# On Joint Distribution of General Dirichlet Series * 

J. Genys ${ }^{1}$, A. Laurinčikas ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, Šiauliai University<br>Vytauto 84, LT-5400 Šiauliai, Lithuania mat.kat@fm.su.lt<br>${ }^{2}$ Department of Probability Theory and Number Theory, Vilnius University<br>Naugarduko 24, LT-2600 Vilnius, Lithuania<br>antanas.laurincikas@maf.vu.lt

Received: 24.06.2003
Accepted: 25.09.2003


#### Abstract

In the paper a joint limit theorem in the sense of the weak convergence in the space of meromorphic functions for general Dirichlet series is proved under weaker conditions as in [1].


Keywords: distribution, general Dirichlet series, probability measure, weak convergence.

## 1 Introduction

Let $s=\sigma+i t$ denote a complex variable, and let for $\sigma>\sigma_{a j}$,

$$
f_{j}(s)=\sum_{m=1}^{\infty} a_{m j} e^{-\lambda_{m j} s}, \quad j=1, \ldots, n,
$$

be a collection of general Dirichlet series. Here $a_{m j}$ are complex numbers, and $\left\{\lambda_{m j}\right\}$ is an increasing sequence of positive numbers, $\lim _{m \rightarrow \infty} \lambda_{m j}=+\infty$, $j=1, \ldots, n$. In [1] a joint limit theorem for the functions $f_{1}(s), \ldots, f_{n}(s)$ has been considered. To state it we need some notation and assumptions. We assume that the functions $f_{1}(s), \ldots, f_{n}(s)$ are meromorphically continuable to the half-planes $\sigma>\sigma_{11}, \sigma_{11}<\sigma_{a 1}, \ldots, \sigma>\sigma_{1 n}, \sigma_{1 n}<\sigma_{a n}$, respectively,

[^0]and all poles in the regions are included in a compact set. We also suppose that, for $\sigma>\sigma_{1 j}$, the estimates
\[

$$
\begin{equation*}
f_{j}(s)=B|t|^{\delta_{j}}, \quad|t| \geq t_{0}, \quad \delta_{j}>0, \tag{1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\int_{-T}^{T}\left|f_{j}(\sigma+i t)\right|^{2} d t=B T, \quad T \rightarrow \infty \tag{2}
\end{equation*}
$$

$j=1, \ldots, n$, are satisfied, where $B$ denotes a quantity bounded by a constant. Moreover, we assume that

$$
\begin{equation*}
\lambda_{m j} \geq c_{j}(\log m)^{\theta_{j}} \tag{3}
\end{equation*}
$$

with some positive constants $c_{j}$ and $\theta_{j}, j=1, \ldots, n$.
Denote by $\gamma=\{s \in \mathbb{C}:|s|=1\}$ the unit circle on the complex plane $\mathbb{C}$, and let

$$
\Omega=\prod_{m=1}^{\infty} \gamma_{m},
$$

where $\gamma_{m}=\gamma$ for all $m \geq 1$, be the infinite-dimensional torus. With product topology and pointwise multiplication the torus $\Omega$ becomes a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, where $\mathcal{B}(S)$ denotes the class of Borel sets of the space $S$, the probability Haar measure $m_{H}$ exists, and this leads to a probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega(m)$ the projection of $\omega \in \Omega$ to the coordinate space $\gamma_{m}$.

Let $G$ be a region on $\mathbb{C}$. Denote by $H(G)$ the space of analytic on $G$ functions equipped with the topology of uniform convergence on compacta. Let $D_{j}=\left\{s \in \mathbb{C}: \sigma>\sigma_{1 j}\right\}$, and put

$$
H_{n}=H_{n}\left(D_{1}, \ldots, D_{n}\right)=H\left(D_{1}\right) \times \ldots \times H\left(D_{n}\right) .
$$

Now on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$ we define an $H_{n}$-valued random element $F\left(s_{1}, \ldots, s_{n} ; \omega\right)$ by the formula

$$
F\left(s_{1}, \ldots, s_{n} ; \omega\right)=\left(f_{1}\left(s_{1}, \omega\right), \ldots, f_{n}\left(s_{n}, \omega\right)\right),
$$

where

$$
f_{j}\left(s_{j}, \omega\right)=\sum_{m=1}^{\infty} a_{m j} \omega(m) e^{-\lambda_{m j} s_{j}}, \quad s \in D_{j}, \quad j=1, \ldots, n .
$$

Now we define the space of meromorphic functions. Let $\mathbb{C}_{\infty}=\mathbb{C} \bigcup\{\infty\}$ be the Riemann sphere with the spherical metric given by the formulas

$$
\begin{aligned}
d\left(s_{1}, s_{2}\right) & =\frac{2\left|s_{1}-s_{2}\right|}{\sqrt{1+\left|s_{1}\right|^{2}} \sqrt{1+\left|s_{2}\right|^{2}}}, \\
d(s, \infty) & =\frac{2}{\sqrt{1+|s|^{2}}}, \quad d(\infty, \infty)=0, \\
s_{1}, s_{2}, s & \in \mathbb{C} .
\end{aligned}
$$

Let $M(G)$ stand for the space of meromorphic functions $g: G \rightarrow\left(\mathbb{C}_{\infty}, d\right)$ equipped with the topology of uniform convergence on compacta. In this topology, a sequence $g_{n}(s) \in M(G)$ converges to a function $g(s) \in M(G)$, if

$$
d\left(g_{n}(s), g(s)\right) \rightarrow 0
$$

as $n \rightarrow \infty$ uniformly on compact subsets of $G$. We put

$$
M_{n}=M_{n}\left(D_{1}, \ldots, D_{n}\right)=M\left(D_{1}\right) \times \ldots \times M\left(D_{n}\right),
$$

and let, for $T>0$,

$$
\nu_{T}(\ldots)=\frac{1}{T} \operatorname{meas}\{\tau \in[0, T]: \ldots\}
$$

where the dots denote some condition satisfied by $\tau$. Then in [1] the following statement was given.

Theorem 1. For $j=1, \ldots, n$, suppose that the sets $\{\log 2\} \cup \bigcup_{m=1}^{\infty}\left\{\lambda_{m j}\right\}$ are linearly independent over the field of rational numbers, and that for $f_{j}(s)$ the conditions (1)-(3) are satisfied. Then the probability measure

$$
\nu_{T}\left(\left(f_{1}(s+i \tau), \ldots, f_{n}(s+i \tau)\right) \in A\right), \quad A \in \mathcal{B}\left(M_{n}\right),
$$

converges weakly to the distribution of the random element $F\left(s_{1}, \ldots, s_{n} ; \omega\right)$ as $T \rightarrow \infty$.

However, the proof of Theorem 1 has a gap. For its validity the hypothesis on the linear independence of the sets $\{\log 2\} \cup \bigcup_{m=1}^{\infty}\left\{\lambda_{m j}\right\}, j=1, \ldots, n$, must be replaced by that on the linear independence of the set $\{\log 2\} \cup$ $\bigcup_{j=1}^{n} \bigcup_{m=1}^{\infty}\left\{\lambda_{m j}\right\}$. However, the main shortcoming of Theorem 1 is the presence of the number $\log 2$ in its hypotheses. This is not natural and not convenient.

The aim of this note is to consider a collection of general Dirichlet series with the same exponents and to remove the number $\log 2$ from the hypothesis on the linear independence.

Let, for $\sigma>\sigma_{a j}$,

$$
f_{j}(s)=\sum_{m=1}^{\infty} a_{m j} e^{-\lambda_{m} s}, \quad j=1, \ldots, n
$$

and let in the definition of $F\left(s_{1}, \ldots, s_{n} ; \omega\right)$

$$
f_{j}\left(s_{j}, \omega\right)=\sum_{m=1}^{\infty} a_{m j} \omega(m) e^{-\lambda_{m} s_{j}}, \quad s \in D_{j}, \quad j=1, \ldots, n
$$

Theorem 2. Suppose that the system of exponents $\left\{\lambda_{m}\right\}$ is linearly independent over the field of rational numbers, and that for $f_{j}(s), j=1, \ldots, n$, the conditions (1)-(3) are satisfied. Then the assertion of Theorem 1 is valid.

The proof of the theorem is similar to that of Theorem 1 but simpler and shorter than in [1].

## 2 A limit theorem in $\boldsymbol{H}_{2 n}$

We begin with a limit theorem in the space

$$
H_{2 n}=H_{2 n}\left(D_{1}, \ldots, D_{n}\right)=H^{2}\left(D_{1}\right) \times \ldots \times H^{2}\left(D_{n}\right)
$$

Denote the poles of the function $f_{j}(s)$ in the region $\sigma>\sigma_{1 j}$ by $s_{1 j}, \ldots$, $s_{r_{j} j}, j=1, \ldots, n$, and define

$$
f_{1 j}(s)=\prod_{l=1}^{r_{j}}\left(1-e^{\lambda_{1}\left(s_{l j}-s\right)}\right)
$$

Then, clearly, $f_{1 j}\left(s_{l j}\right)=0$ for $l=1, \ldots, r_{j}, j=1, \ldots, n$. This shows that the function

$$
f_{2 j}(s)=f_{1 j}(s) f_{j}(s)
$$

is regular on $D_{j}, j=1, \ldots, n$. We write

$$
f_{1 j}\left(s_{j}, \omega\right)=\prod_{l=1}^{r_{j}}\left(1-e^{\lambda_{1}\left(s_{l j}-s\right)} \omega(1)\right)
$$

and

$$
\begin{aligned}
& f_{2 j}\left(s_{j}, \omega\right)=\sum_{l=0}^{r_{j}} \sum_{m=1}^{\infty} a_{m, l}^{(j)} \omega^{l}(1) \omega(m) e^{-\left(\lambda_{m}+l \lambda_{1}\right) s}, \\
& s_{j} \in D_{j}, \quad j=1, \ldots, n
\end{aligned}
$$

where the coefficients $a_{m, l}^{(j)}$ are defined by

$$
f_{2 j}(s)=\sum_{l=0}^{r_{j}} \sum_{m=1}^{\infty} a_{m, l}^{(j)} e^{-\left(\lambda_{m}+l \lambda_{1}\right) s}, \quad \sigma>\sigma_{a j}, \quad j=1, \ldots, n
$$

Moreover, we set

$$
Q_{j}(s, \omega)=\left(f_{1 j}(s, \omega), f_{2 j}(s, \omega)\right), \quad s_{j} \in D_{j}, \quad j=1, \ldots, n
$$

and define a probability measure

$$
\begin{aligned}
& Q_{T, j}(A)=\nu_{T}\left(\left(f_{1 j}(s+i \tau), f_{2 j}(s+i \tau)\right) \in A\right), \\
& A \in \mathcal{B}\left(H^{2}\left(D_{j}\right)\right), \quad j=1, \ldots, n
\end{aligned}
$$

Lemma 1. For $j=1, \ldots, n$, the probability measure $Q_{T, j}$ converges weakly to the distribution of the random element $Q_{j}$ as $T \rightarrow \infty$.

The lemma is Lemma 10 from [2].
Now let

$$
\begin{aligned}
& Q=Q\left(s_{1}, \ldots, s_{n} ; \omega\right)=\left(Q_{1}\left(s_{1}, \omega\right), \ldots, Q_{n}\left(s_{n}, \omega\right)\right), \\
& s_{j} \in D_{j}, \quad j=1, \ldots, n
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{T}(A)= & \nu_{T}\left(\left(f_{11}\left(s_{1}+i \tau\right), f_{21}\left(s_{1}+i \tau\right), \ldots,\right.\right. \\
& \left.\left.f_{1 n}\left(s_{n}+i \tau\right), f_{2 n}\left(s_{n}+i \tau\right)\right) \in A\right), \quad A \in \mathcal{B}\left(H^{2 n}\right) .
\end{aligned}
$$

Lemma 2. The probability measure $Q_{T}$ converges weakly to the distribution of the random element $Q$ as $T \rightarrow \infty$.

Proof. First we prove that the family of probability measures $\left\{Q_{T}\right\}$ is relatively compact, i.e. every sequence of $\left\{Q_{T}\right\}$ contains a weakly convergent subsequence. By Lemma 1 , for every $j=1, \ldots, n$, the probability measure

$$
\nu_{T}\left(\left(f_{1 j}(s+i \tau), f_{2 j}(s+i \tau)\right) \in A\right), \quad A \in \mathcal{B}\left(H^{2}\left(D_{j}\right)\right),
$$

converges weakly to the distribution of the random element $Q_{j}(s, \omega)$ as $T \rightarrow \infty$. Therefore, the family of probability measures $\left\{Q_{T, j}\right\}$ is relatively compact, $j=1, \ldots, n$. Since $H^{2}\left(D_{j}\right)$ is a complete separable space, by the Prokhorov theorem [3], hence we have that the family $\left\{Q_{T, j}\right\}$ is tight, i.e. for an arbitrary $\varepsilon>0$ there exists a compact subset $K_{j} \subset H^{2}\left(D_{j}\right)$ such that

$$
\begin{equation*}
Q_{T, j}\left(H^{2}\left(D_{j}\right) \backslash K_{j}\right)<\frac{\varepsilon}{n}, \quad j=1, \ldots, n, \tag{4}
\end{equation*}
$$

for all $T>0$. Let a random variable $\eta_{T}$ be defined on a probability space $(\widehat{\Omega}, \mathcal{F}, \mathbb{P})$ and have the distribution

$$
\mathbb{P}\left(\eta_{T} \in A\right)=\frac{\operatorname{meas}\{A \bigcap[0, T]\}}{T}, \quad A \in \mathcal{B}(R) .
$$

Consider the $H^{2}\left(D_{j}\right)$-valued random element $f_{T, j}(s)$ defined by

$$
f_{T, j}(s)=\left(\left(f_{1 j}\left(s+i \eta_{T}\right), f_{2 j}\left(s+i \eta_{T}\right)\right), \quad j=1, \ldots, n\right.
$$

Taking into account (4), we have

$$
\begin{equation*}
\mathbb{P}\left(f_{T, j}(s) \in H^{2}\left(D_{j}\right) \backslash K_{j}\right)<\frac{\varepsilon}{n}, \quad j=1, \ldots, n . \tag{5}
\end{equation*}
$$

Now let

$$
f_{T}\left(s_{1}, \ldots, s_{n}\right)=\left(f_{T, 1}\left(s_{1}\right), \ldots, f_{T, n}\left(s_{n}\right)\right), \quad s_{j} \in D_{j}, \quad j=1, \ldots, n,
$$

and let $K=K_{1} \times \ldots \times K_{n}$. Then $K$ is a compact subset of the space $H_{2 n}$. Moreover, (5) yields

$$
\begin{aligned}
Q_{T}\left(H_{2 n} \backslash K\right) & =\mathbb{P}\left(f_{T}\left(s_{1}, \ldots, s_{n}\right) \in H_{2 n} \backslash K\right) \\
& =\mathbb{P}\left(\bigcup_{j=1}^{n}\left(f_{T, j}(s) \in H_{2}\left(D_{j}\right) \backslash K_{j}\right)\right) \\
& \leq \sum_{j=1}^{n} \mathbb{P}\left(f_{T, j}(s) \in H_{2}\left(D_{j}\right) \backslash K_{j}\right)<\varepsilon
\end{aligned}
$$

for all $T>0$. This means that the family of probability measures $\left\{Q_{T}\right\}$ is tight. Hence, by the Prokhorov theorem, it is relatively compact.

Now we take arbitrary points $s_{1}^{(j)}, \ldots, s_{k}^{(j)}$ in the region $D_{j}$, and put

$$
\sigma_{1}^{(j)}=\min _{1 \leq l \leq k} \operatorname{Re}\left(s_{l}^{(j)}\right), \quad j=1, \ldots, n .
$$

Clearly,

$$
\sigma_{2}^{(j)} \stackrel{\text { def }}{=} \sigma_{1 j}-\sigma_{1}^{(j)}<0, \quad j=1, \ldots, n .
$$

Define a region $D$ by

$$
D=\left\{s \in \mathbb{C}: \sigma>\max _{1 \leq j \leq n} \sigma_{2}^{(j)}\right\}
$$

Let $u_{j l}, j=1, \ldots, n, l=1, \ldots, k$, be arbitrary complex numbers. Define a function $h: H_{2 n} \rightarrow H(D)$ by the formula

$$
h\left(g_{11}, g_{21}, \ldots, g_{1 n}, g_{2 n} ; s\right)=\sum_{r=1}^{2} \sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} g_{r j}\left(s_{s}^{(j)}+s\right),
$$

where $s \in D$, and $g_{r j} \in H\left(D_{j}\right), r=1,2, j=1, \ldots, n$. Moreover, let

$$
\varphi_{h}(s)=h\left(f_{11}\left(s_{1}\right), f_{21}\left(s_{1}\right), \ldots, f_{1 n}\left(s_{n}\right), f_{2 n}\left(s_{n}\right) ; s\right) .
$$

We will prove that

$$
\varphi_{h}\left(s+i \eta_{T}\right) \underset{T \rightarrow \infty}{\stackrel{\mathcal{D}}{\rightarrow}} h(Q ; s),
$$

where $\underset{T \rightarrow \infty}{\mathcal{D}}$ means the convergence in distribution. Clearly, for all $j=1, \ldots, n$,

$$
f_{1 j}(s)=\sum_{m=0}^{r_{j}} b_{m j} e^{-\lambda_{1} m s}
$$

is a Dirichlet polynomial. In the region of absolute convergence $\sigma>\sigma_{a j}$ we have that

$$
f_{2 j}(s)=\sum_{l=0}^{r_{j}} \sum_{m=1}^{\infty} a_{m, l}^{(j)} e^{-\left(\lambda_{m}+l \lambda_{1}\right) s}, \quad \sigma>\sigma_{a j}, \quad j=1, \ldots, n
$$

$$
\begin{gathered}
\text { We put } r=\max _{1 \leq j \leq n} r_{j}, \\
\widehat{b}_{m j}= \begin{cases}b_{m j}, & m \leq r_{j}, \\
0, & m>r_{j},\end{cases} \\
v_{m}=\sum_{l=1}^{k} u_{j, l} \widehat{b}_{m j} e^{-\lambda_{1} m s_{l}^{(j)}}, \\
\widehat{a}_{m, \theta}^{(j)}= \begin{cases}a_{m, \theta}^{(j)}, & \theta \leq r_{j}, \\
0, & \theta>r_{j},\end{cases}
\end{gathered}
$$

and

$$
b_{m, \theta, l}^{(j)}=\widehat{a}_{m, \theta}^{(j)} e^{-\left(\lambda_{m}+\theta \lambda_{1}\right) s_{l}^{(j)}}
$$

Now suppose that

$$
\sigma>\max _{1 \leq j \leq n}\left(\sigma_{2}^{(j)}+\left(\sigma_{a j}-\sigma_{1 j}\right)\right)
$$

From the definition of the function $h$ we find

$$
\begin{aligned}
\varphi_{h}(s)= & \sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} \sum_{m=0}^{r_{j}} b_{m j} e^{-\lambda_{1} m\left(s_{l}^{(j)}+s\right)} \\
& +\sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} \sum_{\theta=0}^{r_{j}} \sum_{m=1}^{\infty} a_{m, \theta}^{(j)} e^{-\left(\lambda_{m}+\theta \lambda_{1}\right)\left(s_{l}^{(j)}+s\right)} \\
= & \sum_{m=0}^{r} v_{m} e^{-\lambda_{1} m s}+\sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} \sum_{\theta=0}^{r} \sum_{m=1}^{\infty} b_{m, \theta, l}^{(j)} e^{-\left(\lambda_{m}+\theta \lambda_{1}\right) s} \\
& \stackrel{\text { def }}{=} D_{r}(s)+\widehat{D}_{r}(s)
\end{aligned}
$$

where

$$
D_{r}(s)=\sum_{m=0}^{r} v_{m} e^{-\lambda_{1} m s}
$$

is a Dirichlet polynomial, and $\widehat{D}_{r}(s)$ is a linear combination of Dirichlet series satisfying conditions (1)-(3). Clearly, the function $\widehat{D}_{r}(s)$ is regular on $D$.

Since the set $\left\{\lambda_{m}\right\}$ is linearly independent over the field of rational numbers it can be obtained by using standard arguments, see, for example, [4], Chapter 5, that the probability measure

$$
\nu_{T}\left(\left(D_{r}(s+i \tau)+\widehat{D}_{r}(s+i \tau)\right) \in A\right), \quad A \in \mathcal{B}(H(D))
$$

converges weakly to the distribution of the $H(D)$-valued random element

$$
\begin{align*}
\varphi_{h}(s, \omega) \stackrel{\text { def }}{=} & \sum_{m=0}^{r} v_{m} \omega^{m}(1) e^{-\lambda_{1} m s} \\
& +\sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} \sum_{\theta=0}^{r} \sum_{m=1}^{\infty} b_{m, \theta, l}^{(j)} \omega^{\theta}(1) \omega(m) e^{-\left(\lambda_{m}+\theta \lambda_{1}\right) s} . \tag{6}
\end{align*}
$$

Thus, we have proved that the probability measure

$$
\nu_{T}\left(\varphi_{h}(s+i \tau) \in A\right), \quad A \in \mathcal{B}(H(D))
$$

converges to the distribution of the random element (6) as $T \rightarrow \infty$. However, by the definition of $h$

$$
\begin{aligned}
\varphi_{h}(s, \omega)= & \sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} \sum_{m=0}^{r_{j}} b_{m j} \omega^{m}(1) e^{-\lambda_{1} m\left(s_{l}^{(j)}+s\right)} \\
& +\sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} \sum_{\theta=0}^{r_{j}} \sum_{m=1}^{\infty} a_{m, l}^{(j)} \omega^{\theta}(1) \omega(m) e^{-\left(\lambda_{m}+\theta \lambda_{1}\right)\left(s_{l}^{(j)}+s\right)} \\
= & \sum_{r=1}^{2} \sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} f_{r f}\left(s_{j}^{(j)}+s, \omega\right)=h(Q ; s),
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\varphi_{h}\left(s+i \eta_{T}\right) \xrightarrow[T \rightarrow \infty]{\mathcal{D}} h(Q ; s) . \tag{7}
\end{equation*}
$$

Now we are ready to prove Lemma 2. We have seen that the family of probability measures $\left\{Q_{T}\right\}$ is relatively compact. Hence we can find a sequence $T_{1} \rightarrow \infty$ such that the measure $Q_{T_{1}}$ converge weakly to some probability measure $Q_{0}$ on $\left(H_{2 n}, \mathcal{B}\left(H_{2 n}\right)\right)$ as $T_{1} \rightarrow \infty$. This shows that there exists an $H_{2 n}$-valued random element

$$
\widehat{f}=\widehat{f}\left(s_{1}, \ldots, s_{n}\right)=\left(\widehat{f}_{11}\left(s_{1}\right), \widehat{f}_{21}\left(s_{1}\right), \ldots, \widehat{f}_{1 n}\left(s_{n}\right), \widehat{f}_{2 n}\left(s_{n}\right)\right)
$$

with distribution $Q_{0}$ defined, say, on a certain probability space $\left(\Omega_{0}, \mathcal{F}_{0}, \mathbb{P}_{0}\right)$. Write the random element $f_{T}\left(s_{1}, \ldots, s_{n}\right)$ in the form

$$
f_{T}=f_{T}\left(s_{1}, \ldots, s_{n}\right)=\left(f_{T, 11}\left(s_{1}\right), f_{T, 21}\left(s_{1}\right), \ldots, f_{T, 1 n}\left(s_{n}\right), f_{T, 2 n}\left(s_{n}\right)\right),
$$

where

$$
\begin{aligned}
& f_{T, 1 j}\left(s_{j}\right)=f_{1 j}\left(s_{j}+i \eta_{T}\right), \\
& f_{T, 2 j}\left(s_{j}\right)=f_{2 j}\left(s_{j}+i \eta_{T}\right),
\end{aligned}
$$

and $s_{j} \in D_{j}, j=1, \ldots, n$. By the choise of $T_{1}$ we have that $f_{T_{1}} \xrightarrow[T_{1} \rightarrow \infty]{\mathcal{D}} \widehat{f}$, and therefore

$$
h\left(f_{T_{1}}\right) \xrightarrow[T_{1} \rightarrow \infty]{\mathcal{D}} h(\widehat{f} ; s) .
$$

Hence, in view of the definition of $\varphi_{h}(s)$,

$$
\begin{equation*}
\varphi_{h}\left(s+i \eta_{T_{1}}\right) \xrightarrow[T_{1} \rightarrow \infty]{\mathcal{D}} h(\widehat{f} ; s) . \tag{8}
\end{equation*}
$$

On the other hand, (7) shows that

$$
\varphi_{h}\left(s+i \eta_{T_{1}}\right) \xrightarrow[T_{1} \rightarrow \infty]{\mathcal{D}} h(Q ; s) .
$$

This and (8) yield

$$
\begin{equation*}
h(Q ; s) \stackrel{\mathcal{D}}{=} h(\widehat{f} ; s) . \tag{9}
\end{equation*}
$$

Let the function $u: H(D) \rightarrow \mathbb{C}$ be given by the formula

$$
\begin{equation*}
u(f)=f(0), \quad f \in H(D) . \tag{10}
\end{equation*}
$$

The topology of the space $H(D)$ shows that the function $u$ is measurable, and therefore by (9)

$$
u(h(Q ; s)) \stackrel{\mathcal{D}}{=} u(h(\widehat{f} ; s)),
$$

and

$$
h(Q ; 0) \stackrel{\mathcal{D}}{=} h(\widehat{f} ; 0)
$$

by (10). From this it follows that

$$
\begin{equation*}
\sum_{r=1}^{2} \sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} f_{r j}\left(s_{l}^{(j)}, \omega\right) \stackrel{\mathcal{D}}{=} \sum_{r=1}^{2} \sum_{j=1}^{n} \sum_{l=1}^{k} u_{j l} \widehat{f}_{r j}\left(s_{l}^{(j)}\right) \tag{11}
\end{equation*}
$$

for arbitrary complex numbers $u_{j l}$. It is well known [3] that all hyperplanes in $\mathbb{R}^{4 n k}$ generates a determining class, and therefore they generate a determining class in $\mathbb{C}^{2 n k}$. Consequently, in view of (11) the $\mathbb{C}^{2 n k}$-valued random elements $f_{r j}\left(s_{l}^{(j)}, \omega\right)$ and $\widehat{f}_{r j}\left(s_{l}^{(j)}\right), r=1,2, j=1, \ldots, n, l=1, \ldots, k$, have the same distributions.

Let $K_{j}$ be an arbitrary compact subset of $D_{j}$, and let $v_{r j}(s) \in H\left(D_{j}\right)$, $r=1,2$. Now we suppose that the set $\left\{s_{l}^{(j)}, 1 \leq l<\infty\right\}$ is dense in $K_{j}$, $j=1, \ldots, n$. Consider the sets of functions

$$
\begin{aligned}
G= & \left\{\left(g_{11}, g_{21}, \ldots, g_{1 n}, g_{2 n}\right) \in H_{2 n}: \sup _{s \in K_{j}}\left|g_{r j}(s)-v_{r j}(s)\right| \leq \varepsilon\right. \\
& j=1, \ldots, n, r=1,2\} \quad \text { and } \\
G_{k}=\{ & \left(g_{11}, g_{21}, \ldots, g_{1 n}, g_{2 n}\right) \in H_{2 n}:\left|g_{r j}\left(s_{l}^{(j)}\right)-v_{r j}\left(s_{l}^{(j)}\right)\right| \leq \varepsilon \\
& j=1, \ldots, n, l=1, \ldots, k, r=1,2\}
\end{aligned}
$$

Since the distributions of the random elements $f_{r j}\left(s_{l}^{(j)}, \omega\right)$ and $\widehat{f}_{r j}\left(s_{l}^{(j)}\right)$, $r=1,2, j=1, \ldots, n, l=1, \ldots, k$, coincide we have

$$
\begin{equation*}
m_{H}\left(\omega \in \Omega: Q\left(s_{1}, \ldots, s_{n}, \omega\right) \in G_{k}\right)=\mathbb{P}_{0}\left(\widehat{f}\left(s_{1}, \ldots, s_{n}\right) \in G_{k}\right) \tag{12}
\end{equation*}
$$

Clearly, $G_{1} \supset G_{2} \supset \ldots$. This and the denseness of $\left\{s_{l}^{(j)}, 1 \leq l<\infty\right\}$ show that $G_{k} \rightarrow G$ as $k \rightarrow \infty$. Hence and from (12) we deduce that

$$
\begin{equation*}
m_{H}\left(\omega \in \Omega: Q\left(s_{1}, \ldots, s_{n}, \omega\right) \in G\right)=\mathbb{P}_{0}\left(\widehat{f}\left(s_{1}, \ldots, s_{n}\right) \in G\right) \tag{13}
\end{equation*}
$$

Since $H_{2 n}$ is a separable space, finite intersections of spheres in it form a determining class [3]. Therefore, (13) yields

$$
Q \stackrel{\mathcal{D}}{=} \widehat{f}
$$

Since $f_{T_{1}} \xrightarrow[T_{1} \rightarrow \infty]{\mathcal{D}} \widehat{f}$, hence it follows that

$$
f_{T_{1}} \xrightarrow[T_{1} \rightarrow \infty]{\mathcal{D}} Q .
$$

In other words, the probability measure $Q_{T_{1}}$ converges weakly to the distribution $\widehat{Q}$ of the random element $Q$ as $T_{1} \rightarrow \infty$. Since the family of probability measures $\left\{Q_{T}\right\}$ is relatively compact, the measure $\widehat{Q}$ is independent on the choice of the sequence $Q_{T_{1}}$. Since $Q_{T}$ converges weakly to $\widehat{Q}$ as $T \rightarrow \infty$ if and only if every subsequence $\left\{Q_{T_{1}}\right\}$ of $\left\{Q_{T}\right\}$ contains another subsequence $\left\{Q_{T_{2}}\right\}$ weakly convergent to $\widehat{Q}$ as $T_{2} \rightarrow \infty$, hence we obtain the lemma.

## 3 Proof of Theorem 2

Define a metric on the spaces $H_{2 n}$ and $M_{n}$ as the maximum of the metrics on the coordinate spaces. Let the function $u: H_{2 n} \rightarrow M_{n}$ be given by the formula

$$
u\left(g_{11}, g_{21}, \ldots, g_{1 n}, g_{2 n}\right)=\left(\frac{g_{21}}{g_{11}}, \ldots, \frac{g_{2 n}}{g_{1 n}}\right)
$$

where $g_{1 j}, g_{2 j} \in H_{j}, j=1, \ldots, n$. In virtue of the equality

$$
d\left(g_{1}, g_{2}\right)=d\left(\frac{1}{g_{1}}, \frac{1}{g_{2}}\right)
$$

for the spherical metric we have that $u$ is a continuous function. Therefore, by Lemma 2 the probability measure

$$
\begin{aligned}
& \nu_{T}\left(\left(f_{1}\left(s_{1}+i \tau\right), \ldots, f_{n}\left(s_{n}+i \tau\right)\right) \in A\right) \\
& \quad=\nu_{T}\left(\left(\frac{f_{21}\left(s_{1}+i \tau\right)}{f_{11}\left(s_{1}+i \tau\right)}, \ldots, \frac{f_{2 n}\left(s_{n}+i \tau\right)}{f_{1 n}\left(s_{n}+i \tau\right)}\right) \in A\right), \quad A \in \mathcal{B}\left(M_{n}\right),
\end{aligned}
$$

converges weakly to the distribution of the random element

$$
\left(\frac{f_{21}\left(s_{1}, \omega\right)}{f_{11}\left(s_{1}, \omega\right)}, \ldots, \frac{f_{2 n}\left(s_{n}, \omega\right)}{f_{1 n}\left(s_{n}, \omega\right)}\right),
$$

where

$$
\begin{aligned}
\frac{f_{2 j}\left(s_{j}, \omega\right)}{f_{11}\left(s_{j}, \omega\right)}= & \frac{\sum_{l=0}^{r_{j}} \sum_{m=1}^{\infty} a_{m, l}^{(j)} \omega^{l}(1) \omega(m) e^{-\left(\lambda_{m}+l \lambda_{1}\right) s_{j}}}{\prod_{l=1}^{r_{j}}\left(1-\omega(1) e^{\lambda_{1}\left(s_{l j}-s_{j}\right)}\right)} \\
= & \sum_{m=1}^{\infty} a_{m j} \omega(1) \omega(m) e^{-\lambda_{m} s_{j}}=f_{j}\left(s_{j}, \omega\right), \\
& s_{j} \in D_{j}, \quad j=1, \ldots, n .
\end{aligned}
$$

## References

1. Laurinčikas A., Steuding J. "On joint distribution of general Dirichlet series", Lith. Math. J., 42(2), p. 163-173, 2002
2. Genys J., Laurinčikas A. "Value distribution of general Dirichlet series. IV", Lith. Math. J., (to appear)
3. Billingsley P. Convergence of Probability Measures, John Wiley, New York, 1968
4. Laurinčikas A. Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996

[^0]:    *Partially supported by grant from Lithuanian Fundation of Studies and Science.

