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Notation

f(x) ∼
x→∞

g(x) means lim
x→∞

f(x)/g(x) = 1.

f(x) .
x→∞

g(x) means lim sup
x→∞

f(x)/g(x) 6 1.

f(x) = o (g(x)) means lim
x→∞

f(x)/g(x) = 0.

f(x) = O(g(x)) means lim sup
x→∞

f(x)/g(x) <∞.

f(x) ≍ g(x) means 0 < lim inf
x→∞

f(x)
g(x)

6 lim sup
x→∞

f(x)
g(x)

<∞.

r.v. random variable.

d.f. distribution function.

F−1(y) := inf{x ∈ R : F (x) > y}. The quantile function of a

d.f. F .

F ∗G(x) the convolution of d.f.s F and G.

1IA the indicator function of an event A.

X+ :=X1I{X>0}. The positive part of a r.v. X.

X− := −X1I{X<0}. The negative part of a r.v. X.

F (x) := 1− F (x). The survival function of a d.f. F .

N the set of positive integers {1, 2, . . . }.

R the set of real numbers (−∞,∞).

P(A) the probability of an event A.

E(X) the mean of a r.v. X.

vii





Chapter 1
Introduction

1.1 Research topic and actuality

Let {X1, X2, . . . , Xn} be a collection of real-valued and heavy-tailed random

variables (r.v.s), called primary random variables, and let {θ1, θ2, . . . , θn} be

n nonnegative and nondegenerated at zero random variables, called random

weights. Throughout the thesis, it is supposed that the r.v.s {X1, X2, . . . , Xn}

and {θ1, θ2, . . . , θn} are defined on a probability space (Ω,F ,P). The randomly

weighted sum

SθX
n =

n∑
i=1

θiXi (1.1.1)

is the main object of our consideration.

Such randomly weighted sums are often encountered in actuarial and financial

context. For instance, in the discrete-time risk model, the real-valued r.v. Xk,

k ∈ {1, 2, . . . , n}, can be interpreted as a net loss of an insurance company during

the k-th time period, and the random weight θk, k ∈ {1, 2, . . . , n}, can be regarded

as a stochastic discount factor for the first k time periods. In this situation, the

sum SθX
n is the present value of the total net loss of the insurance company during

the first n time periods.

Another interpretation of the sum (1.1.1) relates to the portfolio construction.

Suppose that an investment portfolio consists of n dependent sources of risk (fi-

nancial assets, risk factors, business lines, etc.) with losses Xk and weights θk,

k ∈ {1, 2, . . . , n}, over some time period. If the portfolio is actively managed, then

the weights and their dependence structure are unknown for future time periods.
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In this case, the randomly weighted sum (1.1.1) can be used to model the total

amount of future losses potentially incurred by the investment portfolio.

The sum (1.1.1) has been an attractive research topic in the recent works of

applied probability. The majority of such works examine the asymptotic behaviour

of the tail probability P(SθX
n > x). Tang and Tsitsiashvili [56] proved that, if

the primary r.v.s {X1, X2, . . . , Xn} are independent and identically distributed

according to a subexponential distribution (see Definition 1.2 in Section 1.2) and

the random weights {θ1, θ2, . . . , θn} (independent of {X1, X2, . . . , Xn}) take values

in the interval [a, b], 0 < a < b <∞, then

P
(
max
16k6n

SθX
k > x

)
∼

x→∞
P(SθX

n > x) ∼
x→∞

P
(
max
16k6n

θkXk > x
)

∼
x→∞

n∑
k=1

P(θkXk > x).

(1.1.2)

After studying the asymptotic behaviour (1.1.2) it is natural to consider the

asymptotic behaviour of the conditional tail expectation E(SθX
n |SθX

n > x) and the

related quantities ESθX
n 1I{SθX

n >x}, EθlXl1I{SθX
n >x}, l ∈ {1, 2, . . . , n}, as x→ ∞. To

our knowledge, the paper [58] of Tang and Yuan is the first work in this direction.

Below we present one result of this work (see Theorem 4).

Theorem 1.1. Let {X1, X2, . . . , Xn} be real-valued independent r.v.s with d.f.s

{F1, F2, . . . , Fn} respectively and {θ1, θ2, . . . , θn} be nonnegative nondegenerated at

zero r.v.s independent of {X1, X2, . . . , Xn} and mutually arbitrarily dependent. If,

in addition, Fk ∈ L ∩ D, E θβk

k <∞, βk >MFk
and P(θkXk > x) = O

(
P(θ1X1 >

x)
)

for all k ∈ {1, 2, . . . , n}, then

E θ1X11I{SθX
n >x} ∼

x→∞
E θ1X11I{θ1X1>x} , (1.1.3)

where L is the class of long-tailed distributions (see Definition 1.3), D is the class

of dominatedly varying distributions (see Definition 1.4), and MF is the upper

Matuszewska index (see Section 1.2 for definition).

Under the additional condition P(θkXk > x) ≍ P(θ1X1 > x), k ∈ {1, 2, . . . , n},

Theorem 1.1 implies that

ESθX
n 1I{SθX

n >x} ∼
x→∞

n∑
i=1

EθiXi1I{θiXi>x}. (1.1.4)

In the case where d.f.s {F1, F2, . . . , Fn} have regularly varying tails (see Defi-

nition 1.5 in Section 1.2), Tang and Yuan [58] obtained an asymptotic formula for
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the Conditional Tail Expectation (CTE) of confidence level q (also called Condi-

tional Value at Risk (CVaR) or Expected Shortfall (ES))

CTEq(S
θX
n ) = E

(
SθX
n |SθX

n > VaR q(S
θX
n )
)
,

where VaRq(Z) = F−1
Z (q). Below we formulate the obtained result (see Corollary

1 in [58]).

Theorem 1.2. Let r.v.s {X1, X2, . . . , Xn} and {θ1, θ2, . . . , θn} satisfy the require-

ments of Theorem 1.1. Assume that, for each k ∈ {1, 2, . . . , n}, F k(x) ∼
x→∞

ckF (x)

for some constant ck > 0. If F ∈ R−α with α > 1 and Eθβk < ∞ for some β > α

and all k ∈ {1, 2, . . . , n}, then

E
(
θlXl|SθX

n > VaR q(S
θX
n )
)
∼
q↑1

α

α− 1

clE θαl(
n∑

k=1

ckE θαk

)1−1/α
VaR q(Z) (1.1.5)

for each fixed l ∈ {1, 2, . . . , n}, and

CTE q

(
SθX
n

)
∼
q↑1

α

α− 1

( n∑
k=1

ckE θαk
)1/α

VaR q(Z). (1.1.6)

Here, in both asymptotic relations, Z is a nonnegative r.v. distributed according

to the d.f. F .

The asymptotic results for both tail probability and tail expectation to some

extent were generalized in the case of nonnegative primary r.v.s or for real-valued

r.v.s with various types of tail independence, such as those described in Definitions

1.6-1.8 in Section 1.2 (see Albrecher et al. [2], Alink et al. [3], Andrulytė et al.

[4], Asimit et al. [5], Cai and Li [12], Chen et al. [13], Chen et al. [14], Chen and

Yuen [15], Cheng [16], Danilenko et al. [21], Dindienė and Leipus [23, 24], Gao

and Wang [27], Geluk and Tang [28], Hashorva and Li [30], Hazra and Maulik

[31], Huang et al. [33], Joe and Li [35], Jordanova and Stehlik [36], Li [41], Liu

and Wang [43], Liu et al. [44], Nyrhinen [48, 49], Olvera-Cravioto [50], Tang and

Tsitsiashvili [55], Tang and Yuan [57, 58], Wang et al. [60], Yang et al. [61], Yang

and Konstantinides [62], Yang et al. [63, 66], Yang and Wang [67], Yang and Yuen

[69], Yang et al. [70], Yi et al. [71], Zhang et al. [72] among others). For real-

valued r.v.s with tail dependence (with positive limits in Definitions 1.6-1.8) only
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the asymptotic tail probability, to our knowledge, was investigated by Kortschak

and Albrecher [39].

From asymptotic formulas like (1.1.5) and (1.1.6) we can obtain asymptotic

decomposition of CTE. Recall that if SZ
n :=

∑n
i=1 Zi, then the capital allocated

to line l ∈ {1, . . . , n} according to the Euler principle (see, for instance, [22] or

Section 6.3.2 of [46]) is

ACql

(
SZ
n

)
:= E

(
Zl|SZ

n > VaRq

(
SZ
n

))
,

and the contribution of individual risk l ∈ {1, . . . , n} to the total CTE is

CIRql

(
SZ
n

)
:=

ACql

(
SZ
n

)
CTEq(SZ

n )
.

The limiting behaviour of these measures when q ↑ 1 can give valuable insight

into asymptotic properties of aggregate risk. If the convergence is fast enough,

the asymptotic measures could also be used as approximations for high confidence

levels and serve as an alternative to a simulations based approach.

The various properties, relations and generalizations of the presented quanti-

ties can be found in [1], [6], [10], [22], [38], [45], [46], and references therein. For

the asymptotic relationships between VaR and CTE in the case of heavy-tailed

distributions, see Fougère and Mercadier [26], Joe and Lei [34], and Li and Zhu

[42], among others.

1.2 Preliminaries

Heavy-tailed distribution classes

Definition 1.1. A d.f. F on R is said to be heavy-tailed, written as F ∈ K, if

for every ε > 0,
∫∞
0
eεxdF (x) = ∞ .

Definition 1.2. We recall that a d.f. F on R is said to be subexponential and

written F ∈ S if its positive part F+(x) = F (x)1I[0,∞)(x) satisfies the following

relation: lim
x→∞

(F+ ∗ F+(x))/F+(x) = 2.

Definition 1.3. A d.f. F on R is said to be long-tailed, written as F ∈ L, if

lim
x→∞

F (x+ y)/F (x) = 1 for each fixed y ∈ R.
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Definition 1.4. A d.f. F on R is said to be dominatedly varying tailed, written

as F ∈ D, if for arbitrary fixed 0 < y < 1, lim sup
x→∞

F (xy)/F (x) <∞.

Each d.f. from D can be characterized by the upper Matuszewska index

MF = inf
y>1

{
− 1

log y
log lim inf

x→∞

F (xy)

F (x)

}
= − lim

y→∞

1

log y
log

(
lim inf
x→∞

F (xy)

F (x)

)
,

which is well defined for an arbitrary d.f. F with an ultimate right tail
(
F (x) >

0, x ∈ R
)
. It is well known that F ∈ D if and only if 0 6 MF < ∞ (see, for

instance, Bingham et al. [9] or Cline and Samorodnitsky [18]). Another useful

index, which is called L-index, was introduced by Yang and Wang [67]. This index

LF describes the behaviour of a d.f. F with an infinite tail and is defined by the

equality

LF = lim
y↓1

lim inf
x→∞

F (xy)

F (x)
. (1.2.1)

By the concepts presented above it follows that F ∈ D if and only if LF > 0, and

we have

lim
y↑1

lim sup
x→∞

F (xy)

F (x)
=

1

LF

.

Example 1.1. Let a r.v. X with a distribution function F be distributed according

to the generalized Peter-and-Paul distribution with parameter a, i.e.

F (x) = (5a − 1)
∑
2ak>x

1

5ak
= (5a)−⌊log x/ log 2a⌋, x > 1.

It can be checked that F belongs to the class D with L-index LF = 1
5a

.

Definition 1.5. A d.f. F on R is said to be regularly varying tailed with index −α

for some α > 0, written as F ∈ R−α, if for each y > 0, lim
x→∞

F (xy)/F (x) = y−α.

Let R be the union of R−α over the range 0 6 α <∞. Then it is well known

that R ⊂ L∩D ⊂ S ⊂ L ⊂ K. See, for instance, Embrechts et al. [25]. Moreover,

if F ∈ R−α, then we have

MF = inf
y>1

{
− log y−α

log y

}
= α

and

LF = lim
y↓1

1

yα
= 1.
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Example 1.2. Let a r.v. X with a distribution function F be distributed according

to the Lomax distribution with shape parameter α > 1 and scale parameter λ > 0,

i.e.

F (x) = 1−
(
1 +

x

λ

)−α

, x ≥ 0.

It is also called the Pareto Type II distribution and is widely used to model

insurance claims. Since

lim
x→∞

F (xy)

F (x)
=

1

yα

for any fixed 0 < y < 1, we conclude that F ∈ R−α.

Example 1.3. One of the most common distributions used for modelling financial

returns is t-location-scale distribution t(µ, σ, ν) with a density function

f(x) =
1

σ

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (ν + (x−µ
σ

)2
ν

)− ν+1
2

, x ∈ R,

where µ ∈ R is the location parameter, σ > 0 is the scale parameter, and ν > 0

is the tail parameter (lower values imply heavier tails). If F is the d.f. of a

t-location-scale distribution t(µ, σ, ν), then F ∈ R−ν . Indeed, using L’Hôpital’s

rule, for any fixed y > 0, we have

lim
x→∞

F (xy)

F (x)
= lim

x→∞

yf(xy)

f(x)
= lim

x→∞
y

(
ν +

(
xy−µ
σ

)2
ν +

(
x−µ
σ

)2
)− ν+1

2

= y−ν .

The following lemma presents a useful property of regularly varying distribu-

tions (see [52, Proposition 0.8 (vi)] or [5, Lemma 2.1]).

Lemma 1.1. Let ξ and η be two r.v.s such that the d.f.s Fξ and Fη belong to the

class R−α for some positive α. Then, for some c > 0, F η(x) ∼
x→∞

cF ξ(x) if and

only if VaRq(η) ∼
q↑1
c1/αVaRq(ξ).

Tail dependence structures

Definition 1.6. Two random variables ξ1 and ξ2 with d.f.s Fξ1 and Fξ2 are said

to be asymptotically independent (AI) if

lim
q↑1

P
(
Fξ1(ξ1) > q |Fξ2(ξ2) > q

)
= lim

q↑1
P
(
Fξ1(ξ1) < 1− q |Fξ2(ξ2) > q

)
= lim

q↑1
P
(
Fξ2(ξ2) > q |Fξ1(ξ1) > q

)
= lim

q↑1
P
(
Fξ2(ξ2) < 1− q |Fξ1(ξ1) > q

)
= 0.
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The following dependence structure was introduced by Chen and Yuen [15].

Definition 1.7. Two random variables ξ1 and ξ2 with d.f.s Fξ1 and Fξ2 are said

to be quasi-asymptotically independent (QAI) if

lim
x→∞

P
(
ξ+1 > x, ξ+2 > x

)
F ξ1(x) + F ξ2(x)

= lim
x→∞

P
(
ξ+1 > x, ξ−2 > x

)
F ξ1(x) + F ξ2(x)

= lim
x→∞

P
(
ξ−1 > x, ξ+2 > x

)
F ξ1(x) + F ξ2(x)

= 0.

Geluk and Tang [28] introduced the following slightly stronger dependence

structure.

Definition 1.8. Two random variables ξ1 and ξ2 with d.f.s Fξ1 and Fξ2 are said

to be strongly quasi-asymptotically independent (SQAI) if

lim
min{x,y}→∞

P
(
ξ+1 > x | ξ2 > y

)
= lim

min{x,y}→∞
P
(
ξ−1 > x | ξ2 > y

)
= lim

min{x,y}→∞
P
(
ξ+2 > x | ξ1 > y

)
= lim

min{x,y}→∞
P
(
ξ−2 > x | ξ1 > y

)
= 0.

Various properties of QAI and SQAI r.v.s as well as related dependence struc-

tures are discussed, for instance, in [28, 41, 44, 60] and references therein.

Copula concept
Due to Sklar’s theorem (see for instance Theorem 2.3.3. in [47]) every multivariate

distribution can be expressed in terms of its marginal distribution functions and

a copula function C, characterizing the dependence structure, i.e. for a random

vector {X1, . . . , Xn} with distribution functions {F1, . . . , Fn}

P(X1 6 x1, . . . , Xn 6 xn) = C(F1(x1), . . . , Fn(xn)),

where copula C is unique if marginal distributions are continuous. The survival

copula of copula C is denoted by Ĉ(u1, . . . , un) and satisfies the following equality

P(X1 > x1, . . . , Xn > xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)).

More details regarding the copula concept can be found in Nelsen [47].
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Bivariate Sarmanov distribution

Definition 1.9. Let ξ be a real-valued r.v. with d.f. Fξ, and let η be a nonnegative

r.v. with d.f. Fη. We say that a random vector (ξ, η) follows a bivariate Sarmanov

distribution if

P ((ξ, η) ∈ B) =

∫∫
B

(1 + rφ(x)ψ(y)) dFξ(x) dFη(y) (1.2.2)

for each Borel set B ⊂ R × [0,∞). Here r is a real constant, and φ : R → R,

ψ : [0,∞) → R are two measurable functions satisfying the following conditions:

• Eφ(ξ) = Eψ(η) = 0;

• 1 + rφ(x)ψ(y) > 0 for all

x ∈ Dξ = {x ∈ R : P(ξ ∈ (x− δ, x+ δ)) > 0 for all δ > 0} ,

y ∈ Dη = {y ∈ [0,∞) : P(η ∈ (y − δ, y + δ)) > 0 for all δ > 0} .

We remark that in cases: r = 0; φ(x) = 0, x ∈ Dξ; ψ(y) = 0, y ∈ Dη, r.v.s. ξ

and η are independent. Thus, we say that a random vector (ξ, η) follows a proper

Sarmanov distribution, if r ̸= 0 and the kernel functions are not identical to zeroes

on Dξ and Dη respectively. If (ξ, η) follows a bivariate Sarmanov distribution with

the coefficient r and the kernel functions φ, ψ, then we write (ξ, η) ∈ S(r, φ, ψ).

In addition, we write (ξ, η) ∈ S∗(r, φ, ψ) if (ξ, η) follows a bivariate Sarmanov

distribution with the supplementary condition

lim inf
x→∞
x∈Dξ

inf
y∈Dη

(1 + rφ(x)ψ(y)) > 0. (1.2.3)

In the above form, the Sarmanov bivariate distribution was introduced by

Sarmanov [53]. We can obtain various copulas from formula (1.2.2) by choosing

suitable kernel functions φ and ψ. For example, if we choose φ(x) = 1−2Fξ(x) and

ψ(y) = 1− 2Fη(y), then from (1.2.2) we get vector (ξ, η) distributed according to

the well known Farlie–Gumbel–Morgenstern copula. The properties and possible

generalisations of the original bivariate Sarmanov distribution can be found in Lee

[40], Bairamov et al. [7] and Vernic [59]. The use of bivariate and multivariate

Sarmanov distribution in various applied studies are described in [8], [19], [20],

[32], [51], [54], for instance.
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Vague convergence criterion

Definition 1.10. If {µn, n > 1} is a sequence of measures on a locally compact

Hausdorff space B with countable base, then µn converges vaguely to some measure

µ, written as µn
v−→ µ, if for all continuous functions f with compact support we

have

lim
n→∞

∫
B
fdµn =

∫
B
fdµ.

The following statement is called the vague convergence criterion (VCC ). See,

for instance, Proposition 3.12 of Resnick [52] or Proposition A2.12 of Embrechts

et al. [25].

Lemma 1.2. µn
v−→ µ if and only if lim

n→∞
µn(A) = µ(A) for any relatively compact

set A ∈ F such that µ(∂A) = 0, where ∂A is the boundary of set A.

A thorough background on vague convergence is given by Kallenberg [37] and

Resnick [52].

1.3 Aims and problems

In order to obtain asymptotic formulas for capital allocation, the asymptotic prop-

erties of both tail probability and tail expectation need to be investigated. There

are plenty of results for both in the case of nonnegative risks or for real-valued

risks with some type of tail independence between primary r.v.s. Therefore the

aim of the thesis is to further generalize the results for real-valued r.v.s assuming

different distribution classes and dependence structures.

1.4 Methods

Methods of general probability theory, integral calculus and measure convergence

are used in the thesis. Numerical computations and simulation studies were per-

formed using software environment MATLAB.
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1.5 Novelty

All results presented in section 1.6 are new.

1.6 Main results

In the following two theorems we analyse the case where primary r.v.s

{X1, X2, . . . , Xn} and random weights {θ1, θ2, . . . , θn} follow some dependence

structure. We leave the random vectors {(X1, θ1), (X2, θ2) . . . , (Xn, θn)} indepen-

dent, but we introduce the following dependence structure between Xk and θk

(k = 1, 2, . . . , n).

Assumption 1.1. For each k = 1, 2, . . . , n, there exists a measurable function

hk : [0,∞) 7→ (0,∞) such that P(Xk > x | θk = t) ∼
x→∞

F k(x)hk(t) uniformly for

all t > 0 as x→ ∞, i.e.,

lim
x→∞

sup
t≥0

∣∣∣∣P(Xk > x | θk = t)

F k(x)hk(t)
− 1

∣∣∣∣ = 0.

When t is not a possible value of some θk, the conditional probability P(Xk >

x | θk = t) is understood as unconditional, and therefore hk(t) = 1 for such t.

In addition, we note that the relation above implies E (hk(θk)) = 1 for each

k = 1, 2, . . . , n if d.f. Fk has an ultimate right tail, i.e., F k(x) > 0 for all x ∈ R.

Theorem 1.3. Let {X1, X2, . . . , Xn} be real-valued r.v.s having d.f.s

{F1, F2, . . . , Fn}, respectively, with ultimate right tails, and let the weights

{θ1, θ2, . . . , θn} be nonnegative nondegenerated at zero r.v.s. Also assume that the

vectors {(X1, θ1), (X2, θ2), . . . , (Xn, θn)} are mutually independent and satisfy As-

sumption 1.1. In addition, for any k ∈ {1, 2, . . . , n}, we suppose that Fk ∈ L ∩D

and max
{
Eθpkk hk(θk), Eθ

pk
k

}
<∞ for some pk >MFk

. Then, we have

E θlXl1I{S θX
n >x} ∼

x→∞
E θlXl1I{θlXl>x}

for each l ∈ {1, 2, . . . , n} under the assumption that F k(x) = O
(
F l(x)

)
for k ∈

{1, 2, . . . , n}. Consequently, relation (1.1.4) holds if the requirement F k(x) ≍

F 1(x) is satisfied for each k ∈ {1, 2, . . . , n}.
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For the next result, we restrict the dependence structure between r.v.s Xk

and θk, k ∈ {1, 2, ..., n}, to a bivariate Sarmanov distribution (see Definition 1.9).

For such dependence structure, we obtain an asymptotic formula for CTEq

(
SθX
n

)
similar to (1.1.6).

Theorem 1.4. Let {X1, X2, . . . , Xn} be real-valued r.v.s having d.f.s

{F1, F2, . . . , Fn}, respectively, with ultimate right tails, and let the weights

{θ1, θ2, . . . , θn} be nonnegative nondegenerated at zero r.v.s. Also assume that

the vectors {(X1, θ1), (X2, θ2), . . . , (Xn, θn)} are mutually independent and for

each k ∈ {1, 2, ..., n}, the random vector (Xk, θk) follows a bivariate Sarmanov

distribution S∗(rk, φk, ψk). In addition, we suppose that:

• there exists a d.f. F ∈ R−α, α > 1, and positive constants c1, ..., cn such

that F k(x) ∼
x→∞

ckF (x) for k = 1, 2, ..., n;

• max
16k6n

E θpk <∞ for some p > α;

• for every k ∈ {1, 2, ..., n}, the function ψk is uniformly continuous, and there

exists dk <∞ such that lim
x→∞

φk(x) = dk.

Then, for each fixed l ∈ {1, 2, ..., n}, we have

E
(
θlXl|SθX

n > VaRq(S
θX
n )
)
∼
q↑1

α

α− 1

clτl

(
∑n

k=1 ckτk)
1− 1

α

VaRq(Z) ,

where VaRq(Z) = F−1(q) for q ∈ (0, 1), and τk = Eθαk + rkdk Eψk(θk) θ
α
k for all

k ∈ {1, 2, . . . , n}. Consequently,

CTE q

(
SθX
n

)
∼
q↑1

α

α− 1

( n∑
k=1

ckτk

)1/α

VaR q(Z).

For the following results, we allow primary r.v.s to be dependent with the

assumption of QAI or SQAI (see Definitions 1.7 and 1.8) and obtain asymptotic

bounds for the tail probability and tail expectation in the case of dominatedly

varying distributions (see Definition 1.4).

Theorem 1.5. Let {X1, X2, . . . , Xn} be a collection of n pairwise QAI real-

valued r.v.s with corresponding d.f.s {F1, F2, . . . , Fn} such that Fi ∈ D for all

i ∈ {1, 2, . . . , n}. Let {θ1, θ2, . . . , θn} be a collection of arbitrarily dependent, non-

negative and nondegenerated at zero r.v.s. If the collections {X1, X2, . . . , Xn}
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and {θ1, θ2, . . . , θn} are independent and max16k6n {Eθpk} is finite for some power

p > max16k6n {MFk
}, then

LX
n

n∑
k=1

P
(
θkXk > x

)
.

x→∞
P
(
SθX
n > x

)
.

x→∞

1

LX
n

n∑
k=1

P
(
θkXk > x

)
,

where LX
n = min{LF1 , LF2 , . . . , LFn}.

A similar result has been established in Theorem 1 by Yi et al. [71]. Never-

theless, we present the proof of Theorem 1.5 in Section 2.4 for the following three

reasons. Firstly, Theorem 1 in [71] is formulated without a proof. Secondly, it

has an extra condition. Thirdly, the proof of our Theorem 1.5 is based on the

lemmas, which will be useful to obtain the following theorem.

Theorem 1.6. Let all the conditions of Theorem 1.5 be satisfied with the pairwise

SQAI r.v.s {X1, X2, . . . , Xn}. If P (θkXk > x) = O
(
P (θlXl > x)

)
for all k ∈

{1, 2, . . . , n} and some l ∈ {1, 2, . . . , n} under the condition Eθl|Xl| <∞, then

LFl
E
(
θlXl1I{θlXl>x}

)
.

x→∞
E
(
θlXl1I{SθX

n >x}
)

.
x→∞

1

LFl

E
(
θlXl1I{θlXl>x}

)
,

and, consequently,

LX
n

n∑
k=1

E
(
θkXk1I{θkXk>x}

)
.

x→∞
E
(
SθX
n 1I{SθX

n >x}
)

.
x→∞

1

LX
n

n∑
k=1

E
(
θkXk1I{θkXk>x}

)
,

if Eθ1|X1| <∞ and P (θkXk > x) ≍
x→∞

P (θ1X1 > x) for all k ∈ {1, 2, . . . , n}.

Both theorems above together with inequality (2.4.1) imply immediately the

following assertion on the asymptotic behaviour of the expectation of the trun-

cated randomly weighted sum SθX
n . We formulate the assertion below for the case

where the collection {X1, X2, . . . , Xn} consists of pairwise SQAI r.v.s.

Corollary 1.1. Let {X1, X2, . . . , Xn} be a collection of n pairwise SQAI real-

valued r.v.s with corresponding d.f.s {F1, F2, . . . , Fn} such that Fi ∈ D for all

i ∈ {1, 2, . . . , n}. Let {θ1, θ2, . . . , θn} be a collection of arbitrarily dependent, non-

negative and nondegenerate at zero r.v.s such that max16k6n Eθpk < ∞ for some

p > max16k6n{MFk
}.

(i) If collections {X1, X2, . . . , Xn} and {θ1, θ2, . . . , θn} are independent and
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P(θkXk > x) = O
(
P(θlXl > x)

)
for all k ∈ {1, 2, . . . , n} and some l ∈

{1, 2, . . . , n} under condition Eθl|Xl| <∞, then

LX
n

LFl
E
(
θlXl1I{θlXl>x}

)
n∑

k=1

P(θkXk > x)
.

x→∞
E
(
θlXl|SθX

n > x
)

.
x→∞

1

LX
n

E
(
θlXl1I{θlXl>x}

)
LFl

n∑
k=1

P(θkXk > x)
.

(ii) If collections {X1, X2, . . . , Xn} and {θ1, θ2, . . . , θn} are independent,

Eθ1|X1| <∞ and P(θkXk > x) ≍
x→∞

P(θ1X1 > x) for all k ∈ {1, 2, . . . , n}, then

E
(
SθX
n |SθX

n > x
)

.
x→∞

(
1

LX
n

)2

n∑
k=1

E
(
θkXk1I{θkXk>x}

)
n∑

k=1

P(θkXk > x)
6
(

1

LX
n

)2

max
16k6n

E
(
θkXk|θkXk > x

)
,

E
(
SθX
n |SθX

n > x
)

&
x→∞

(
LX
n

)2 n∑
k=1

E
(
θkXk1I{θkXk>x}

)
n∑

k=1

P(θkXk > x)
>
(
LX
n

)2
min
16k6n

E
(
θkXk|θkXk > x

)
.

In the next theorem we assume θ1 = · · · = θn = 1 and analyse the case

where primary r.v.s have tail dependence and regularly varying distributions (see

Definition 1.5). We note that although Asimit et al. [5] and Joe and Li [35]

allow tail dependence for nonnegative r.v.s, their assumptions do not apply for

dependence structures obtained through mixtures of both tail dependence and

tail independence. Therefore we generalize the results for real-valued r.v.s with

wider conditions for dependence.

We denote before the formulation of the statement r.v.s X(i)
k = ikXk1I{ikXk>0}

for each k ∈ {1, 2, . . . , n} and each collection i = {i1, . . . , in} ∈ I =

{−1, 1}n�{−1}n.

Theorem 1.7. Let {X1, X2, . . . , Xn} be a collection of n real-valued and con-

tinuous at zero r.v.s with d.f.s {F1, F2, . . . , Fn} such that Fk ∈ R−α, α > 1,

and 0 < lim
t→∞

P(−Xk>t)

Fk(t)
< ∞ for all k ∈ {1, 2, . . . , n}. Additionally, for all

k ∈ {1, 2, . . . , n} and all collections i = {i1, . . . , in} ∈ I = {−1, 1}n�{−1}n,

assume that

lim
t→∞

P(X(i)
1 > tx1, . . . , X

(i)
n > txn)

F 1(t)
:= H(i)(x)

exists for all x = (x1, . . . , xn) ∈ [0,∞]n�{0}n such that

H(i)(x) = a(i)µ
(i)
D ((x1,∞]× · · · × (xn,∞]) + (1− a(i))µ

(i)
I ((x1,∞]× · · · × (xn,∞])
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for some constant a(i) ∈ [0, 1], where µ
(i)
D is a Radon measure (i.e. finite on

compact sets), such that µ(i)
D ((x1,∞]×· · ·×(xn,∞]) is continuous on [0,∞]n�{0}n

(i.e. the measure µ(i)
D does not put any mass on the boundary of the domain) and

µ
(i)
I is a Radon measure that puts mass only on the coordinate axes. Further

assume that for all z > 0 and each k ∈ {1, 2, . . . , n} measure µ
(i)
D satisfies the

following equality

µ
(i)
D (x : xk > z) = ckz

−α (1.6.1)

for each i ∈ I such that ik = 1, where c1, . . . , cn are positive constants such that

F k(t) ∼
t→∞

ckF1(t), k ∈ {1, 2, . . . , n}.

Then, for all k ∈ {1, 2, . . . , n} we have

E[Xk|SX
n > t] ∼

t→∞

∑
i∈I
ika

(i)
∞∫
0

µ
(i)
D

(
A

(i)
k (z)

)
dz + α

α−1

(
1−

∑
i∈I
ik=1

a(i)
)
ck

∑
i∈I
a(i)µ

(i)
D (A(i)) +

n∑
k=1

(
1−

∑
i∈I
ik=1

a(i)
)
ck

t, (1.6.2)

where

SX
n :=

n∑
k=1

Xk, A
(i)
k (z) :=

{
x : xk > z,

n∑
j=1

ijxj > 1

}
, A(i) :=

{
x :

n∑
j=1

ijxj > 1

}
.

Remark 1.1. Theorem 1.7 imediately gives the asymptotic relations for ACqk

(
SX
n

)
and CIRqk

(
SX
n

)
as q ↑ 1, if we replace t by VaRq(S

X
n ). Also, since

P
(
SX
n > t

)
∼

t→∞
DF1(t), where D equals the denominator in (1.6.2) (see the proof

of Theorem 1.7), the distribution of SX
n belongs to the class R−α and, due to

Lemma 1.1, VaRq(S
X
n ) ∼

q↑1
D

1
α VaRq(X1). Moreover, CTEq(S

X
n ) ∼

q↑1
α

α−1
VaRq(S

X
n )

(see, for instance, Alink et al. [3] or Joe and Li [35]), which implies that the

constants on the right hand side of (1.6.2) sum to α
α−1

.
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1.9 Structure of the thesis

The rest of the thesis is organized as follows. In Chapter 2 we prove the main

results. A few relative examples demonstrating the applicability of the main

results are discussed in Chapter 3. In Chapter 4 we carry out certain simulation

studies verifying the accuracy of the results of Theorem 1.7 and revealing the

spead of convergence. Finally, Chapter 5 concludes the thesis.
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Chapter 2
Proofs of the main results

2.1 Auxiliary lemmas

This section consists of several lemmas which we use to prove Theorems 1.3 and

1.4.

Lemma 2.1. (see Proposition 2.2.1 in [9] and Lemma 3.5 in [55]) Let V be a d.f.

belonging to class D. For any p > MV there exist positive constants c = c(V )

and d = d(V ) such that

V (y)

V (x)
6 c

(y
x

)−p

for all x > y > d.

In addition, for any p >MV it holds that x−p = o
(
V (x)

)
.

Lemma 2.2. (see Lemma 2.1 in [64]) Let ξ be a real-valued r.v. with d.f. Fξ,

and let η be a nonnegative nondegenerated at zero r.v. with d.f. Fη. Assume that

there exists a measurable function h : [0,∞) 7→ (0,∞) such that

lim
x→∞

sup
t≥0

∣∣∣∣P(ξ > x | η = t)

F ξ(x)h(t)
− 1

∣∣∣∣ = 0.

If Fξ ∈ L and F η(x) = o
(
F ξ(cx)

)
for some c > 0, then d.f. P(ξη 6 x) belongs to

the class L.

Lemma 2.3. (see Lemma 2 in [65]) Let ξ and η be random variables satisfying

the basic conditions of Lemma 2.2. If Fξ ∈ D and F η(x) = o
(
F ξ(x)

)
, then d.f.

P(ξη 6 x) belongs to the class D as well.

17



Lemma 2.4. (see Theorem 1 in [65]) Let {X1, X2, . . . , Xn} be real-valued r.v.s

having d.f.s {F1, F2, . . . , Fn} respectively with ultimate right tails and let weights

{θ1, θ2, . . . , θn} be nonnegative nondegenerated at zero r.v.s. Also assume that

vectors {(X1, θ1), (X2, θ2), . . . , (Xn, θn)} are mutually independent and satisfy As-

sumption 1.1. If, in addition, Fk ∈ L ∩ D and P(θk > x) = o
(
F k(x)

)
for all

k ∈ {1, 2, . . . , n}, then

P
(
max
16k6n

SθX
k > x

)
∼

x→∞
P
(
SθX
n > x

)
∼

x→∞

n∑
k=1

P (θkXk > x).

Remark 2.1. In the statement of Theorem 1 of [65] it is assumed that r.v.s

{θ1, θ2, . . . , θn} are positive. But the statement of this theorem still holds in the

case of nonnegative and nondegenerated at zero r.v.s {θ1, θ2, . . . , θn}. To obtain

this we only remark that (θkXk)
+ = θkX

+
k if r.v. θk is nonnegative (see page 524

in [65]).

Lemma 2.5. Suppose that ξ is a real-valued r.v. with a d.f. Fξ having an ultimate

right tail, and η is a nonnegative r.v. with a d.f. Fη such that (ξ, η) ∈ S∗(r, φ, ψ)

(see Definition 1.9). If ψ is uniformly continuous on Dη and lim
x→∞

φ(x) = d <∞,

then there exists a measurable function h : [0,∞) 7→ (0,∞) such that sup
y∈[0,∞)

h(y) <

∞, and

P(ξ > x | η = y) ∼
x→∞

F ξ(x)h(y) (2.1.1)

uniformly for all y > 0.

Proof. If ξ and η are independent, then h ≡ 1, and the statement of the lemma

holds. If (ξ, η) is a proper Sarmanov distribution, then

sup
x∈Dξ

|φ(x)| <∞ and sup
y∈Dη

|ψ(y)| <∞ (2.1.2)

via Proposition 1.1. of [68].

Let in such a case

h(y) =

 1 + rdψ(y) if y ∈ Dη,

1 if y /∈ Dη

.

Applying (1.2.3) and (2.1.2), we get that

0 < inf
y∈[0,∞)

h(y) 6 sup
y∈[0,∞)

h(y) <∞.
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It remains to prove the asymptotic relation (2.1.1). If y /∈ Dη, then

P(ξ > x | η = y) = F ξ(x)h(y). (2.1.3)

If y ∈ Dη, then

P(ξ > x | η = y) = lim
δ↓0

∞∫
x

y+δ∫
y−δ

(1 + rφ(u)ψ(v)) dFη(v) dFξ(u)

y+δ∫
y−δ

dFη(v)

due to the basic equality (1.2.2).

Applying (2.1.2) and additional conditions for the kernel functions φ, ψ, we

obtain

lim sup
x→∞

sup
y∈Dη

P(ξ > x | η = y)

F ξ(x)h(y)

= lim sup
x→∞

sup
y∈Dη

lim
δ↓0

∞∫
x

y+δ∫
y−δ

(
1 + rdψ(v) + r

(
φ(u)− d

)
ψ(v)

)
dFη(v) dFξ(u)

F ξ(x)h(y)
y+δ∫
y−δ

dFη(v)

6 lim sup
x→∞

sup
y∈Dη

lim
δ↓0


y+δ∫
y−δ

(1 + rdψ(v)) dFη(v)

h(y)
y+δ∫
y−δ

dFη(v)

+ |r| sup
u>x
u∈Dξ

|φ(u)− d|
sup
v∈Dη

|ψ(v)|

inf
y∈Dη

h(y)



= sup
y∈Dη

lim
δ↓0

y+δ∫
y−δ

(h(y) + rd(ψ(v)− ψ(y)))dFη(v)

h(y)
y+δ∫
y−δ

dFη(v)

6 1 + |rd| lim
δ↓0

sup
y,v∈Dη

|v−y|6δ

|ψ(v)− ψ(y)| 1

inf
y∈Dη

h(y)

= 1.

The last estimate and equality (2.1.3) imply that

lim sup
x→∞

sup
y∈[0,∞)

P(ξ > x | η = y)

F ξ(x)h(y)
6 1.

In a similar way it can be shown that

lim inf
x→∞

inf
y∈[0,∞)

P(ξ > x | η = y)

F ξ(x)h(y)
> 1.

Hence, the desired relation (2.1.1) follows, and Lemma 2.5 is proved.
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The next lemma is a version of the well-known Breiman’s lemma (see [11]) for

dependent random variables. The proof of Lemma 2.6 can be found in [68].

Lemma 2.6. Let (ξ, η) ∈ S(r, φ, ψ), Fξ ∈ R−α with α > 0, Eηp < ∞ for some

p > α and lim
x→∞

φ(x) = d <∞. Then

P(ξη > x) ∼
x→∞

(E ηα + rdEψ(η)ηα )F ξ(x).

The following assertion follows from Theorem 1.1 immediately with θ1 = θ2 =

. . . = θn ≡ 1.

Lemma 2.7. Let {X1, X2, . . . , Xn} be real-valued independent r.v.s with d.f.s

{F1, F2, . . . , Fn} respectively and Sn =
∑n

i=1Xi. Further, let Fk ∈ L ∩ D and

F k(x) = O
(
F 1(x)

)
for each k ∈ {1, 2, . . . , n}. Then

EX11I{Sn>x} ∼
x→∞

EX11I{X1>x}.

If, in addition, F k(x) ≍ F 1(x) for k ∈ {1, 2, . . . , n}, then

ESn1I{Sn>x} ∼
x→∞

n∑
i=1

EXi1I{Xi>x}.

2.2 Proof of Theorem 1.3

It is sufficient to consider the case where l = 1 and n > 2. We suppose that

F k(x) = O
(
F 1(x)

)
, k ∈ {1, 2, . . . , n}, and we prove that

E θ1X11I{SθX
n >x} ∼

x→∞
E θ1X11I{θ1X1>x}. (2.2.1)

Lemma 2.7 is the crucial assertion in our proof of (2.2.1). For any k ∈

{1, 2, . . . , n}, an arbitrary positive c, and pk >MFk
, we have that

P(θk > x) 6 E θpkk
xpk

=
Eθpkk
(cx)pk

cpk = o
(
F k(cx)

)
(2.2.2)

via Markov’s inequality and Lemma 2.1. Hence, by Lemmas 2.2 and 2.3 we obtain

that d.f. P( θkXk 6 x) belongs to the class L∩D for each fixed k ∈ {1, 2, . . . , n}.

Random vectors (X1, θ1), (X2, θ2), . . . , (Xn, θn) are independent. Therefore

{θ1X1, θ2X2, . . . , θnXn} are independent r.v.s. The desired relation (2.2.1) fol-

lows from Lemma 2.7 if we establish that

P(θkXk > x) = O
(
P(θ1X1 > x)

)
, k ∈ {1, 2, . . . , n}. (2.2.3)
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Let k ∈ {2, 3, . . . , n} be temporarily fixed. If x > 2y > 2, then we have

P(θkXk > x) =

( ∫
[0,1]

+

∫
(1,xy ]

+

∫
(x
y
,∞)

)
P
(
Xk >

x

u

∣∣∣ θk = u
)
dP(θk 6 u).

If y is sufficiently large, then Assumption 1.1 implies that

P
(
Xk >

x

u

∣∣∣ θk = u
)
6 2F k

(x
u

)
hk(u)

for all u 6 x
y
. By Lemma 2.1 and Markov’s inequality we have

P(θkXk > x) 6 2

( ∫
[0,1]

+

∫
(1,xy ]

)
F k

(x
u

)
hk(u) dP(θk 6 u) + P

(
θk >

x

y

)

6 2F k(x)

∫
[0,1]

hk(u) dP(θk 6 u) + 2c1kF k(x)

∫
(1,xy ]

upkhk(u) dP(θk 6 u)

+
(y
x

)pk
E θpkk ,

where x > 2y, y is sufficiently large, exponent pk > MFk
is from conditions of

Theorem 1.3, and c1k is a positive constant originating from Lemma 2.1.

Since Ehk(θk) = 1 and x−pk = o
(
F k(x)

)
, the last estimate implies that

lim sup
x→∞

P(θkXk > x)

F k(x)
6 2 (1 + c1kE θpkk hk(θk)) + ypkE θpkk lim sup

x→∞

1

xpkF k(x)

= 2 (1 + c1kE θpkk hk(θk)) <∞

due to the conditions of Theorem 1.3.

Therefore

lim sup
x→∞

P(θkXk > x)

F 1(x)
<∞ (2.2.4)

because Fk ∈ L ∩ D and F k(x) = O
(
F 1(x)

)
.

On the other hand, by Eh1(θ1) = 1 we can choose a constant c1 ∈ (0, 1) such

that Eh1(θ1)1I{ c1<θ1<1/c1} > 0. Since

P(θ1X1 > x) >
1/c1∫
c1

P
(
X1 >

x
u
| θ1 = u

)
F 1

(
x
u

)
h1(u)

F 1

(x
u

)
h1(u) dP(θ1 6 u),
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the Fatou lemma implies that

lim inf
x→∞

P(θ1X1 > x)

F 1(x)

> lim inf
x→∞

F 1

(
x
c1

)
F 1(x)

1/c1∫
c1

lim inf
x→∞

P
(
X1 >

x
u
| θ1 = u

)
F 1

(
x
u

)
h1(u)

h1(u) dP(θk 6 u)

= Eh1(θ1)1I{c1<θ1<1/c1} lim inf
x→∞

F 1 (x/c1)

F 1(x)
> 0

due to the choice of c1, Assumption 1.1 and the definition of class D. The last

estimate proves that

lim sup
x→∞

F 1(x)

P(θ1X1 > x)
<∞. (2.2.5)

For fixed k, the asymptotic bound (2.2.3) follows now from (2.2.4) and (2.2.5)

immediately. Theorem 1.3 is proved.

2.3 Proof of Theorem 1.4

The conditions of Theorem 1.4 and Lemma 2.5 imply that random variables

X1, ..., Xn and θ1, ..., θn satisfy Assumption 1.1 with hk(t) = 1 + rkdkψk(t), t ∈

[0,∞), k ∈ {1, 2, ..., n}. According to Lemma 2.1,

P(θk > x) 6 E θpk
xp

= o
(
F k(x)

)
for each k = 1, 2, ..., n. Therefore, due to Lemma 2.4,

P
(
SθX
n > x

)
∼

x→∞

n∑
k=1

P (θkXk > x) .

On the other hand, Lemma 2.6 implies that

P (θkXk > x) ∼
x→∞

τkF k(x) ∼
x→∞

τkckF (x)

for each k ∈ {1, ..., n}. Hence, we have

P
(
SθX
n > x

)
∼

x→∞
F (x)

n∑
k=1

τkck. (2.3.1)
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Let now l ∈ {1, 2, ..., n} be fixed. Applying Theorem 1.3 we get:

lim
x→∞

E θlXl1I{SθX
n >x}

xF (x)
= lim

x→∞

E θlXl1I{θlXl>x}

xF (x)
= lim

x→∞

−
∞∫
x

udP (θlXl > u)

xF (x)

= lim
x→∞

xP (θlXl > x) + x
∞∫
1

P (θlXl > xy) dy

xF (x)

= lim
x→∞

P (θlXl > x)

F (x)
+

∞∫
1

P (θlXl > xy)

F (x)
dy

 .(2.3.2)

Lemma 2.6 implies that P (θlXl > xy) ∼
x→∞

τlclF (xy) ∼
x→∞

τlcly
−αF (x) for each

y > 1. Therefore, from (2.3.2) and the Lebesgue dominated convergence theorem

we obtain

lim
x→∞

E θlXl1I{SθX
n >x}

xF (x)
= τlcl

1 +

∞∫
1

y−αdy

 =
α

α− 1
τlcl. (2.3.3)

Relations (2.3.1) and (2.3.3) imply that
E θlXl1I{SθX

n >x}
P (SθX

n > x)
∼

x→∞

α

α− 1

τlcl
n∑

k=1

τkck

x.

If we choose x = VaRq

(
SθX
n

)
= F−1

SθX
n
(q), then the last asymptotic relation implies

that
E θlXl1I{SθX

n >x}
P (SθX

n > x)
∼
q↑1

α

α− 1

τlcl
n∑

k=1

τkck

F−1
SθX
n
(q) (2.3.4)

with the quantile function F−1
SθX
n

of d.f. FSθX
n
(x) = P(SθX

n 6 x). According to

the conditions of our theorem F is regularly varying with index α > 1. Due

to relation (2.3.1) d.f. FSθX
n

is also regularly varying with the same index. The

obtained asymptotic relation (2.3.1) and Lemma 1.1 imply that

F−1
SθX
n
(q) ∼

q↑1

(
n∑

k=1

τkck

) 1
α

F−1(q).

The last relation and asymptotic relation (2.3.4) imply the assertion of Theorem

1.4.

2.4 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. It is clear that assertion of this theorem

follows immediately from the following four lemmas.
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Lemma 2.8. Let ξ1, ξ2, . . ., ξn be n pairwise QAI real-valued r.v.s. If the d.f.s

Fξ1 ∈ D, Fξ2 ∈ D, . . ., Fξn ∈ D, then

Lξ
n

n∑
k=1

F ξk(x) .
x→∞

P
(
S ξ
n > x

)
.

x→∞

1

Lξ
n

n∑
k=1

F ξk(x),

where Lξ
n = min{LFξ1

, LFξ2
, . . . , LFξn

} and S ξ
n = ξ1 + ξ2 + . . .+ ξn.

Proof. The assertion of the lemma follows from the bounds

lim sup
x→∞

P
(
S ξ
n > x

)
n∑

k=1

F ξk(x)
6 lim sup

x→∞

n∑
k=1

F ξk((1− δ)x)

n∑
k=1

F ξk(x)

6 max
16k6n

{
lim sup
x→∞

F ξk((1− δ)x)

F ξk(x)

}
and

lim inf
x→∞

P
(
S ξ
n > x

)
n∑

k=1

F ξk(x)
> lim inf

x→∞

n∑
k=1

F ξk((1 + δ)x)

n∑
k=1

F ξk(x)

> min
16k6n

{
lim inf
x→∞

F ξk((1 + δ)x)

F ξk(x)

}
,

which hold for any δ ∈ (0, 1). The first steps of the above inequalities can be

obtained along the lines of the proof of Theorem 3.1 by Chen and Yuen [15],

while the second steps follow from the inequality

min
16i6m

{
ai
bi

}
6

m∑
i=1

ai

m∑
i=1

bi

6 max
16i6m

{
ai
bi

}
(2.4.1)

provided that m ∈ N and ai > 0, bi > 0 for all i ∈ {1, 2, . . . ,m}.

Lemma 2.9. Let ξ and η be independent r.v.s such that Fξ ∈ D, η > 0 a.s.,

P(η = 0) < 1 and Eηp < ∞ for some p > MFξ
. Then the d.f. Fξη of the product

ξη belongs to the class D as well.

Proof. The assertion of the lemma follows from Lemma 3.9 by Tang and Tsitsi-

ashvili [55]. We remark only that in that lemma, it is supposed that the r.v. η

is strictly positive. If η is nonnegative and nondegenerate at zero, then we can

correctly define a new r.v. η̂ with d.f.

P(η̂ 6 x) = P(η 6 x|η > 0).
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By Lemma 3.9 in [55], the d.f. F η̂ξ belongs to the class D. But
P(ηξ > xy)

P(ηξ > x)
=

P(η̂ξ > xy)

P(η̂ξ > x)

for all positive x and y. Consequently, Fξη ∈ D as well.

Lemma 2.10. Let ξ and η be independent r.v.s satisfying conditions of Lemma

2.9. Then LFηξ
> LFξ

.

Proof. A similar assertion for the class of consistently varying d.f.s C ⊂ D is proved

in [15, Lemma 3.1]. Here we present a more direct argument in comparison with

that in [15]. Let a ∈ (0, 1) and b > 0 be such that P(η > b) > 0.

For such numbers a and b, we have
1

LFηξ

= lim
y↑1

lim sup
x→∞

P(ηξ > xy)

P(ηξ > x)

6 lim
y↑1

lim sup
x→∞

P(ηξ > xy, η 6 xa)

P(ηξ > x)
+ lim

y↑1
lim sup
x→∞

P(ηξ > xy, η > xa)

P(ηξ > x)

6 lim
y↑1

lim sup
x→∞

P(ηξ > xy, η 6 xa)

P(ηξ > x, η 6 xa)
+ lim sup

x→∞

P(η > xa)

P(ηξ > x, η > b)

6 lim
y↑1

lim sup
x→∞

sup
0<w6xa

F ξ(xy/w)

F ξ(x/w)
+

Eηp

P(η > b)
lim sup
x→∞

1

xapP(ξ > x/b)

6 lim
y↑1

lim sup
x→∞

sup
z>x1−a

F ξ(zy)

F ξ(z)

+
Eηp

P(η > b)
lim sup
x→∞

1

xapF ξ(x)
lim sup
x→∞

F ξ(x)

F ξ(x/b)
. (2.4.2)

Since Fξ ∈ D, it is obvious that F ξ(x) = O
(
F ξ(x/b)

)
. Moreover,

lim
x→∞

xqF ξ(x) = ∞ (2.4.3)

for any q >MFξ
(see, for instance, [55, Lemma 3.5]).

If p > MFξ
, then there exists a ∈ (0, 1) such that ap > MFξ

. For this

particular a, the second term on the right-hand side of (2.4.2) is equal to zero.

Consequently,
1

LFηξ

6 lim
y↑1

lim sup
x→∞

sup
z>x1−a

F ξ(zy)

F ξ(z)
=

1

LFξ

,

and the assertion of the lemma follows.

Lemma 2.11. Let ξ1 and ξ2 be two QAI (SQAI) r.v.s with d.f.s Fξ1 ∈ D and

Fξ2 ∈ D. Let η1 and η2 be two nonnegative, nondegenerated at zero r.v.s such that

the vectors (ξ1, ξ2) and (η1, η2) are independent. If max
{
Eηp1,Eη

p
2

}
<∞ for some

p > max
{
Mξ1 ,Mξ2

}
, then the r.v.s η1ξ1 and η2ξ2 are QAI (SQAI).
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Proof. We consider only the case where the r.v.s ξ1 and ξ2 are QAI because the

proof in the case of SQAI r.v.s is identical. In this case, the assertion of the lemma

can be proved along the lines of Lemma 3.1 in [15]. But here we present a more

direct proof. For x > 0 and a ∈ (0, 1), we have

P
(
(η1ξ1)

+ > x, (η2ξ2)
+ > x, η1 6 xa, η2 6 xa

)
=

∫ ∫
(0, xa]2

P
(
ξ1 >

x

u
, ξ2 >

x

v

)
dP(η1 6 u, η2 6 v)

6 sup
0<u6xa

0<v6xa

P
(
ξ1 >

x
u
, ξ2 >

x
v

)
P
(
ξ1 >

x
u

)
+ P

(
ξ2 >

x
v

)(P(η1ξ1 > x) + P(η2ξ2 > x)
)
.

Hence, applying considerations similar to those in (2.4.2), we get

P
(
(η1ξ1)

+ > x, (η2ξ2)
+ > x

)
P(η1ξ1 > x) + P(η2ξ2 > x)

6 sup
z>x1−a

P(ξ1 > z, ξ2 > z)

P(ξ1 > z) + P(ξ2 > z)

+ max

{
P(η1 > xa)

P(η1ξ1 > x)
,
P(η2 > xa)

P(η2ξ2 > x)

}
6 sup

z>x1−a

P(ξ1 > z, ξ2 > z)

P(ξ1 > z) + P(ξ2 > z)

+ max
i∈{1,2}

{
Eηpi

P(ηi > b)

1

xapF ξi(x)

F ξi(x)

F ξi(x/b)

}
,

where x > 0, a ∈ (0, 1), p > max{MFξ1
,MFξ2

} and b > 0 is such that

min
{
P(η1 > b),P(η2 > b)

}
> 0.

The last inequality, conditions of the lemma and relation (2.4.3) imply that

P
(
(η1ξ1)

+ > x, (η2ξ2)
+ > x

)
= o
(
P(η1ξ1 > x) + P(η2ξ2 > x)

)
as x→ ∞.

The similar considerations give

P
(
(η1ξ1)

+ > x, (η2ξ2)
− > x

)
= o
(
P(η1ξ1 > x) + P(η2ξ2 > x)

)
and

P
(
(η1ξ1)

− > x, (η2ξ2)
+ > x

)
= o
(
P(η1ξ1 > x) + P(η2ξ2 > x)

)
as x→ ∞, and the assertion of the lemma follows.
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2.5 Proof of Theorem 1.6

In this section, we prove Theorem 1.6. Conditions of this theorem, as well

as Lemma 2.9, imply that the d.f.s FθkXk
belong to the class D for all k ∈

{1, 2, . . . , n}. Moreover, Lemma 2.11 implies that {θ1X1, θ2X2, . . . , θnXn} is a col-

lection of pairwise SQAI real-valued r.v.s if {X1, X2, . . . , Xn} are pairwise SQAI.

In addition, the conditions of Theorem 1.6 state that F θkXk
(x) = O

(
F θlXl

(x)
)

for

all k ∈ {1, 2, . . . , n} and for some particular index l ∈ {1, 2, . . . , n}. Hence, the

assertion of Theorem 1.6 follows immediately from Lemmas 2.13 and 2.14 below.

In Lemma 2.13, we get the upper asymptotic bound, while in Lemma 2.14, we

obtain the lower asymptotic bound. We start this section with a simple technical

assertion, which will be used in the proofs of the main lemmas.

Lemma 2.12. Let ξ and η be two nonnegative random variables such that Eξ is

finite. Then

E
(
ξ1I{ξ>x, η>y}

)
= xP(ξ > x, η > y) +

∫ ∞

x

P(ξ > u, η > y) du

for any pair of positive numbers x and y.

Proof. Let Fξ and Fη be the d.f.s of ξ and η, respectively, and let Fξ,η be the joint

d.f. of ξ and η. Then, for all x > 0 and y > 0, we have

E
(
ξ1I{ξ>x, η>y}

)
=

∫ ∞

x

u

∫ ∞

y

dFξ,η(u, v)

=

∫ ∞

x

u dFξ(u)−
∫ ∞

x

u dFξ,η(u, y)

=

∫ x

∞
u dF ξ(u) +

∫ ∞

x

u d
(
Fη(y)− Fξ,η(u, y)

)
=

[
uF ξ(u)

]x
∞
−
∫ x

∞
F ξ(u) du

+
[
u
(
Fη(y)− Fξ,η(u, y)

)]∞
x
−
∫ ∞

x

(
Fη(y)− Fξ,η(u, y)

)
du

= xF ξ(x)− lim
u→∞

uF ξ(u) +

∫ ∞

x

F ξ(u) du

−x
(
P(η 6 y)− P(ξ 6 x, η 6 y)

)
+ lim

u→∞
u
(
Fη(y)− Fξ,η(u, y)

)
−
∫ ∞

x

(
P(η 6 y)− P(ξ 6 u, η 6 y)

)
du
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= x
(
P(ξ > x)− P(ξ > x, η 6 y)

)
+

∫ ∞

x

(
P(ξ > u)− P(ξ > u, η 6 y)

)
du

= xP(ξ > x, η > y) +

∫ ∞

x

P(ξ > u, η > y) du.

Here we used the fact that Eξ <∞, which implies that lim
u→∞

uF ξ(u) = 0 and

0 6 lim
u→∞

u
(
Fη(y)− Fξ,η(u, y)

)
= lim

u→∞
uP(ξ > u, η 6 y) 6 lim

u→∞
uF ξ(u) = 0.

Lemma is proved.

Lemma 2.13. Let ξ1, ξ2, . . ., ξn be n pairwise SQAI real-valued r.v.s. If Fξ1 ∈ D,

Fξ2 ∈ D, . . ., Fξn ∈ D and F ξk(x) = O
(
F ξl(x)

)
for all k ∈ {1, 2, . . . , n} and some

l ∈ {1, 2, . . . , n} such that Eξ+l <∞, then

E
(
ξl1I{

S ξ
n>x
}) .

x→∞

1

LFl

E
(
ξl1I{ξl>x}

)
,

where, as usual, S ξ
n = ξ1 + ξ2 + . . .+ ξn.

Proof. Obviously, we can suppose that n > 2 and choose the special index l = 1.

Hence, we conclude that all basic requirements of Lemma 2.13 are satisfied with

the condition

F ξk(x) = O
(
F ξ1(x)

)
, (2.5.1)

which holds for all k ∈ {1, 2, . . . , n}, and we must prove that

E
(
ξ11I{

S ξ
n>x
}) .

x→∞

1

LF1

E
(
ξ11I{ξ1>x}

)
. (2.5.2)

It is evident that

E
(
ξ11I{

S ξ
n>x
}) 6 E

(
ξ+1 1I{S ξ+

n >x
})

6 E
(
ξ11I{ξ1>(1−ε)x}

)
+ I (2.5.3)

for any x > 0, where

S ξ+

n =
n∑

k=1

ξ+k

and

I = E
(
ξ+1 1I{ξ+1 6(1−ε)x, S ξ+

n >x
})

= E
(
ξ+1 1I{ξ+1 6εx, S ξ+

n >x
})+ E

(
ξ+1 1I{εx<ξ+1 6(1−ε)x, S ξ+

n >x
})

6 εxP
(
S ξ+

n > x
)
+ (1− ε)xP

(
εx < ξ+1 6 x, S ξ+

n > x
)

(2.5.4)
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with any ε ∈ (0, 1/2).

Using Lemma 2.8 and the additional requirement (2.5.1) we obtain

P
(
S ξ+

n > x
)
6 2

Lξ
n

n∑
k=1

P(ξk > x) 6 c1 P(ξ1 > x) 6 c1
x
E
(
ξ11I{ξ1>x}

)
(2.5.5)

provided that x is large enough, where the positive constant c1 = c1(n) may

depend on n but not on x.

The collection {ξ1, ξ2, . . . , ξn} consists of pairwise SQAI r.v.s. Hence, for any

ε ∈ (0, 1/2), we get

P
(
εx < ξ+1 6 (1− ε)x, S ξ+

n > x
)

6 P
(
ξ+1 > εx,

n∪
k=2

{
ξ+k >

εx

n− 1

})
6

n∑
k=2

P
(
ξ+1 > εx, ξ+k >

εx

n− 1

)
6 ∆1(εx)

n∑
k=2

F ξ1(εx),

where

∆1(x) = ∆1(n, x) = max
26k6n

P(ξ+1 > x, ξ+k > x
n−1

)

F ξ1(x)
→

x→∞
0.

Since the d.f. Fξ1 belongs to the class D, the additional condition (2.5.1)

implies that

P
(
εx < ξ+1 6 (1− ε)x, S ξ+

n > x
)

6 c2∆1(εx)F ξ1(x)

6 c2∆1(εx)
1

x
E
(
ξ11I{ξ1>x}

)
, (2.5.6)

where x is large enough and c2 = c2(ε, n) > 0.

Substituting the derived bounds (2.5.4)–(2.5.6) into (2.5.3) yields

lim sup
x→∞

E
(
ξ11I{

S ξ
n>x
})

E
(
ξ11I{ξ1>x}

) 6 (1− ε) lim sup
x→∞

max

{
F ξ1((1− ε)x)

F ξ1(x)
, sup

y>x

F ξ1((1− ε)y)

F ξ1(y)

}
+ εc1 + (1− ε)c2 lim sup

x→∞
∆1(εx)

for any ε ∈ (0, 1/2) due to Lemma 2.12. The last inequality implies immediately

the desired asymptotic relation (2.5.2).

Lemma 2.14. Let ξ1, ξ2, . . ., ξn be n pairwise SQAI real-valued r.v.s. If Fξ1 ∈ D,

Fξ2 ∈ D, . . ., Fξn ∈ D and F ξk(x) = O
(
F ξl(x)

)
for all k ∈ {1, 2, . . . , n} and some

particular index l ∈ {1, 2, . . . , n} such that E|ξl| <∞, then

LFξl
E
(
ξl1I{ξl>x}

)
.

x→∞
E
(
ξl1I{S ξ

n>x}

)
,
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where LFξl
is the L-index of the d.f. Fξl defined by equality (1.2.1).

Proof. If n = 1, then the assertion of the lemma is evident. Therefore, in what

follows, we deal with the case n > 2. In addition, as in the proof of Lemma

2.13, we can choose the particular index l = 1. Hence, we suppose that F ξk(x) =

O
(
F ξ1(x)

)
for all indices k ∈ {1, 2, . . . , n}, and we must prove that

E
(
ξ11I{S ξ

n>x}

)
&

x→∞
LFξ1

E
(
ξ11I{ξ1>x}

)
. (2.5.7)

For any x > 0 and an arbitrary δ ∈ (0, 1), we have

E
(
ξ11I{S ξ

n>x}

)
= E

(
ξ+1 1I{S ξ

n>x}

)
− E

(
ξ−1 1I{S ξ

n>x}

)
= E

(
ξ+1 1I{ξ+1 >(1+δ)x, S ξ

n>x}

)
+ E

(
ξ+1 1I{ξ+1 6(1+δ)x, S ξ

n>x}

)
− E

(
ξ−1 1I{ξ−1 6x, S ξ

n>x}

)
− E

(
ξ−1 1I{ξ−1 >x, S ξ

n>x}

)
> E

(
ξ+1 1I{ξ+1 >(1+δ)x}

)
− E

(
ξ+1 1I{ξ+1 >(1+δ)x, S ξ

n6x}

)
− E

(
ξ−1 1I{ξ−1 6x, S ξ

n>x}

)
− E

(
ξ−1 1I{ξ−1 >x, S ξ

n>x}

)
=: J1 − J2 − J3 − J4. (2.5.8)

Since Eξ+1 <∞, using Lemma 2.12 and inequality (2.4.1) we obtain

J1

E
(
ξ11I{ξ1>x}

) =

(1 + δ)xF ξ1((1 + δ)x) +
∞∫

(1+δ)x

F ξ1(y)dy

xF ξ1(x) +
∞∫
x

F ξ1(y)dy

> (1 + δ)min


F ξ1((1 + δ)x)

F ξ1(x)
,

∞∫
x

(
F ξ1((1 + δ)y)

/
F ξ1(y)

)
F ξ1(y)dy

∞∫
x

F ξ1(y)dy


> (1 + δ)min

{
F ξ1((1 + δ)x)

F ξ1(x)
, inf
y>x

F ξ1((1 + δ)y)

F ξ1(y)

}
.

Consequently,

lim inf
x→∞

J1

E
(
ξ11I{ξ1>x}

) > (1 + δ) lim inf
x→∞

(
inf
y>x

F ξ1((1 + δ)y)

F ξ1(y)

)
. (2.5.9)
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For the third term in (2.5.8), we have

J3 = E
(
ξ−1 1I{ξ−1 6δx, Sξ

n>x}

)
+ E

(
ξ−1 1I{δx<ξ−1 6x, Sξ

n>x}

)
6 δxP

(
Sξ
n > x

)
+ E

(
ξ−1 1I{δx<ξ−1 6x, Sξ

n>x, ξ1>0}

)
+E
(
ξ−1 1I{δx<ξ−1 6x, Sξ

n>x, ξ160}

)
6 δxP

( n∑
k=1

ξ+k > x

)
+ xP

(
ξ−1 > δx,

n∑
k=2

ξ+k > x

)
. (2.5.10)

Applying arguments similar to those in the derivation of formula (2.5.5), using

Lemma 2.8 and the condition F ξk(x) = O
(
F ξ1(x)

)
, k ∈ {1, 2, . . . , n}, we conclude

that

P
( n∑

k=1

ξ+k > x

)
6 c3

x
E
(
ξ11I{ξ1>x}

)
(2.5.11)

for large enough x and some positive constant c3 = c3(n) not depending on x.

Since {ξ1, ξ2, . . . , ξn} are SQAI (consequently, QAI) r.v.s, we deduce that

P
(
ξ−1 > δx,

n∑
k=2

ξ+k > x

)
6 P

(
ξ−1 > δx,

n∪
k=2

{
ξ+k >

x

n− 1

})
6

n∑
k=2

P
(
ξ−1 > δx, ξ+k > δx

)
6 ∆2(δx)

n∑
k=2

P
(
F ξ1(δx) + F ξk(δx)

)
for large enough x and an arbitrary δ ∈ (0, 1/(n− 1)), where

∆2(x) = ∆2(n, x) = max
26k6n

P(ξ−1 > x, ξ+k > x)

F ξ1(x) + F ξk(x)
→

x→∞
0.

Applying arguments similar to those in the derivation of formula (2.5.6), for large

enough x, we get

P
(
ξ−1 > δx,

n∑
k=2

ξ+k > x

)
6 c4∆2(δx)

1

x
E
(
ξ11I{ξ1>x}

)
(2.5.12)

with some positive constant c4 = c4(n).

Substituting (2.5.11) and (2.5.12) into (2.5.10) yields

lim sup
x→∞

J3

E
(
ξ11I{ξ1>x}

) 6 δc3 (2.5.13)

for any δ ∈ (0, 1/(n− 1)).
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For any x > 0 and δ̂ ∈ (0, δ/(n−1)), the second term in (2.5.8) can be bounded

above in the following way:

J2 = E
(
ξ+1 1I{ξ+1 >(1+δ)x,

∑n
k=1 ξ

+
k −

∑n
k=2 ξ

−
k 6x}

)
6 E

(
ξ+1 1I{ξ+1 >(1+δ)x,

∑n
k=2 ξ

−
k >δx}

)
6

n∑
k=2

E
(
ξ+1 1I{ξ+1 >(1+δ)x, ξ−k >δx/(n−1)}

)
6

n∑
k=2

E
(
ξ+1 1I{ξ+1 >δ̂x, ξ−k >δ̂x}

)
. (2.5.14)

For any x > 0 and δ̃ ∈ (0, 1/(n− 1)), the last term in (2.5.8) can be bounded

above likewise:

J4 = E
(
ξ−1 1I{ξ−1 >x,

∑n
k=2 ξ

+
k −

∑n
k=1 ξ

−
k >x}

)
6

n∑
k=2

E
(
ξ−1 1I{ξ−1 >δ̃x, ξ+k >δ̃x}

)
.

Since E|ξ1| <∞, using Lemma 2.12 and inequality (2.4.1) we obtain

E
(
ξ+1 1I{ξ+1 >δ̂x, ξ−k >δ̂x}

)
E
(
ξ11I{ξ1>x}

) =

δ̂xP(ξ+1 > δ̂x, ξ−k > δ̂x) +
∞∫̂
δx

P(ξ+1 > u, ξ−k > δ̂x)du

xP(ξ1 > x) +
∞∫
x

P(ξ1 > u)du

=

δ̂xP(ξ1 > δ̂x, ξ−k > δ̂x) +
∞∫̂
δx

P(ξ1 > u, ξ−k > δ̂x)du

xP(ξ1 > δ̂x)
F ξ1

(x)

F ξ1
(δ̂x)

+ 1

δ̂

∞∫̂
δx

P(ξ1 > u)
F ξ1

(u/δ̂)

F ξ1
(u)

du

6 δ̂max

{
F ξ1(δ̂x)

F ξ1(x)

P(ξ1 > δ̂x, ξ−k > δ̂x)

P(ξ1 > δ̂x)
, sup
u>δ̂x

F ξ1(u)

F ξ1(u/δ̂)

P(ξ1 > u, ξ−k > δ̂x)

P(ξ1 > u)

}

for any x > 0, δ̂ ∈ (0, δ/(n− 1)) and k ∈ {2, . . . , n}.

The d.f. Fξ1 belongs to the class D, and the r.v.s {ξ1, ξk} are SQAI. Therefore,

for large enough x and any δ̂ ∈ (0, δ/(n− 1)), we have

E
(
ξ+1 1I{ξ+1 >δ̂x, ξ−k >δ̂x}

)
E
(
ξ11I{ξ1>x}

) 6 ∆3,k(δ̂x), (2.5.15)

where ∆3,k(δ̂x) →
x→∞

0 for any k ∈ {2, . . . , n}.

Substituting (2.5.15) into (2.5.14) gives

lim sup
x→∞

J2

E
(
ξ11I{ξ1>x}

) = 0. (2.5.16)
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Similarly, we can show that

lim sup
x→∞

J4

E
(
ξ11I{ξ1>x}

) = 0. (2.5.17)

Equality (2.5.8) as well as asymptotic relations (2.5.9), (2.5.13), (2.5.16) and

(2.5.17) yield

lim inf
x→∞

E
(
ξ11I{Sξ

n>x}

)
E
(
ξ11I{ξ1>x}

) > (1 + δ) lim inf
x→∞

(
inf
y>x

F ξ1((1 + δ)y)

F ξ1(y)

)
− δc3 (2.5.18)

for any δ ∈ (0, 1). Letting δ ↓ 0 in (2.5.18) and taking into account the definition

of LFξ1
we obtain (2.5.7), which completes the proof.

2.6 Proof of Theorem 1.7

This section deals with the proof of theorem 1.7. We first note that the conditions

of the theorem imply that

P
(
(X

(i)
1 /t, . . . , X

(i)
n /t) ∈ ·

)
F 1(t)

v−→ a(i)µ
(i)
D + (1− a(i))µ

(i)
I

holds on [0,∞]n�{0}n (see Section 3.4 in Resnick [52]). Moreover, since µ(i)
D is

continuous on its domain and µ
(i)
I puts mass only on the coordinate axes, the

vague convergence criterion applies for any set A ∈ [0,∞]n whose closure either

does not intersect with any of the coordinate axes or the intersection consists only

of distinct points, since they have zero measure.

Moreover, since i2k = 1 for all k ∈ {1, 2, . . . , n} and all i ∈ I, we have

E[Xk|SX
n > t] =

1

P(SX
n > t)

∑
i∈I

EXk1I{
SX
n >t,

n∩
j=1

{ijXj>0}
}

=

∑
i∈I
ikEX(i)

k 1I{ n∑
j=1

ijX
(i)
j >t,

n∩
j=1

{X(i)
j >0}

}
∑
i∈I

P

(
n∑

j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

) . (2.6.1)

We will first deal with the denominator of the last fraction. Observe that for
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t > 0

∑
i∈I

P

(
n∑

j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)

=
∑
i∈I

P

 n∑
j=1

ijX
(i)
j > t,

∩
j: ij=1

{X(i)
j 6 t},

n∩
j=1

{X(i)
j > 0}


+
∑
i∈I

P

 n∑
j=1

ijX
(i)
j > t,

∪
j: ij=1

{X(i)
j > t},

n∩
j=1

{X(i)
j > 0}


=
∑
i∈I

P

 n∑
j=1

ijX
(i)
j > t,

∩
j: ij=1

{X(i)
j 6 t},

n∩
j=1

{X(i)
j > 0}


+
∑
i∈I

∑
j: ij=1

P

(
n∑

j=1

ijX
(i)
j > t,X

(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)

+
∑
i∈I

|J |∑
l=2

(−1)l+1
∑

{j1,...,jl}∈J

P

(
n∑

j=1

ijX
(i)
j > t,

l∩
r=1

{X(i)
jr
> t},

n∩
j=1

{X(i)
j > 0}

)

=
∑
i∈I

P

 n∑
j=1

ijX
(i)
j > t,

∩
j: ij=1

{X(i)
j 6 t},

n∩
j=1

{X(i)
j > 0}


+

∑
i∈I

∑
j: ij=1

P

(
X

(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)

−
∑
i∈I

∑
j: ij=1

P

(
n∑

j=1

ijX
(i)
j 6 t,X

(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)

+
∑
i∈I

|J |∑
l=2

(−1)l+1
∑

{j1,...,jl}∈J

P

(
n∑

j=1

ijX
(i)
j > t,

l∩
r=1

{X(i)
jr
> t},

n∩
j=1

{X(i)
j > 0}

)
,

(2.6.2)

where J = {j : ij = 1}. Let Ak be the k-th axis, i.e.

Ak = {x : x1 = · · · = xk−1 = xk+1 = · · · = xn = 0},

and let Ak(x) denote a point on the k-th axis where xk = x. Then it is obvious

that for all k ∈ {1, 2, . . . , n} and j ∈ J we have
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{
x :

n∑
l=1

ilxl > 1,
∩

l:il=1

{xl 6 1}

}∩
Ak =

Ak(1), if ik = 1

∅ if ik = −1

,

{
x :

n∑
l=1

ilxl 6 1, xj > 1

}∩
Ak =

∅, if k ̸= j

Ak(1) if k = j

and x :
n∑

l=1

ilxl > 1,
l∩

r=1
jr∈J

{xjr > 1}


∩

Ak = ∅,

if l > 2. In addition, note that

∑
i∈I

∑
j: ij=1

P

(
X

(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
=

n∑
k=1

P (Xk > t) . (2.6.3)

Therefore, by applying Lemma 1.2 and the fact that for all i ∈ I measure µ(i)
D

does not put any mass on the boundary of its domain we get

lim
t→∞

∑
i∈I

P

(
n∑

j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
F 1(t)

=
∑
i∈I

a(i)µ
(i)
D

x :
n∑

j=1

ijxj > 1,
∩

j:ij=1

{xj 6 1}


+

n∑
k=1

ck −
∑
i∈I

∑
j:ij=1

a(i)µ
(i)
D

(
x :

n∑
j=1

ijxj 6 1, xj > 1

)

+
∑
i∈I

|J |∑
l=2

(−1)l+1
∑

{j1,...,jl}∈J

a(i)µ
(i)
D

(
x :

n∑
j=1

ijxj > 1,
l∩

r=1

{xjr > 1}

)

=
∑
i∈I

a(i)µ
(i)
D

(
x :

n∑
j=1

ijxj > 1

)
+

n∑
k=1

(
1−

∑
i∈I
ik=1

a(i)
)
ck, (2.6.4)

where in the last step we reversed the logic of expression (2.6.2) for measures µ(i)
D ,

i ∈ I, used equality (1.6.1) with z = 1 and the fact that

∑
i∈I

∑
j: ij=1

a(i)cj =
n∑

k=1

∑
i∈I
ik=1

a(i)ck.
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Now we will deal with the numerator of (2.6.1). Obviously, for t > 0 we have

∑
i∈I

ikEX(i)
k 1I{ n∑

j=1
ijX

(i)
j >t,

n∩
j=1

{X(i)
j >0}

}
=

∞∫
0

∑
i∈I

ikP

(
X

(i)
k > z,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
dz

= t

∞∫
0

∑
i∈I

ikP

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
dz.

(2.6.5)

First, observe that for z > 1 we have

∑
i∈I

ikP

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)

=
∑
i∈I
ik=1

P

(
X

(i)
k > tz,

n∩
j=1

{X(i)
j > 0}

)

−
∑
i∈I
ik=1

P

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j 6 t,

n∩
j=1

{X(i)
j > 0}

)

−
∑
i∈I

ik=−1

P

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
(2.6.6)

and for 0 < z 6 1 we have

∑
i∈I

ikP

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)

=
∑
i∈I
ik=1

P

(
tz < X

(i)
k 6 t,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)

+
∑
i∈I
ik=1

P

(
X

(i)
k > t,

n∩
j=1

{X(i)
j > 0}

)

−
∑
i∈I
ik=1

P

(
X

(i)
k > t,

n∑
j=1

ijX
(i)
j 6 t,

n∩
j=1

{X(i)
j > 0}

)

−
∑
i∈I

ik=−1

P

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
.

(2.6.7)
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Similarly as in (2.6.3) for all z > 0 we have

∑
i∈I
ik=1

P

(
X

(i)
k > tz,

n∩
j=1

{X(i)
j > 0}

)
= P (Xk > tz) . (2.6.8)

For other sets in (2.6.6) and (2.6.7) observe that for all l ∈ {1, 2, . . . , n}{
x : xk > z,

n∑
j=1

ijxj > 1

}∩
Al = ∅,

if ik = −1, {
x : xk > z,

n∑
j=1

ijxj 6 1

}∩
Al = ∅,

if ik = 1 and z > 1, and

{
x : z 6 xk 6 1,

n∑
j=1

ijxj > 1

}∩
Al =

∅, if l ̸= k

Al(1) if l = k

,

{
x : xk > 1,

n∑
j=1

ijxj 6 1

}∩
Al =

∅, if l ̸= k

Al(1) if l = k

,

if ik = 1 and 0 < z 6 1.

Therefore we can apply Lemma 1.2 for (2.6.6) and (2.6.7) and by using (1.6.1)

and (2.6.8) we get

lim
t→∞

∑
i∈I
ikP

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
F 1(t)

=
∑
i∈I

ika
(i)µ

(i)
D

(
x : xk > z,

n∑
j=1

ijxj > 1

)
+

(
1−

∑
i∈I
ik=1

a(i)
)
ckz

−α

(2.6.9)

for z > 1 and

lim
t→∞

∑
i∈I
ikP

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
F 1(t)

=
∑
i∈I

ika
(i)µ

(i)
D

(
x : xk > z,

n∑
j=1

ijxj > 1

)
+

(
1−

∑
i∈I
ik=1

a(i)
)
ck

(2.6.10)
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for 0 < z 6 1.

To get the assertion of the theorem, we need to integrate the quantity

P

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
F 1(t)

for each i ∈ I on the interval [0,∞). We note that this quantity is obviously

bounded on the interval [0, 1], while on interval [1,∞) it is bounded by an inte-

grable function due to

P

(
X

(i)
k > tz,

n∑
j=1

ijX
(i)
j > t,

n∩
j=1

{X(i)
j > 0}

)
6 P

(
X

(i)
k > tz

)
and Proposition 0.8 of Resnick [52]. Therefore, we can apply the Lebesgues dom-

inated convergence theorem and pass the limit through the sign of integral in

expression (2.6.5). After integrating, equalities (2.6.9) and (2.6.10), together with

equality (2.6.4) and basic relations (2.6.1) and (2.6.5), imply the desired relation

(1.6.2). Theorem 1.7 is proved. �
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Chapter 3
Examples

In this chapter we present several theoretical and practical examples to demon-

strate the applicability of the main results for particular collections of the primary

r.v.s {X1, X2, . . . , Xn} and the random weights {θ1, θ2, . . . , θn}. In the first ex-

ample the d.f.s of the primary r.v.s belong to the class D. In other examples we

restrict to regularly varying tails.

Example 3.1. Let us consider three pairwise SQAI r.v.s X1, X2, X3 with d.f.s

F1, F2, F3, respectively. Suppose that these primary r.v.s are distributed accord-

ing to the generalized Peter-and-Paul distributions with parameters 1, 1
2

and 2

respectively (see Example 1.1), i.e.

F 1(x) = 4
∑
2k>x

1

5k
= 5−⌊log x/ log 2⌋, x > 1,

F 2(x) = (
√
5− 1)

∑
√
2
k
>x

1
√
5
k
=

√
5

−⌊log x/ log
√
2⌋
, x > 1,

F 3(x) = 24
∑
4k>x

1

25k
= 25−⌊log x/ log 4⌋, x > 1,

with the L-indexes

LF1 =
1

5
, LF2 =

1√
5
, LF3 =

1

25
.

Consequently, LX
3 = 1/25 in this case.

Let the random weights {θ1, θ2, θ3} be independent of {X1, X2, X3}, mutually

arbitrarily dependent and identically distributed according to the discrete law

P(θ1 = 1/2) = P(θ1 = 1) = 1/2.

After some calculations we conclude that all the conditions of Theorems 1.5,

1.6 and Corollary 1.1 are satisfied. Theorem 1.5 implies the following asymptotic
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formulas:

P
(
SθX
3 > x

)
.

x→∞

25

2

(
5−⌊log 2x/ log 2⌋ + 5−⌊log x/ log 2⌋ +

√
5
−⌊log 2x/ log

√
2⌋

+
√
5
−⌊log x/ log

√
2⌋
+ 25−⌊log 2x/ log 4⌋ + 25−⌊log x/ log 4⌋

)
6 15 (30 +

√
5)5− log x/ log 2 < 484x− log 5/ log 2,

P
(
SθX
3 > x

)
&

x→∞

1

50

(
5−⌊log 2x/ log 2⌋ + 5−⌊log x/ log 2⌋ +

√
5
−⌊log 2x/ log

√
2⌋

+
√
5
−⌊log x/ log

√
2⌋
+ 25−⌊log 2x/ log 4⌋ + 25−⌊log x/ log 4⌋

)
> 9

125
x− log 5/ log 2.

Next, Theorem 1.6 and Lemma 2.12 yield

E
(
SθX
3 1I{SθX

3 >x}
)

.
x→∞

25

4

3∑
k=1

E
(
Xk1I{Xk>2x}

)
+

1

2

3∑
k=1

E
(
Xk1I{Xk>x}

)
=

25

4

(
2x

(
5−⌊

log 2x
log 2 ⌋ +

√
5
−
⌊

log 2x

log
√
2

⌋
+ 25−⌊

log 2x
log 4 ⌋

)
+

∫ ∞

2x

(
5−⌊

log u
log 2⌋ +

√
5
−
⌊

log u

log
√
2

⌋
+ 25−⌊

log u
log 4⌋

)
du

)
+

25

4

(
x

(
5−⌊

log x
log 2⌋ +

√
5
−
⌊

log x

log
√
2

⌋
+ 25−⌊

log x
log 4⌋

)
+

∫ ∞

x

(
5−⌊

log u
log 2⌋ +

√
5
−
⌊

log u

log
√
2

⌋
+ 25−⌊

log u
log 4⌋

)
du

)
6 15(30 +

√
5)

log 5

log 5− log 2
x · 5−

log x
log 2 < 850x1−log 5/ log 2,

E
(
SθX
3 1I{SθX

3 >x}
)

&
x→∞

1

100

3∑
k=1

E
(
Xk1I{Xk>2x}

)
+

1

50

3∑
k=1

E
(
Xk1I{Xk>x}

)
> 9

125

log 5

log 5− log 2
x · 5−

log x
log 2 >

1

8
x1−log 5/ log 2.

At the end of this example we only remark that we need an assertion similar

to Lemma 1.1 for further consideration of the values related to the risk measures

in this model.

Example 3.2. Let us consider two independent sequences of random variables

{X1, X2, . . . , Xn} and {θ1, θ2, . . . , θn}. Suppose that the r.v.s X1, X2, . . . , Xn are

independent and the r.v.s θ1, θ2, . . . , θn follow an arbitrary dependence structure.

For each k ∈ {1, 2, . . . , n}, the r.v. Xk is assumed to have the Lomax distribution

(see Example 1.2) with shape parameter αk > 1 and scale parameter λk > 0, i.e.

Fk(x) = 1−
(
1 +

x

λk

)−αk

, x ≥ 0, k ∈ {1, 2, . . . , n}.
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Since LFk
= 1 for all k ∈ {1, 2, . . . , n}, LX

n = min
1≤k≤n

{LFk
} = 1, which yields

P
(
SθX
n > x

)
∼

x→∞

n∑
k=1

P(θkXk > x) for any collection {θ1, θ2, . . . , θn} satisfying the

conditions of Theorem 1.5.

Next, let P(θk = zki) = pki for all k ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , ik}, where

ik ∈ N. Here zki are real numbers such that 0 < zk1 < zk2 < . . . < zkik < ∞ and∑ik
i=1 pki = 1 for all k ∈ {1, 2, . . . , n}. It is obvious that max

1≤k≤n
{Eθpk} is finite for all

p > max
1≤k≤n

{αk}. Consequently, the collection {θ1, θ2, . . . , θn} meets the conditions

of Theorem 1.5.

By the law of total probability, we get

P(θkXk > x) =

ik∑
i=1

P(θkXk > x | θk = zki)P(θk = zki) =

ik∑
i=1

pki P(Xk > x/zki)

=

ik∑
i=1

pki

(
λkzki

λkzki + x

)αk

∼
x→∞

λαk
k

xαk

ik∑
i=1

pkiz
αk
ki =

λαk
k Eθαk

k

xαk
. (3.1)

Therefore, by Theorem 1.5,

P
(
SθX
n > x

)
∼

x→∞

n∑
k=1

λαk
k Eθαk

k

xαk
∼

x→∞

n∑
k=1

λαk
k Eθαk

k 1I{αk=αmin}

xαmin
,

where αmin = min
1≤k≤n

{αk}.

To apply Theorem 1.6, the condition P (θkXk > x) ≍
x→∞

P (θ1X1 > x) must hold

for all k ∈ {1, 2, . . . , n}. It follows easily from (3.1) that this condition is true

provided that α1 = α2 = . . . = αn. Hence, from now on, we suppose that

α := α1 = α2 = . . . = αn.

Since LX
n = 1, by Theorem 1.6, we get

E
(
θkXk1I{SθX

n >x}
)

∼
x→∞

E
(
θkXk1I{θkXk>x}

)
for all k ∈ {1, 2, . . . , n} and

E
(
SθX
n 1I{SθX

n >x}
)

∼
x→∞

n∑
k=1

E
(
θkXk1I{θkXk>x}

)
.

By the law of total expectation, we obtain
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E
(
θkXk1I{θkXk>x}

)
=

ik∑
i=1

E
(
θkXk1I{θkXk>x} | θk = zki

)
P(θk = zki)

=

ik∑
i=1

zkipki E
(
Xk1I{Xk>x/zki}

)
=

ik∑
i=1

zkipki

∫ ∞

x/zki

αy

λk

(
1 +

y

λk

)−(α+1)

dy

=

ik∑
i=1

pki

(
x

(
1 +

x

λkzki

)−α

+
λkzki
α− 1

(
1 +

x

λkzki

)1−α
)

∼
x→∞

ik∑
i=1

pki

(
x

(
λkzki
x

)α

+
λkzki
α− 1

(
λkzki
x

)α−1
)

=
αλαk

(α− 1)xα−1

ik∑
i=1

pkiz
α
ki =

αλαk Eθαk
(α− 1)xα−1

.

Thus, we have

E
(
SθX
n 1I{SθX

n >x}
)

∼
x→∞

α

(α− 1)xα−1

n∑
k=1

λαk Eθαk .

In addition, we get

P
(
SθX
n > x

)
∼

x→∞

1

xα

n∑
k=1

λαk Eθαk . (3.2)

The last two asymptotic relations imply that

E
(
SθX
n |SθX

n > x
)

∼
x→∞

α

α− 1
x. (3.3)

Moreover, for any l ∈ {1, 2, . . . , n}, we have

E
(
θlXl |SθX

n > x
)

∼
x→∞

α

α− 1
x

λαl Eθαl∑n
k=1 λ

α
k Eθαk

. (3.4)

If we choose x = VaRq

(
SθX
n

)
in (3.2), then, using Lemma 1.1, we conclude that

VaRq

(
SθX
n

)
∼
q↑1

(1− q)−1/α

( n∑
k=1

λαk Eθαk
)1/α

.

Therefore, (3.3) implies that

CTEq

(
SθX
n

)
∼
q↑1

α

α− 1
(1− q)−1/α

( n∑
k=1

λαk Eθαk
)1/α

.

Furthermore, by (3.4), for any fixed l ∈ {1, 2, . . . , n}, we obtain

ACql

(
SθX
n

)
∼
q↑1

α

α− 1
(1− q)−1/αλαl Eθαl

( n∑
k=1

λαk Eθαk
)1/α−1

.
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Example 3.3. Let us consider an investment portfolio of n financial assets. Let

Xk, k ∈ {1, 2, . . . , n}, be their negative returns (so that positive values represent

losses) over some time period in the future with distribution functions Fk, k ∈

{1, 2, . . . , n}, and let θk, k ∈ {1, 2, . . . , n}, be their weights. We are interested in

asymptotic CTEq of the portfolio and its composition.

We assume that Xk, k ∈ {1, 2, . . . , n}, are pairwise SQAI and have t-location-

scale distributions with parameters (µk, σk, νk) (see Example 1.3). It can be easily

shown that for all k ∈ {1, . . . , n} lim
x→∞

Fk(x)

F1(x)
=
(

σk

σ1

)ν
provided that νk = ν1 = ν.

If νk > ν1, the limit is 0. If νk < ν1, the limit is infinite. It means that the tail

risk of the portfolio is dominated by the risks with the heaviest tails, and the risks

with lighter tails are asymptotically irrelevant. In practice, in order to account

for the estimation errors, the tail parameters, estimated to be similar, could be

assumed to be equal. In this case, the tail risk of the whole portfolio will be

asymptotically equal to the tail risk of the portfolio consisting only of the risks

with the heaviest tails. Alternatively, all distributions could be conservatively

assumed to have the tails as heavy as their heaviest estimate, i.e. ν = min
k

(ν̂k),

where ν̂k, k ∈ {1, 2, . . . , n}, are the estimated tail parameters. Therefore, in the

rest of this example, we assume νk = ν for all k ∈ {1, 2, . . . , n}. To apply Theorem

1.6, we also assume that ν > 1.

Further, we assume that the weights θk are uniformly distributed on [(1 −

λk)ak, (1 + λk)ak], k ∈ {1, 2, . . . , n}. Constants (a1, . . . , an) can be interpreted as

a target portfolio allocation (benchmark), and (λ1, . . . , λn) can be interpreted as

limits for deviation. Then

Eθνk =
1

2λkak

(1+λk)ak∫
(1−λk)ak

xνdx =
aνk ((1 + λk)

ν+1 − (1− λk)
ν+1)

2λk(ν + 1)
.

Using the same way of considerations as in the previous example, for l ∈

{1, 2, . . . , n}, we get

ACql

(
SθX
n

)
∼
q↑1

ν

ν − 1

1

σl

(
n∑

k=1

(σkak)
ν (1 + λk)

ν+1 − (1− λk)
ν+1

2λk(ν + 1)

) 1
ν

VaRq(Xl),

and the asymptotic contributions of individual risks l ∈ {1, 2, . . . , n} are

CIRql

(
SθX
n

)
∼
q↑1

(σlal)
ν 1
λl
((1 + λl)

ν+1 − (1− λl)
ν+1)

n∑
k=1

(σkak)ν
1
λk

((1 + λk)ν+1 − (1− λk)ν+1)
.
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Example 3.4. Let us consider an investment portfolio described in Example 3.3

with θk ≡ ak, k ∈ {1, 2, . . . , n}, where {a1, . . . , an} are positive constants. We are

interested in asymptotic capital allocation of the aggregate risk (negative return)

of the portfolio SaX
n :=

∑n
i=1 aiXi.

Assume that, as in Example 3.3, r.v.s Xk, k ∈ {1, 2, . . . , n}, have t-location-

scale distributions with parameters (µk, σk, ν). To apply Theorem 1.7, we also as-

sume that ν > 1. r.v.s akXk then obviously have t-location-scale distributions with

parameters (akµk, akσk, ν) and ck := lim
t→∞

P(akXk>t)
P(a1X1>t)

=
(

akσk

a1σ1

)ν
, k ∈ {1, . . . , n}.

Moreover, since the density function of a t-location-scale distribution is symmet-

ric around its location parameter, both right and left tails are equally heavy with

lim
t→∞

P(−akXk>t)
P(akXk>t)

= 1 for all k ∈ {1, . . . , n}.

The dependence structure assumed in Theorem 1.7 is very wide. It allows

complex structures with different tail dependence in each orthant. It also allows

dependence structures obtained through mixtures of both tail dependence and tail

independence which allows the tail dependence to be modelled separately from

non-tail dependence. One way to achieve such a flexible dependence structure is

to choose a complex copula function with enough parameters to model all desir-

able properties separately. Another approach is choosing simple copula functions

with few parameters capturing one or several dependence properties and joining

them together in a weighted sum. Since there is a wide variety of simple copula

functions, the latter approach is more intuitive and easier to apply.

Therefore for each i = {i1, . . . , in} ∈ I := {−1, 1}n�{−1}n, we denote X(i)
k =

ikXk1I{ikXk>0} for all k ∈ {1, 2, . . . , n} and denote the copula function of a random

vector {i1X1, . . . , inXn} by C(i), where C is the copula function of a random vector

{X1, . . . , Xn} and it can be expressed as follows

C = w0C0 +
∑
i∈I

wiCi, (3.5)

where w0 > 0, wi > 0, i ∈ I, w0 +
∑
i∈I
wi = 1, C0 is a copula function without

tail dependence on any of the relevant orthants (i.e. only for i = {−1}n) and

Ci, i ∈ I, is a copula function with tail dependence only in the orthant i. More

specifically, for all positive x1, . . . , xn and all i ∈ I, we assume that the limit

lim
u↓0

Ĉj
(i)
(ux1, . . . , uxn)

u
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is positive, if j = i, and equals zero otherwise (including j = 0).

In the bivariate case the most popular copula functions with tail dependence

are Clayton and Gumbel. Since, unlike Gumbel copula, the Clayton copula has

tail dependence in only one orthant, we choose its rotated multivariate versions,

i.e.

Ĉ
(i)
i (u1, . . . , un) :=

(
n∑

k=1

u−θi
k − (n− 1)

)− 1
θi

, θi > 0, i ∈ I,

with the limit

lim
u↓0

Ĉi

(i)
(ux1, . . . , uxn)

u
=

(
n∑

k=1

x−θi
k

)− 1
θi

.

It is easy to show that the limit above equals zero for all other orthants. For

example, if we take the orthant where only the j-th variable differs from i ∈ I,

i.e. j = {i1, . . . , ij−1,−ij, ij+1, . . . , in}, then, since the marginal distributions are

continuous, we have

Ĉ
(j)
i (u1, . . . , un)

= P(F i1X1(i1X1) > u1, . . . , F−ijXj
(−ijXj) > uj, . . . , F inXn(inXn) > un)

= P(F i1X1(i1X1) > u1, . . . , F ijXj
(ijXj) < 1− uj, . . . , F inXn(inXn) > un)

= Ĉ
(i)
i (u1, . . . , uj−1, 1, uj+1, . . . , un)− Ĉ

(i)
i (u1, . . . , uj−1, 1− uj, uj+1, . . . , un)

and

lim
u↓0

Ĉi

(j)
(ux1, . . . , uxn)

u
= lim

u↓0

(∑
k ̸=j

x−θi
k − (n− 2)uθi

)− 1
θi

− lim
u↓0

(∑
k ̸=j

x−θi
k + (1− uxj)

−θiuθi − (n− 1)uθi

)− 1
θi

= 0.

Similarly, the same result can be obtained for other orthants.

Further it can be shown that for all x = (x1, . . . , xn) ∈ (0,∞]n

H(i)(x) := lim
t→∞

P(a1X(i)
1 > tx1, . . . , anX

(i)
n > txn)

P(a1X1 > t)

= lim
t→∞

Ĉ(i)(P(i1a1X1 > tx1), . . . ,P(inanX2 > txn))

P(a1X1 > t)

= lim
t→∞

Ĉ(i)(x−ν
1 c1P(a1X1 > t), . . . , x−ν

n cnP(a1X1 > t))

P(a1X1 > t)

= wi

(
n∑

k=1

xνθik c−θi
k

)− 1
θi

(3.6)
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and H(i)(0, . . . , 0, xk, 0, . . . , 0) = x−ν
k ck for all i ∈ I and positive xk, k = 1, . . . , n.

Hence, if for all (x) ∈ [0,∞]n�{0}n and all i ∈ I we denote

µ
(i)
D ((x1,∞]× · · · × (xn,∞]) :=

(
n∑

k=1

xνθik c−θi
k

)− 1
θi

,

µ
(i)
I ((x1,∞]× · · · × (xn,∞]) :=

0, if xk > 0, ∀k ∈ {1, . . . , n}

x−ν
k ck, if xk > 0, xl = 0, ∀l ∈ {1, . . . , n}�{k}

,

then H(i)(x) = wiµ
(i)
D ((x1,∞]×· · ·×(xn,∞])+(1−wi)µ

(i)
I ((x1,∞]×· · ·×(xn,∞])

for all x ∈ [0,∞]n�{0}n and all i ∈ I and all assumptions of Theorem 1.7 are

satisfied. Therefore, by applying (1.6.2) and Remark 1.1 for k = 1, . . . , n we get

ACqk

(
SaX
n

)
∼
q↑1
CkVaRq

(
SaX
n

)
∼
q↑1
CkD

1
νVaRq(a1X1)

and

CIRqk

(
SaX
n

)
∼
q↑1
Ck

/
ν

ν − 1
,

where

Ck = D−1

∑
i∈I

ikwi

∞∫
0

µ
(i)
D

(
A

(i)
k (z)

)
dz +

ν

ν − 1

(
1−

∑
i∈I
ik=1

wi

)
ck

 ,

D =
∑
i∈I

wiµ
(i)
D

(
A(i)
)
+

n∑
k=1

(
1−

∑
i∈I
ik=1

wi

)
ck,

A
(i)
k (z) =

{
x : xk > z,

n∑
j=1

ijxj > 1

}
, A(i) =

{
x :

n∑
j=1

ijxj > 1

}
,

ck =

(
akσk
a1σ1

)ν

.

Two practical questions immediately arise: how sensitive are the asymptotic

constants to model parameters and how fast is the convergence? To give some

insight into the first question Figure 3.1 presents some numerically computed

constants for particular sets of parameters in the case n = 2. The second question

is partially answered in the next section.

Remark 3.1. From relations in (3.6) we can see that if any of the constants ck
equal zero (i.e. some risks have lighter tails), the limit in (3.6) also equals zero,

since any copula function has zero value if at least one of its parameters equals
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zero. This means that introducing lighter tails not only makes them irrelevant in

the asymptotic analysis, but it also eliminates any tail dependence between other

variables in all respective orthants (half of them, if only one tail is lighter, and all

of them, if both tails are lighter).

a: θk = 2, wk = 0.2, k = 1, 2, 4.

b: θk = 1, wk = 0.2, k = 1, 2, 4.

c: ν = 4, c1/ν2 = 2.

Figure 3.1: Asymptotic constants in the case n = 2, where k represents the k-th

quartile.
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Chapter 4
Simulation study

In this chapter we perform a simulation study for the bivariate case of the model

presented in Example 3.4 with several sets of parameters. The copula function

of (X1, X2) is a sum of five copulas with weights w1, . . . , w5. First four copulas

are Clayton copulas, rotated appropriately so that there is tail dependence in all

four quartiles, with parameters θk in k-th quartile. The fifth copula is Gaussian

with correlation ρ, which is known to have no tail dependence (see McNeil et al.

[46]). Figures 4.1 and 4.2 show scatter plots of u and v generated by C(u, v) with

different copula parameters, where C is a copula function of (X1, X2). For each

set of model parameters we simulate 100 samples of (X1, X2) of size 5,000,000,

compute empirical estimates of constants Cqk := ACqk(S
aX
2 )/VaRq(S

aX
2 ), k = 1, 2,

and Dq :=
(
VaRq(S

aX
2 )/VaRq(a1X1)

)ν for different confidence levels q (from 0.95

to 0.9999) and compare them with numerically computed asymptotic constants.

In each case a1 = a2 = 1, σ1 = 1 and σ2 = 2. The results are presented in Figures

4.3-4.7, where solid lines represent sample averages and dashed lines represent

5-th and 95-th percentiles.
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a: θk = 1, k = 1, . . . , 4. b: θk = 5, k = 1, . . . , 4.

Figure 4.1: wk = 0.2, k = 1, . . . , 5, ρ = 0.

a: ρ = 0.7. b: ρ = −0.7.

Figure 4.2: w1 = w2 = w3 = w4 = 0.1, w5 = 0.6, θk = 3, k = 1, . . . , 4.

a: ν = 2. b: ν = 4.

Figure 4.3: wk = 0.2, k = 1, . . . , 5, θk = 1, k = 1, . . . , 4, ρ = 0, µ1 = µ2 = 0.
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a: ν = 2. b: ν = 4.

Figure 4.4: wk = 0.2, k = 1, . . . , 5, θk = 5, k = 1, . . . , 4, ρ = 0, µ1 = µ2 = 0.

a: θ1 = θ3 = 1, θ2 = θ4 = 5. b: θ1 = θ3 = 5, θ2 = θ4 = 1.

Figure 4.5: wk = 0.2, k = 1, . . . , 5, ρ = 0, ν = 4, µ1 = µ2 = 0.

a: ρ = 0.7. b: ρ = −0.7.

Figure 4.6: w1 = w2 = w3 = w4 = 0.1, w5 = 0.6, θk = 3, k = 1, . . . , 4, ν = 2,

µ1 = µ2 = 0.
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a: µ1 = 0.5, µ2 = −0.5. b: µ1 = µ2 = 0.5.

Figure 4.7: wk = 0.2, k = 1, . . . , 5, θk = 2, k = 1, . . . , 4, ρ = 0, ν = 4.

We can see in Figures 4.3 and 4.4 that the rate of convergence of the constants

Cqk decreases when ν increases, i.e. when the tails get lighter, and is quite similar

for various combinations of tail dependence (see Figure 4.5). For the constant

Dq, on the other hand, the rate of convergence depends on the combination of

all tail parameters. Strong non-tail dependence significantly reduces the rate of

convergence for all constants (see Figure 4.6), while shifting the means slows down

the convergence only if the shifts are to the opposite directions (see Figure 4.7). It

is also worth mentioning that in most cases the approximation of the constant Cqk

with its asymptotic equivalent Ck is more accurate for the position with higher

scale parameter (akσk), i.e. the riskier part of the portfolio is approximated better.
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Chapter 5
Conclusions

In the thesis we investigate the asymptotic properties of both tail probability and

tail expectation of a randomly weighted sum

SθX
n =

n∑
i=1

θiXi,

where {X1, X2, . . . , Xn} are real-valued and heavy-tailed r.v.s, called primary

r.v.s, and {θ1, θ2, . . . , θn} are nonnegative and nondegenerated at zero r.v.s, called

random weights.

This sum has been an attractive research topic in the recent works of applied

probability with the focus on nonnegative primary r.v.s or real-valued primary

r.v.s with various types of tail independence. We further generalize the results for

real-valued r.v.s assuming different distribution classes and dependence structures.

In Theorems 1.3 and 1.4 we introduce some dependence structure between

r.v.s {X1, X2, . . . , Xn} and random weights {θ1, θ2, . . . , θn} but leave the random

vectors {(X1, θ1), (X2, θ2) . . . , (Xn, θn)} being independent. In Theorem 1.4 we re-

strict the dependence to a bivariate Sarmanov distribution and obtain asymptotic

capital allocation formulas for regularly varying distributions.

Further, in Theorems 1.5 and 1.6 we allow primary r.v.s to be dependent

with the assumption of QAI or SQAI but independent from random weights and

obtain asymptotic bounds for the tail probability and tail expectation in the case

of dominatedly varying distributions.

Finally, in Theorem 1.7 we assume θ1 = · · · = θn = 1 and obtain asymptotic

capital allocation formulas in the case where primary r.v.s have tail dependence

and regularly varying distributions. Results of this theorem are verified by a
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simulation study for a multivariate Clayton copula with t-location-scale marginal

distributions.
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