
Using the same arguments as in Remark 2.1 of [19], we can obtain both
lower and upper bounds for ψ(0) by calculating ψN (0) and ψN+1(0). Then,
the upper bound for the approximation error of ψ(0) can be calculated by

∆ = |ψN (0)− ψN+1(0)|.

Finally, we can obtain approximations of the ruin probabilities using
formula (4.1.3) from Theorem 4.1.1

1− ψ(u) = au(1− ψN (0)) + bu(2− EQ), u ∈ N.
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Example 4.3.1. Assume that the joint probability mass function of (X,Y )

is given by the following distribution:

0 1 2 3

0 2/3 1/45 1/45 1/45

1 1/45 1/45 1/45 1/45

2 1/45 1/45 1/45 1/45

3 1/45 1/45 1/45 1/45

The correlation between the components of random vector is 0.54. In
the table and graph below, the results of simulation are given. The ruin
probability is calculated for u ∈ {0, 1, . . . , 12}, and the upper bound for the
approximation error of ψ(0) is also given.

Table 4.1: Values of ψ(u) in Example 4.3.1

u cor = 0.54 (∆ < 10−5)

0 0.5101

1 0.3953

2 0.2853

3 0.1810

4 0.1145

5 0.0682

6 0.0433

7 0.0270

8 0.0168

9 0.0104

10 0.0065

11 0.0040

12 0.0025
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Figure 4.1: Values of ψ(u) in Example 4.3.1

Example 4.3.2. Assume that the joint probability mass function of (X,Y )

is given by the bivariate Poisson distribution:

P(X = k, Y = l) =

min{k,l}∑
i=0

(λ1 − λ)k−i(λ2 − λ)l−iλi

(k − i)!(l − i)!i!
e−(λ1+λ2−λ), k, l ∈ N0

where λj > 0, j = 1, 2, 0 ⩽ λ < min{λ1, λ2}. Then the marginal distribution
of X is Poisson with parameter λ1, the marginal distribution of Y is Poisson
with parameter λ2, and Cov(X,Y ) = λ. If λ = 0, then the two variables
are independent, and the results in this case are obtained in [19].

In this example, we take λ1 = 0.3 and λ2 = 1.4. We consider three
possible values for the covariance parameter λ = {0.01; 0.15; 0.29}, and the
corresponding correlations equal {0; 0.23; 0.46}.

In the table and graph below, the results of simulation are given. The
ruin probability is calculated for the three values of the covariance parameter
mentioned above, and the upper bounds for the approximation errors of ψ(0)
are also given.

From the results of simulation it could be observed, that for positively
dependent claims the ruin probability is decreasing more slowly. It is also
interesting to note that the value of ψ(0) is largest in the case of independent
claims.
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Table 4.2: Values of ψ(u) in Example 4.3.2

cor = 0 cor = 0.23 cor = 0.46

u (∆ < 10−11) (∆ < 10−10) (∆ < 10−9)

0 0.7977 0.7921 0.7868

1 0.6040 0.6264 0.6480

2 0.4469 0.4875 0.5222

3 0.3269 0.3754 0.4165

4 0.2383 0.2880 0.3310

5 0.1736 0.2208 0.2628

6 0.1265 0.1692 0.2085

7 0.0921 0.1297 0.1655

8 0.0671 0.0994 0.1313

9 0.0489 0.0762 0.1042

10 0.0356 0.0584 0.0827

11 0.0260 0.0447 0.0657

12 0.0189 0.0343 0.0521

Figure 4.2: Values of ψ(u) in Example 4.3.2

Example 4.3.3. This example deals with a Clayton copula and Poisson
marginals. Let us denote u1 := FX(x), u2 := FY (y). Clayton copula is
defined by

C(u1, u2; θ) = max{u−θ
1 + u−θ

2 − 1, 0}−1\θ, u1, u2 ∈ [0, 1]
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where the dependence parameter θ ∈ [−1,∞)\{0}. The marginals become
independent as θ → 0. Clayton copula can be used to model negative depen-
dence when θ ∈ [−1, 0). Detailed analysis of this copula can be found, for
instance, in [33], [49], [52] and [55].

In this example, the marginal distribution of X is Poisson with param-
eter 0.3, and the marginal distribution of Y is Poisson with parameter 1.4.
We take three values for the covariance parameter θ = {−0.9; 0.01; 100},
and the corresponding correlations equal {−0.53; 0; 0.8}.

From the results of simulation it could be observed, that as in Example
4.3.2 for positively dependent claims the ruin probability is decreasing more
slowly. It is also interesting to note that the value of ψ(0) is largest in the
case of negatively dependent claims.

Table 4.3: Values of ψ(u) in Example 4.3.3

cor = −0.53 cor = 0 cor = 0.8

u (∆ < 10−20) (∆ < 10−11) (∆ < 10−10)

0 0.8217 0.7977 0.7810

1 0.5064 0.6040 0.6717

2 0.3165 0.4469 0.5715

3 0.1977 0.3269 0.4669

4 0.1231 0.2383 0.3909

5 0.0766 0.1736 0.3221

6 0.0476 0.1265 0.2661

7 0.0296 0.0921 0.2195

8 0.0184 0.0671 0.1812

9 0.0115 0.0489 0.1496

10 0.0071 0.0356 0.1235

11 0.0044 0.0260 0.1019

12 0.0028 0.0189 0.0841

57



Chapter 4. Ruin probability for the bi-seasonal discrete time risk model
with dependent claims

Figure 4.3: Values of ψ(u) in Example 4.3.3

Example 4.3.4. This example is the opposite case of Example 4.3.3. The
marginal distribution of X is Poisson with parameter 1.4, and the marginal
distribution of Y is Poisson with parameter 0.3. To model the dependence
between the marginals, we use the Clayton copula with θ = {−0.9; 0.01; 100}
again, and the corresponding correlations equal {−0.53; 0; 0.8}.

From the simulation we can observe that the order of appearance of
claims has considerable effect on the ruin probability.
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Table 4.4: Values of ψ(u) in Example 4.3.4

cor = −0.53 cor = 0 cor = 0.8

u (∆ < 10−20) (∆ < 10−11) (∆ < 10−9)

0 0.9267 0.9023 0.8988

1 0.6940 0.7269 0.7316

2 0.4653 0.5473 0.5897

3 0.2961 0.4014 0.4859

4 0.1850 0.2926 0.4048

5 0.1151 0.2131 0.3347

6 0.0716 0.1552 0.2763

7 0.0445 0.1131 0.2280

8 0.0277 0.0824 0.1882

9 0.0172 0.0600 0.1553

10 0.0107 0.0437 0.1282

11 0.0067 0.0319 0.1059

12 0.0042 0.0232 0.0874

Figure 4.4: Values of ψ(u) in Example 4.3.4

Example 4.3.5. All the examples considered so far deal only with light-
tailed marginals, but Theorem 4.1.1 only imposes requirement for the ex-
pectations of the marginals while higher order moments can be infinite. In
this example, the distribution of the first claim X is Poisson with param-
eter λ = 0.2, and the second claim Y is distributed according to the Zeta
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distribution with parameter 2.3, that is

P(Y = m) =
1

ζ(2.3)

1

(m+ 1)2.3
,m ∈ N0,

where ζ denotes the Riemann zeta function. It should be noted that here Zeta
distribution is not defined in the usual way, i.e. with support m ∈ {1, 2, . . .}
and the corresponding probabilities.

The expectation of Y is 1.74497 and the variance is infinite. Therefore,
the correlation between the claims is undefined. As before, we use the
Clayton copula with θ = {−0.9; 0.01; 100} to model the dependence between
the marginals.

As can be intuitively expected, the presence of heavy-tailed marginal
makes a large impact on the values of the ruin probability.

Table 4.5: Values of ψ(u) in Example 4.3.5

u θ = −0.9 (∆ < 10−6) θ = 0.01 (∆ < 10−6) θ = 100 (∆ < 10−5)

0 0.9721 0.9715 0.9690

1 0.9611 0.9620 0.9656

2 0.9570 0.9579 0.9615

3 0.9543 0.9550 0.9584

4 0.9520 0.9527 0.9559

5 0.9500 0.9507 0.9538

6 0.9483 0.9489 0.9520

7 0.9467 0.9473 0.9503

8 0.9453 0.9458 0.9488

9 0.9439 0.9444 0.9474

10 0.9427 0.9432 0.9460

11 0.9416 0.9421 0.9448

12 0.9406 0.9410 0.9437
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Figure 4.5: Values of ψ(u) in Example 4.3.5

4.4 Conclusive remarks

In this chapter, the bi-seasonal discrete time risk model with depen-
dent claims is introduced. We derived a recursive algorithm for calculating
the values of ruin probability. Theoretical results are illustrated by some
numerical examples.

The results obtained in this chapter could be improved in the following
directions:

• Our results could be generalized to the models with more complex
structure of claims’ non-homogeneity. For instance, claims’ generat-
ing random vectors of form (X1, X2, . . . , Xp) with p > 2 could be
considered, thus getting p-seasonal model.

• Algorithm for the calculation of more complex risk measures, such
as Gerber-Shiu expected discounted penalty function [29], could be
derived for bi-seasonal discrete time risk model with dependent claims.

• Our considered model and algorithm could be fitted to real insurance
data examples.
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Chapter 5

Conclusions

In the last Chapter, a short summary of the results obtained is provided.

(i) Algorithm for calculating the values of the particular case of the
Gerber-Shiu discounted penalty function in bi-seasonal discrete time
risk model was derived.

(ii) Algorithm for computing the values of the ultimate ruin probability
in bi-seasonal discrete time risk model with dependent claims was cre-
ated.

(iii) The case when net profit condition is not satisfied in bi-seasonal dis-
crete time risk model with dependent claims was investigated.

(iv) The conditions for model components under which the algorithms can
be used were derived.

(v) The applicability and computational properties of the algorithms were
investigated with numerical examples.

(vi) Methods were created for measuring approximation errors of the algo-
rithms.
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Appendix A

Algorithm code of numerical
examples in Chapter 3

library(Rmpfr)

# set the values of parameters --------------------------------------------

delta = 0.1
N = 30
K = 2
umax = 20

# initialise vectors ----------------------------------------------------

q = numeric(N)
a = mpfrArray(0, precBits = 1024, dim = c(N,1))
b = mpfrArray(0, precBits = 1024, dim = c(N,1))
d = mpfrArray(0, precBits = 1024, dim = c(N,1))
psi = mpfrArray(0, precBits = 1024, dim = c((umax+1),1))
FX = numeric(N)
FY = numeric(N)

# choose the distributions of claims (4 different distributions are
considered as described in Numerical examples section)-------------------------

x = c(0.6, 0.2, 0.2)
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y = c(0.5, 0.2, 0.2, 0.1)

# x = c(0.4,0.6)
# y = c(0.1,0.6,0.3)

# y = c(0.4,0.6)
# x = c(0.1,0.6,0.3)

# lambda = 0.8
# prob = 0.7
# x = dpois(c(0:N),lambda)
# y = dgeom(c(0:N),prob)

# compute quantities related with claims' distributions ---------------------

Xmax <- length(x)-1
Ymax <- length(y)-1

X = 0:Xmax
Y = 0:Ymax

EX = sum(X * x)
EY = sum(Y * y)

x[(Xmax+2):N] = 0
y[(Ymax+2):N] = 0

for (i in 0:(Xmax+Ymax)) {
for (k in 1:(i+1))
q[i+1] = q[i+1] + x[k] * y[(i+2) - k]

}

FX[1] = x[1]
for (u in 1:(N-1)) {

FX[u+1] = FX[u] + x[u+1]
}
F_X = 1 - FX

FY[1] = y[1]
for (u in 1:(N-1)) {

FY[u+1] = FY[u] + y[u+1]
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}
F_Y = 1 - FY

# calculate the coefficients of algorithm ---------------------------------

a[1] = mpfr(1,1024)
a[2] = mpfr(-1,1024) / mpfr(y[1],1024)
for (n in 2:(N-1)) {
a[n + 1] = mpfr(1,1024) / mpfr(q[1],1024) * (mpfr(exp(2 * delta),1024)
* mpfr(a[(n + 1) - 2],1024) + mpfr(x[n],1024) * mpfr(y[1],1024) * mpfr(a[2],1024))
for (i in 2:n)
a[n + 1] = mpfr(a[n + 1],1024) - (mpfr(1,1024) / mpfr(q[1],1024))
* (mpfr(q[i],1024) * mpfr(a[n - i + 2],1024))

}

b[1] = 0
b[2] = -(exp(2 * delta) - 1) / mpfr(y[1],1024)
for (n in 2:(N-1)) {
b[n + 1] = 1 / mpfr(q[1],1024) * (exp(2 * delta)
* mpfr(b[(n + 1) - 2],1024) + mpfr(x[n],1024) * mpfr(y[1],1024) * mpfr(b[2],1024))
for (i in 2:n)

b[n + 1] = mpfr(b[n + 1],1024) - (1 / mpfr(q[1],1024))
* (mpfr(q[i],1024) * mpfr(b[n - i + 2],1024))

}

d[1] = 0
d[2] = (exp(delta) * mpfr(EX,1024) + mpfr(y[1],1024) + mpfr(EY,1024) - 1)
/ mpfr(y[1],1024)
for (n in 2:(N-1)) {
d[n + 1] = 1 / mpfr(q[1],1024) * (exp(2 * delta) * mpfr(d[(n + 1) - 2],1024)
+ mpfr(x[n],1024) * mpfr(y[1],1024) * mpfr(d[2],1024)
- exp(delta) * mpfr(F_X[n - 1],1024))
for (i in 2:n)
d[n + 1] = mpfr(d[n + 1],1024) - (1 / mpfr(q[1],1024)) * (mpfr(q[i],1024)
* mpfr(d[n - i + 2],1024) + mpfr(x[i - 1],1024) * mpfr(F_Y[n - i + 2],1024))

}

# solve the system of linear equations ------------------------------------

eqA = array(c(mpfr(a[N-K],1024), mpfr(a[N],1024), mpfr(b[N-K],1024), mpfr(b[N],1024)),
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dim = c(2, 2))
eqb = array(c(mpfr(-d[N-K],1024), mpfr(-d[N],1024)))
detA = mpfr(eqA[1,1],1024) * mpfr(eqA[2,2],1024)
- mpfr(eqA[1,2],1024) * mpfr(eqA[2,1],1024)
eqA_inv = 1/detA * array(c(mpfr(eqA[2,2],1024), mpfr(-eqA[2,1],1024),
mpfr(-eqA[1,2],1024), mpfr(eqA[1,1],1024)), dim = c(2, 2))
eqx = mpfr(eqA_inv,1024) %*% mpfr(eqb,1024)
id_mat = mpfr(eqA_inv,1024) %*% mpfr(eqA,1024)

psi[1] = eqx[1]
S = eqx[2]

# check the accuracy of solutions -----------------------------------------

acc_psi0 = mpfr(exp(-delta),1024) * (abs(mpfr(b[N-K],1024)) + abs(mpfr(b[N],1024)))
/ abs(mpfr(detA,1024))
acc_S = exp(-delta) * (abs(a[N-K]) + abs(a[N])) / abs(detA)

# calculate the values of Gerber-Shiu function --------------------------------

psi[2] = a[2] * psi[1] + b[2] * S + d[2]
psi[3:(umax+1)] = a[3:(umax+1)] * psi[1] + b[3:(umax+1)] * S + d[3:(umax+1)]
psi2 = asNumeric(psi)
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Appendix B

Algorithm code of numerical
examples in Chapter 4

library(Rmpfr)
library(extraDistr)
library(VGAM)
library(pracma)

# set the values of algorithm parameters --------------------------------------------

N = 20
umax = 12

# initialise vectors ----------------------------------------------------

q = numeric(N+1)
a = mpfrArray(0, precBits = 1024, dim = c(N,1))
b = mpfrArray(0, precBits = 1024, dim = c(N,1))
d = mpfrArray(0, precBits = 1024, dim = c(N,1))
psi = mpfrArray(0, precBits = 1024, dim = c((umax+1),1))
phi = mpfrArray(0, precBits = 1024, dim = c((umax+1),1))
h = matrix(NA, (N+1), (N+1))
C = matrix(NA, (N+1), (N+1))

# choose the distributions of claims (only Example 3 code is provided) -----------------------------------------------

t1 = 1.4
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t2 = 0.3

x = dpois(c(0:N), t1)
y = dpois(c(0:N), t2)

# calculate values of Clayton copula --------------------------------------

u1 = ppois(c(0:N), t1)
u2 = ppois(c(0:N), t2)

t0 = 100

for (i in 1:(N+1))
for (j in 1:(N+1))

C[i,j] = max(u1[i]^(-t0) + u2[j]^(-t0) - 1, 0) ^ (-1/t0)

# derive matrix of (X,Y) local probabilities -------------------------------------

h[1,1] = C[1,1]

for (i in 2:(N+1))
h[i,1] = C[i,1] - C[(i-1),1]

for (j in 2:(N+1))
h[1,j] = C[1,j] - C[1,(j-1)]

for (i in 2:(N+1))
for (j in 2:(N+1))
h[i,j] = C[i,j] - C[(i-1),j] - C[i,(j-1)] + C[(i-1),(j-1)]

# compute quantities related with claims' distributions ---------------------

Xmax <- length(x)-1
Ymax <- length(y)-1
Qmax <- length(q)-1

X = 0:Xmax
Y = 0:Ymax
Q = 0:Qmax
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Appendix B. Algorithm code of numerical examples in Chapter 4

EX = t1
EY = t2

EXY = 0
for (i in 1:(N+1))

for (j in 1:(N+1))
EXY = EXY + (i-1) * (j-1) * h[i,j]

DX = t1
DY = t2

sdX = sqrt(DX)
sdY = sqrt(DY)

cov = EXY - EX * EY
cor = cov / (sqrt(DX) * sqrt(DY))

x[(Xmax+2):N] = 0
y[(Ymax+2):N] = 0

for (i in 0:N) {
for (k in 1:(i+1))
q[i+1] = q[i+1] + h[k, ((i+2) - k)]

}

EQ = sum(Q * q)

# calculate the coefficients of algorithm ---------------------------------

a[1] = mpfr(1,1024)
a[2] = mpfr(-1,1024) / mpfr(y[1],1024)
for (n in 2:(N-1)) {
a[n + 1] = mpfr(1,1024) / mpfr(q[1],1024) * (mpfr(a[(n + 1) - 2],1024) +
mpfr(h[n,1],1024) * mpfr(a[2],1024))
for (i in 2:n)
a[n + 1] = mpfr(a[n + 1],1024) -
(mpfr(1,1024) / mpfr(q[1],1024)) * (mpfr(q[i],1024) * mpfr(a[n - i + 2],1024))

}
aa = as.numeric(a)
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b[1] = 0
b[2] = mpfr(1,1024) / mpfr(y[1],1024)
for (n in 2:(N-1)) {
b[n + 1] = mpfr(1,1024) / mpfr(q[1],1024) * (mpfr(b[(n + 1) - 2],1024) +
mpfr(h[n,1],1024) * mpfr(b[2],1024))
for (i in 2:n)

b[n + 1] = mpfr(b[n + 1],1024) -
(mpfr(1,1024) / mpfr(q[1],1024)) * (mpfr(q[i],1024) * mpfr(b[n - i + 2],1024))

}
bb = as.numeric(b)

for (i in 1:(N-1)) {
d[i] = 1 - (2-EQ) * (b[i+1] - b[i]) / (a[i] - a[i+1])

}
dd = as.numeric(d)

# calculate the upper estimate of \psi(0) approximation error -------------------------------------------

print(format(abs(dd[N-1] - dd[N-2]), scientific = TRUE, digits = 16))

# calculate the values of ruin probability --------------------------------

psi[1] = d[N-1]
phi[1] = 1 - psi[1]
phi[2:(umax+1)] = a[2:(umax+1)] * phi[1] + b[2:(umax+1)] * (2-EQ)
psi[2:(umax+1)] = 1 - phi[2:(umax+1)]
psi2 = asNumeric(psi)
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Abstract

The topic of the thesis is the calculation of risk measures in inhomo-
geneous discrete time risk models with independent and dependent claims.
Firstly, the algorithm for calculating the values of the particular case of
the Gerber-Shiu discounted penalty function in bi-seasonal discrete time
risk model was derived. Also, the algorithm for computing the values of
the ultimate ruin probability in bi-seasonal discrete time risk model with
dependent claims was created. In this model, the case when net profit con-
dition is not satisfied was investigated as well. In the practical part of the
thesis, the applicability and computational properties of the algorithms were
investigated with numerical examples. Furthermore, methods were created
for measuring approximation errors of the algorithms.

The results of the thesis naturally extend the results obtained by Dama-
rackas and Šiaulys (2014). In their paper the calculation of ruin probability
in the bi-seasonal discrete time risk model was considered. In the thesis con-
sidered both more general risk measure (Gerber-Shiu function) and more
general model. Bi-seasonal model with dependent claims is introduced for
the first time in the thesis. Furthermore, with dependent and differently
distributed claims, recursive calculation of ruin probability in any kind of
discrete time risk model was not considered in the literature before. Besides
that, was derived the new algorithm for calculating Gerber-Shiu function
values which is both more computationally feasible and less prone to nu-
merical errors than the existing solutions found in the literature.

The main results of the thesis were proved using the classical methods of
probability theory and mathematical analysis, with an emphasis on discrete
differentiation.
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