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1 Introduction

Let s = σ + it denote a complex variable, and let forσ > σaj ,

fj(s) =
∞∑

m=1

amje
−λmjs, j = 1, . . . , n,

be a collection of general Dirichlet series. Hereamj are complex numbers,

and{λmj} is an increasing sequence of positive numbers,lim
m→∞

λmj = +∞,

j = 1, . . . , n. In [1] a joint limit theorem for the functionsf1(s), . . . , fn(s)

has been considered. To state it we need some notation and assumptions. We

assume that the functionsf1(s), . . . , fn(s) are meromorphically continuable

to the half-planesσ > σ11, σ11 < σa1, . . ., σ > σ1n, σ1n < σan, respectively,
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and all poles in the regions are included in a compact set. We also suppose

that, forσ > σ1j , the estimates

fj(s) = B|t|δj , |t| ≥ t0, δj > 0, (1)

and
T∫

−T

∣∣fj(σ + it)
∣∣2dt = BT, T → ∞, (2)

j = 1, . . . , n, are satisfied, whereB denotes a quantity bounded by a constant.

Moreover, we assume that

λmj ≥ cj(log m)θj (3)

with some positive constantscj andθj , j = 1, . . . , n.

Denote byγ = {s ∈ C : |s| = 1} the unit circle on the complex planeC,

and let

Ω =
∞∏

m=1

γm,

whereγm = γ for all m ≥ 1, be the infinite-dimensional torus. With product

topology and pointwise multiplication the torusΩ becomes a compact topolo-

gical Abelian group. Therefore, on
(
Ω, B(Ω)

)
, whereB(S) denotes the class

of Borel sets of the spaceS, the probability Haar measuremH exists, and this

leads to a probability space
(
Ω, B(Ω), mH

)
. Denote byω(m) the projection

of ω ∈ Ω to the coordinate spaceγm.

Let G be a region onC. Denote byH(G) the space of analytic onG

functions equipped with the topology of uniform convergence on compacta.

Let Dj = {s ∈ C : σ > σ1j}, and put

Hn = Hn(D1, . . . , Dn) = H(D1) × . . . × H(Dn).

Now on the probability space
(
Ω, B(Ω), mH

)
we define anHn-valued random

elementF (s1, . . . , sn; ω) by the formula

F (s1, . . . , sn; ω) =
(
f1(s1, ω), . . . , fn(sn, ω)

)
,
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where

fj(sj , ω) =
∞∑

m=1

amjω(m)e−λmjsj , s ∈ Dj , j = 1, . . . , n.

Now we define the space of meromorphic functions. LetC∞ = C
⋃
{∞}

be the Riemann sphere with the spherical metric given by the formulas

d(s1, s2) =
2|s1 − s2|√

1 + |s1|2
√

1 + |s2|2
,

d(s,∞) =
2√

1 + |s|2
, d(∞,∞) = 0,

s1, s2, s ∈ C.

Let M(G) stand for the space of meromorphic functionsg : G → (C∞, d)

equipped with the topology of uniform convergence on compacta. In this

topology, a sequencegn(s) ∈ M(G) converges to a functiong(s) ∈ M(G), if

d
(
gn(s), g(s)

)
→ 0

asn → ∞ uniformly on compact subsets ofG. We put

Mn = Mn(D1, . . . , Dn) = M(D1) × . . . × M(Dn),

and let, forT > 0,

νT (. . .) =
1

T
meas

{
τ ∈ [0, T ] : . . .

}
,

where the dots denote some condition satisfied byτ . Then in [1] the following

statement was given.

Theorem 1. For j = 1, . . . , n, suppose that the sets{log 2} ∪
∞⋃

m=1
{λmj} are

linearly independent over the field of rational numbers, and that forfj(s) the

conditions(1)–(3) are satisfied. Then the probability measure

νT

((
f1(s + iτ), . . . , fn(s + iτ)

)
∈ A

)
, A ∈ B(Mn),

converges weakly to the distribution of the random elementF (s1, . . . , sn; ω)

asT → ∞.
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However, the proof of Theorem 1 has a gap. For its validity the hypothesis

on the linear independence of the sets{log 2} ∪
∞⋃

m=1
{λmj}, j = 1, . . . , n,

must be replaced by that on the linear independence of the set{log 2} ∪
n⋃

j=1

∞⋃
m=1

{λmj}. However, the main shortcoming of Theorem 1 is the presence

of the numberlog 2 in its hypotheses. This is not natural and not convenient.

The aim of this note is to consider a collection of general Dirichlet series

with the same exponents and to remove the numberlog 2 from the hypothesis

on the linear independence.

Let, for σ > σaj ,

fj(s) =
∞∑

m=1

amje
−λms, j = 1, . . . , n,

and let in the definition ofF (s1, . . . , sn; ω)

fj(sj , ω) =
∞∑

m=1

amjω(m)e−λmsj , s ∈ Dj , j = 1, . . . , n.

Theorem 2. Suppose that the system of exponents{λm} is linearly indepen-

dent over the field of rational numbers, and that forfj(s), j = 1, . . . , n, the

conditions(1)–(3) are satisfied. Then the assertion of Theorem 1 is valid.

The proof of the theorem is similar to that of Theorem 1 but simpler and

shorter than in [1].

2 A limit theorem in H2n

We begin with a limit theorem in the space

H2n = H2n(D1, . . . , Dn) = H2(D1) × . . . × H2(Dn).

Denote the poles of the functionfj(s) in the regionσ > σ1j by s1j , . . .,

srjj , j = 1, . . . , n, and define

f1j(s) =

rj∏

l=1

(
1 − eλ1(slj−s)

)
.

30



On Joint Distribution of General Dirichlet Series

Then, clearly,f1j(slj) = 0 for l = 1, . . . , rj , j = 1, . . . , n. This shows that

the function

f2j(s) = f1j(s)fj(s)

is regular onDj , j = 1, . . . , n. We write

f1j(sj , ω) =

rj∏

l=1

(
1 − eλ1(slj−s)ω(1)

)

and

f2j(sj , ω) =

rj∑

l=0

∞∑

m=1

a
(j)
m,lω

l(1)ω(m)e−(λm+lλ1)s,

sj ∈ Dj , j = 1, . . . , n,

where the coefficientsa(j)
m,l are defined by

f2j(s) =

rj∑

l=0

∞∑

m=1

a
(j)
m,le

−(λm+lλ1)s, σ > σaj , j = 1, . . . , n.

Moreover, we set

Qj(s, ω) =
(
f1j(s, ω), f2j(s, ω)

)
, sj ∈ Dj , j = 1, . . . , n,

and define a probability measure

QT,j(A) = νT

((
f1j(s + iτ), f2j(s + iτ)

)
∈ A

)
,

A ∈ B
(
H2(Dj)

)
, j = 1, . . . , n.

Lemma 1. For j = 1, . . . , n, the probability measureQT,j converges weakly

to the distribution of the random elementQj asT → ∞.

The lemma is Lemma 10 from [2].

Now let

Q = Q(s1, . . . , sn; ω) =
(
Q1(s1, ω), . . . , Qn(sn, ω)

)
,

sj ∈ Dj , j = 1, . . . , n,

and

QT (A) =νT

((
f11(s1 + iτ), f21(s1 + iτ), . . . ,

f1n(sn + iτ), f2n(sn + iτ)
)
∈ A

)
, A ∈ B(H2n).
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Lemma 2. The probability measureQT converges weakly to the distribution

of the random elementQ asT → ∞.

Proof. First we prove that the family of probability measures{QT } is rela-

tively compact, i.e. every sequence of{QT } contains a weakly convergent

subsequence. By Lemma 1, for everyj = 1, . . . , n, the probability measure

νT

((
f1j(s + iτ), f2j(s + iτ)

)
∈ A

)
, A ∈ B

(
H2(Dj)

)
,

converges weakly to the distribution of the random elementQj(s, ω) as

T → ∞. Therefore, the family of probability measures{QT,j} is relatively

compact,j = 1, . . . , n. SinceH2(Dj) is a complete separable space, by the

Prokhorov theorem [3], hence we have that the family{QT,j} is tight, i.e. for

an arbitraryε > 0 there exists a compact subsetKj ⊂ H2(Dj) such that

QT,j

(
H2(Dj) \ Kj

)
<

ε

n
, j = 1, . . . , n, (4)

for all T > 0. Let a random variableηT be defined on a probability space

(Ω̂, F, P) and have the distribution

P(ηT ∈ A) =
meas

{
A

⋂
[0, T ]

}

T
, A ∈ B(R).

Consider theH2(Dj)-valued random elementfT,j(s) defined by

fT,j(s) =
(
(f1j(s + iηT ), f2j(s + iηT )

)
, j = 1, . . . , n.

Taking into account (4), we have

P
(
fT,j(s) ∈ H2(Dj) \ Kj

)
<

ε

n
, j = 1, . . . , n. (5)

Now let

fT (s1, . . . , sn) =
(
fT,1(s1), . . . , fT,n(sn)

)
, sj ∈ Dj , j = 1, . . . , n,

and letK = K1 × . . . × Kn. ThenK is a compact subset of the spaceH2n.

Moreover, (5) yields

QT (H2n \ K) = P
(
fT (s1, . . . , sn) ∈ H2n \ K

)

= P

( n⋃

j=1

(fT,j(s) ∈ H2(Dj)\Kj)
)

≤
n∑

j=1

P
(
fT,j(s) ∈ H2(Dj)\Kj

)
< ε
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for all T > 0. This means that the family of probability measures{QT } is

tight. Hence, by the Prokhorov theorem, it is relatively compact.

Now we take arbitrary pointss(j)
1 , . . . , s

(j)
k in the regionDj , and put

σ
(j)
1 = min

1≤l≤k
Re(s

(j)
l ), j = 1, . . . , n.

Clearly,

σ
(j)
2

def
= σ1j − σ

(j)
1 < 0, j = 1, . . . , n.

Define a regionD by

D =
{
s ∈ C : σ > max

1≤j≤n
σ

(j)
2

}
.

Let ujl, j = 1, . . . , n, l = 1, . . . , k, be arbitrary complex numbers. Define

a functionh : H2n → H(D) by the formula

h(g11, g21, . . . , g1n, g2n; s) =
2∑

r=1

n∑

j=1

k∑

l=1

ujlgrj(s
(j)
s + s),

wheres ∈ D, andgrj ∈ H(Dj), r = 1, 2, j = 1, . . . , n. Moreover, let

ϕh(s) = h
(
f11(s1), f21(s1), . . . , f1n(sn), f2n(sn); s

)
.

We will prove that

ϕh(s + iηT )
D
−→

T→∞
h(Q; s),

where
D
−→

T→∞
means the convergence in distribution. Clearly, for allj=1, . . . ,n,

f1j(s) =

rj∑

m=0

bmje
−λ1ms

is a Dirichlet polynomial. In the region of absolute convergenceσ > σaj we

have that

f2j(s) =

rj∑

l=0

∞∑

m=1

a
(j)
m,le

−(λm+lλ1)s, σ > σaj , j = 1, . . . , n.
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We putr = max
1≤j≤n

rj ,

b̂mj =

{
bmj , m ≤ rj ,

0, m > rj ,

vm =
k∑

l=1

uj,lb̂mje
−λ1ms

(j)
l ,

â
(j)
m,θ =

{
a

(j)
m,θ, θ ≤ rj ,

0, θ > rj ,

and

b
(j)
m,θ,l = â

(j)
m,θe

−(λm+θλ1)s
(j)
l .

Now suppose that

σ > max
1≤j≤n

(
σ

(j)
2 + (σaj − σ1j)

)
.

From the definition of the functionh we find

ϕh(s) =

n∑

j=1

k∑

l=1

ujl

rj∑

m=0

bmje
−λ1m(s

(j)
l

+s)

+
n∑

j=1

k∑

l=1

ujl

rj∑

θ=0

∞∑

m=1

a
(j)
m,θe

−(λm+θλ1)(s
(j)
l

+s)

=
r∑

m=0

vme−λ1ms +
n∑

j=1

k∑

l=1

ujl

r∑

θ=0

∞∑

m=1

b
(j)
m,θ,le

−(λm+θλ1)s

def
= Dr(s) + D̂r(s),

where

Dr(s) =

r∑

m=0

vme−λ1ms

is a Dirichlet polynomial, and̂Dr(s) is a linear combination of Dirichlet series

satisfying conditions (1)–(3). Clearly, the function̂Dr(s) is regular onD.
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Since the set{λm} is linearly independent over the field of rational num-

bers it can be obtained by using standard arguments, see, for example, [4],

Chapter 5, that the probability measure

νT

((
Dr(s + iτ) + D̂r(s + iτ)

)
∈ A

)
, A ∈ B

(
H(D)

)
,

converges weakly to the distribution of theH(D)-valued random element

ϕh(s, ω)
def
=

r∑

m=0

vmωm(1)e−λ1ms

+
n∑

j=1

k∑

l=1

ujl

r∑

θ=0

∞∑

m=1

b
(j)
m,θ,lω

θ(1)ω(m)e−(λm+θλ1)s.

(6)

Thus, we have proved that the probability measure

νT (ϕh(s + iτ) ∈ A) , A ∈ B
(
H(D)

)
,

converges to the distribution of the random element (6) asT → ∞. However,

by the definition ofh

ϕh(s, ω) =
n∑

j=1

k∑

l=1

ujl

rj∑

m=0

bmjω
m(1)e−λ1m(s

(j)
l

+s)

+
n∑

j=1

k∑

l=1

ujl

rj∑

θ=0

∞∑

m=1

a
(j)
m,lω

θ(1)ω(m)e−(λm+θλ1)(s
(j)
l

+s)

=
2∑

r=1

n∑

j=1

k∑

l=1

ujlfrf (s
(j)
j + s, ω) = h(Q; s),

and therefore

ϕh(s + iηT )
D
−→

T→∞
h(Q; s). (7)

Now we are ready to prove Lemma 2. We have seen that the family

of probability measures{QT } is relatively compact. Hence we can find a

sequenceT1 → ∞ such that the measureQT1 converge weakly to some

probability measureQ0 on
(
H2n, B(H2n)

)
asT1 → ∞. This shows that there

exists anH2n-valued random element

f̂ = f̂(s1, . . . , sn) =
(
f̂11(s1), f̂21(s1), . . . , f̂1n(sn), f̂2n(sn)

)
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with distributionQ0 defined, say, on a certain probability space(Ω0, F0, P0).

Write the random elementfT (s1, . . . , sn) in the form

fT = fT (s1, . . . , sn) = (fT,11(s1), fT,21(s1), . . . ., fT,1n(sn), fT,2n(sn)),

where

fT,1j(sj) = f1j(sj + iηT ),

fT,2j(sj) = f2j(sj + iηT ),

andsj ∈ Dj , j = 1, . . . , n. By the choise ofT1 we have thatfT1

D
−→

T1→∞
f̂ , and

therefore

h(fT1)
D
−→

T1→∞
h(f̂ ; s).

Hence, in view of the definition ofϕh(s),

ϕh(s + iηT1)
D
−→

T1→∞
h(f̂ ; s). (8)

On the other hand, (7) shows that

ϕh(s + iηT1)
D
−→

T1→∞
h(Q; s).

This and (8) yield

h(Q; s)
D
=h(f̂ ; s). (9)

Let the functionu : H(D) → C be given by the formula

u(f) = f(0), f ∈ H(D). (10)

The topology of the spaceH(D) shows that the functionu is measurable, and

therefore by (9)

u
(
h(Q; s)

) D
=u

(
h(f̂ ; s)

)
,

and

h(Q; 0)
D
=h(f̂ ; 0)
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by (10). From this it follows that

2∑

r=1

n∑

j=1

k∑

l=1

ujlfrj(s
(j)
l , ω)

D
=

2∑

r=1

n∑

j=1

k∑

l=1

ujlf̂rj(s
(j)
l ) (11)

for arbitrary complex numbersujl. It is well known [3] that all hyperplanes in

R
4nk generates a determining class, and therefore they generate a determining

class inC2nk. Consequently, in view of (11) theC2nk-valued random elements

frj(s
(j)
l , ω) andf̂rj(s

(j)
l ), r = 1, 2, j = 1, . . . , n, l = 1, . . . , k, have the same

distributions.

Let Kj be an arbitrary compact subset ofDj , and letvrj(s) ∈ H(Dj),

r = 1, 2. Now we suppose that the set{s(j)
l , 1 ≤ l < ∞} is dense inKj ,

j = 1, . . . , n. Consider the sets of functions

G =
{
(g11, g21, . . . , g1n, g2n) ∈ H2n : sup

s∈Kj

∣∣grj(s) − vrj(s)
∣∣ ≤ ε,

j = 1, . . . , n, r = 1, 2
}

and

Gk =
{
(g11, g21, . . . , g1n, g2n) ∈ H2n :

∣∣grj(s
(j)
l ) − vrj(s

(j)
l )

∣∣ ≤ ε,

j = 1, . . . , n, l = 1, . . . , k, r = 1, 2
}
.

Since the distributions of the random elementsfrj(s
(j)
l , ω) and f̂rj(s

(j)
l ),

r = 1, 2, j = 1, . . . , n, l = 1, . . . , k, coincide we have

mH

(
ω∈Ω: Q(s1, . . . , sn, ω) ∈ Gk

)
=P0

(
f̂(s1, . . . , sn)∈Gk

)
. (12)

Clearly,G1 ⊃ G2 ⊃ . . .. This and the denseness of{s
(j)
l , 1 ≤ l < ∞} show

thatGk → G ask → ∞. Hence and from (12) we deduce that

mH

(
ω ∈ Ω: Q(s1, . . . , sn, ω) ∈ G

)
= P0

(
f̂(s1, . . . , sn) ∈ G

)
. (13)

SinceH2n is a separable space, finite intersections of spheres in it form a

determining class [3]. Therefore, (13) yields

Q
D
=f̂ .

SincefT1

D
−→

T1→∞
f̂ , hence it follows that

fT1

D
−→

T1→∞
Q.
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In other words, the probability measureQT1 converges weakly to the distribu-

tion Q̂ of the random elementQ asT1 → ∞. Since the family of probability

measures{QT } is relatively compact, the measurêQ is independent on the

choice of the sequenceQT1 . SinceQT converges weakly tôQ asT → ∞ if

and only if every subsequence{QT1} of {QT } contains another subsequence

{QT2} weakly convergent tôQ asT2 → ∞, hence we obtain the lemma.

3 Proof of Theorem 2

Define a metric on the spacesH2n andMn as the maximum of the metrics on

the coordinate spaces. Let the functionu : H2n → Mn be given by the formula

u(g11, g21, . . . , g1n, g2n) =

(
g21

g11
, . . . ,

g2n

g1n

)
,

whereg1j , g2j ∈ Hj , j = 1, . . . , n. In virtue of the equality

d(g1, g2) = d

(
1

g1
,

1

g2

)

for the spherical metric we have thatu is a continuous function. Therefore, by

Lemma 2 the probability measure

νT

((
f1(s1 + iτ), . . . ., fn(sn + iτ)

)
∈ A

)

= νT

((
f21(s1 + iτ)

f11(s1 + iτ)
, . . . .,

f2n(sn + iτ)

f1n(sn + iτ)

)
∈ A

)
, A ∈ B(Mn),

converges weakly to the distribution of the random element
(

f21(s1, ω)

f11(s1, ω)
, . . . ,

f2n(sn, ω)

f1n(sn, ω)

)
,

where

f2j(sj , ω)

f11(sj , ω)
=

rj∑
l=0

∞∑
m=1

a
(j)
m,lω

l(1)ω(m)e−(λm+lλ1)sj

rj∏
l=1

(
1 − ω(1)eλ1(slj−sj)

)

=
∞∑

m=1

amjω(1)ω(m)e−λmsj = fj(sj , ω),

sj ∈ Dj , j = 1, . . . ., n.
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4. Lauriňcikas A. Limit Theorems for the Riemann Zeta-Function,Kluwer,
Dordrecht, 1996

39


