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Notation

set, of the positive integers

set of the non-negative integers

set of real numbers

set of non-negative numbers

class of heavy-tailed distributions

class of subexponential distributions

class of strongly subexponential distributions
class of long-tailed distributions

class of O-exponential distributions

class of exponential distributions

class of dominatedly varying distributions
distribution function of the random variable &
tail of the distribution function Fy

integer part of the real number x

fractional part of the real number x

indicator function of the set A



d.f. abbreviation for "distribution function"

r.AQ. abbreviation for "random variable"

ru.s abbreviation for "random variables"

i.4.d. abbreviation for "independent and identically distributed"
f(z) =o(g(x)) denotes that lim_ % =0

Qx(\) =supPz < X <z +)\)
zeR
Lévy concentration function of r.v. X

supp(X) = {x e R: P(X =x) > 0}

support of the discrete random variable X



Chapter 1

Introduction

Research problem, topicality and novelty

The research objects of the thesis are the randomly stopped sum 5, the
randomly stopped maximum &) and the randomly stopped maximum of
sums Sy

Sn:€1+“‘+€77>
6(77) = max{(), 517 s 7577}7
Sty = max{Sy, S, ..., 5},

where {£1,&,...} is a sequence of random variables and 7 is a counting
random variable. We say that n is a counting random variable if it is non-
negative, integer-valued and non-degenerate at 0.

The thesis is devoted to finding conditions for the independent random
variables {&1, &9, . . .} under which the randomly stopped sum, the randomly
stopped maximum and the randomly stopped maximum of sums belong to
the special classes of heavy-tailed distributions. The motivation for this
investigation comes mainly from insurance and finance, where questions
related to extremal or rare events are traditionally considered (see, e.g., [3,
29, 49, 54]). For instance, data from motor third liability insurance as well
as fire and catastrophe insurance (earthquakes, flooding etc.) clearly show
the heavy tail behavior. In particular, Pareto, lognormal and loggamma
distributions are extremely popular in actuarial mathematics.

Mathematical aspects of risk theory related to calculation of ruin prob-

abilities are considered in a large number of works (see, e.g., [5, 1], B4 [35),
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30, 49, 52, 54, 57] and references therein). From the mathematical point
of view, the success of any insurance business depends on the asymptotic
behavior of the distribution of S, and S(,. If the distribution of individual
claim sizes is light-tailed, then the corresponding ruin probability is also
small for large values of the initial surplus and usually decreases with an
exponential rate (see, e.g., [5, B2, 34) 136, 149] 54, [57] and references therein).
If individual claim sizes belong to heavy-tailed distributions, then the ruin
probability decreases much more slowly with increasing initial surplus (see,
e.g., [31), B8], B9, 43, 44|, [45], 48, 57, 59]). Thus, it is necessary to find out
at the beginning of the investigation whether the distribution of individual
claim sizes is light- or heavy-tailed.

One of the most significant research directions in risk theory is investi-
gation of the ruin probability when the distribution of claim sizes is heavy-
tailed. In this case, ruin typically occurs because of one large claim, and
results are usually obtained for some special classes of heavy-tailed dis-
tributions. Results on asymptotic behavior of the ruin probability typ-
ically turn out to be different for different classes. Asymptotics of the
ruin probabilities in the case of heavy-tailed claim sizes was investigated
in 3] 6 [7, 8, 30, 42, 48], and also in [4], 89, 43, 59] for models with con-
stant interest rate. Various bounds for the ruin probability are obtained
in 23, BT, 38 [44) [45]. Optimal control problems are also solved for some
special classes of heavy-tailed distributions in [55, 56, 57]. Therefore, to
apply all these results, we need to know whether the distribution of claim
sizes belongs to some special classes.

The closure problem is classical. Bingham, Goldie and Teugels [9] are
one of the first researchers in this field. It is worth to mention that all the
classical results related to the closure problem are obtained for identically
distributed random variables {1, &5, ...}. The main novelty of this theses
is that not only identically distributed random variables are considered.

All results presented in the thesis are new and original. They are based

on 5 scientific publications.
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Aim and tasks

The main aim of the thesis is to find conditions for the independent
random variables {{1,&,...} and the counting random variable 7 under
which the distribution functions of 5;, §,) and S(,) belong to some classes
of functions.

To achieve the aim, the following tasks are raised:

« To establish conditions under which the randomly stopped sum S5,
belongs to the class of dominatedly varying distributions.

 To find conditions under which the randomly stopped sum S, belongs
to the class of exponential distributions.

e To find conditions under which the randomly stopped sum S5,, the
randomly stopped maximum &,y and the randomly stopped maximum
of sums S(,) belongs to the class of O-exponential distributions.

Methodology of investigation

Belonging to the classes of heavy-tailed distributions is usually asso-
ciated with the tail behavior of the distribution function. Therefore, to
estimate tail probabilities for sums of random variables and the maximum
of sums, we use standard methods of probability theory in this thesis.
The majority of estimates for the classes of heavy-tailed distributions are
related to properties of special indices such as the Matuszewska index, the
L-index, etc. To investigate the tails of randomly stopped sums, randomly
stopped maximums and randomly stopped maximums of sums, the set of
all possible values of the counting random variable is usually divided into a
few subsets, where the tails are studied separately using different methods.
The tails of sums of random variables are evaluated using classical methods
when the values of the counting random variables are fixed. Asymptotic
properties of distributions which are related to the special indices, namely
the Matuszewska index and the L-index, are applied when the values of
the counting random variables grow together with the tail bound. Concen-
tration inequalities are used for average values of counting random variables.
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Defended propositions

1. Conditions for the independent random variables {1, s, ...} and the
counting random variable n under which the distribution function of the
random sum S, =& + &+ ..+ &y

e preserves dominatedly varying tails;
« belongs to the class of exponential distributions.

2. Conditions under which the randomly stopped sum .S, the randomly
stopped maximum §(;) and the randomly stopped maximum of sums S
are distributed according to O-exponential laws. In this case, identically
and not necessarily identically distributed independent random variables
{&1,&, ...} are considered.

Publications

o Danilenko, S., Siaulys, J. (2015). Random Convolution of O-
exponential distributions. Nonlinear Analysis: Modelling and Control,
20(3): 447-454.

« Danilenko, S., Siaulys, J. (2016). Randomly stopped sums of not iden-
tically distributed heavy tailed random variables. Statistics and Prob-
ability Letters, 113: 84-93.

o Danilenko, S., Paskauskaité, S., Siaulys, J. (2016). Random convolu-
tion of inhomogeneous distributions with O-exponential tail. Modern
Stochastics: Theory and Applications, 3(1): 79-94.

« Danilenko, S., Markeviciiité, J.; Siaulys, J. (2017). Randomly stopped
sums with exponential-type distributions. Nonlinear Analysis: Mod-
elling and Control, 22(6): 793-807.

o Danilenko, S., Siaulys, J., Stepanauskas G. (2018). Closure properties
of O-exponential distributions. Statistics and Probability Letters, 140:
63-70.
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Conferences

« Random convolution of O-exponential distributions. 56th conference
of Lithuanian Mathematical Society, June 16-17, 2015, Kaunas.

» Sunkiauodegiy skirstiniy atsitiktiniy sumy savybeés. 57th conference of
Lithuanian Mathematical Society, June 20-21, 2016, Vilnius.

o Randomly stopped sum of distributions with dominatingly varying
tails. The X Tartu Conference on Multivariate Statistics, June 28 -
July 1, 2016, Tartu.

o Eksponentiskai pasiskirsciusios atsitiktinés sumos. 58th conference of
Lithuanian Mathematical Society, June 21-22, 2017, Vilnius.

e Closure properties of O-exponential distributions. Modern Stochastics:
Theory and Applications. IV, May 24-25, 2018, Kyiv.

o (D-eksponentiniy skirstiniy uzdarumo savybés. 59th conference of
Lithuanian Mathematical Society, June 18-19, 2018, Kaunas.

Structure of the thesis

In Chapters[I] - 2| the necessary notation is introduced and an overview
of known results is given. In Section [2.1], we formulate the main notions and
recall the definitions of the classes £, OL, D and L(y), v = 0, as well as
some other related classes. In addition, we describe some interrelationships
among the classes of heavy-tailed distributios. In Section [2.2] we give a
number of typical examples of d.f’s from all classes under consideration.
In Section [2.3] we formulate a few known results that describe conditions
under which the d.f. Fg, belongs to some classes.

In Chapters [3] - [5l we present our main results.

In Chapter [3| we investigate conditions under which the random sum
Sy, belongs to the class of dominatedly varying distributions. To be more
precise, we prove two assertions that describe conditions under which the
randomly stopped sum belongs to the class D and consider two examples. In
Theorem , no moment conditions for the r.v's {£1, &, ...} are required,
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whereas the conditions of Theorem imply that the r.v’s {&,&, ...}
have finite means. Yang and Gao [66] give conditions under which Fs, €
D when the r.v's {&1,&s, ...} are identically distributed but follow some
dependence structure. Yang and Gao [66] and Xu et al. [64] consider
conditions under which Fs, € £ when the r.v.’s {{, &, ...} are independent
and not identically distributed. Combining the results of [64] [66] with our
results we can obtain conditions under which Fg € LN D.

In Chapter @], we consider conditions under which the random sum S,
belongs to the class of exponential distributions. We prove three theorems
yielding conditions under which the d.f. Fs, belongs to the class £(v) for
some v > 0 and consider some examples. Theorem deals with the
case of a finitely supported counting r.v. 7, whereas Theorems [4.1.2| and
imply that the right tail of n is unbounded. We suppose that the r.v.s
{&1,&, ...} are non-negative in Theorems [4.1.1]and |4.1.3] whereas they can
be real-valued in Theorem [{.1.2] The proofs of the main results are based
on ideas from the papers [40, 63, 65]. Some similar results for the class
L = L£(0) are obtained in [47, [64].

In Chapter [5, we study conditions under which the randomly stopped

sum S;, the randomly stopped maximum &) and the randomly stopped
maximum of sums S(,) belong to the class of O-exponential distributions.
Moreover, we illustrate the results with examples. The class OL has never
been investigated thoroughly before. We also note that the r.v.’s {&1, &, ...}
under consideration can be real-valued and non-identically distributed. In
addition, we study the closure properties of distributions not only for the
randomly stopped sum S, but also for the randomly stopped maximum )
and the randomly stopped maximum of sums S,).
Finally, the conclusions are formulated in Chapter [6]
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Chapter 2

Classification of distribution

functions

2.1 The main notions

Let {&1, &, ...} be a sequence of real-valued random variables (r.v.’s), which
are identically or non-identically distributed, and let  be a counting r.v.,
which is independent of the sequence {1, &s, ...}, As usual, a counting r.v.
1s a r.v. which is non-negative, integer-valued and non-degenerate at 0.

We denote by Syp = 0 and S,, =& + -+ + &, n > 1, the partial sums,
and we write S, = & + - -+ + &, for the randomly stopped sum of the r.v’s
{&1,&2,...}. Similarly, set {g) = 0 and ;) = max{0,{1,...,&}, n > 1,
and let £,y = max{0,&;,...,&,} be the randomly stopped maximum of the
r.v’s {&1,&e, ...} Finally, set S,y = max{Sp, S1,...,Su}, n > 0, and let
Sty = max{Sy, S1,...,9,} be the randomly stopped maximum of sums
{So, 51,59, ...}

The distribution functions (d.f’s) of the r.v’s S,, &) and S,y can be
expressed as follows: -

Fs,(x) = P(Sy <) = > P(S, < 2)P(n =n),

n=0
Fﬁ(n)(x) = IPJ(f(n) < x) = _OP<§(n) < HJ)P(H = n)7
Fg, (@) :=P(S) < ) = Z_:()P(S(n) < 2)P(n=n).

We denote by F the tail of a d.f. F, that is, F(z) = 1 — F(x) for all

15



r € R.
Note that the tails of these d. f’s can be expressed similarly:

Fg, (z ZPS > x)P(n =n),
n= 0
Ff(n) Z IP) P(n - n)?

F n) Z P(S T)P(n=n).

In what follows, we are 1nterested in the closure property of the distribu-
tions of the randomly stopped sum S, the randomly stopped maximum &,
and the randomly stopped maximum of sums S(,)y. This property states that
if F¢, belongs to some special class of distributions for some fixed » > 1,
then the functions Fi,, F§(n> and Fs(n) belong to the same class.

In this section, we recall the definitions of the classes OL, D and L(7),
~v > 0, which are investigated in this thesis, as well as some related classes
L, S and §* because a lot of the methods that are used in proofs of vari-
ous assertions are similar for all the classes. Furthermore, we describe the

related classes for the more complete presentation.

DEFINITION 2.1.1. A d.f. F is said to be heavy-tailed (F € H) if for any
fized 6 > 0, we have
Jim. F(z)e’® = oo.

The class of heavy-tailed random variables ‘H has a very rich structure.
The most important subclasses of H are defined below.

We start with subexponential and long-tailed distributions, which were
first introduced and studied by Chistyakov [I3] in the context of the branch-
ing process. In particular, he proved that the subexponential distribution
class is contained in the class of long-tailed distributions. Later subexpo-
nential distributions have been used in a wide variety of applications in
probability theory, for instance, in renewal theory and the theory of in-
finitely divisible distributions (see, e.g., [28, 29, 33| 51, 61]).

DEFINITION 2.1.2. A d.f. F supported on the interval [0,00) is said to be
subexponential (F € S) if

FxF
lim + Flz)

—_— = 2.
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Here and subsequently, * denotes the convolution of d.f.’s.

The class of strongly subexponential distributions was introduced by
Kliuppelberg [41].

DEFINITION 2.1.3. A d.f. F supported on the interval [0, 00) is said to be
strongly subexponential (F € 8*) if

x

o= / rdF(z) < oo and / dnyJOOQNF( ).
[0,00) 0
If a d.f. F is supported on R, i.e. F(0—) > 0, then F is supposed
to belong to either S or §* when F'*(z) = F(xllj ) (2)) belongs to the
corresponding class.

DEFINITION 2.1.4. A d.f. F is said to be long-tailed (F € L) if for any

fixed a > 0, we have
F(x+a)
lim ———~ =1.
5% F(g)
Shimura and Watanabe [58] introduced the class OL, which is wider
than the class £ and similar to it, and investigated some subclasses of this

class.

DEFINITION 2.1.5. A d.f. F is said to be O-exponential (F € OL) if for
any fired a € R, we have

F(x+a) F(x+a)
- =, < 1 ———— < .
F(z) el F(z)
The last definition implies that F'(z) > 0 for all z € R if F' € OL.

It is obvious that F' € OL if and only if

0< hm mf

limsup ————= < o0, (2.1.1)

or, equivalently,

The last condition shows that the class OL is quite wide. Now we
describe the most popular subclasses of OL because we present some results

on the random convolution of distributions from these subclasses later.
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DEFINITION 2.1.6. A d.f. F is said to belong to the class of exponential
distributions (F € L()) with some v > 0 if for any fized a > 0, we have
F(x +a)

Jim, Fla) e .

For v > 0, the class £(v) was introduced by Embrechts and Goldie [26].
If v =0, then it is clear that L(v) = L.

Another famous class of heavy-tailed distributions is the class of domi-

natedly varying distributions D introduced by Feller [32].

DEFINITION 2.1.7. A d.f. F is said to be dominatingly varying (F € D) if
for any fired a € (0,1), we have
F(za)

li — < 0.
et F(z) O

Now we summarize interrelationships among the most important classes
of heavy-tailed distributions introduced above. Most of these interrelation-
ships are well known.

The definitions given above together with [I3, Lemma 2], [24, Lemma
9], [29, Lemma 1.3.5(a)] and [37, Lemma 1] imply that

LNDCS " CcSCLCH, DCH.

Figure 2.1 shows the interrelationships among the classes of heavy-tailed
distributions D, S, §*, £ and H.

Similarly, we can conclude that

LCOL DcOL and |JL(y)COL

v>0
This relationship is presented in Figure [2.2]
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8*

Figure 2.1: Classification of classes of heavy-tailed distributions

oL

U L(7)

>0

Figure 2.2: Classification of subclasses of the class OL
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2.2 Examples

In this section, we give a number of d.f’s, which belong to the classes defined

in Section 2.1
EXAMPLE 2.2.1. The Pareto distribution with d.f.

F(x)zl—(1+§)_ , v =0,

where b > 0 is the scale parameter and a > 0 is the shape parameter.

For the Pareto distribution, we have FF € LN D.

It is clear that F'(z) ~ (z/b)~® as z — oo. For this reason, the Pareto
distribution is sometimes referred to as the power-law distribution. The
Pareto distribution has finite moments of order k < a, whereas all moments
of order k£ > a are infinite.

EXAMPLE 2.2.2. The Weibull distribution with d.f.
x\ P
F(x) zl—exp{— <)\> }, x >0,

where A > 0 is the scale parameter and $ > 0 is the shape parameter.

If0<p <1, then FeS C L CH. However, F' ¢ D.

Note that in the case § = 1 we have the exponential distribution. All
moments of the Weibull distribution are finite, but Ee’* = oo for all § > 0
if 5 < 1.

EXAMPLE 2.2.3. The distribution from the paper by Cline and Samorodnit-
sky [16] with
F(z) = exp{ — [log(1+2)] +
—max {(1 + z)(log(1 + z) — [log(1 +z)]), 1} }, x 20,
where |z| denotes the integer part of z.
In this case we have F' € D and F ¢ L.
EXAMPLE 2.2.4. The Burr distribution on RY with the tail defined by
_ K \®
Fla) = <xT + /s:) ’

where a > 0, k > 0 and 7 > 0 are some parameters.

20



The Burr distribution has finite moments of order 7 < a7, whereas all

moments of order 7 > a7 are infinite.

In this case we have F' € LN D as in Example 2.2.1]

EXAMPLE 2.2.5. By Proposition 2.6 from [2], an absolutely continuous d.f.
F belongs to the class L(7y) if and only if

x

F(z) = exp{ / (a(u) +b(u))du}

—00

for x € R, where measurable functions a and b satisfy the following condi-
tions:
(i) a(u) +b(u) =2 0,u € R;

=,

f a(u)du =
f b

(i) lim a(u)
(iif) lix
(

iv) lim (u)du ezists.

If we choose .

a(u) = (2 - u) 11 00 (1)

and

14 u?

1
b0) = (1) oo (0
then we get the d.f. F' with tail

F(x) :xexp{2+1—2x—arctanx},x > 1,

which belongs to the class £(2) because

1
lim a(u) = lim (2 - > =2,
U— 00 U— 00 u
T x 1
/a(u)du = /(2—>du:2:c—2—l—lnx—>oo,
u T—00

—0oQ —0o0

xT xT 1
lim [ b(u)du = lim ( ) du
x—)oo_oo x—)oo_ 14+ u?

: m
= lim (arctg(x) — arctg(l)) = 1
21



EXAMPLE 2.2.6. By Proposition 2.6 from [2], an absolutely continuous d.f.
F belongs to the class OL if its tail F has the representation

F(x) = exp {— / (a(u) + b(u))du} (2.2.1)

—00

for x € R, where some measurable functions a and b satisfy the following

conditions:
(i) a(u) +b(u) = 0,u € R;
(ii) limsup |a(u)| < oo;
U— 00

(ifi) liminf | a(u)du = oo;

f b(u)du

—0o0

(iv) lim sup < Q.

T—r 00

If we choose

and
b(u) = (cosu) I} o0y (u),
then we get the d.f. F' with tail
F(z)=zexp{l+sinl —cosl —xz+cosz —sinx},z > 1,

which belongs to the class OL because

lim sup |a(u)| = lim 15Up |1+ sinu| =2,

U—00

lim inf / u)du = lim inf / (1+ sinu)du = oo,

lim sup L/x b(u)du

T—00
o0

2.

T—00

T
= lim sup L/ cos udu| <

o0

EXAMPLE 2.2.7. Let the r.v. & have the geometric distribution with param-
eterp € (0;1), i.e

P(¢=k)=(1—-p)p, k=012, ..

22



This distribution belongs to the class OL because

[e.e]

Fe(r) = Y PE=k= > (1-p'p

k>x k=|z|+1
= p(A=p T+ (1 —p)l+2 4 )
= p(l—pHa+1-p+.)
= (1-pt* z>1,

and, consequently,

: Fe(z—1) : (1—pl—t*

limsup —-——2 = 1

el T Fe() el (1 = p)lelH
L (1 . p)x—l—{x—l}
= s e

1
= lim sup(1 — p)#71 < .

1—p T—00

EXAMPLE 2.2.8. Let the r.v. & be distributed according to the Peter and

Paul law with parameter %, i.€.

1
Fg(m):22§, x> 1.
2l>g
121

Since Fe is a piecewise constant function, & is a discrete random variable.

For all x > 1, we have

_ 1 1 > 1
F&(I):QZ§:2Z§:2 > 30
S A

1 1
= 2
(3[%323“‘1 + 3“3?2”4‘2 + )

log 1 1
= 3 lelo (24 S 4
g (3*32+ )

long

— 3l
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This distribution belongs to the class D because

logz
F 3 | Tog 2 ]
llm Sup 5( ) == llm Sup loggaI
T—00 Fg( ) z—oo 3Lz )

1 1
qlozs(loxs)

= limsup o —may
T—=00  3Tog2 —{ log 2 ¥

< 37 173 — 3ltmrlogs oo

for any fixed a € (0,1).

2.3 Known results

There are a lot of results giving either sufficient or necessary and sufficient
conditions in order that the d.f. of the random sum Fg, belong to some
classes of heavy-tailed distributions. It is usually assumed that the r.v’s
{&1,&, ...} are not only independent but also identically distributed. Now
we formulate a few known results, which guarantee that the d.f. Fg, belongs
to some classes. The first assertion describes the closeness of the class S.

Theorem 2.3.1. Let {&1,&, ...} be independent copies of a non-negative
r.v. & with subexponential d.f. Fe. In addition, let n be counting r.v., which
is independent of {&1,&,...}. If E(1 4+ 06)" < oo for some § > 0, then
an €S.

The proof of Theorem can be found in several papers (see, e.g.,
[27, Theorem 4.2], [14, Theorem 2.13], |29, Theorems 1.3.9 and A3.20], [33],
Corollary 3.13 and Theorem 3.37]). In a more general case where F¢ belongs
to the so-called convolution-equivalent class S(a), @ > 0, a similar result is
obtained in [62]. In the case of strongly subexponential d.f’s, the following
result, which involves weaker restrictions on the r.v. 7, can be derived from
Theorem 1 of Denisov et al. [25]. To be more precise, using that assertion
we can get the following theorem.

Theorem 2.3.2. Let {&1,&, ...} be independent copies of a non-negative
r.v. & with strongly subexponential d.f. F¢ and finite mean EE. Moreover,
let m be a counting r.v., which is independent of {&1,&,...}. If P(n >
z/c) = o o(Fe(z)) for some ¢ > EE, then Fs, € S*.
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Similar properties for the class of dominatedly varying distributions are
proved in [46] (see Theorems 4 and 5 and Corollary 1). Below we formulate
Theorem 4 from that paper. We recall only that a d.f. F' belongs to the
class D if and only if the upper Matuszewska index J; < oo, where, by
definition,

1 F
Ji = — lim log ( lim inf 7(a:y) :
Yy—00 1Og Y T—00 F(.Qf)
Theorem 2.3.3. Let {&1,&,...} be ii.d. non-negative r.v.’s with d.f.
Fe € D. In adddition, let n be a counting r.v., which is independent of
{&1,&, ...}, such that EnP™ < oo for some p > J}‘g. Then the d.f. Fs, of

the randomly stopped sum S, belongs to the class D as well.

The closeness of the class £ under random convolution is considered in
[T, 14}, 15], [46]. Below we formulate the assertion of Theorem 6 from [46].

Theorem 2.3.4. Suppose that {&1,&s, ...} are i.i.d. non-negative r.v.’s with
d.f. Fe € L. Moreover, let n be a counting r.v., which is independent of
{&, &, ...}, with d.f. F,. If F,(dz) = 0<\/§ Fg(a:)) for any § € (0,1), then
an e L.

The conditions under which Fs, € D are considered in [66] in the case
where the r.v/s {£1, &, ...} are identically distributed but follow some de-
pendence structure, whereas the conditions under which Fs, € L are con-
sidered in [66} [64] in the case where the r.v.'s {1, &, ...} are independent
and non-identically distributed.

Cai and Tang [12] discuss the max-sum equivalence and the convolu-
tion closure of heavy-tailed distributions. They prove that the class D is
closed under convolution and establish the max-sum equivalence for the
class DN L (see [12, Proposition 2.1 and Theorem 2.1]).

Theorem 2.3.5. If F; € DNL and Fo, € DN L, then Fyx Fy € DN L and
Fix Fy(x) ~ Fi(x) + Fa(x).

In [14], [15], Cline establishes that the d.f Fis, belongs to the class £() if
the r.v’s {&1, &, . . .} are identically distributed with d.f. F; € £(v) and 7 is
an arbitrary counting r.v. Albin [I] constructs a counterexample and shows
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that Cline’s result is false in general. In his paper [I], Albin states that
the d.f. Fg, remains in the class £(7) if the r.vs {£, &, . . .} are identically
distributed with d.f. Fy € £(7) and Ee® < oo for all § > 0. In order to
prove his assertion, Albin uses the implication

F(zx—1t)
iglc) F(z) (1+e)e
F*n(x —t)

= sup <(1+¢)e”, neN, (2.3.1)

ezn(e—t)+t  FF(1)
for some ¢ € R, where ¢ > 0, t € R and F is a d.f from the class L(7),
~v = 0. Unfortunately, if parameter v > 0, then the implication above holds
only for ¢ > 0. Watanabe and Yamamuro show that is incorrect in
the case of v > 0 and ¢ < 0 (see [63, Remark 6.1]). If v = 0 and ¢ > 0,
the implication above is sufficient to prove Albin’s statement under some
weaker restrictions on the counting r.v. n (see [406, Theorem 6]). Thus,
Albin’s assertion related to conditions under which Fs, € L(7) remains
only a hypothesis in the case v > 0. Watanabe and Yamamuro do not
prove Albin’s hypothesis in the general case, but they give the following
assertion related to the Poisson r.v. (see [63, Proposition 6.1]).

Theorem 2.3.6. Let {£1,&,...} be a sequence of independent identically
distributed r.v.’s with d.f. Fe. If Fe € L(y) for some v > 0, then Fg,
belongs to the class L(7y) for any counting r.v. n distributed according to
the Poisson law.

Theorem is generalized in [65], where the following assertion is
proved (see [65, Theorem 2.3)).

Theorem 2.3.7. Let {&1,&s, ...} be a sequence of independent non-negative
r.v.’s with d.f. F¢ such that Fg‘N € L() for some integer N > 1 and vy > 0.
Then Fs, € L(v) if either conditions (i) and (i) or conditions (i) and (iii)
hold, where

(i) for any € € (0,1), there is an integer M = M(e) such that

k;:\/[ P(n=Fk+ 1)@(1}) < eFlg, ()
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for all x > 0;
(ii) Fe(x) = o FZ(x));
(iii) for allt >0 and 1 <i < N —1,
Fii(x —t
lim infL)

: > e,

=

Motivated by the results presented above, we also consider conditions
under which the d.f. Fs, belongs to the classes OL, D and L(7), v > 0. We
investigate the randomly stopped sum S,, the randomly stopped maximum
&, and the randomly stopped maximum of sums S, for independent but
not necessarily identically distributed r.v’s. We suppose that some of
the d.f’s {F¢,, Fe,,...} are in a certain class, and we find conditions on
{F¢,, Fe,, ...} and 7 such that the distributions of S, &, and S,y remain in
the same class. We present various collections of such conditions.
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Chapter 3

Randomly stopped sums of

dominatedly varying distributions

3.1 Main results

In this section, we formulate and prove two assertions, which describe condi-
tions under which the randomly stopped sum S, belongs to the class D. In
Theorem [3.1.1} no moment conditions on the r.v.’s {£1, &, ...} are required,

whereas the conditions of Theorem imply that the r.v’s {&,&, ...}
have finite expectations.

Theorem 3.1.1. [21] Let {&,&,...} be independent non-negative r.v.’s,
and let  be a counting r.v., which is independent of {&1,&,...}. Then
Fs, € D if the following three conditions hold:

(a) Fe, €D for some k € supp(n);

1 LI
b) li — Fe, ;
) B T (2 ) <

p+1 +
(c) En”"" < oo for some p> Jp, .

Theorem 3.1.2. [21] Suppose that the r.v.’s {&1,&, ...} are independent
and non-negative, and the counting r.v. n is independent of {&1,&s,...}.
In addition, let condition (b) of Theorem hold for some k € supp(n)

together with the following requirements:

Fe. € D, max{E¢,,En} < oo,
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lim sup sup — > E& =0, hm mf — § E&, > 0.
u—=00  nzk M 1<kgn np—1
E&j, >u

Then Fs, € D if and only if min{F;, , F,} € D.

It follows from inequality below that condition (b) of Theorem
and the condition E§, < oo imply that E& are finite for all k. There-
fore, all the conditions of Theorem are meaningful.

Now we give two examples of the r.v’s {£,&,...} and n where the
random sum Fjg, belongs to the class of dominatedly varying distributions.
In Example |3.1.1] we see that only one distribution belongs to the class D,
and all other distributions have light tails. Selecting the counting r.v. 7 in
a special way we can achieve that the randomly stopped sum belongs to the
class D. This result follows from Theorem [B.1.1]

EXAMPLE 3.1.1. Let {&,&,...} be independent r.v.’s such that & is dis-
tributed according to the Peter and Paul law with parameter 1 3, i€

Y

— 1 ogx
Fa)= ¥ Lool@l o

1>1,2!>2

whereas &, k = 2, are exponentially distributed with parameter k. In addi-
tion, let n be a counting r.v., which is independent of {&1,&s, ...} and has
the following distribution:

11
¢(5) (m+1)>

where ¢ denotes the Riemann zeta function, i.e.
o

Theorem implies that the d.f. of the randomly stopped sum S, has
a dominatedly varying tail.

P(n=m) =

m € N,

1
—. Re s> 1.
1 ns
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Indeed, for any fixed y € (0,1), we have

Fe,(zy)
Fe,(x)

lim sup =———=
T—r00

Hence, F;, € D.
Moreover, we have
+ _
J P, lim

— lim

Y—00 Og y

— lim

Y—00 log y

— hm

Next, since

we obtain

Finally, we have

Y—00 Og y

9—[logzy/log2]

lim sup
Tr—00 2

|log x/ log 2]

9—log zy/log 2+{log zy/ log 2}

lim sup
Tr—00

logx logJ
limsup 27 Tos2 ~ Iog

T—00

_logy |
27 Tog2 |im s

up ot

T—00

log (1

log

log (hm inf =

T—00

im mf
Tr—r00

T—00

log <2 B2 lim jnf 21 lfogﬁ}_{}gég}) .

log zy

]_ log 2

T rlogzq

2{ log 2

— lim

Yy—00 log y

1

}

1 1
s

92— logz/log2+{logz/log 2}

logz

log2 2 {

log : log :
log2 } {log2}

logy

log2} < 21_10g2 < 0.

Fe xy))

1 )i
9 Togz Tioga )

log 2

log Ty log zy
log 2 +{ log 2 )

1 log z1 log =
lim inf 2 Ts2 * {%;2“’}—{12;3})

log (2—53’52—1)

(_logy B

1) log 2




and

lim sup sup

T—00 n>1 an1 i T—00 n>1 N

LA 1
ZF = limsupsup(l%—QLlo JZe )

< limsup (1 + ZUEggj/(ezx — ex)) = 1.

T—00

In Example 3.1.2} the set of the r.v.’s {{1, &, . ..} is divided into two sets.
The r.v.s from the first set belong to the class D, whereas r.v.s from the
second set do not belong to this class. Selecting the counting r.v. 7 in

a special way, we achieve that the random sum of such random variables
belongs to the class D. This fact follows from Theorem [3.1.2]

EXAMPLE 3.1.2. Let {&1,&o, ...} be independent r.v.’s such that & are dis-
tributed according to the Pareto law for all odd k and & are distributed
according to the Weibull law for all even k. To be more precise, let

Fe(r)=(0+2)72 >0, ke{1,35,...},
Fe(z)=e¢ Ve 220, ke{2,4,6,...}.

In addition, let  be a counting r.v, which is independent of {&1,&s, ...} and
distributed according to the Poisson law.

Theorem implies that d.f. of the randomly stopped sum S, belongs
to the class D.
Indeed, since

1
F 1 2
lim sup =——-~ 51( y) = limsup M = lim sup (jo)Q
2
. (L+ 1) 1
= limsup ~*—5 = — < o0

for any fixed y € (0, 1), we conclude that F¢, € D.
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Next, we have

min(F&, Fn)(lﬂy)

lim sup ————+—=% =

T—00

min(F&? Fﬁ)(*r)

Since

(1 - min(Ffla Fn))(l’y)
(1 - min(FSN Fﬁ))(x)

(1 - min(l - F&? 1 - Fﬁ)((ﬁy)

lim sup
T—00

lim sup
T—00

(1 —min(l — F¢, 1 — Fy))(x)
1- (1 - maX(F&?FU))(J;y)
1— (1 - maX<F§17777))(x>
max(F, Fy)(wy)
max(Fe,, ) (2)

lim sup
T—00

lim sup
T—00

—A\k
e A 1
<
,;K ! (1+x)?
for x large enough, we obtain
— 1
in(Fe,, F, Axz02 1
lim sup m—lTl( & o) () = lim sup (1+1y)2 = — < 00,
Troo m1n<F§17 F’])('T) T Tta)2 Yy
Thus, we deduce that min{F¢, F;,} € D.
Furthermore, we have
E&r = O/ka(x)dx = 0/ a7 = 1
for k € {1,3,5,...} and
E&, = /ng(:z;)d:c = /e*ﬁdx =
0 0
for k € {2,4,6,...}.
Hence, we get
inf £, =1 and supE& = 2.
keN keN
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For all x > 0, we have:
if n =1, then

if n is even, then

1 LA
— Fe(r) ==+ e V(1 +2)?2<1+e V(1 +2)%
T

if n is odd (n = 2k + 1), then

1 5 k+1 k
— F. = *\/51 2<1 7\/51 2‘
nF&(az); &(x) 2k+1+2k—|—le ( +LIJ) +e ( +33)

Therefore, we get

lim sup sup
T—00 n>1 an1

On the other hand, we have
1 _

sup : F (x):L
n>1 nFa( ; 6l Ffl(x) o

Finally, we conclude that

lim sup sup
T—00 n>1 TLF&

3.2 Auxiliary results for Theorems |3.1.1-3.1.2

This section deals with a number of auxiliary results. The assertion of

Lemma below is well known and can be derived, for instance, from [9,
Proposition 2.2.1].
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Lemma 3.2.1. For a d.f. F € D and any p > Ji-, there are constants
c1 > 0 and co > 0 such that the inequality

s < 2

u

holds for v > u > co. In addition, we have u™ = 0( (u )) for any p > Ji.
Lemma is an inhomogeneous case of Theorem 3 from [17].

Lemma 3.2.2. Let {&1,&, ...} be independent non-negative r.v.’s with d.f.’s
{F¢,, Fe,, ...}, respectively, and let Fe, € D for some k > 1. In addition, we
suppose that condition (b) of Theorem |3.1.1| holds. Then for any p > ‘]Fsﬁ’
there is a constant cg > 0 such that

Fe o« .. x Fg (x)
Fe,(x)

< cznPtt

forallmn > k and x > 0.

PROOF OF LEMMA [3.2.2] Suppose that n > k and x > 0. First of all,
we observe that

P(S, > z) < (U {gz }) < zfleé (:Z) . (3.2.1)

=1

By condition (b) of Theorem [3.1.1] we deduce that there are positive
constants ¢4 and ¢ such that

Y Fe(z) < esnFe (x), © = e (3.2.2)
i=1

Therefore, inequality (3.2.1)) implies that

P(S, > ) < csnk, (:c) it = > ceyn. (3.2.3)
n
Since F¢, € D, by Lemma [3.2.1}, there are positive constants cg and c7
such that ()
Fg V\P
ACUPI <> (3.2.4)
Fe(v) = 7 \u

forv>u > cy.
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From inequalities (3.2.3)) and (3.2.4)) it follows that
P(S, > x) Fe, (z/n)

et < esn—== < e nPH (3.2.5)
Fe (2) Fe (2)
for all = > cgn, where c¢s = max{cy, c7}.
If 0 <z < cgn, then
P(S,, > 1 F 1 1
(S > z) < — _ Felos) < cgn? (3.2.6)
Fe (2) Fe(csn)  Fe(csn) Fe(cs) Fe (cs)

by (3.2.4) because cg > c7.
From ([3.2.5) and (3.2.6) we conclude that

Fey * .. % Fe (x) _ P(f” > 1)
Fe () Fe (z)

A

Ce
< max {6566, = } nPHl
Fe (cs)

for all > 0, which proves the lemma. [
The following lemma is an inhomogeneous case of Corollary 3.1 from
[60].

Lemma 3.2.3. Let {&1,&, ...} be independent real-valued r.v.’s with d.f.’s
{F¢,, Fe,, ...}, respectively, and let Fe, € D for some k > 1. In addition,
we suppose that

| 1
Jim sup — 3" E (|&[ Mg u)) =0, (3.2.7)
k=1

nzk T j_

condition (b) of Theorem holds, and E&, = E&F —EE, =0 for k € N,
Then for any v > 0, there is a constant cg = co(7y) > 0 such that

P(S, > z) < conFe, ()
for all x > vyn and n > k.

PROOF OF LEMMA [3.2.3] For all x > 0 and n € N, we have
P(S, > ) = IP’(Sn>;r;, U {gk>}) +P(Sn>x, N {5k<2})
k=1
< ST (;) 4P (z £ > 1‘) , (3.2.8)
k
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where &, = &fﬂ{gkgg} + %]I{&&%}'

Let y = y(x,n) and a = a(z,n) be two functions defined as follows:
a(x,n) = max {— log (nﬁfﬁ (%)) ) 1}, whereas y(z,n) is an arbitrary func-
tion such that y(z,n) > 0 and lim 5;1% y(x,n) =0.

By Markov’s inequality, for all x > 0 and y = y(z,n), we have
P (Z & > SC) < e Eexp {y > gk}
k=1 k=1
e [ (1 E (R 1)
k=1

Therefore, using inequality 1 +v < e’, v € R, we get

P <k§1 Sk > x) < exp{ —yr+a+ zn: E (eygk — 1> } (3.2.9)

T T @)

For every fixed k € N, we split the expectation E (eyg’*‘ — 1) into four
parts as follows:

E (eygk — 1)

:< [+ [ + )(ey“—l)ngk(u)
(~%0,0]  (0,2/(2a%)]  (@/(2a%),2/2)

+ (ey“’ﬁ — 1) ng (g)
= Ju + Jok + T3k + Tk (3.2.10)

The inequalities [e¥ — 1| < |v| and |e¥ — 1 —v| < v?/2, which are true for
all v <0

Jie = E((e - 1)Te<0p)
= yE (&Ig<0p) + B ((e¥% — 1 — y&) L <o)
= —yE&G +E((" — 1) Ligc 1y gm) — YE (Sligc 1/ ym)
+ E (e =1 —y&) Ty yyegico))
< —yEg 4y (QE(1& I e <1/ 0my) +VT/2) (3.2.11)
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whereas the inequality e’ — 1 < ve”, which holds for all v > 0, gives
Tk < yexy/@a ) / udFy, (u) < ye™/ (24%) Ee.
[0,2/(2a%)]

In addition, it is easily seen that
Tar < €W Fe (x/(2a%) and Ty < e™/?Fe, (2/2) < ™/*F k(:z;/(2a2)).

Using the bounds obtained together with relations ) and ( m
we get

J < exp{—yr+a—y> B +yne(y)
k=1

+ emv/a)y Z B¢t 4+ 207/2 Y T, (29;2> } (3.2.12)
k=1

where n > k and e(y )—y1/2/2+sup Z 2|k Mg, <1/ 47)-

nzkKk

The condition E§ < oo implies that

1
Jim. :Lglvfn a(z,n) 2 lim log (W) = 00. (3.2.13)

Similarly, the condition F¢, € D and Lemma give

T T
lim inf 55 = lim inf —
n—o0 x>yn 2q n—00 g2yn 9 log (1/<nF£ﬁ (CE/Q)))
T T
> lim inf — = lim inf —
R glog? (1 (Fe, () 7o 21og? (/ (T, (0)
> lim inf L = 00. (3.2.14)

7m0 u2n 9p2 log?

Hence, by condition (b) of Theorem and Lemma [3.2.1] we obtain
no_ x — X DY X
3 P (3) < cwnfe (55) < ennFe (3).

where x > yn, n is large enough and p > JEEEH.
Substituting the last bound into ([3.2.12]) we conclude that the inequality

J < exp{—yrc+a—yZE£;§ + yne(y)
k=1

+ e/ S EEF 1 20167 20T, (‘;) } (3.2.15)
k=1
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holds if > yn and n is large enough.
Let now § = max {a_ip/g)g“, i} It is clear that § = g(z,n) > 0 for all
x > 0 and n € N. Moreover, 1}1_%10 xlgyfny =0 by (3.2.14)).

For y = 7, inequality (3.2.15)) yields
J < exp{ — gz + a+ gne(y) + (e —1) Z E&E + 2611} (3.2.16)

if x > yn and n is large enough.

By (8.2.2), we have
n n C4 o
Sag = 3 ([+ ) Fatman
k=1 k=1 \ Ca

< an+ esnEE = cpan. (3.2.17)
Combining (3.2.16|) with (3.2.2)) we obtain

7 1/(1_1
J < ezcllexp{gx(_1+5(y)+(e )012>+a}
v gl

< e exp{g(=3/4) +a}
= ¥ exp{—a/2 + 3ploga}

for all z > yn and n large enough.

Therefore, taking into account (3.2.9)) and (3.2.13]) we get

P(i & > I)
=1 0.

lim sup su — =
n%oop x}y% HFEK (%)

Hence, we deduce that

Fe (2 x
P(S, > ) _ £ (07 ()
lim sup sup ——=——= < limsup sup < 00

n0o g>yn Mg, (7) n—00" zzyn ke, (x) Fe (x)

because of inequality (3.2.8) and the conditions of the lemma.
From the last inequality it follows that
Sy >
sup PS> z) < o3 (3.2.18)

2 nFe (z)

for some c13 > 0 and all n > N, where N > & is a positive integer number.
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If Kk <n < N andx > 0, then by Lemma [3.2.2] there is a constant
c14 > 0 such that

(S > :1: (Z fk > l‘) 6147?,1)+ F5+( ) 014anF€H(SL‘). (3219)
The assertion of the lemma now follows immediately from (3.2.18) and

(3-2.19). O

Lemma 3.2.4. Let &, &9, ... be independent non-negative r.v.’s such that

Jim sup — Z E(ﬁkﬂ{gk%}) =0 and lm 1nf - Z E&, > 0.
neN N 5 =1

Then lim sup P(S, <) =0 for some d > 1.

X p>da

PROOF OF LEMMA [3.2.4] Let x and y be arbitrary positive numbers.
Since &1, &9, ... are non-negative, by Markov’s inequality, we obtain

P&+ &+ .+ & <a) = Ple vttt t) 5 o)
k=1

Next, applying arguments similar to those in (3.2.11)), for all k =1,...;n
and y > 0, we get

E(e ™% — 1) < —yE&, +y (2B (& g1/ 471) + vV3/2) -
Therefore,

P& +&+ .. +& <z) <exp {y(w — i E& + n?(y))},

k=1
where & (y) = 2 sug % kzlE(gk]I{fk;>l/<1/gj}) +VY/2.
ne =

By the conditions of the lemma, we have

y—0

1 n
limé(y) =0 and — > E& > dy
T =1

for some d; > 0 and n large enough.
Hence, for this n and all x > 0 and y > 0, we obtain

P&+ &+ ..+ & < @) <exp{y(z — ndy + né(y))}.
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Since € (y) 4 0 as y | 0, there is y* > 0 such that

P&+ &+ + & <) <exp{y’(z —ndi/2)}.

The last inequality implies that

P& + &+ ... + & < o) < exp{—y 'z}

if n > 4x/dy and x is large enough.
The assertion of the lemma follows immediately from the last inequality.

O

3.3 Proofs of Theorems [3.1.1H3.1.2

PrROOF OF THEOREM |3.1.1| To prove the theorem, it is sufficient to show
that

T o Gl )
T—00 ]P)(Sn > l‘)

By Lemma [3.2.2] for any = > 0, we have

IP’(Sn>‘;) _ (:1+ 3 )P(sn>§)1@(n:n)

= n=rk+1

< IP(SH> x)+ > P(Sn> x)IP(n
2 n=k+1 2

< 0. (3.3.1)

n)

_ x — /x Ry
< 615/€p+1F£K, <2> + ci5Fe, (2> > anP(?? =n)
n=~r+1

+1 N\ (7
< e (W HEPY) P (3).

where c;5 is a positive constant.

In the case of non-negative r.v.s we know that

Fs(x) = S P(Sy>2)P(n=n)>P(S>z)Pn=k)

> P (& >a)P(n = k) = Fe(2)P(n = k) (3.3.2)

forall x > 0and k > 1.
Thus, from (3.3.2)) we conclude that

B(S, > 7) > Fe, (2)P( = ).
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In addition, F¢, (2)P(n = k) > 0 because Fg, € D and k € supp(n).
The last two inequalities imply that

Fe, (3)

P(S,>%) s (k0 4+ Eprtt)
li 2/ < li S .
el P(S, > 1) P(n=r)  wos Fe (1)

Inequality now follows immediately from conditions (a) and (c)
of the theorem, which completes the proof. [

PROOF OF THEOREM . First, we suppose that min{F¢_, F,,} € D,
or, equivalently,

max {Fsﬁ (ya), F n(yx)}
lim sup

L300 maX{an(x),Fn(x)} =

for all y € (0,1).

We now prove that the d.f. Fg, belongs to the class D.

Applying arguments similar to those in (3.2.17) and taking into account
the conditions of theorem we get

for some constant c¢1g > 0 and all n € N.

For all x > 4k ¢4, we have

Fg,(z) = IP’(Sn>:L’,?7</i)+IP’<S,7>:r:,/1<n<4;(})
+ ]P’(Sn>x,77> 4Z> =N+ T+ T (3.3.4)
16

If x is large enough, then the conditions of the theorem imply that

T < PS> 1) < Y Fe (1")

=1 K

< ceprkFe, (Z) < 17k max {F& (i) ,F, (Z) }

for some constant cy7 > 0.
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Next, for Js, we have

Jo = > P (
(4cs)

k<n<z/

(& —E&) >z — g:l Eék) P(n =n)

i T

4

<z o
(4616)

(& - Ee) > %) P(y = n). (3.3.5)
k<n<z/

The r.v's & —E&y, & —E&,, ... satisfy conditions of Lemma |3.2.3] To be
more precise, E(§; —E&;) = 0 and F;,_ge, € D for all k£ € N. In addition,
the conditions of the theorem yield

n
lim sup sup 1 Y E (|§/rC — Efk’]l{grlggkgfu})

U—00 n=>kKk n k=1

: 1 &
= limsupsup— > E ((Efk — &)]I{&,]Egkg,u})

U— 00 n=>kKk n k=1

1
< limsupsup — Y E& =0. (3.3.6)

U—00 n>=k n 1<k<n
E&p>u

Applying the assertion of Lemma [3.2.3| to (3.3.5) we get

— 3
J2 < cig > nke, (:1: + Efm) P(n=n)

r<n<z/(4cig) 4

< g Enpmax {F& (if) F, <%f> }

It is easily seen that J5 < F), (z/(4c16)). Consequently, the bounds for
J1 and 7, together with (3.3.4]) give

Fg (z) < (ci7k + cisEn + 1) max {F&(a:c), Fn(ax)}, (3.3.7)

where a = min{1/k, 3/4, 1/(4ci6)}.
On the other hand, Lemma [3.2.4] implies that

P(S, >x) > ¥ P(S, > x)P(n=n) > F,(bx) <1 — sup P(S,, < :)3))
n>bx n>bx

> F,(ba)/2 (3.3.8)

for some b > 1 and z large enough because

1 .n
limsupsup — 3 E (&l g, 50))
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= lim sup max {max 1y Z E (gk]l{ﬁk u}) sup — Z E <£kﬂ{£k>u}>}

U—00 ’I’L/H

)

1
= limsupsup — Z (uF g, (u

U— 00 n>/§ k=1

VAN

lim sup uF su
u%oop En( ) n>§ an (

+ limsup / Fe, (v)sup

!

U—00 n>k an
< Cpg (lim sup qu ) + lim sup / Fe, (v )
U— 00 U—00

by the Conditions of the theorem and bound ( -

From and (3.3.8) we get
FS,, () > max {Fgﬁ(az)]}”(n — k), 1/2 F,,(ba:)}
> min {IP’(?] = K), 1/2} max {F&(bx),Fﬁ(bx)}. (3.3.9)
Therefore, using (3.3.9) together with we obtain

Fs,(x/2)
lim sup —=—~—"-+~
rhool Fg, (z)

(ci7k + c1gEn + 1) lim sup max {an(ax/Q), F,](aa:/2)}
min {P(n = K), 1/2} T max {F&(bx), Fn(b:c)}

for some 0 < a < 1andb> 1.

Thus, Fs, € D, which proves the sufficiency of the conditions of the
theorem.
Let now the d.f. Fg, belongs to the class D. By (3.3.9), we obtain

B B P(S, > z/(2b))
max {F@(l’/”’ F”(xm} S i {P(n = k), 1/2}

for some b > 1 and x large enough.
Moreover, inequality (3.3.7)) yields

Fg,(z/a)
(017/4, + ClgEn + 1)

max {F&(x), Fn(:r:)} >
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for some 0 < a < 1 and x large enough.

Combining the last two inequalities we get

ma {Fe, (2/2), Fy(2/2)} Fs,(az/(20))
lim su < cgolimsu =
x—)oop max {F& (q;), FU(I>} < x—>oop FSn (-T)

< 00,

where cog > 0.
The necessity of the conditions of the theorem follows immediately from
the last inequality, and the proof is complete. [
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Chapter 4

Randomly stopped sums for

exponential-type distributions

4.1 Main results

Now we formulate three theorems, which describe conditions under which
the d.f. Fi, belongs to the class £(v) for some v > 0. In Theorem 4. 1.1} the
case of a finitely supported counting r.v. 7 is considered, whereas conditions
of Theorems |4.1.2)and [4.1.3|imply that the right tail of  is unbounded. We
suppose that the r.v’s {1, &, ...} are non-negative in Theorems and
4.1.3] whereas they can be real-valued in Theorem [4.1.2]

If v > 0, then the results presented in this chapter are new. If v = 0, then

all the assertions below can be derived from the theorems proved in [47].
For the sake of completeness, we include the case v = 0 in our assumptions.
Moreover, we apply the same methods to prove our results for v > 0 and
v=0.

Theorem 4.1.1. [I8] Let n > 1 and {&1,&,...,&} be a collection of in-
dependent non-negative r.v.’s with d.f.’s {F¢,, Fe,,..., Fe,}, and let n be a
counting r.v., which is independent of {&1,&s,...,&,} and has a finite sup-
port supp(n) C {0,1,...,n}. Then the d.f. of the randomly stopped sum
Fs, belongs to the class L(y) for some v = 0 if F, € L(y) for some
1 < v < min {supp(n) \ {O}} and either Fe, € L(7) or Fg (z) = O(Fgu({l?))
for each k € {1, 2,..., max{supp(n)}}.
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Theorem 4.1.2. [18] Let {&1,&s,...} be a sequence of independent real-
valued r.v.’s with d.f’s {F¢,, F,, ...} such that
F
sup M —e M —0 (4.1.1)
1| Fe(x) e
for some v = 0 and any fired y > 0. In addition, let n be a counting r.v.
independent of {&1,&s, ...} and such that
Pn=k+1)
> 0. 4.1.2
P(n = k) koo (412)

Then Fs, € L(7).

Here we note that condition (4.1.1]) is equivalent to the two-sided bound

F F
e Y < liminf inf M < lim sup sup M <e Y,
T—00 k>1 ng(l’) T—00  k>1 ng(ac)
which holds for some v > 0 and any fixed y > 0.
Moreover, we observe that condition (4.1.2)) implies that P(n = k) > 0

for all £ large enough.

Theorem 4.1.3. [I8] Let {&1,&, ...} be a sequence of independent non-
negative r.v.’s with d.f.’s {F¢,, Fe,, ...}, and let n be a counting r.v. inde-
pendent of {£1,&2,...}. The d.f. Fs, belongs to the class L(y) for some
v =0 if there are % > 1 and 1 < v < 3 such that

() v < min {supp(n) \ {0}};

(i) Fe, € £(3);
(iii) for all 1 < k < 5, F, € L(7) or Fe (x) = O(ng(I)),’
(iv) for ally >0,
ka (z +y)

Fﬁk(x)
(V) Pn=Fk+1)/P(n=k) — 0.

sup —e Y —0;
T—r 00

k=41

Next, we give two examples, which illustrate some applications of our
theorems. In both of these examples, we construct randomly stopped sums

belonging to the class of exponential distributions.
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EXAMPLE 4.1.1. Suppose we have a three-seasonal sequence of independent
Erlang r.v.’s with d.f.’s from the class L(2), i.e. let

(1—e™2(1+ 22)) Mg 00) () if k=1mod3,
Fe (z) = (1 —e (14 22 + 2%2))11[0700)(56) if k=2mod3,
(1= e (1 + 22+ 22° + 423/3)) Mg oy (x) if k =0mod3.

In addition, we assume that the counting r.v. n is independent of {&1, &, .. .}

and distributed according to the Poisson law with an arbitrary positive pa-

rameter \.

In this example, it is clear that

ka (‘T + y)

—2y
Ssu — — €
k;l) ng(a:)
— max |F§1($—|—y) _e—2y , ng(x—ky) a2y ’
Fﬁl(x) F&(I)
Ffi(x+y)_e—2y - 0
and

It can be easily seen that all the conditions of Theorem are satisfied.
Consequently, Fs, € £(2).

EXAMPLE 4.1.2. Suppose that {&1,&, ...} is a sequence of mon-negative

r.v.’s such that

— 2
ng(x):—/e_yzdy, r>0, ke{23,...,10},

Fe(x)=e (14 2/(k—10)), 2>0, k€ {11,12,...}.

In addition, let n be a counting r.v. independent of {&1,&s,...} and dis-

tributed according to the following law:
1
Pn=Fk)=-e*, ke{0,1,2,. ..},
¢
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where -
e=> e ~1.3863.
k=0

The sequence {1, &, ...} and the counting r.v. 7 satisfy conditions of
Theorem with v =1, ¥ = 1 and » = 10 because:

Ffl S ,C(l),

supp(n) \ {0} = N,

Fe(z) = o(Fe (v)) if k € {2,3,...,10},
Pn=k+1)/P(n=k) =e 2! keN,

and
_ o ye?

o+ k—10

-y

‘ka (z +y)
Fe, (CL’)
forall k> 11, x > 0 and y > 0.

Consequently, the d.f. Fg, belongs to the class £(1) by this theorem.

4.2 Auxiliary results for Theorems [4.1.1-4.1.3

In this section, we give all auxiliary assertions, which we use in the proofs
of our main results. The first lemma is proved by Embrechts and Goldie
(see [26, Theorem 3]).

Lemma 4.2.1. Let F' and G be two d.f.’s, and let F belong to the class
L(7y) for some v = 0. Then convolution F x G belongs to the class L() if

one of the following conditions holds:
(i) the d.f. G belongs to the class L(7);

(i) G(x) = 0(7(:6)).
The next lemma is the inhomogeneous case of the upper bound given in

the proof of Proposition 6.1 from [63].

Lemma 4.2.2. Let {&1,&, ...} be independent real-valued r.v.’s with d.f.’s
{F¢,, Fe,, ...} such that

- Fe(r+a) _ -
limsupsup 22—~ € e™ 4.2.1
:c—>oop k;f ng (I) ( )
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for some v = 0 and a > 0. Then for any € € (0,1), there is b = b(a,c) > 0
such that

Fg,..(x+a)<(1+e)e " Fg,, (z) + Fg,(x —b)
forallx e R andn > 1
PROOF OF LEMMA [4.2.2] For all z € R and b > 0, we have
Fg,(x) = P(Su1 > ) =P(S, + &1 > @)
= [ Feu-ydfs@+ [ Fele—y)dFs,y)

—00, x—b) (z—b,00)

= jl(x, b) + Ja(z, b). (4.2.2)
Con